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C1. First Order Equilibrium Conditions

This appendix derives the necessary and sufficient first order conditions for problem

(7). Using equation (8) to express beginning-of-period wealth, the problem is given by

max
{bt ,at≥0,̃kt≥0,̃ct≥0}

E0

∞∑
t=0

β t u(̃ct)

s.t. :

c̃t = zt k̃
α
t−1 + (1− d)kt−1 + bt−1 + (1− λ)at−1(zt)− c − k̃t −

1

1+ r
bt − p′tat

zt+1k̃αt + (1− d)kt + bt + (1− λ)at(zt+1) ≥ N BL(zt+1) ∀zt+1 ∈ Z

w̃0 = w0, z0 given,

We now formulate the Lagrangian 3, letting ηt denote the multiplier on the budget con-

straint in period t , ν t(z
j ) the multiplier for the short-selling constraint on the Arrow

security that pays off in state z j in t + 1, and ωt ∈ RN the vector of multipliers asso-

ciated with the natural borrowing limits for each possible realization of productivity in

t + 1, where wt(z
j ) denotes the entry of the vector pertaining to productivity state z j :

3 = E0

[
∞∑

t=0

β t u(̃ct)

+β tηt

(
−c̃t + zt k̃

α
t−1 + (1− d)kt−1 + bt−1 + (1− λ)at−1(zt)− c − k̃t −

1

1+ r
bt − p′tat

)
+ β t

N∑
j=1

ν t(z
j )at(z

j )

+β t

N∑
j=1

ωt(z
j )
(
z j k̃αt + (1− d)kt + bt + (1− λ)at(z

j )− N BL(z j )
)]

We drop the inequality constraints for k̃t and c̃t , as the Inada conditions guarantee an

interior solution for these variables whenever w̃0 > N BL(z0). Differentiating the La-
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grangian with respect to the choice variables, one obtains

c̃t : u′(̃ct)− ηt = 0

bt : − ηt

1

1+ r
+ βEtηt+1 +

N∑
n=1

ωt(z
n) = 0

at(z
j ) : − ηt pt(z

j )+ βπ(z j |zt)ηt+1(z
j )(1− λ)

+ ν t(z
j )+ ωt(z

j )(1− λ) = 0 for j = 1, ..., N

k̃t : − ηt + βEt

[(
αzt+1k̃α−1

t + 1− d
)
ηt+1

]
+
(
αk̃α−1

t + 1− d
) N∑

j=1

ωt(z
j )z j = 0

Using the FOC for consumption to replace ηt in the last three FOCs, delivers three Euler

equations:

Bond : −u′(̃ct)
1

1+ r
+ βEt u

′(̃ct+1)+
N∑

j=1

ωt(z
j ) = 0

(C2a)

Arrow : −u′(̃ct)pt(z
j )+ βπ(z j |zt)u

′(̃ct+1(z
j ))(1− λ)

+ ν t

(
z j
)
+ ωt(z

j )(1− λ) = 0 for j = 1, ..., N

(C2b)

Capital : −u′(̃ct)+ βEt

[(
αzt+1k̃α−1

t + 1− d
)

u′(̃ct+1)
]
+
(
αk̃α−1

t + 1− d
) N∑

j=1

ωt(z
j )z j = 0

(C2c)

In addition, we have the following complementarity conditions for j = 1, ..., N :

0 ≤ at(z
j ), ν t(z

j ) ≥ 0, one holds strictly

(C2d)

0 ≤ z j k̃αt + (1− d)kt + bt + (1− λ)at(z
j )− N BL(z j ), ωt+1(z

j )) ≥ 0, one holds strictly

(C2e)

Combined with the budget constraint, the Euler equations and the complementarity con-

ditions constitute the necessary and sufficient optimality conditions for problem (7).

C2. Proof of Proposition 1

Consider some state-contingent beginning-of-period wealth profile wt arising from

some combination of bond holdings, default decisions and capital investment (Ft−1, Dt−1,1t−1, kt−1)
in problem (5). We show below that one can generate the same state contingent beginning-
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of-period wealth profile w̃t = wt in problem (7) by choosing k̃t−1 = kt−1 and by choos-

ing an appropriate investment profile (at−1, bt−1). Moreover, the same amount of funds

are required to purchase (at−1, bt−1) in t − 1 than to purchase (Ft−1, Dt−1) when the

default profile is 1t−1. With the costs of financial investments generating a particular

future payout profile being the same in both problems, identical physical investments,

and identical beginning of period wealth profiles, it then follows from constraints (5b)

and (7b) that a consumption path which is feasible in (5) is also feasible in (7).

To simplify notation we establish the previous claim for the case with N = 2 produc-

tivity states only. The extension to more states is straightforward. Consider the following

state-contingent initial wealth profile(
wt(z

1)

wt(z2)

)
=

(
z1kαt−1 + (1− d)kt−1 + Ft−1 − Dt−1(1− (1− λ)δt−1(z

1))
z2kαt−1 + (1− d)kt−1 + Ft−1 − Dt−1(1− (1− λ)δt−1(z

2))

)
.

As is easily verified, this beginning-of-period wealth profile in problem (7) can be repli-

cated by choosing k̃t−1 = kt−1 and by choosing the portfolio

bt−1 = Ft−1 − Dt−1,(C3)

at−1 =

(
Dt−1δt−1(z

1)
Dt−1δt−1(z

2)

)
(C4)

The funds ft−1 required to purchase and issue (Ft−1, Dt−1) under the default profile

1t−1 = (δt−1(z
1), δt−1(z

2)) are given by

ft−1 =
1

1+ r
Ft−1 −

1

1+ R(zt−1,1t−1)
Dt−1

where the interest rate satisfies

1

1+ R(zt−1,1t−1)
=

1

1+ r

(
(1− δt−1(z

1))π(z1|zt−1)+ (1− δt−1(z
2))π(z2|zt−1)

)
.

The funds f̃t−1 required to purchase (bt−1, at−1) are given by

f̃t−1 =
1

1+ r
(Ft−1 − Dt−1)+

1

1+ r

(
δt−1(z

1)π(z1|zt−1)+ δt−1(z
2)π(z2|zt−1)

)
GS

t−1,

where we used the price of the Arrow security in (6). As can be easily seen f̃t−1 = ft−1,

as claimed. This completes the proof that a consumption path which is feasible in (5) is

also feasible in (7). Since a ≥ 0, the reverse is also true, because equations (C3) and

(C4) can then be solved for values (Dt−1, Ft−1,1t−1) satisfying Dt−1 ≥ 0, Ft−1 ≥ 0,

and 1t−1 ∈ [0, 1]N , so that it is possible in problem (5) to obtain a portfolio with the
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same contingent payouts.60 Again, this portfolio has the same costs and thus admits the

same consumption choices. This completes the equivalence proof.

C3. Proof of Proposition 2

We look for fixed point solutions satisfying (13). In a first step, we derive the unique

solution to (11) under the assumption that the NBLs in the constraints of (11) satisfy

(13). We then show in a second step, that the NBLs implied by the objective function

in (11) also satisfy (13), so that problem (11) defines a mapping from the set of NBLs

satisfying (13) to the set of NBLs satisfying (13). As a last step, we show that this

mapping generically has a unique solution.

Under the assumption that the NBLs in the constraints of (11) satisfy (13), we can show

that the solution to (11) is given as follows. For any productivity state zn (n = 1, ..., N ),
define the critical future productivity state n∗

n∗ = arg max
i∈[1,...,N ]

i(C5)

s.t.
N∑

j=i

π(z j |zn) ≥ 1− λ.

As we establish below, the optimal choices in state state zn are

k̃t =

 αβ

1+ (1− d)β


(∑n∗

j=1 π(z
j |zn)

)
− λ

1− λ
zn∗ +

∑N

j=n∗+1 π(z
j |zn)z j

1− λ


1

1−α

k̃n =

 αβ

1+ (1− d)β


(∑n∗

j=1 π(z
j |zn)

)
− λ

1− λ
zn∗ +

∑N

j=n∗+1 π(z
j |zn)z j

1− λ


1

1−α

(C6)

bn = N BL(zn∗)− zn∗
(̃
kn
)α
− (1− d )̃kn

(C7)

an(z j ) = 0 for j ≤ n∗
(C8)

an(z j ) =
N BL(z j )− z j

(̃
kn
)α
− (1− d )̃kn − bn

(1− λ)
> 0 for j > n∗

(C9)

60Note that for a < 0, no such choices would exist, which shows that a ≥ 0 is required to obtain equivalence.
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The NBLs in the objective function of (11) implied by the previous solution also satis-

fies (13). To see this, consider two productivity states zn and zm with n < m and the

associated optimal choices. The optimal choices am, bm, k̃m for state zm also satisfy the

constraints of problem (11) for state zn , i.e., are feasible choices in state zn . Moreover,

since am(z j ) is increasing in j , it follows from (12) that

N∑
j=1

am(z j )pn(z j ) ≤
N∑

j=1

am(z j )pm(z j ),

i.e., the purchase of the risky assets am is cheaper in state zn than in state zm . Since

the cost of investments in capital and bonds do not depend on the productivity state, this

implies that the NBL in state zn must be weakly laxer than the one in state zm , as claimed.

We now show that (C6)-(C9) satisfy the necessary and sufficient first order conditions

of problem (11). Letting ωn(z j ) denote the Lagrange multipliers for the first set of con-

straints in (11) and νn(z j ) the multipliers for the second set of constraints, the first order

necessary conditions are given by

k̃n : 1+ α
(̃
kn
)α−1

N∑
j=1

ωn(z j )z j + (1− d)
N∑

j=1

ωn(z j ) = 0(C10)

bn :
1

1+ r
+

N∑
j=1

ωn(z j ) = 0(C11)

an(z j ) : pn(z j )+ ωn(z j )(1− λ)+ νn(z j ) = 0.(C12)

We also have the constraints

z j
(̃
kn
)α
+ (1− d )̃kn + bn + (1− λ)an(z j )− N BL(z j ) ≥ 0, ωn(z j ) ≤ 0, one holding strictly

(C13)

an(z j ) ≥ 0, νn(z j ) ≤ 0, one holding strictly(C14)

Conditions (C12) and (C14) can equivalently be summarized as

(C15) pn(z j )+ ωn(z j )(1− λ) ≥ 0, an(z j ) ≥ 0, one holding strictly

so that the first order conditions are given by (C10),(C11), (C13) and (C15). Since the

objective is linear and the constraint set convex, the first order conditions are necessary

and sufficient. We now show that the postulated solution satisfies these first order condi-

tions.
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Since an(z j ) > 0 for j > n∗ for the conjectured solution, condition (C15) implies

ωn(z j ) = −
pn(z j )

1− λ

= −
1

1+ r

π(z j |zn)

1− λ
< 0 for all j > n∗

We now conjecture (and verify later) that

ωn(z j ) = 0 for all j < n∗(C16)

ωn(zn∗) = −
1

1+ r
−

N∑
j=n∗+1

ωn(z j )(C17)

For the previous conjecture, equation (C11) holds by construction. Also, the second

inequality of (C13) holds for all j ∈ {1, ..., N } because we have

N∑
j=n∗+1

ωn(z j ) =
1

1+ r

∑N

j=n∗+1 π(z
j |zn)

1− λ
<

1

1+ r

from the definition of n∗, so that ωn(zn∗) < 0. Equations (C8) and (C9) then imply that

(C15) hold. Furthermore, (C6) implies that (C10) holds. It thus only remains to show

that the first inequality for (C13) also holds. For j ≥ n∗ this follows from (C9). For

j < n∗ this is also true because −N BL(z j ) is increasing as j falls under the assumed

ordering for the NBLs in the constraints of (11), z j
(̃
kn
)α
+(1−d )̃kn is equally increasing

as j falls due to the assumed ordering of the productivity levels, and the first inequality

of (C13) holds with equality for j = n∗ due to (C7). As a result, the first inequality in

(C13) holds strictly for j < n∗, justifying our conjecture (C16). This proves that all first

order conditions hold for the conjectured solution (C6)-(C9).

Since the solution (C6)-(C9) is linear in the NBLs showing up in the constraints of

(11), the minimized objective is also a linear function of these NBLs. The fixed point

problem defined by (11) is thus characterized by a system of equations that is linear in

the NBLs, which generically admits a unique solution. This completes the proof.

C4. Proof of Proposition 3

Suppose that in some period t and for some productivity state zn (n ∈ {1, ..., N }),
beginning-of-period wealth falls short of the limits implied by the marginally binding

NBL, i.e.

(C18) w̃t(z
n) = N BL(zn)− ε,
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for some ε > 0. We then prove below that for at least one contingency z j in t + 1, which

can be reached from zn in t with positive probability, it must hold that

(C19) w̃t+1(z
j ) ≤ N BL(z j )− ε(1+ r),

such that along this contingency the distance to the marginally binding NBL is increasing

at the rate 1+r > 1 per period. Since the same reasoning also applies for future periods,

and since the marginally binding NBLs assume finite values, this implies the existence

of a path of productivity realizations along which wealth far in the future becomes un-

boundedly negative, such that any finite borrowing limit will be violated with positive

probability.

It remains to prove that if (C18) holds in period t and contingency zn , this implies that

(C19) holds for some contingency z j in t + 1 ( j ∈ {1, ..., N }) and that z j can be reached

from zn with positive probability. Suppose for contradiction that

(C20) w̃t+1(z
h) > N BL(zh)− ε(1+ r)

for all h ∈ {1, ..., N } that can be reached from zn , i.e. for which π(zh|zn) > 0.

The cost-minimizing way to satisfy the constraints (C20) for all h, when replacing

the strict inequality by a weak one, is to choose the solution (C6), (C8)- (C9) and

bt = N BL(zn∗t )− zn∗t k̃αt − (1− d)kt − ε. It follows from the proof of proposition 2 that

this holds true whenever the NBLs in the constraint satisfy the ordering (13). Achieving

this requires N BL(zn)− ε units of funds in t , which in turn implies that satisfying con-

straints (C20) with strict inequality requires strictly more funds than are available in t ,

whenever the state can be reached with positive probability. As a result, (C19) must hold

for at least one j that can be reached from zn with positive probability.

C5. Proof of Proposition 4

We first show that the proposed consumption solution (14) and investment policy (15)

satisfy the budget constraint, that the inequality constraints a ≥ 0 are not binding, and

that the NBLs are not binding either. Thereafter, we show that the remaining first order

conditions of problem (7), as derived in appendix C.C1, hold.

We start by showing that the portfolio implementing (14) in period t = 1 is consistent

with the flow budget constraint and a ≥ 0. The result for subsequent periods follows by

induction. In period t = 1 with productivity state zn , beginning-of-period wealth under

the investment policy (15) is given by

(C21) w̃n
1 ≡ zn

(
k∗(z0)

)α
+ (1− d)k∗(z0)+ b0 + a0(z

n)

To insure that consumption can stay constant from t = 1 onwards we again need

(C22) c̃ = (1− β)(5(zn)+ w̃n
1)
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for all possible productivity realizations n = 1, ..N . This provides N conditions that

can be used to determine the N + 1 variables b0 and a0(z
n) for n = 1, ..., N . We also

have the condition a0(z
n) ≥ 0 for all n and by choosing minn a0(z

n) = 0, we obtain

one more condition that makes it possible to pin down a unique portfolio (b0, a0). Note

that the inequality constraints on a do not bind for the portfolio choice, as we have one

degree of freedom, implying that the multipliers v1(z
n) in Appendix C.C1 are zero for

all n = 1, ..., N . It remains to be shown that the portfolio achieving (C22) is feasible

given the initial wealth w̃0. Using (C21) to substitute w̃n
1 in equation (C22) we obtain

c̃ = (1− β)(5(zn)+ zn
(
k∗(z0)

)α
+ (1− d)k∗(z0)+ b0 + a0(z

n)) ∀n = 1, ...N .

Combining with (14) we obtain

5(zn)+ zn
(
k∗(z0)

)α
+ (1− d)k∗(z0)+ b0 + a0(z

n) = 5(z0)+ w̃0

Multiplying the previous equation with π(zn|z0) and summing over all n one obtains

E0

[
5(z1)+ z1

(
k∗(z0)

)α]
+ b0 +

N∑
n=1

π(zn|z0)a0(z
n) = 5(z0)+ w̃0.

Using 5(z0) = −k∗(z0) + βE0

[
z1 (k

∗(z))α
]
+ β(1 − d)k∗(z0) − c + βE0 [5(z1)] and

(6) the previous equation delivers

(1−β)E0

[
5(z1)+ z1

(
k∗(z0)

)α
+ (1− d)k∗(z0)

]
+b0+(1+r)p′0a0 = −k∗(z0)+w̃0−c

Using β = 1/(1+ r) this can be written as

(1− β)

(
E0

[
5(z1)+ z1

(
k∗(z0)

)α
+ (1− d)k∗(z0)

]
+

1

β
p0a0 + b0

)
+

1

1+ r
b0 + p′0a0 = −k∗(z0)+ w̃0 − c(C23)

From substituting (C21) into (C22), multiplying the result with π(zn|z0) and summing

over all n, it follows that the terms in the first line of the previous equation are equal to

(1− β)

(
E0

[
5(z1)+ z1

(
k∗(z0)

)α]
+

1

β
p′0a0 + b0

)
= c̃

where we also used (6) and 1 + r = 1/β. Using this result to substitute the first line in

(C23) shows that (C23) is just the flow budget equation (7b) for period zero. This proves

that the portfolio giving rise to (C22) in t = 1 for all n = 1, ..., N satisfies the budget

constraint of period t = 0. The results for t ≥ 1 follow by induction. The result (16)

follows from substituting (C21) into (C22) and noting that b0 and (1 − d)k∗(z0) are not
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state contingent.

From equation (C22) and the fact that 5(zt) is bounded, it follows that w̃t is bounded

so that the process for beginning-of-period wealth automatically satisfies the marginally

binding NBLs. The multipliers ωt+1 in appendix C.C1 are thus equal to zero for all t and

all contingencies. Using vt(z
n) ≡ 0, ωt+1 ≡ 0, the fact that capital investment is given

by (15) and that the Arrow security price is (6), the Euler conditions (C2a) - (C2c) all

hold when consumption is given by (14). This completes the proof.

C6. Proof of proposition 5

Since we start with a beginning-of-period wealth level at the marginally binding NBL,

we necessarily have c̃t = 0. Otherwise one could afford an even lower initial wealth

level and satisfy all constraints, which would be inconsistent with the definition of the

marginally binding NBLs given in (11). Indeed, the available beginning of period wealth

w̃t is just enough to insure that w̃t+1 ≥ N BL(zt+1) for all possible future productivity

states zt+1. The optimal choices at ∈ RN , bt , k̃t are thus given by the cost-minimizing

choices satisfying at ≥ 0 plus the marginally binding NBLs in t + 1 for all possible

future productivity states. Formally,

min
at ,bt ,̃kt

c + k̃t +
1

1+ r
bt +

N∑
j=1

at(z
j )pt(z

j )

s.t.

z j k̃αt + (1− d )̃kt + bt + (1− λ)at(z
j ) ≥ N BL(z j ) for j = 1, ..., N

at(z
j ) ≥ 0 for j = 1, ..., N

The optimal choices are thus equivalent to those solving problem (11). From appendix

C.C3 follows that under the stated assumptions, the optimal choices are given by (C6)-

(C9).

C7. Proof of proposition 6

Using the assumed policies, 1
1+r
= β, pt(z

j ) = π(z j |zt )
1+r

, and the fact that the NBLs are

not binding for sufficiently high wealth levels, the Euler equations (C2a)-(C2c) for i = 0

imply

u′(̃ct) = Et u
′(̃ct+1)(C24a)

ν t(z
j ) = βπ(z j |zt)

(
u′(̃ct)− u′(̃ct+1(z

j ))(1− λ)
)

for j = 1, ..., N(C24b)

0 = −u′(̃ct)+ αk̃α−1
t βEt u

′(̃ct+1)zt+1 + β(1− d)(C24c)

We show below that the Euler equation errors for i = 0 converge to zero and that vt(z
j ) ≥

0 as the wealth w̃t increases without bound. Under the assumed policies, wealth evolves
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according to

w̃t+1 = zt+1k∗(zt)
α + bt

= zt+1k∗(zt)
α +

1

β

(
w̃t − k∗(zt)− (1− β)(5(zt)+ w̃t)− c

)
= w̃t + zt+1k∗(zt)

α −
1

β
k∗(zt)−

(1− β)

β
5(zt)−

1

β
c

= w̃t +5(zt)+ zt+1k∗(zt)
α −

1

β
k∗(zt)−

1

β
(5(zt))−

1

β
c

= w̃t +5(zt)− Et [5(zt+1)]+ (zt+1 − Et zt+1)k
∗(zt)

α

Since the fluctuations in zt , k∗(zt) and 5(zt) are all bounded, fluctuations in wealth are

also bounded over any finite number of periods. Moreover, the fluctuations in wealth

are independent of the initial wealth level. As a result, fluctuations in consumption are

also bounded and of a size that is not dependent on the wealth level under the proposed

consumption policy.

We now show that for i = 0 and a sufficiently high wealth level the Euler equation

residuals remains below ε. Using the assumed consumption policy and the result from

the previous equation, we have

Et [̃ct+1] = (1− β)Et

[
(5(zt+1)+ w̃t+1)

]
= (1− β) (w̃t +5(zt))

= ct

i.e. consumption follows a random walk. Now consider equation (C24a), which requires

u′(̃ct) = Et u
′(̃ct+1)

=
N∑

j=1

π(z j |zt)u
′(̃ct+1(z

j ))(C25)

From Taylor’s theorem we have

u′(̃ct+1(z
j )) = u′(̃ct)+ u′′(c j )(̃ct+1(z

j )− c̃t)

where c j can be chosen from the bounded interval

[min{̃ct ,min
j

c̃t+1(z
j )},max{̃ct ,max

j
c̃t+1(z

j )}]

whose width is independent of the wealth level w̃t (as fluctuations in consumption do

not depend on wealth as shown above). Moreover, under the assumed consumption

policy, the lower bound of this interval - and thus also c j increases without bound, as w̃t
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increases without bound. Using the earlier result, (C25) can be rewritten as

0 =
N∑

j=1

π(z j )
(
u′′(c j )(̃ct+1(z

j )− c̃t)
)

where the sum on the right-hand side of the equation denotes the Euler equation residual

whenever it is not equal to zero. For the considered consumption policies, we have that

c̃t+1(z
j )− c̃t is bounded and invariant to wealth. Moreover, for sufficiently large wealth,

c j increases without bound, therefore u′′(c j ) → 0 under the maintained assumption

about preferences. This implies that for any given ε > 0 we can find a wealth level w∗

so that the Euler equation residual falls below ε. Since the fluctuations in wealth are

bounded over the finite horizon T and do not depend on the initial wealth level, we can

find an initial wealth level w̄ high enough such that over the next T periods wealth stays

above w∗. The Euler equation errors then remain below ε over the next T − 1 periods,

as claimed.

Similar arguments can be made to show that (C24c) holds and that (C24b) implies

vt(z
j ) ≥ 0 for a sufficiently large initial wealth level. We omit the proof here for the

sake of brevity.

C8. Default Costs Born by Lender

This appendix shows that if a consumption allocation is feasible in a setting in which

default costs are borne by the borrower, then it is also feasible in a setting in which some

or all of these costs are borne by the lender instead. For simplicity, we only consider

the extreme alternative where all costs are born by the lender. Intermediate cases can be

covered at the cost of some more cumbersome notation.

Consider a feasible choice {Ft ≥ 0, Dt ≥ 0, 1t ∈ [0, 1]N , kt ≥ 0, ct ≥ 0}∞t=0, i.e.

a choice that satisfies the constraints of the government’s problem (5), which assumes

λl = 0 and λb = λ. Let variables with a hat denote the corresponding choices in a setting

in which the lender bears all default costs, i.e., where λl = λ and λb = 0. We show

below that it is then feasible to choose the same real allocation, i.e., to choose k̂t = kt

and ĉt = ct , provided one selects appropriate values for F̂t , D̂t and 1̂t .

First, note that in a setting where foreign investors bear all settlement costs, the interest

rate R̂(zt , 1̂t) on domestic bonds satisfies

(C26) 1+ r =

1− (1+ λ)
n∑

n=1

δ̂
n

t 5(z
n|zt)

1

1+R̂(zt ,1̂t )

where the denominator on the right-hand side denotes the issuance price of the bond and

the numerator the expected repayment net of the lender’s settlement cost. The previous

equation thus equates the expected returns of the domestic bonds with the expected return
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on the foreign bond.

Next, consider the following financial policies:61

1̂t = (1− λ)1t

Dt

D̂t

(C27a)

D̂t =
1+ R̃(zt , 1̂t)

R̃(zt , 1̂t)

R(zt ,1t)

1+ R(zt ,1t)
Dt(C27b)

F̂t = Ft + D̂t − Dt(C27c)

As we show below, in a setting in which settlement costs are borne by the lender, the

financial policies {F̂t , D̂t , 1̂t}∞t=0 give rise to the same state-contingent financial payoffs

as generated by the policies {Ft , Dt ,1t}∞t=0 in a setting in which default cost are borne

by the borrower. Therefore, as claimed, the former policies allow the implementation of

the same real allocations.

Consider the financial flows generated by the policy component (F̂t , D̂t , 1̂t). In period

t , the financial inflows are given by

D̂t

1+ R̂(zt , 1̂t)
− F̂t

Using the definitions (C27), it is straightforward to show that these inflows are equal to

1

1+ R(zt ,1t)
Dt − Ft

which are the inflows under the policy (Ft , Dt ,1t) in a setting where default costs are

borne by the lender.

We show next that the financial flows in t + 1 are also identical under the two poli-

cies. The financial inflows generated by the policy choices (F̂t , D̂t , 1̂t) in some future

contingency n ∈ {1, ...N } in period t + 1 are given by

−D̂t(1− δ̂
n

t )+ F̂t

From the first and last equation in (C27), we determine that these flows are equal to

−(1− (1− λ)δn
t )Dt + Ft

which are the inflows generated by the policy (Ft , Dt ,1t) in a setting where default costs

are borne by the lender.

61Lengthy but straightforward calcucations, which are available upon request, show that these policies satisfy 1̂t ∈
[0, 1]N , although they may imply F̂t < 0, which requires the government also to issue safe bonds, i.e. bonds that promise

full repayment.
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Finally, since the policies {Ft , Dt ,1t}∞t=0 satisfy the marginally binding natural bor-

rowing limits in the government’s problem (5), it must generate bounded financial flows,

with the same therefore also applying for the policies {F̂t , D̂t , 1̂t}∞t=0. These policies

thus also satisfy the marginally binding natural borrowing limits, which completes the

proof.

C9. Estimation of Lender’s Default Costs

Consider a non-contingent one period bond that in explicit legal terms promises to

repay one unit and that has an associated implicit default profile 1 = (δ1, ..., δn) ∈
[0, 1]n . A risk-neutral foreign lender, who bears proportional default costs λb in the event

of default and can earn the gross return 1 + r on alternative safe investments, will price

this bond according to equation (27). As explained below, the asset pricing equation (27)

can be used to obtain an estimate for λl .

We start by defining the ex post return eprt on a government bond

1+ eprt =

1−
N∑

n=1

δn5(zn|zt)

1
1+R(zt ,1)

,

which is the bond return that accounts for losses due to non-repayment but not for poten-

tial default costs. Ex post returns can be measured from financial market data. Using the

previous equation to substitute

N∑
n=1

(1− δn) · π(zn|zt) on the r.h.s. of equation (27) and

applying the unconditional expectations operator62, one obtains

(C28) λl =
E
[
eprt − r

]
E

[
(1+ R(zt ,1))

N∑
n=1

δn5(zn|zt)

] .

Information about the average excess return, which shows up in the numerator of the

previous equation, can be obtained from Klingen, Weder, and Zettelmeyer 2004, who

consider 21 emerging market economies over the period 1970-2000. Using data from ta-

ble 3 in Klingen, Weder, and Zettelmeyer 2004, the average excess return varies between

-0.2% and +0.5% for publicly guaranteed debt, depending on the estimation method

used.63,64 We use the average of the estimated values and set E[eprt − r ] = 0.15%.

62The expectations operator integrates over the set of possible histories zt = {zt , zt−1, ...}.
63As suggested in Klingen, Weder, and Zettelmeyer 2004, we use the return on a three-year US government debt

instrument as the safe asset, since it approximately has the same maturity as the considered emerging market debt.
64The fact that ex post excess returns on risky sovereign debt are relatively small or sometimes even negative is

confirmed by data provided in Eichengreen and Portes 1986 who compute ex post excess returns using interwar data. The
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We now turn to the denominator on the r.h.s. of equation (C28). Using a first order

approximation we obtain

(C29) E

[
(1+ R(zt ,1))

N∑
n=1

δn5(zn|zt)

]
≈ E [1+ R(zt ,1)] E

[
N∑

n=1

δn5(zn|zt)

]
,

where the last term equals (again to a first order approximation)

E

[
N∑

n=1

δn5(zn|zt)

]
≈ Pr(δ > 0)E[δ|δ > 0).

Using data compiled by Cruces and Trebesch 2011, who kindly provided us with the

required information, we observe for the 21 countries considered in Klingen et al. 2004

and for the period 1970-2000 a total of 58 default events, thus the average yearly default

probability equals 8.9%. The average haircut conditional on a default was 25%; these

figures therefore imply

E

[
N∑

n=1

δn5(zn|zt)

]
≈ 2.22%.

The average ex ante interest rate R(zt ,1) appearing in equation (C29) can be computed

by adding to the average ex post return of 8.8% reported in table 3 in Klingen, Weder, and

Zettelmeyer 2004 for publicly guaranteed debt, the average loss due to default, which

equals 2.22% to first order, such that R(zt ,1) ≈ 11.02%. Combining these results

to evaluate λl in equation (C28) delivers our estimate for the default costs accruing to

lenders reported in the main text.

C10. Numerical Solution Approach

We solve the recursive version of the Ramsey problem from section I.B using global

solution methods, so as to account for the non-linear nature of the optimal policies. The

state space S of the problem is given by

S =
{
z1 ×

[
N BL(z1), wmax

]
, ..., zN ×

[
N BL(zN ), wmax

]}
where N BL(zn) denotes the marginally binding natural borrowing limits and wmax is a

suitably chosen and sufficiently large upper bound for the country’s wealth level.

We want to describe equilibrium in terms of time-invariant policy functions that map

the current state into current policies. Hence, we want to compute policies

f̃ : (zt , wt)→ ({ct , kt , bt , at}) ,

negative ex post excess returns likely arise due to the presence of sampling uncertainty: the high volatility of the nominal

exchange rate makes it difficult to estimate the mean ex post excess returns.
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where their values (approximately) satisfy the optimality conditions derived in C.C1.

We use a time iteration algorithm where equilibrium policy functions are approximated

iteratively. In a time iteration procedure, tomorrow’s policy (denoted by f next ) is taken

as given and solves for the optimal policy f today, which in turn is used to update the

guess for tomorrow’s policy. Convergence is achieved once || f − f next || < ε, where

we set ε = 10−5. We then set f̃ = f . In each time iteration step we solve for optimal

policies on a sufficient number of grid points distributed over the continuous part of the

state space. Between grid points we use linear splines to interpolate tomorrow’s policy.

Following Garcia and Zangwill 1981, we can transform the complementarity conditions

of our first order equilibrium conditions into equations. For more details on the time

iteration procedure and how complementarity conditions are transformed into equations,

see, for example, Brumm and Grill 2014. To come up with a starting guess for the

consumption policy, we use the fact that at the NBLs optimal consumption equals the

subsistence level. We therefore guess a convex, monotonically increasing function g

which satisfies g(zi , N BL(zi )) = c̄ ∀i and use a reasonable guess for g(zi , wmax).

C11. Calibration of Greek Output Process: Further Details

This annex contains the details of the model specification we use in our application to

the Greek economic crisis. We use realized output levels in the Greek economy for 2009

to 2013 to estimate model GDP. We obtain the five states (z2009, z2010, z2011, z2012, , z2013) =
(1−8.30%, 1−15.90%, 1−24.70%, 1−32.7%, 1−37.3%) = (0.917, 0.841, 0.753, 0.676, 0.627).
In addition we have z2008 = 1. For 2014 we have estimated a value z2014 = 0.610. Re-

member that we have assumed that we start in z2008 and for each following year two

scenarios are possible:

1) Return to trend growth of 3.6% from t + 1 onwards (however, no return to level)

2) Observed fall in output relative to trend growth actually happening in t + 1

Having defined the output process in terms of deviations from trend, the economy

transitions from zt to the absorbing state z̄t whenever the first scenario realizes.

The vector of states z for our model is therefore given by

z = (z2008, z̄2009, z2009, z̄2010, z2010, z̄2011, z2011, z̄2012, z2012, z̄2013, z2013, z2014)

= (1, 0.917, 0.917, 0.841, 0.841, 0.753, 0.753, 0.676, 0.676, 0.627, 0.627, 0.610) .

To parametrize the state transition matrix we employ the following procedure: We

use one year ahead OECD output forecasts to compute implied probabilities for both

scenarios, i.e. we set the transition probabilities in our model such that the expected

output value tomorrow is equal to the one year ahead OECD forecast. However, this is

not possible for the years 2013 and 2014 where output is above the forecast. In this case,

we set the probability for the second scenario to 99 per cent. This yields the following

vector π of transition probabilities:
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π = (p2008, p2009, p2010, p2011, p2012, p2013)

= (0.966, 0.732, 0.603, 0.445, 0.01, 0.01) .

and the accompanying Markov transition matrix M is given by

(C32)

M =



0.966 0 0.034 0 0 0 0 0 0 0 0 0

0 1.000 0 0 0 0 0 0 0 0 0 0

0 0.732 0 0 0.268 0 0 0 0 0 0 0

0 0 0 1.000 0 0 0 0 0 0 0 0

0 0 0 0.603 0 0 0.397 0 0 0 0 0

0 0 0 0 0 1.000 0 0 0 0 0 0

0 0 0 0 0 0.445 0 0 0.555 0 0 0

0 0 0 0 0 0 0 1.000 0 0 0 0

0 0 0 0 0 0 0 0.010 0 0 0.990 0

0 0 0 0 0 0 0 0 0 1.000 0 0

0 0 0 0 0 0 0 0 0 0.01 0 0.990

0 0 0 0 0 0 0 0 0 0 0 1.000



.

We compute the equilibrium by starting in 2014 and solving for the optimal policies

backwards in time.


