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A Data appendix

A.1 Wealth, income, and consumption data in the PSID

This appendix covers the details of the variables constructed using the Panel Study of Income
Dynamics (PSID) data, which are analyzed in Sections III and IV.C. Below, I also separately
discuss the micro data used in Section IV.A.

(a) Sample periods. The PSID wealth data are available in the 1984, 1989, 1994, and
1999 waves and every two years after that.

(b) PSID waves and calendar years. I consider variables in the PSID 1984 wave to be
observations from the calendar year of 1983. The same timing convention is used for
the other waves.

(c) Data cleaning. I use the number of family members to compute the per capita net
wealth and income variables. I dropped imputed data and households in which the
head’s age is less than 20 years or greater than 65 years.

(d) Definitions of variables.

• Wealth. Net wealth is defined as the sum of the values of a farm or busi-
ness, checking or savings accounts, money market funds, certificates of deposit,
government bonds or treasury bills, real estate, shares of stock in publicly held
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corporations, stock mutual funds or investment trusts, private annuities or IRAs,
other assets, and the net value of any cars, trucks, motor homes, trailer or boat,
and other assets less the sum of liabilities from a farm, a business, or real estate,
credit card or store card debt, student loan debt, medical bills, legal bills, loans
from relatives, and other debt.

• Income. Income includes taxable income, transfers, and social security income.

• Wealth inclusive of income. Wealth, inclusive of income, is the sum of net
wealth and total income.

• Consumption. As in Attanasio and Pistaferri (2014), consumption includes
expenditures on food, rent, home insurance, utilities, car insurance, car repairs,
transportation, school, child care, health insurance, and out-of-pocket medical
expenses. I use the data from the replication package for Attanasio and Pistaferri
(2014) for years between the PSID 1999 and 2011 waves. For the data since the
PSID 2013 wave, I construct the consumption variable using the same definition
as Attanasio and Pistaferri (2014).

(e) Income process data in Section IV.A. I directly use the data and codes in the
replication package for Blundell, Pistaferri and Preston (2008). The two differences
from Blundell, Pistaferri and Preston (2008) are the definition of income and the usage
of the SEO sample. First, I include financial income in addition to earnings and
transfers, although Blundell, Pistaferri and Preston (2008) excluded financial income.
Second, I try specifications with or without the SEO sample because the SEO sample
features more observations at the lower part of the income distribution, where the
nonlinearity of the conditional mean function is more significant (Figure 1).

A.2 Macroeconomic trends in the US economy

This appendix presents the details of the empirical time series data used in Section V.

(a) Consumption-to-wealth ratios. Following Laibson (1999), aggregate consumption
includes personal consumption expenditure (U.S. Bureau of Economic Analysis, 2024b)
and government consumption (U.S. Bureau of Economic Analysis, 2024a). Aggregate
wealth, inclusive of income, is the sum of net national wealth (Board of Governors of the Federal Reserve System (US),
2024b), Kt, and net national income (Board of Governors of the Federal Reserve System (US),
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2024a), Yt − δKt. I obtain consumption data from the National Income and Product
Accounts and wealth and national income series from Tables B.1 and S.1 in the Finan-
cial Accounts of the United States - Z.1.

(b) Real interest rates. I use the natural rate of interest estimated by Laubach and
Williams (2003, 2016).

(c) Capital-to-net-national-income ratios. I use the time series computed by Piketty
and Zucman (2014a,b) for the US economy. An updated series is retrieved from the
World Inequality Database (WID) (2022).
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B Computational algorithms

This section covers the computational details. In Section B.1, I explain how the stationary
distributions of wealth, x, and the quintile shares are computed. Section B.2 illustrates how I
computed the CDF of income, y, in Section IV.D. Finally, Section B.3 shows how I calculate
the equilibrium values of other macroeconomic variables in Section V.

B.1 Cross-sectional distributions of xi,t

This section illustrates how I computed the stationary cross-sectional distribution of cash
on hand. I first discretize the support of the distribution and compute the probability mass
function (pmf) on a grid. Then, I use a Pareto interpolation at the top to improve the
accuracy of the computed quintile shares, especially the top 20% wealth shares.

I denote the logarithm of cash on hand, augmented with the borrowing limit, as a:

ai,t = log(xi,t + η).

Note that a is well defined (Proposition 2). Additionally, ai,t+1 = ai,t + zi,t+1, conditional on
survival (Proposition 3), and ai,t+1 = ω, otherwise. Thus,

fa′(q) = fa(q) = pdδa(q) + (1 − pd)fa+z′(q) for all q ∈ R,

where fa′ , fa, and fa+z′ are the probability density functions (pdf) of the cross-sectional
distributions of ai,t+1, ai,t, and ai,t + zi,t+1, respectively. δa is a Dirac delta function around
log(ω + η).

Discretization. Next, I set up a grid, {a1, . . . , aN}, centered around log(ω + η). I use an
equispaced grid with a1 = log(ω+ η) − 20, aN = log(ω+ η) + 20, and N = 3, 001. Let ∆a be
the pmf version of δa. ∆a is an N -dimensional vector, where its (N + 1)/2-th element is one,
and all the other elements are zero. Similarly, I denote the pmf version of fa as f ∈ RN .

To discretize fa+z′ , note that for any j = 1, . . . , N ,

fa+z′(aj) =
∫
fa(a)fz(aj − a)da ≈

N∑
i=1

fifz(aj − ai),

where fz is the pdf of z, fi is the i-th element of f , and
∫
fz(aj −a)da = 1. Thus, I construct
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a matrix, M, representing fz(aj − ai) in the following manner. First, M is an N by N

matrix. Second, its j-th row is given by

(fz(aj − a1), . . . , fz(aj − aN))/
N∑
i=1

fz(aj − ai)

for all j = 1, . . . , N . Note that each row of M adds up to one, reflecting the fact that∫
fz(aj − a)da = 1 for all j. Given M, (fa+z′(a1), . . . , fa+z′(aN))′ is approximated by Mf .

Finally, the stationary distribution, f , can be obtained as follows:

f = pd∆a + (1 − pd)Mf

⇒ f = pd(IN − (1 − pd)M)−1∆a,

where IN is an N -dimensional identity matrix.

Pareto interpolation for computing quintile shares. It is known that an upper tail
of x + η is approximated by a Pareto distribution, given the random growth dynamics and
death shocks in the model. Beare and Toda (2022) showed that the Pareto α coefficient
satisfies the following equation:

(1 − pd)ψ(α) = 1,

where ψ is the moment generating function (mgf) of z. When z ∼ N (µz, σ2
z), ψ(α) =

exp(µzα + 0.5σ2
zα

2). Then,

α =
−µz +

√
µ2
z − 2σ2

z log(1 − pd)
σ2
z

.

I approximate fa using the pmf f below the 95th percentile of x. Then, above the 95th
percentile, I assume that x+η has a Pareto distribution with this α coefficient. For example,
the aggregate cash on hand above the 95th percentile of x, denoted by x, equals

0.05 ×
[

α

α− 1(x+ η) − η
]
.
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B.2 Cross-sectional distributions of yi,t

Figure 4 in Section IV.D shows the logarithm of the tail function (i.e., 1 - cumulative dis-
tribution function (cdf)) against the logarithm of income. Here, I explain how the cdf of
income is computed using the pmf of wealth, f , above.

To simplify the notation, I drop the individual subscript i. Also, time t + 1 variables
are distinguished from time t variables using prime marks. Equation (3), the definition of
income (y′ = r(x− c) +m′), and Propositions 2 and 3 imply that

y′ = yi,t+1 = xi,t+1 − (xi,t − ci,t)

= x′ − (x− c)

= exp(z′)(x+ η) − η − x+ ζ(x+ η)ξ

= exp(z′) exp(a) − exp(a) + ζ exp(ξa).

Note that

Fy(ȳ) ≡ Pr(y′ ≤ ȳ) =
∫
Pr(y′ ≤ ȳ|a)fa(a)da

=
∫
Pr

(
exp(z′) ≤ ȳ + exp(a) − ζ exp(ξa)

exp(a) |a
)
fa(a)da.

Because z′ is independent of a,

Pr

(
exp(z′) ≤ ȳ + exp(a) − ζ exp(ξa)

exp(a) |a
)

=


Fz (log(ȳ + exp(a) − ζ exp(ξa)) − a) , if ȳ + exp(a) − ζ exp(ξa) > 0

0, otherwise
,

where Fz is the cdf of z.
For Figure 4, I set up a grid, {y1, . . . , yM}, with log y1 = −3, log yM = 3, and equispaced
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log yis in between. Then, for i = 1, . . . ,M ,

Fy(yi) ≈
N∑
j=1

Pr

(
exp(z′) ≤ yi + exp(aj) − ζ exp(ξaj)

exp(aj)
|aj
)
fj

=
N∑
j=1

Fz (log(yi + exp(aj) − ζ exp(ξaj)) − aj) I(yi + exp(aj) − ζ exp(ξaj) > 0)fj,

where I(·) is an indicator function.

B.3 Aggregate variables

This section illustrates how the values of macroeconomic variables in a stationary equilibrium
are computed in Section V.

Aggregate wealth and the calibration of µz. A newly born agent is endowed with ω.
Conditional on survival, their cash on hand, augmented with the borrowing limit (η), grows
according to z shocks. Therefore, by taking the cross-sectional average of xi,t for agents with
different ages and aggregating them, I obtain the following equation:

X + η = pd(ω + η) + (1 − pd)pdψ(1)(ω + η) + (1 − pd)2pd[ψ(1)]2(ω + η) + . . . ,

where ψ(·) is the mgf of z, and pd is the population share of newly born agents, whose
average wealth, augmented with the borrowing limit, is given by ω+ η. Similarly, (1 − pd)pd
is the population share of 1-period-old agents, and their average wealth, augmented with
the borrowing limit, equals ψ(1)(ω + η). With the normalization that X = 1, I obtain the
following moment condition:

ψ(1) =
1 − pd(ω+η)

1+η

1 − pd
. (OA.1)

Note that this condition determines µz, given σz, when z ∼ N (µz, σ2
z):

µz = log
1 − pd(ω+η)

1+η

1 − pd

− 1
2σ

2
z .

Government’s budget constraint and the calibration of G. After the death and birth
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of the affected agents, the aggregate wealth, X, is one by normalization. Then, over the next
period, individual wealth, x+η, randomly grows with the average gross growth rate of ψ(1).
Thus, before death shocks occur, the aggregate wealth equals ψ(1)(X+η)−η, implying that
the accidental bequests confiscated by the government equals pd[ψ(1)(X + η) − η]. Then,
the government’s budget constraint (12) yields the following equation:

G+ pdω = pd[ψ(1)(X + η) − η].

This equation forG and Equation (OA.1) pin down the value of the government consumption:

G = pd[ψ(1)(1 + η) − η] − pdω

= pd
1 − pd

[1 + η − pd(ω + η) − (1 − pd)(η + ω)]

= pd
1 − pd

(1 − ω). (OA.2)

Aggregate consumption. A newly born agent’s consumption is ζ(ω + η)ξ given the con-
sumption function (7). Similar to the wealth case, the random growth results for consump-
tion in Proposition 3 implies that the average consumption of 1-period-old households equals
ψ(ξ)ζ(ω + η)ξ. By aggregating across different age groups, I obtain the following result:

C = pdζ(ω + η)ξ + (1 − pd)pdψ(ξ)ζ(ω + η)ξ + (1 − pd)2pd[ψ(ξ)]2ζ(ω + η)ξ + . . . .

Thus, the aggregate consumption is given by:

C = pdζ(ω + η)ξ
1 − (1 − pd)ψ(ξ) . (OA.3)

Other macroeconomic variables. Because xi,t = ci,t + ki,t+1 for all i, in a stationary
equilibrium where Kt+1 = Kt = K,

K = X − C = 1 − pdζ(ω + η)ξ
1 − (1 − pd)ψ(ξ) . (OA.4)
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Next, the aggregate resource constraint (13) determines Y :

Y = C + δK +G

= C + δ(1 − C) +G

= δ + (1 − δ) pdζ(ω + η)ξ
1 − (1 − pd)ψ(ξ) + pd

1 − pd
(1 − ω). (OA.5)

Then, the aggregate labor in efficiently unit, L, follows from the production function (9):

L =
(

Y

K1−α

)1/α
, (OA.6)

where K and Y are given by (OA.4) and (OA.5).
The wage rate per efficiency unit, W , is computed using the labor demand equation (11):

W = α
Y

L
, (OA.7)

where Y and L are given by (OA.5) and (OA.6).
Finally, I calculate the (gross) real interest rate in the following manner.

R = 1 + r = 1 + (1 − α)Y
K

− δ

= 1 + (1 − α)C + δ(1 − C) +G

1 − C
− δ

= 1 − α

1 − C
(C +G) + δ(1 − α) + 1 − δ

= 1 − α

1 − C
(1 +G) − (1 − α) + δ(1 − α) + 1 − δ

= 1 − α

1 − pdζ(ω+η)ξ

1−(1−pd)ψ(ξ)

1 − pdω

1 − pd
+ α(1 − δ). (OA.8)

I used Equation (10) in the first line. The second line follows from Equations (OA.4) and
(OA.5). The third and fourth lines are based on algebra. The last line relies on Equations
(OA.2) and (OA.3).

Variables in Table 5. There are three variables in Table 5. First, consumption-to-wealth
ratios, C+G

X
, are given by C + G because of the normalization that X = 1. Then, C and G

follow from Equations (OA.2) and (OA.3). Second, real interest rates, r, equal R− 1, where
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R can be calculated using Equation (OA.8). Finally, I compute capital-to-(net-national-
)income ratios, K

Y−δK , by noting that K
Y−δK = 1−C

C+G and using C and G in Equations (OA.2)
and (OA.3).

Labor market clearing condition. To clear the labor market, the aggregate labor in
efficiency unit, L, should equal the aggregated idiosyncratic labor productivity,

∫
εi,tdi. Note

that m′ = Wε′. Thus,

WL = W
∫
ε′ di =

∫
m′ di

=
∫
Rζ(x̃+ η)ξ + [exp(z′) −R](x̃+ η) + rη di

= C + (ψ(1) −R)(X + η) + rη

= −R(X − C) + ψ(1)(X + η) − η.

I used the fact that x̃ = x in the third line. Because K = X − C, Y = WL + (r + δ)K,
Y = C + δK +G, and X = C +K,

ψ(1)(X + η) = WL+ (r + δ)K + (1 − δ)K + η

= Y − δK +K + η

= C +G+K + η

= X + η +G.

Then, because of Equation (OA.1),

G = (ψ(1) − 1)(1 + η) = 1 + η − pd(ω + η)
1 − pd

− (1 + η)

= 1 + η − pd(ω + η) − (1 − pd)(1 + η)
1 − pd

= pd
1 − pd

(1 − ω),

which is identical to Equation (OA.2). Thus, the labor market clearing condition does not
restrict the equilibrium quantities in addition to the other conditions above in this section.

Euler equation and the calibration of β. Given the random growth result of consump-
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tion in Proposition 3, the Euler equation simplifies to Assumption 1(EE2):

1 = βRψ(−ξγ).

Using Equation (OA.8) for R, I calibrate β to satisfy the Euler equation:

β = R−1[ψ(−ξγ)]−1

=
 1 − α

1 − pdζ(ω+η)ξ

1−(1−pd)ψ(ξ)

1 − pdω

1 − pd
+ α(1 − δ)

−1

[ψ(−ξγ)]−1. (OA.9)
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C Supplementary results

This section presents supplementary tables and figures to the results in the main text. Sec-
tion C.1 conducts similar analyses to Section IV using different income concepts (m instead
of y) and different distributional assumptions for z (symmetric or asymmetric Laplace dis-
tributions instead of Gaussian distributions). Section C.2 revisits the aggregate implications
in Section V when a symmetric or an asymmetric Laplace distribution is assumed for z.

C.1 Different income processes

Definitions of Laplace distributions. Consider an asymmetric Laplace random variable
z ∼ AL(θz, σ2

z , κz). The pdf of z is given by:

fz(z) =
√

2
σz

1
κz + 1/κz


exp

(
−

√
2

σzκz
|z − θz|

)
, z ≥ θz

exp
(
−

√
2κz

σz
|z − θz|

)
, z < θz

.

Note that I use 1/κz in the place of κz in Kotz, Kozubowski and Podgórski (2001) to make
an increase in κz represent an increase in the skewness of a distribution. Its mgf ψ(s) equals

ψ(s) = eθzs

1 − 1
2σ

2
zs

2 − µzs
,

where µz = σz√
2(κz − 1/κz) and −

√
2

σz
κz < s <

√
2

σzκz
.

When κz = 1, AL(θz, σ2
z , 1) is a symmetric Laplace distribution with mean θz and variance

σ2
z .

Calibration of the distributions of z. I similarly calibrate the distributional parameters
by matching quintile shares of wealth in the data and the model. When an asymmetric
Laplace distribution is assumed, I adjust σz and κz to match the data, whereas θz follows
from the normalization that X = 1. Similarly, when a symmetric Laplace distribution is
used, I adjust σz to match the data with θz being determined by the same normalization
that X = 1.

Table OA.1 shows the results. Clearly, the fit of the normal, asymmetric Laplace, and
symmetric Laplace models for the data are similar. Note that regardless of the properties
of the distributional family of z, the random growth results for a and i.i.d. death shocks
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Table OA.1: Quintile shares of wealth in the data and the model

(1) (2) (3) (4) (5) (6) (7) (8)

Quintile Shares of Wealth, Inclusive of Income (x, %)

1st 2nd 3rd 4th 5th θz σz κz

PSID 1984 wave:
Data 1 5 9 17 67
Model N (θz, σ2

z) 3 6 9 15 67 0.010 0.090
Model AL(θz, σ2

z , κz) 3 6 9 15 67 0.011 0.090 0.997
Model L(θz, σ2

z) 3 6 9 15 67 0.010 0.090 1

PSID 2001 wave:
Data 1 4 7 15 73
Model N (θz, σ2

z) 1 4 9 14 74 0.006 0.125
Model AL(θz, σ2

z , κz) 1 5 8 14 73 0.040 0.122 0.824
Model L(θz, σ2

z) 1 3 9 14 73 0.006 0.125 1

PSID 2015 wave:
Data 0 2 5 12 80
Model N (θz, σ2

z) -1 3 6 12 80 0.002 0.159
Model AL(θz, σ2

z , κz) -1 3 6 12 80 0.003 0.159 0.992
Model L(θz, σ2

z) -1 3 6 12 80 0.001 0.159 1

Notes: Columns (1)-(5) in this table show quintile shares of wealth, inclusive of income, in the selected
waves of the PSID. The model parameters are calibrated by matching the quintile shares of wealth in
the data and a stationary equilibrium of the model for each year. Despite the parsimonious structures,
all three models generate a reasonable fit for the data.

lead to double Pareto tails in the cross-sectional distribution of x+ η (see Kotz, Kozubowski
and Podgórski, 2001; Toda, 2014, Theorem 15). This result helps the model to replicate the
concentration of wealth at the top.
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Figure OA.1: Conditional mean function of log yi,t+1 and log yi,t+4 on log yi,t

Notes: This figure shows the conditional mean function of log yi,t+4 and log yi,t+1 on log yi,t, computed by
regressing the future income on log yi,t, (log yi,t)2, and the intercept. Panel (a) is based on the benchmark
model with a Gaussian shock {z}. Panel (b) uses the same model but a different definition of income,
mi,t, excluding the risk-free return from yi,t. Panels (c) and (d) assume asymmetric and symmetric Laplace
income shocks, respectively. Parameters in Table OA.1 are used for computation. The results are robust;
the conditional mean function is nonlinear, and the individual income process is estimated to be persistent
in all cases.

Conditional mean function of log yi,t+1 and log yi,t+4 on log yi,t. Similar to Figure
1, Figure OA.1 shows the conditional mean function of log yi,t+4 and log yi,t+1 on log yi,t,
computed by regressing the future income on log yi,t, (log yi,t)2, and the intercept. Panel (a)
is based on the benchmark model with a Gaussian shock {z}. Panel (b) uses the same model
but a different definition of income, mi,t, excluding the risk-free return from yi,t. Panels (c)
and (d) assume asymmetric and symmetric Laplace income shocks, respectively. Parameters
in Table OA.1 are used for computation. The results are robust; the conditional mean
function is nonlinear, and the individual income process is estimated to be persistent in all
cases.

Next, I regress log yi,t+1 (panel A) and log yi,t+4 (panel B) on log yi,t, (log yi,t)2, and
the intercept. Table OA.2 shows the regression coefficients, which confirm the graphical
illustration in Figure OA.1. Columns (1)-(3) are identical to the same columns in Table
2. Columns (5)-(6) are based on asymmetric and symmetric Laplace shocks, corresponding
to panels (c)-(d) in Figure OA.1, respectively. The results are similar to the benchmark
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Table OA.2: Conditional mean functions of log yi,t+1 and log yi,t+4 on log yi,t

(1) (2) (3) (4) (5) (6)
Data w/

SEO
Data w/o

SEO
yi,t mi,t yAL

i,t yL
i,t

Panel A. Conditional mean of log yi,t+1 on log yi,t

log yi,t 0.79 0.80 0.74 0.50 0.79 0.78
(s.e.) (0.02) (0.02)

(log yi,t)2 0.10 0.08 0.11 0.07 0.11 0.11
(s.e.) (0.02) (0.05)
Obs. 1,779 1,154

Panel B. Conditional mean of log yi,t+4 on log yi,t

log yi,t 0.75 0.76 0.79 0.55 0.82 0.81
(s.e.) (0.03) (0.04)

(log yi,t)2 0.09 0.14 0.12 0.08 0.11 0.11
(s.e.) (0.04) (0.07)
Obs. 1,535 1,015

Notes: I regress log yi,t+1 (panel A) and log yi,t+4 (panel B) on log yi,t, (log yi,t)2, and the intercept. This
table shows the regression coefficients, which confirm the graphical illustration in Figure OA.1. Columns
(1)-(3) are identical to the same columns in Table 2. Columns (5)-(6) are based on asymmetric and
symmetric Laplace shocks, corresponding to panels (c)-(d) in Figure OA.1, respectively. The results are
similar to the benchmark Gaussian shock case (column (3)). Finally, income without the risk-free return,
m, is less persistent than the other cases, although the results are qualitatively similar (column (4)).

Gaussian shock case (column (3)). Finally, income without the risk-free return, m, is less
persistent than the other cases, although the results are qualitatively similar (column (4)).
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Table OA.3: Serial correlations of income growth

(1) (2) (3) (4) (5) (6) (7) (8)
log yi,t+1
− log yi,t

log yi,t+2
− log yi,t+1

log yi,t+3
− log yi,t+2

log yi,t+3
− log yi,t

log yi,t+1
− log yi,t

log yi,t+2
− log yi,t

log yi,t+3
− log yi,t

log yi,t+3
− log yi,t

Panel A. yi,t Panel B. mi,t

∆ log yi,t -0.49 0.00 0.00 -0.49 -0.49 0.00 0.00 -0.49
(∆ log yi,t)2 0.11 0.00 0.00 0.11 0.11 0.00 0.00 0.11

Panel C. yAL
i,t Panel D. yL

i,t

∆ log yi,t -0.49 0.00 0.00 -0.49 -0.49 0.00 0.00 -0.49
(∆ log yi,t)2 0.11 0.00 0.00 0.11 0.11 0.00 0.00 0.11

Notes: This table shows the characteristics of income growth dynamics in the benchmark Gaussian-shock
model for y and m (panels A-B) and the asymmetric and symmetric Laplace-shock cases (panels C-D).
In all cases, I regress leads of short and long differences of log yi,t (or log mi,t for panel B) on ∆ log yi,t,
(∆ log yi,t)2, and the intercept. Across all models, the regression coefficients are almost identical. Thus, all
models generate similar serial correlations of income growth.

Serial correlations of income growth. Table OA.3 shows the characteristics of income
growth dynamics in the benchmark Gaussian-shock model for y and m (panels A-B) and the
asymmetric and symmetric Laplace-shock cases (panels C-D). In all cases, I regress leads of
short and long differences of log yi,t (or logmi,t for panel B) on ∆ log yi,t, (∆ log yi,t)2, and
the intercept. Across all models, the regression coefficients are almost identical. Thus, all
models generate similar serial correlations of income growth.
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Table OA.4: Moments of the residual components

(1) (2) (3) (4) (5) (6)
Data w/

SEO
Data w/o

SEO
yi,t mi,t yAL

i,t yL
i,t

St. dev. 0.28 0.26 0.58 0.60 0.55 0.55
Skewness -0.44 -0.27 -1.40 -1.64 -1.73 -1.67
Kurtosis 6.22 7.01 12.94 13.16 16.59 15.90
Obs. 1,779 1,154

Notes: I compute the moments of the residual components in the regression of log yi,t+1 on the
intercept, log yi,t, and (log yi,t)2. This table shows the residuals’ standard deviations, skewness co-
efficients, and kurtosis coefficients. Empirically, this residual component is left-skewed and features
fatter tails than normal distributions. Income with or without risk-free return (columns (3)-(4))
in this paper replicates this pattern at least qualitatively, although the income shocks, zi,t, are
assumed to be normally distributed. When z is an asymmetric Laplace or a symmetric Laplace
random variable (columns (5)-(6)), the qualitative pattern survives.

The residual components: skewness, kurtosis, and the conditional heteroskedas-
ticity. I compute the moments of the residual components in the regression of log yi,t+1 on
the intercept, log yi,t, and (log yi,t)2. Table OA.4 shows the residuals’ standard deviations,
skewness coefficients, and kurtosis coefficients. Empirically, this residual component is left-
skewed and features fatter tails than normal distributions. Income with or without risk-free
return (columns (3)-(4)) in this paper replicates this pattern at least qualitatively, although
the income shocks, zi,t, are assumed to be normally distributed. When z is an asymmetric
Laplace or a symmetric Laplace random variable (columns (5)-(6)), the qualitative pattern
survives.

Figure OA.2 illustrates the conditional heteroskedasticity of the residuals on the level
of income. I estimate the conditional mean function of log yi,t+1 for yi,t being included in
each quintile and then compute the standard deviation of the residual components for each
income quintile. Across all models and the definition of income, the shape and the level of
the graphs are similar, exhibiting a U-shaped graph against the level of income.

OA-17



1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

Figure OA.2: Conditional heteroskedasticity on log yi,t

Notes: This figure illustrates the conditional heteroskedasticity of the residuals on the level of income. I
estimate the conditional mean function of log yi,t+1 for yi,t being included in each quintile and then compute
the standard deviation of the residual components for each income quintile. Across all models and the
definition of income, the shape and the level of the graphs are similar, exhibiting a U-shaped graph against
the level of income.
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Figure OA.3: Pareto right tails of wealth, income, and consumption in different models

Notes: This figure shows the logarithm of the tail function against the logarithm of wealth x, income y,
and consumption c greater than the 90th percentiles and less than the 99.9th percentiles when the model
is calibrated to the US economy in 1983. Panel (a) is identical to Figure 4 in the main text. Panels (b)
and (c) depict the corresponding graphs for the cases where income shocks have an asymmetric Laplace or a
symmetric Laplace distribution, respectively. In all panels, all three lines are almost linear, implying that the
right tails of wealth, income, and consumption distributions in the model are well approximated by Pareto
tails. Furthermore, the degrees of tail thickness, represented by the estimated Pareto α coefficient shown in
each panel, are almost the same across different models with different distributional assumptions for z.

Pareto right tails of wealth, income, and consumption. Figure OA.3 shows the loga-
rithm of the tail function against the logarithm of wealth (x), income (y), and consumption
(c) greater than the 90th percentiles and less than the 99.9th percentiles when the model is
calibrated to the US economy in 1983. Panel (a) is identical to Figure 4 in the main text.
Panels (b) and (c) depict the corresponding graphs for the cases where income shocks have
an asymmetric Laplace or a symmetric Laplace distribution, respectively. In all panels, all
three lines are almost linear, implying that the right tails of wealth, income, and consumption
distributions in the model are well approximated by Pareto tails. Furthermore, the degrees
of tail thickness, represented by the estimated Pareto α coefficient shown in each panel, are
almost the same across different models with different distributional assumptions for z.
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Figure OA.4: Within-cohort variance of log income and log consumption

Notes: This figure OA.4 shows the within-cohort variance of log income and consumption against age. Panel
(a) is the same as Figure 5 in the main text. Panels (b) and (c) depict the corresponding graphs for the
cases where income shocks have an asymmetric Laplace or a symmetric Laplace distribution, respectively.
The results are almost identical across all models based on different distributional assumptions for income
shocks.

Within-cohort income and consumption inequality. Finally, Figure OA.4 shows the
within-cohort variance of log income and consumption against age. Panel (a) is the same as
Figure 5 in the main text. Panels (b) and (c) depict the corresponding graphs for the cases
where income shocks have an asymmetric Laplace or a symmetric Laplace distribution, re-
spectively. The results are almost identical across all models based on different distributional
assumptions for income shocks.

C.2 Aggregate implications when z has a Laplace distribution

In this section, I redo the analysis in Section V with z ∼ AL(θz, σ2
z , κz) and z ∼ L(θz, σ2

z).
As in Section V, I compare the US economy in 1983 with that in 2014 based on the models
using the calibrated parameters in Table OA.1.

Table OA.5 shows consumption-to-wealth ratios, (C + G)/X, real interest rates, r, and
capital-to-net-national-income ratios, K/(Y − δK), as in Table 5. Columns (1)-(4) are the
same as columns (1)-(4) in Table 5 and are computed for the data and the benchmark model
with Gaussian shocks. The remaining columns illustrate the results when z has asymmetric
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Table OA.5: Macroeconomic trends in the data and different models

(1) (2) (3) (4) (5) (6) (7) (8)

Data Model N Model AL Model L

1983 2014 1983 2014 1983 2014 1983 2014
C+G
X (%) 19.5 17.1 19.5 17.7 19.5 17.7 19.5 17.7

r (%) 3.30 0.21 3.48 2.44 3.48 2.43 3.48 2.42
K

Y−δK (%) 390 449 422 474 422 475 422 475

Notes: This table shows consumption-to-wealth ratios, (C + G)/X, real interest rates, r, and capital-
to-net-national-income ratios, K/(Y − δK), as in Table 5. Columns (1)-(4) are the same as columns
(1)-(4) in Table 5 and are computed for the data and the benchmark model with Gaussian shocks. The
remaining columns illustrate the results when z has asymmetric and symmetric Laplace distributions.
The aggregate implications of the model are robust to the distributional assumption for z. Indeed, the
results in columns (4), (6), and (8) are almost identical.

and symmetric Laplace distributions. The aggregate implications of the model are robust
to the distributional assumption for z. Indeed, the results in columns (4), (6), and (8) are
almost identical.
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