Journal of Economic Perspectives
ISSN 0895-3309 (Print) | ISSN 1944-7965 (Online)
The State of Applied Econometrics: Causality and Policy Evaluation
Journal of Economic Perspectives
vol. 31,
no. 2, Spring 2017
(pp. 3–32)
(Complimentary)
Abstract
In this paper, we discuss recent developments in econometrics that we view as important for empirical researchers working on policy evaluation questions. We focus on three main areas, in each case, highlighting recommendations for applied work. First, we discuss new research on identification strategies in program evaluation, with particular focus on synthetic control methods, regression discontinuity, external validity, and the causal interpretation of regression methods. Second, we discuss various forms of supplementary analyses, including placebo analyses as well as sensitivity and robustness analyses, intended to make the identification strategies more credible. Third, we discuss some implications of recent advances in machine learning methods for causal effects, including methods to adjust for differences between treated and control units in high-dimensional settings, and methods for identifying and estimating heterogenous treatment effects.Citation
Athey, Susan, and Guido W. Imbens. 2017. "The State of Applied Econometrics: Causality and Policy Evaluation." Journal of Economic Perspectives, 31 (2): 3–32. DOI: 10.1257/jep.31.2.3Additional Materials
JEL Classification
- C01 Econometrics
- C50 Econometric Modeling: General
There are no comments for this article.
Login to Comment