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Abstract

There has been intense recent interest in the vulnerability of the US electric power sector
to the potentially adverse impacts of global warming. In this paper I use a three-phased ap-
proach to investigate the consequences of climate-driven temperature increases on electricity
supply and demand within US states. Reduced-form long-run responses of electricity demand
to temperature are estimated based on monthly data for the US using a dynamic econometric
model. The resulting climate response functions are then applied to projections of tempera-
ture taken from a global climate model simulation for the year 2050 to construct vectors of
shocks to electricity demand. Finally, the economic effects of these shocks are simulated within
an interregional computable general equilibrium model that incorporates detailed information
on power markets and generation technologies. My estimated temperature responses substan-
tially exceed similar published estimates. I find that by 2050, projected climate change amplifies
states’ electricity demand by as much as 16%, with large increases concentrated in states that
already have high summer temperatures. These demand shocks have only a slight effect on
electricity prices, but are regressive in their incidence, and induce an expansion of generation
that increases US carbon emissions by more than 6%.
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expert research assistance.



1 Introduction

The influence of weather on electricity markets has been extensively researched. However, in the

past weather variables have typically been used as statistical controls that enable more precise

estimates of price and income elasticities of demand (e.g. Maddala et al., 1997; Alberini and Filip-

pini, 2011). Only recently has there been interest in the magnitude character of responses in their

own right, spurred by concern over the energy market impacts of anthropogenic climate change

on heating and cooling demands (Asadoorian et al., 2008; Auffhammer and Aroonruengsawat,

2011; Deschênes and Greenstone, 2011; Franco and Sanstad, 2008; Rosenthal et al., 1995; Sailor and

Muñoz, 1997).

To construct assessments of the electricity market impacts of a changing climate it is necessary

to move beyond existing estimates that rely on spatially and temporally aggregated measure-

ments of electricity use—and particularly weather. The potential for seasonal temperature shifts to

have offsetting impacts on the number of heating and cooling degree days within each month can

lead to aggregation bias in the standard interpolation methods that are used to construct degree

days from monthly average temperatures (see, variously Thom, 1954, 1966; Thevenard, 2011). Re-

cent papers by Deschênes and Greenstone (2011) and Auffhammer and Aroonruengsawat (2011)

circumvent this problem by using binned daily temperature data to identify differences in the

marginal effect of exposure to particular temperature regimes.1 But despite the enormous poten-

tial of this approach, precise estimates of the climate response of electricity demand over space and

time remain elusive. Deschênes and Greenstone’s results aggregate across fuels and time, yield-

ing the static weather response of the US residential sector’s total annual energy use. Auffhammer

and Aroonruengsawat go further to investigate individuals’ electricity demand using billing data

on an approximately monthly cycle, but the geographic domain of their analysis is limited to the

state of California. Moreover, in neither of these studies are the data series of demand both of

sufficiently high frequency and length to empirically disentangle long-run responses to climate

from short-run responses to weather.

This study overcomes these obstacles to provide an empirical characterization of the long-run

impact of temperature on electricity use by different sectors for the entire US. Its principal in-

1This was first done by Engle et al. (1986), who employed a more complicated smooth regression approach.
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novation is to couple a 20-year dataset of monthly electricity use by three economic sectors in

48 US states with spatially averaged observations of daily temperature in a dynamic estimation

framework. Its second novel feature is to project the climate-induced shocks to states’ monthly

electricity demands by applying the empirically-derived climate responses to the geographically

heterogeneous patterns of change in decadally-averaged daily temperatures generated by a global

climate model (GCM) simulation. Finally, it assesses the implications of climate impacts by im-

posing the shocks on a spatially disaggregated numerical simulation of the US economy.

My key findings are that dynamic model estimates of the long-run effect of temperature on

electricity demand are substantially larger than their static counterparts commonly cited in the

empirical climate impacts literature. Applying these larger responses to the output of a CGM sim-

ulation of climate change in the year 2050 yields changes in electricity demand that are larger in

the residential sector relative to commercial and industrial consumers, are overwhelmingly posi-

tive, ranging from 1%-14% with an average of just over 7%, and are concentrated in the Southwest

and South Central portions of the US. Simulations of the economic effects of these secular shifts

in demand generate ex-post realized changes in electricity use of as much as 16%, which result

in climate impacts are regressive in their incidence, and induce expansion of fossil-fueled power

generation that increases aggregate emissions of carbon dioxide (CO2) by more than 6%.

The rest of the paper is organized as follows. Section 2 outlines the analytical approach, econo-

metric modeling, and data. Section 3 presents and discusses the results. Section 4 concludes with

a discussion of caveats and future research.

2 Approach

2.1 Econometric Model and Data

My starting point is a static empirical model of electricity demand in the vein of recent panel

data studies which utilize responses to weather shocks to identify the impact of climate change

(Deschênes and Greenstone, 2011; Auffhammer and Aroonruengsawat, 2011). The objective is to

model monthly electricity use, Qj,s,t, in the residential, commercial industrial sectors (indexed by

j) of each state (indexed by s) and time (indexed by t) as a function of temperature. The basic
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specification is the linear panel regression:

log Qj,s,t = αj,s + θj,y + ∑
k

ψk
j Nk

s,t + X j,s,tβj + uj,s,t (1)

in which α and θ are vectors of state fixed effects and year effects that capture unobserved ge-

ographic heterogeneity and temporally varying shocks that affect all states, Nk is the count of

each month’s days with average temperature in each of k bins, X is a vector of statistical controls

(enumerated below), β is a vector of estimated parameters, and u is a random disturbance term.

The coefficients of interest are the ψk
j s, which represent the semi-elasticities of sectoral electricity

demand to an additional day in each of the temperature bins.

The ability of eq. (1) to capture the kind of climatic shocks to temperature expected to mani-

fest themselves on decadal time-scales is called into question by recent empirical studies that use

monthly data in an explicitly dynamic framework (Myers et al., 2009; Jorgensen and Joutz, 2012).

Myers et al. estimate demand responses to heating and cooling degree days which have very

different magnitudes at monthly and annual lag lengths. Jorgensen and Joutz find that short-run

electricity demand responses are almost entirely weather-driven, with the marginal effects of con-

temporaneous heating degree days being significantly larger than that of their 30-year moving

average. These results suggest the need to explicitly account for the divergence between short-

and long-run responses by incorporating dynamics into the standard model. I proceed by recast-

ing (1) according to the autoregressive distributed lag dynamic panel specification

log Qj,s,t = αj,s + θj,y +
L
∑
`=1

λj,` log Qj,s,t−` +
M
∑
`=0

(
∑

k
ψk

j,`Nk
s,t−` + X j,s,t−`βj

)
+ vj,s,t. (2)

This model cannot be estimated consistently as the coefficients on the lags dependent variables are

biased due to correlation with the fixed effects. The standard remedy is to re-parameterize (2) as

an error correction model (ECM), which can be estimated consistently using maximum likelihood:

∆ log Qj,s,t = αj,s +
L−1

∑
`=1

λ̃j,`∆ log Qj,s,t−` +
M
∑
`=0

(
∑

k
ψ̃k

j ∆Nk
s,t + ∆X j,s,t β̃j

)

+ ωj

[
log Qj,s,t−1 −∑

k
ψ

k
j Nk

s,t − X j,s,tβj

]
+ vj,s,t. (3)
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I am interested in the expression in square brackets, which is the long-run effect of the covariates

on electricity demand. The parameter ωj = −
(

1−∑L`=1 λj,`

)
is the error-correcting speed of

adjustment, which is anticipated to be negative and significant. The coefficients ψ̃k
j and β̃j indicate

the short-run effects of temperature and other variables, while ψ
k
j = ψk

j

/(
1−∑L`=1 λj,`

)
and

βj = βj

/(
1−∑L`=1 λj,`

)
are the corresponding long-run effects.

My data are drawn from several sources. Monthly electricity data were taken from Energy

Information Administration (EIA) Form 826 files which tabulate sales and revenue for residential,

commercial and industrial consumers in each state for the period 1990-2010. Temperature data

for the same period were taken from the North America Land Data Assimilation System (NL-

DAS) daily maximum and minimum air temperature series, which we aggregated to state level.

To capture consumers’ own-price response I proxy for the unobserved price of electricity using

real monthly average revenue in each of the three sectors, calculated from the Form 826 data. To

capture consumers’ cross-price response I use monthly natural gas prices by sector from EIA. To

capture the separate elasticities of electricity demand with respect to the intensity of economic ac-

tivity and the scale of the population, I use the Bureau of Economic Analysis (BEA) state quarterly

personal income and annual population from the for the residential sector, and, for commercial

and industrial sectors, quarterly compensation and monthly employment from the Bureau of La-

bor Statistics Quarterly Census of Employment and Wages.

My electricity demand climate response function is constructed from the fitted values of eq.

(3). I make use of the monthly frequency distributions of normal temperatures under current and

future climates in each state (Nk
C and Nk

F) and apply the estimated long-run temperature semi-

elasticities to the difference between the values in each monthly bin. Summing over bins and

exponentiating yields the ratio of future to current electricity use in each month (cf Auffhammer

and Aroonruengsawat, 2011):

Ψj,s = exp

[
∑

k
ψ

k
j

(
Nk

F,s − Nk
C,s

)]
. (4)

To calculate Nk
C and Nk

F I use simulated daily surface temperatures for the years 1991-2000 and

2046-2055 from run 1 of the Geophysical Fluid Dynamics Laboratory (GFDL) CM 2.1 climate

model (Delworth et al., 2006) forced with the SRES A2 (high) emissions pathway. Bias-corrected
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model output mapped to a 2◦ × 2◦ grid by Brekke and Barsugli (2013) was spatially interpolated

to a GIS shapefile of US states, averaged over the two decadal periods representing current and

future climate, and the results aggregated by temperature bin and month.

2.2 Simulating the Economic Impacts of Climate-Induced Electricity Demand Shocks

There is a burgeoning literature that employs numerical models of the economy to simulate the

market implications of climate change impacts. However, these studies’ most finely geographic

unit of analysis is single large countries—and, most often, countries aggregated up to the level of

world regions—which is arguably far coarser than the scale at which climate impacts will manifest

themselves.2 It is therefore not surprising that model-based investigations of climate impacts have

tended to find only modest economic consequences—the larger spatial domain of analysis, the

more likely it is that there will be impacts of opposite sign, whose shocks will tend to cancel out

(cf the negative impact of climate change on US electricity demand found by Bosello et al.’s (2007)

country-level analysis). The concern is that if the disparate sub-national impacts are resolved and

allowed to simultaneously affect interconnected markets, then the general equilibrium effects can

be substantially different.

To assess the impact of the climate’s effect on the demand for electric power, I construct a

multi-sector inter-regional computable general equilibrium (ICGE) model of the US economy

which incorporates detailed information on the structure of electric power markets and gener-

ation technologies. The model’s key feature is that it simulates the supply-demand equilibrium of

the economy at the same geographic scale as my estimates of demand shocks. The model resolves

the production and use of ten commodities at the state level. There are five energy commodities

(Crude Oil & Gas, Refined Petroleum, Coal, Natural Gas and Electricity) and an equal number

of non-energy goods (Agriculture, Transportation, Manufacturing, Energy-intensive goods and

Services), each of which is produced by an individual sector within each state.

Production in each sector is represented by a nested constant elasticity of substitution (CES)

production function whose structure and parameterization is based on Goulder (1995). These

hierarchical structures, shown schematically in Figure 1, are differentiated by sector. Given my

focus on electricity markets, I pay special attention to electric power production and upstream

2See Fisher-Vanden et al. (2011) for a review of model-based impact studies.
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fossil fuel supply sectors. Non-energy industries in panel A use Goulder’s basic structure. In the

fossil fuel supply sectors in panel B, primary “fixed-factor” energy resources available within each

state substitute for other inputs at the top level of the nesting hierarchy. Similarly, in the refined

petroleum sector in panel C crude oil feedstocks substitute for intermediate and factor inputs at

the top level.

The centerpiece of the model is the “bottom-up” representation of electric power production

in panel D, which draws on Sue Wing (2006, 2008). Electric sector output is a CES function of

transmission and distribution services and energy. The former is produced from labor, capital

and non-energy materials. The latter is a CES function of three classes of load, each of which is

a CES aggregation of the outputs of 17 discrete generation technologies, summarized in Table 2

panel A.3 In turn, fossil and primary electricity generation are modeled as CES functions of labor,

capital and fuel inputs. In the case of non-fossil technologies, the latter is modeled as a state- and

technology- specific fixed-factor energy resource.4

On the demand side, the model groups the households in each state into nine income classes,

each of which is represented by an archetypal consumer with CES preferences denominated over

consumption of the ten commodities. Each representative agent is endowed with quantities of la-

bor, capital and natural resources, which are rented out to the sectors in exchange for factor income

that is used to finance expenditures on goods. Factors are immobile across states. Within each

state, capital and labor are homogeneous and perfectly mobile across sectors, with households’

endowments constituting an aggregate pool of supply that is allocated among sectors to equalize

marginal productivity. Natural resources are sector- and technology-specific. The sluggish nature

of electric generation technology capacity adjustments is captured by modeling generation capac-

ity (i.e., inputs of capital) as a specific factor which is supplied by a “capacity transformation”

sub-sector, a constant elasticity of transformation (CET) function which demands intersectorally

mobile capital and transforms it into the 17 categories of technology-specific capital (Sue Wing,

2006). The model also resolves government activity at three levels (local, state and federal) which

play the role of producer-consumers, collect taxing revenue from firms and households to finance

3Note that the same oil- and gas-fired generation technologies can satisfy electricity demand across different load
classes.

4The resource represents the availability of insolation for solar power, stream flow or hydrostatic head for hydro
power, surface wind velocity for windpower, hot dry rock for geothermal power, etc.
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the purchase of commodities used to produce government goods.

Commodity demands by industries, households and government in each state are satisfied

by domestic supply as well as imports from other states and international sources following the

Armington (1969) specification of trade, illustrated in panel E of Figure 1. In each sector and state,

output is allocated among own-state uses, exports to other states and international exports to the

rest of the world according to a nested CET function. Interstate exports of each commodity supply

a common national pool that satisfies each state’s demand for domestic imports. A CES function

is used to combine the latter with each state’s international imports of the good to generate an im-

port composite that substitutes for own-state uses in the production of an Armington aggregate

composite. This composite output supplies the state’s intermediate and final demands for the

commodity in question. Interstate electric power markets are modeled in a slightly different fash-

ion, with each state’s electricity output feeding into one or more power pools defined by the North

American Electric Reliability Corporation (NERC) regions (shown in panel B of Table 2), which are

in turn connected by bulk power trade at the national level and supplying their constituent states’

electricity demands.

Numerical calibration of the model’s “top-down” input-output structure is based on IMPLAN

state social accounting matrices for the year 2007 (Minnesota IMPLAN Group, 2008), based on

the framework developed by Rausch and Rutherford (2008). Bottom-up technology detail is in-

troduced into the electric power sector via the column disaggregation procedure developed by

Sue Wing (2008), and using data on fossil fuel prices from EIA, the costs and input proportions

of individual generation technologies from the supplement to the DOE/EIA 2012 Annual Energy

Outlook, and year-2007 generation by technology, state and NERC region calculated from plant-

level information in EIA’s Form 906 data files.

The ICGE model is specified algebraically as a static equilibrium simulation, numerically cali-

brated and formulated as a large-scale mixed complementarity problem using the MPSGE subsys-

tem (Rutherford, 1999) for GAMS (Brooke et al., 1998), and solved using the PATH solver (Dirkse

and Ferris, 1995; Ferris and Munson, 2000). To perform an assessment of climate impacts I simu-

late projected baseline and counterfactual equilibiria of the US economy in the year 2050. Future

expansion of income and output are captured by scaling up states’ endowments of labor and cap-

ital at the historical rates of growth of real compensation and gross operating surplus, and the
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decoupling of energy supply and use from GDP growth is modeled by scaling down the coeffi-

cients on energy in the model’s cost and demand functions at the historical rates of decline in the

energy intensity of sectors within each state.

3 Results

3.1 Econometric Estimates

The results of the static econometric model are presented in Table 3. The fit of the model to the data

is quite good. Own-price demand responses are of the expected sign, inelastic, and similar in mag-

nitude to previous estimates (e.g., Alberini and Filippini, 2011). Cross-price demand responses

with respect to natural gas are positive, significant only in winter months and for residential and

commercial sales, and highly inelastic. The residual sector does not exhibit a significant response

to income, but the elasticity with respect to population is positive and significant. The commer-

cial and industrial sectors exhibit positive and significant responses to both the average ware and

employment, with the latter being dominant.

Electricity demand’s response to temperature is for the most part precisely estimated, exhibit-

ing the asymmetric “V”-shaped pattern found by Engle et al. (1986) and Deschênes and Green-

stone (2011) with the nadir in the mild zone of 50-60 ◦F and an overall magnitude similar to their

estimates. The magnitude of the residential response exceeds that for the commercial sector, which

in turn exceeds that for industrial consumers, and all of the responses are generally small.

The dynamic model’s long-run estimates are given in Table 4. To conserve degrees of free-

dom we estimate the simplest autoregressive model with a single one-month lag. In the long-run,

own-price responses fall short of the corresponding static estimates while cross-price responses

exceed them. Larger too are the long-run residential sector population and income elasticities, as

well as commercial sector wage elasticity. Long-run labor elasticities are larger in the commercial

sector and smaller in industry. Moreover, the error-correction parameters suggest that consumers

respond rapidly: 99% of the adjustment to long-run equilibrium occurs within 3 years in the com-

mercial and industrial sectors, and within 9 months in the residential sector.

The big difference between the models is in the temperature response. While the patterns of

semi-elasticities over the span of temperature bins remain the same, the magnitudes the of long-
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run marginal effects are between two and five times bigger! As well, the intersectoral differences

in the magnitudes of the estimates diminish sharply, as indicated by Figure 2. This result suggests

that existing static estimates may substantially underestimate the impact of climate on energy

demand.

3.2 Robustness Tests

To be added...

3.3 Climate Shocks to Electricity Demand

Figure 3 shows the changes in monthly electricity demand that results when the GFDL CM 2.1

climate model’s simulated change in decadal average daily temperatures from current climate to

the year 2050 under the SRES A2 scenario is applied to our estimated long-run marginal temper-

ature responses in eq. (4). As anticipated by the shape of the sectoral climate response functions

in Figure 2, electricity demand simultaneously increases during the summer months while declin-

ing in the spring and fall. The largest positive responses occur in the residential sector, and are

concentrated in the Southwest and West South Central portions of the country (New Mexico, Col-

orado, Missouri, Nebraska, Nevada). Commercial and particularly industrial consumption see

much smaller increases concentrated in the South, but enjoy larger reductions in demand during

the winter months.

The bottom-line impact on states’ average annual electricity demand is calculated as the in-

ner product of the monthly shocks reported above and the average monthly electricity sales by

sector and state over the 1990-2010 sample period. The result, shown in Figure 4, is that the over-

whelming majority of the responses take the form of increases in demand, with only a handful of

high-latitude states exhibiting reductions, and then only in the commercial and industrial sectors.

As before, these are largest in the residential sector and smallest in industry, and are concentrated

in the South and South Central regions. The overall shock to electricity demand is positive, rang-

ing from a 1% rise in North Dakota to a 14% rise in Mississippi, with a mean increase of 7.6%.

The detailed state by sector annualized demand changes are applied as shift parameters to the

the ICGE model’s cost and demand functions in order to simulate the year-2050 counterfactual
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equilibrium. The difference between these ex-ante shocks and the ex-post equilibrium demands

generated by the concomitant price and substitution adjustments in the economy is a measure of

passive market adaptation to climate change. (See Fisher-Vanden et al. (2011) for a taxonomy of

adaptation responses.)

3.4 Simulation Results

Rarely do empirical studies of climate change impacts project economic conditions in the future

years when the effects of climate change manifest themselves. The consequences of this are not

well understood. On one hand, it imparts a downward bias to estimates of the level of climate-

related damage or adaptation costs, because the economy that actually faces exposure to future

climate risk will be bigger in size relative to today. But on the flip side, a larger economy will likely

entail greater substitution possibilities which enable more elastic adjustment to climate shocks,

reducing adaptation costs. The current assessment accounts for both influences.

Relative to the 2007 benchmark year, in 2050 the US economy’s real output expands by a factor

of three and its primary energy use increases by 51%. As shown in Table 5, this is accompanied

by a substantial expansion in electricity supply in warmer regions—increases of two-thirds in the

Southeast, a doubling in Florida and the Southwest, and a tripling in Texas—but modest increases

elsewhere in the country. Growth in electricity use over the period exhibits a pattern that is similar

but has a smaller regional amplitude, while bulk power prices increase only slightly in real terms,

indicating that generation keeps pace with demand.

Imposing climate-induced electricity demand shocks onto these trends results in an 8% in-

crease in aggregate electricity generation and use whose effects are concentrated in the South

and are substantially smaller in the Northeast and Midwest. Interestingly, the ex-post increase

in aggregate electricity use is slightly larger than the shock, but this masks considerable regional

heterogeneity in substitution and market responses: increases in electricity generation and use

outstrip the shock in the West, Southwest and Atlantic/East Central regions, but elsewhere fall

short of the ex-ante stimulus to demand. The response of bulk power prices to the increase in

heating and cooling demands is very slight, suggesting that the shock is small enough that exist-

ing substitution possibilities allow adjustments to be made cheaply.
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Panel B summarizes the adjustments on the supply side. My assumptions used to construct

the baseline equilibrium result in a marked expansion of renewable and oil generation, a some-

what smaller increase in natural gas, and modest growth in coal, hydro and nuclear. Despite

the apparently large growth in oil-fired and renewable electricity, their levels of supply remain

the smallest of the technology groupings. The demand shock’s largest impact is on the supply

of fossil electricity (principally oil, and, to a lesser extent, coal), especially in the Southwest and

Atlantic regions. Nuclear power expansion exhibits the same geographic pattern, but its response

is two-thirds as large, while hydro and renewables see their largest increases in the Southeast and

Atlantic regions.

The impacts on states’ economies are shown in Figure 5. In panel A, the ex-post change in

electricity use computed by the ICGE model generally increases in magnitude with the ex-ante

demand shock. However, the South Central and Southwestern states that are most affected by the

climate’s impact tend to see a 1-2 percentage point amplification of demand. The consequences

for households’ welfare are summarized in panels B and C, which plot the percentage change in

households groups’ real expenditure on electricity and all commodities with the simulated change

in state electricity use. Almost without exception, spending on electricity rises by more than the

average level of the shocks, a result which reflects the fact that electricity prices remain stable while

the shock to residential demand exceeds that of other sectors (cf Figures 3 and 4). The percentage

changes in electricity expenditure diverge only slightly across income levels, with the growth of

expenditure exhibiting small increases with household income in the most affected states.

The most interesting result is the welfare impact of changes in households’ demand for non-

electricity goods. Substitution toward electricity to satisfy the rise in demand for space condi-

tioning comes at the cost of reduced consumption of other goods, spending on which declines.

Because electricity’s baseline fraction of household expenditure is generally small (8%-16%), de-

clines with progressively higher income, and is largest in states that in today’s climate experience

high summer temperatures. This suggests that substitution will induce the largest reductions

in non-energy expenditure in low-income households and in the South-Central and Southwest-

ern states, which is exactly what we see in panel C. Similar to recent findings for greenhouse

gas (GHG) mitigation (e.g., Hassett et al., 2009; Grainger and Kolstad, 2010), the incidence of

climate’s impact on electricity is regressive along two dimensions, with the costs falling dispro-
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portionately on households in the model’s two lowest income categories, and in relatively poor

Southern states. Interestingly, middle-income households remain essentially unaffected, while

those in the two highest income categories also experience expenditure declines, albeit of a much

smaller magnitude. In contrast to the effects of climate mitigation, households’ burdens emanate

overwhelmingly from declines in the budget shares of non-energy goods which account for the

bulk of expenditures.5

I close by examining the environmental implications of the expansion in generation necessary

to satisfy increased demand for electricity. The fact that fossil power generation tends to respond

in a more elastic manner suggests that rising temperatures will induce increases in GHG emis-

sions, thus raising the specter of a positive feedback between the impacts of climate change and

the adaptation measures that facilitate adjustment to these shocks. Figure 6 shows that the climate

shock stimulates increases in states’ emissions of CO2. While there are small changes in the emis-

sions from the industrial and transportation sectors, the lion’s share of the growth emanates from

the electricity generation. The most affected South-Central and Southwestern states see emissions

rise in excess of 10%, while aggregate emissions expand by 6.5%.

3.5 Sensitivity Analysis

To be added...

4 Conclusion

To be added...

5Services alone make up 65-75% of baseline consumer spending. The changes in consumer prices of non-energy
commodities simulated by the model are very small (on the order of 0.01%) and in many instances negative. These co-
incide with an order of magnitude larger percentage reductions in the quantities of these goods consumed, particularly
by the lowest income households.
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Figure 2: Temperature Semi-Elasticities (log kWh Response)
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Figure 3: % Change in Monthly Electricity Demand by State,
2046-55 Relative to 1991-2000 (GFDL CM 2.1 simulation of SRES A2 Scenario)
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Figure 5: Simulated State-Level Impacts of Electricity Demand Shocks
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Figure 6: % Change in Sectoral CO2 Emissions due to Electricity Demand Shocks

-5 0 5 10 15 20

Alaska
Alabama
Arkansas

Arizona
California
Colorado

Connecticut
District of Columbia

Delaware
Florida

Georgia
Hawaii

Iowa
Idaho

Illinois
Indiana
Kansas

Kentucky
Louisiana

Massachusetts
Maryland

Maine
Michigan

Minnesota
Missouri

Mississippi
Montana

North Carolina
North Dakota

Nebraska
New Hampshire

New Jersey
New Mexico

Nevada
New York

Ohio
Oklahoma

Oregon
Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Virginia
Vermont

Washington
Wisconsin

West Virginia
Wyoming

US

Residential Commercial Industrial Electric Power Transportation

18



Table 1: Descriptive Statistics of the Dataset

Mean Std. Dev. Min. Max.
Montly Electricity Sales (kWh)

Residential 1971066 2037506 0 16700000
Commercial 1747998 1850517 0 12600000
Industrial 1668253 1573469 0 10300000

Monthly Electricity Price (1982-84 $/kWh)
Residential 0.051 0.013 0.027 0.114
Commercial 0.045 0.011 0.021 0.089
Industrial 0.032 0.010 0.011 0.078

Monthly Natural Gas Price (1982-84 $/MMBTU)
Residential 10.42 5.11 0.00 58.38
Commercial 8.01 3.86 0.00 59.38
Industrial 6.95 2.91 0.00 59.38

Quarterly Personal Income Per Capita (’000 1982-84 $) 0.016 0.003 0.010 0.026
Monthly Real Avg. Wage Per Worker (1982-84 $)

Commercial 4296.04 848.40 2441.24 18089.89
Industrial 5438.58 834.48 1908.83 8308.90

Annual Population 5569791 6180379 0 37300000
Monthly Employment

Commercial 1786992 1941543 0 12500000
Industrial 473052 493794 0 3334621

Days with a Given Temperature
< 5 ◦ F 0.197 1.256 0 21
5-10◦ F 0.179 0.794 0 10
10-15◦ F 0.327 1.174 0 15
15-20◦ F 0.575 1.640 0 16
20-25◦ F 0.948 2.242 0 16
25-30◦ F 1.417 2.828 0 19
30-35◦ F 1.836 3.177 0 23
35-40◦ F 2.103 3.250 0 22
40-45◦ F 2.312 3.307 0 25
45-50◦ F 2.409 3.304 0 24
50-55◦ F 2.397 3.203 0 23
55-60◦ F 2.420 3.187 0 22
60-65◦ F 2.545 3.401 0 21
65-70◦ F 2.741 3.921 0 24
70-75◦ F 2.705 4.364 0 28
75-80◦ F 2.210 4.483 0 28
80-85◦ F 1.534 4.525 0 31
85-90◦ F 0.352 2.004 0 29
> 90◦ F 0.019 0.347 0 15

Number of observations: 12,086 (252 year-months × 48 states)
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Table 2: Electric Power Detail in the CGE Model

A. Electric Power Technologies by Load Class
Technology Base Intermediate Peak

Load Load Load
Steam turbine 1. Coal, 2. Oil, 3. Gas
Internal combustion 4. Oil, 5. Gas
Gas turbine 6. Oil, 7. Gas 6. Oil, 7. Gas
Combustion turbine 8. Oil, 9. Gas 8. Oil, 9. Gas
Combined cycle 10. Oil, 11. Gas 10. Oil, 11. Gas
Primary electricity 12. Hydro, 13. Nuclear, 14. Geothermal 15. Biomass 16. Wind, 17. Solar

B. North American Electric Reliability Corporation Regions and Constituent States∗

SERC Reliability Corporation (SERC) AL, AR, FL, GA, IL, KY, LA, MO, MS, NC, SC,
TN, TX, VA

Western Electricity Coordinating Council (WECC) AZ, CA, CO, ID, MT, NM, NV, OR, SD, TX, UT,
WA, WY

Midwest Reliability Organization (MRO) IA, MI, MN, MT, ND, NE, SD, WI
Southwest Power Pool (SPP) AR, KS, LA, MO, NM, OK, TX
Northeast Power Coordinating Council (NPCC) CT, MA, ME, NH, NY, RI, VT
Texas Reliability Entity (TRE) TX
Florida Reliability Coordinating Council (FRCC) FL
ReliabilityFirst Corporation (RFC) DC, DE, IL, IN, KS, KY, MD, MI, NJ, OH, PA, TN,

VA, WI, WV

∗Alaska and Hawaii are modeled as autarkic regions that generate their own electric power.

20



Table 3: Static Fixed-Effects Electricity Demand Regressions

Residential Commercial Industrial
Log Elec Price -0.34* (0.054) -0.19* (0.063) -0.44* (0.088)
Log Gas Price ×Winter 0.10* (0.011) 0.023* (0.0060) -0.0065 (0.0060)
Log Per Capita Income 0.00095 (0.068)
Log Avg Wage 0.29* (0.11) 0.19+ (0.11)
Log Population 0.80* (0.067)
Log Labor 0.40* (0.14) 0.69* (0.11)
< 5 ◦ F 0.042* (0.0038) 0.021* (0.0027) 0.0094* (0.0018)
5-10◦ F 0.034* (0.0036) 0.022* (0.0035) 0.011* (0.0025)
10-15◦ F 0.034* (0.0029) 0.022* (0.0027) 0.0071* (0.0029)
15-20◦ F 0.033* (0.0026) 0.016* (0.0018) 0.0041 (0.0028)
20-25◦ F 0.034* (0.0025) 0.016* (0.0022) 0.0042* (0.0020)
25-30◦ F 0.032* (0.0025) 0.016* (0.0018) 0.0046* (0.0018)
30-35◦ F 0.033* (0.0022) 0.016* (0.0018) 0.0049* (0.0020)
35-40◦ F 0.033* (0.0023) 0.017* (0.0017) 0.0050* (0.0020)
40-45◦ F 0.031* (0.0025) 0.014* (0.0019) 0.0035+ (0.0021)
45-50◦ F 0.028* (0.0027) 0.015* (0.0017) 0.0040* (0.0019)
50-55◦ F 0.024* (0.0025) 0.014* (0.0018) 0.0035 (0.0021)
55-60◦ F 0.026* (0.0029) 0.017* (0.0019) 0.0053* (0.0022)
60-65◦ F 0.026* (0.0029) 0.017* (0.0017) 0.0054* (0.0019)
65-70◦ F 0.031* (0.0030) 0.020* (0.0018) 0.0065* (0.0021)
70-75◦ F 0.035* (0.0030) 0.022* (0.0018) 0.0072* (0.0019)
75-80◦ F 0.041* (0.0031) 0.024* (0.0017) 0.0082* (0.0019)
80-85◦ F 0.047* (0.0029) 0.027* (0.0017) 0.0089* (0.0019)
85-90◦ F 0.051* (0.0031) 0.028* (0.0019) 0.010* (0.0021)
> 90◦ F 0.055* (0.0038) 0.033* (0.0025) 0.013* (0.0032)
R-sq 0.77 0.79 0.30
F 1655.0 608.9 97.7
AIC -17436.0 -16824.0 -11160.4
BIC -17117.9 -16505.9 -10842.3
N 12086 12075 12075
+ p<.1 ∗ p<.05
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Table 4: Dynamic Fixed-Effects Regressions: Long-Run Electricity Demand Impacts

Residential Commercial Industrial
Log Elec Price -0.25* (0.021) -0.25* (0.041) -0.36* (0.042)
Log Gas Price ×Winter 0.18* (0.0064) 0.18* (0.015) 0.063* (0.020)
Log Per Capita Income 0.47* (0.030)
Log Avg Wage 0.58* (0.084) 0.026 (0.085)
Log Population 0.99* (0.035)
Log Labor 1.12* (0.058) 0.50* (0.050)
< 5 ◦ F 0.094* (0.0082) 0.084* (0.016) 0.085* (0.023)
5-10◦ F 0.072* (0.0096) 0.057* (0.019) 0.043 (0.027)
10-15◦ F 0.080* (0.0086) 0.088* (0.017) 0.081* (0.024)
15-20◦ F 0.077* (0.0083) 0.068* (0.016) 0.068* (0.023)
20-25◦ F 0.079* (0.0080) 0.068* (0.015) 0.074* (0.022)
25-30◦ F 0.076* (0.0080) 0.065* (0.015) 0.065* (0.021)
30-35◦ F 0.079* (0.0079) 0.067* (0.015) 0.067* (0.021)
35-40◦ F 0.083* (0.0079) 0.073* (0.015) 0.064* (0.021)
40-45◦ F 0.083* (0.0079) 0.065* (0.015) 0.067* (0.021)
45-50◦ F 0.076* (0.0078) 0.065* (0.015) 0.068* (0.021)
50-55◦ F 0.070* (0.0078) 0.069* (0.015) 0.072* (0.021)
55-60◦ F 0.068* (0.0078) 0.074* (0.015) 0.073* (0.021)
60-65◦ F 0.072* (0.0078) 0.075* (0.015) 0.071* (0.021)
65-70◦ F 0.077* (0.0078) 0.081* (0.015) 0.073* (0.021)
70-75◦ F 0.085* (0.0077) 0.081* (0.014) 0.072* (0.021)
75-80◦ F 0.096* (0.0078) 0.087* (0.014) 0.074* (0.021)
80-85◦ F 0.10* (0.0077) 0.097* (0.014) 0.077* (0.021)
85-90◦ F 0.11* (0.0078) 0.098* (0.015) 0.080* (0.021)
> 90◦ F 0.095* (0.011) 0.083* (0.022) 0.098* (0.031)
Error correction -0.42* (0.0072) -0.14* (0.0047) -0.12* (0.0044)
+ p<.1 ∗ p<.05
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Table 5: Market Impacts of Electricity Demand Shocks

A. Electricity Supply, Use and Prices
Demand Supply Use Real Power Prices

Shock 2050 % Chg. % Chg. 2050 % Chg. % Chg. 2050 % Chg. % Chg.
(%) Baseline from due to Baseline from due to Baseline from due to

(TWh) 2007 Shock (TWh) 2007 Shock ($/kWh) 2007 Shock
SERC 10.4 1851 66 8.9 1978 71 9.0 0.07 18 0.4
WECC 6.1 1127 52 7.3 1220 65 7.2 0.10 5 0.3
MRO 6.1 264 25 4.9 285 26 4.9 0.09 12 0.1
SPP 10.4 421 94 11.7 417 107 11.5 0.10 9 0.2
NPCC 2.6 350 27 2.5 348 15 2.5 0.13 -5 0.1
TRE 9.4 1018 203 7.3 849 159 7.7 0.09 -2 0.3
FRCC 8.6 424 102 7.3 540 124 7.5 0.05 11 0.5
RFC 6.3 1101 8 7.9 1201 23 7.8 0.10 7 0.3
US 7.6 6579 59 7.8 6861 64 7.8 0.09 2 0.1

B. Generation
Coal Oil Natural gas

2050 % Chg. % Chg. 2050 % Chg. % Chg. 2050 % Chg. % Chg.
Baseline from due to Baseline from due to Baseline from due to

(TWh) 2007 Shock (TWh) 2007 Shock (TWh) 2007 Shock
SERC 871 40 8.9 34 245 12.9 208 38 7.5
WECC 329 47 9.7 5 76 13.0 314 35 7.1
MRO 161 11 5.4 4 194 6.5 11 -14 5.0
SPP 207 79 12.8 4 325 13.9 153 122 11.2
NPCC 43 5 2.2 35 151 4.1 91 -9 2.8
TRE 303 148 7.4 7 590 12.2 374 122 7.3
FRCC 116 81 7.1 44 129 7.9 170 79 7.0
RFC 665 -2 9.2 18 179 10.9 90 16 8.4
US 2700 34 8.8 162 146 8.5 1415 56 7.4

Nuclear Hydro Renewables
2050 % Chg. % Chg. 2050 % Chg. % Chg. 2050 % Chg. % Chg.

Baseline from due to Baseline from due to Baseline from due to
(TWh) 2007 Shock (TWh) 2007 Shock (TWh) 2007 Shock

SERC 450 53 4.5 29 43 6.2 82 286 5.0
WECC 96 36 4.5 224 32 4.1 72 93 4.1
MRO 40 11 5.1 9 23 3.2 13 44 4.7
SPP 30 35 8.5 7 68 3.9 17 229 5.5
NPCC 88 11 2.3 35 14 2.7 25 136 2.2
TRE 62 84 1.5 2 82 2.0 33 287 1.7
FRCC 46 67 2.9 0 65 3.4 20 403 2.9
RFC 295 22 6.8 7 8 7.3 39 336 6.9
US 1108 37 4.8 315 30 4.2 302 187 4.3
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Appendix

Table A.1: Dynamic Fixed-Effects Regressions: Short-Run Electricity Demand Impacts

Residential Commercial Industrial
Log Elec Price -0.35* (0.018) -0.26* (0.011) -0.27* (0.010)
Log Gas Price ×Winter 0.0034 (0.0024) -0.0016 (0.0017) -0.013* (0.0022)
Log Per Capita Income -0.85* (0.096)
Log Avg Wage -0.12* (0.016) 0.072* (0.023)
Log Population 1.98* (0.30)
Log Labor 0.030 (0.041) 0.20* (0.040)
< 5 ◦ F 0.012* (0.0020) 0.015* (0.0014) 0.0037* (0.0016)
5-10◦ F 0.016* (0.0024) 0.018* (0.0017) 0.0075* (0.0020)
10-15◦ F 0.012* (0.0021) 0.013* (0.0015) 0.0024 (0.0017)
15-20◦ F 0.012* (0.0020) 0.014* (0.0013) 0.0035* (0.0016)
20-25◦ F 0.012* (0.0019) 0.014* (0.0012) 0.0027+ (0.0015)
25-30◦ F 0.012* (0.0018) 0.013* (0.0012) 0.0037* (0.0015)
30-35◦ F 0.010* (0.0018) 0.013* (0.0012) 0.0031* (0.0015)
35-40◦ F 0.0095* (0.0018) 0.012* (0.0012) 0.0033* (0.0015)
40-45◦ F 0.0072* (0.0018) 0.012* (0.0012) 0.0026+ (0.0015)
45-50◦ F 0.0069* (0.0018) 0.012* (0.0012) 0.0027+ (0.0015)
50-55◦ F 0.0057* (0.0018) 0.011* (0.0012) 0.0024+ (0.0015)
55-60◦ F 0.0074* (0.0018) 0.012* (0.0012) 0.0035* (0.0015)
60-65◦ F 0.0070* (0.0018) 0.013* (0.0012) 0.0038* (0.0015)
65-70◦ F 0.0086* (0.0018) 0.014* (0.0012) 0.0044* (0.0015)
70-75◦ F 0.010* (0.0018) 0.016* (0.0012) 0.0053* (0.0014)
75-80◦ F 0.012* (0.0018) 0.018* (0.0012) 0.0058* (0.0014)
80-85◦ F 0.014* (0.0017) 0.019* (0.0011) 0.0063* (0.0014)
85-90◦ F 0.013* (0.0018) 0.019* (0.0012) 0.0066* (0.0015)
> 90◦ F 0.022* (0.0030) 0.024* (0.0022) 0.0056* (0.0025)
+ p<.1 ∗ p<.05
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