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Abstract

Motivated by an intriguing observation during the recent U.S. housing cycle

that counties with housing supply elasticities in an intermediate range experi-

enced the most dramatic price booms and busts, this paper develops a model to

analyze information aggregation and learning in housing markets. In the presence

of pervasive informational frictions, housing prices serve as important signals in

the households’ learning of the economic strength of a neighborhood. Supply

elasticity affects not only housing supply but also the informational noise in the

price signal. Our model predicts that the housing price and the share of invest-

ment home purchases exhibit the greatest variability in areas with intermediate

supply elasticities, which is supported by our empirical analysis.
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Conventional wisdom posits that supply elasticity attenuates housing cycles. As a result,

one expects housing prices to be more volatile in areas with more inelastic housing supplies.

As noted by Glaeser (2013) and other commentators, however, during the recent U.S. housing

cycle in the 2000s, some areas such as Las Vegas and Phoenix experienced more dramatic

housing price booms and busts, despite their relatively elastic housing supply, compared

to areas with more inelastic supply, such as New York and Los Angeles. Interestingly, by

systematically examining the cross-section of the booms and busts experienced by different

counties during this housing cycle, we find that the monotonically decreasing relationship

between the magnitude of housing cycles and supply elasticity is more fragile than commonly

perceived. If one simply sorts counties into three groups based on Saiz’s (2010) widely-used

measure of supply elasticity, each with an equal number of counties, the average housing price

boom in 2003-2006 and bust in 2006-2009 is monotonically decreasing across the inelastic,

middle and elastic groups. As the inelastic group holds more than half of the population,

however, this coarse grouping may disguise non-monotonicity under present finer parsings.

Indeed, when we sort the counties into ten elasticity groups, each with an equal number

of counties, or into either three or ten elasticity groups each with an equal population, we

uncover a non-monotonic relationship between the magnitudes of the housing price booms

and busts experienced by different counties and their supply elasticity. The most dramatic

boom and bust cycle occurring in an intermediate range of supply elasticity.

This humped-shape relationship between housing cycle and supply elasticity, which we

summarize in Section 1, is intriguing and cannot be explained by the usual supply-side

mechanisms. In this paper, we develop a theoretical model to highlight a novel mechanism

for supply elasticity to affect housing demand through a learning channel. We emphasize

that home buyers observe neither the economic strength of a neighborhood, which ultimately

determines the demand for housing in the neighborhood, nor the supply of housing. In the

presence of these pervasive informational frictions, local housing markets provide a useful

platform for aggregating information. This fundamental aspect of housing markets, however,

has received little attention in the academic literature. It is intuitive that traded housing

prices reflect the net effect of demand and supply factors. Supply elasticity determines the

weight of supply-side factors in determining the housing prices, and therefore by extension

determines the informational noise faced by home buyers in using housing prices as signals

for the strength of demand.
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Our model integrates the standard framework of Grossman and Stiglitz (1980) and Hell-

wig (1980) for information aggregation in asset markets with a housing market in a local

neighborhood. This setting allows us to extend the insights of market microstructure analysis

to explore the real consequences of informational frictions in housing markets. In particu-

lar, our model allows us to analyze how agents form expectations in housing markets, how

these expectations interact with characteristics endemic to a neighborhood, and how these

expectations feed into housing prices.

We first present a baseline setting in Section 2 to highlight the basic information aggrega-

tion mechanism with each household purchasing homes for their own consumption, and then

extend the model in Section 3 to further incorporate purchases of investment homes. The

baseline model features a continuum of households in a closed neighborhood, which can be

viewed as a county. Each household’s productivity depends on the neighborhood’s common

productivity, which is unobservable and ultimately determines the demand for housing in

the neighborhood. Each household has a Cobb-Douglas utility function over consumption

of housing and a numeraire consumption good. Despite each household’s housing demand

being non-linear, the Law of Large Numbers allows us to aggregate their housing demand

in closed-form and to derive a unique log-linear equilibrium for the housing market. Each

household possesses a private signal regarding the neighborhood common productivity. By

aggregating the households’housing demand, the housing price aggregates their private sig-

nals. The presence of unobservable supply shocks, however, prevents the housing price from

perfectly revealing the neighborhood strength and acts as a source of informational noise in

the housing price.

Our model also builds in another important feature that households underestimate supply

elasticity. By examining a series of historical episodes of real estate speculation in the

U.S., Glaeser (2013) summarizes the tendency of speculators to underestimate the response

of housing supply to rising prices as a key for understanding these historical experiences.

In our model, underestimation of supply elasticity implies that households underestimate

the amount of informational noise in the observed price signal, which in turn causes the

households’expectations of the neighborhood strength and housing demand to overreact to

the housing price. The amplification of housing price volatility induced by such overreaction

depends on the uncertainty faced by households and the informational content of the price,

both of which are endogenously linked to the neighborhood’s supply elasticity.
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It is useful to consider two polar cases. At one end with the supply being infinitely

inelastic, the housing price is fully determined by the strength of the neighborhood and

thus perfectly reveals it. At the other end, with housing supply being infinitely elastic, the

housing price is fully determined by the supply shock and households’uncertainty about the

strength of the neighborhood does not interact with the housing price. In between these

two polar cases, the households face uncertainty regarding the neighborhood strength and

the uncertainty matters for the housing price. Consequently, households’overreaction to

the price signal has the most pronounced effect on their housing demand and the housing

price in an intermediate range of supply elasticity, causing the price volatility to have a

humped-shape relationship with supply elasticity. That is, housing price volatility is largest

at an intermediate supply elasticity rather than when supply is infinitely inelastic. This

key insight helps explain the aforementioned empirical observation that during the recent

U.S. housing cycle, counties with supply elasticities in an intermediate range experienced

the most dramatic price booms and busts.

We further extend the baseline model in Section 3 to incorporate immigrants who are

attracted to the neighborhood by its economic strength in a later period, and the speculation

of the current households in acquiring secondary homes in anticipation of selling/renting

them to these immigrants. This model extension generates an additional prediction that

the households’learning effects can induce another non-monotonic relationship between the

variability of secondary home purchases relative to primary home purchases with respect to

supply elasticity. The intuition is similar to before. As secondary home purchases are more

sensitive than primary home purchases to the households’expectations of the neighborhood

strength, informational frictions and the households’overreaction to the price signal make

households’ secondary home purchases most variable at an intermediate range of supply

elasticity. Interestingly, we are able to confirm this new model prediction in the data by

showing that counties in an intermediate range of supply elasticity indeed had the largest

share of non-owner-occupied home (investment home) purchases in 2005, as opposed to

counties with either the most elastic or inelastic supplies. This non-monotonic pattern

observed in the share of investment home purchases provides evidence from a new dimension

to support the important roles played by informational frictions and household learning in

driving housing cycles.

The existing literature has emphasized the importance of accounting for home buyers’
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expectations (and in particular extrapolative expectations) in understanding dramatic hous-

ing boom and bust cycles, e.g., Case and Shiller (2003); Glaeser, Gyourko, and Saiz (2008);

and Piazzesi and Schneider (2009). Much of the analysis and discussions, however, are made

in the absence of a systematic framework that anchors home buyers’expectations on their

information aggregation and learning process. In this paper, we fill this gap by developing a

model for analyzing information aggregation and learning in housing markets. By doing so,

we are able to uncover a novel effect of supply elasticity, beyond its role in driving housing

supply, in determining the informational content of the housing price and households’learn-

ing from the price signal. This learning effect implies non-monotonic patterns of housing

price volatility and share of investment home purchases across neighborhoods with different

supply elasticities, which are observed in the data. This learning mechanism also differen-

tiates our model from Gao (2013), which shares a similar motivation as ours to explain the

dramatic housing price booms and busts in the 2000s experienced by areas with interme-

diate supply elasticities, and which emphasizes a joint effect of time-to-build and housing

speculators’extrapolative expectations as an explanation.

In our model, households overreact to the housing price signal. Such overreaction is

driven by their underestimation of supply elasticity. This overreaction mechanism, which

depends on the informational frictions faced by households and the endogenous informa-

tional content of the housing price, is different from the commonly discussed mechanisms

in the behavioral finance literature, such as overconfidence highlighted by Daniel, Hirsh-

leifer, and Subrahmanyam (1998), slow information diffusion by Hong and Stein (1999), and

extrapolation by Barberis, Shleifer and Vishny (1998) and Barberis et al. (2014).

Our model also differs from Burnside, Eichenbaum, and Rebelo (2013), which offers a

model of housing market booms and busts based on the epidemic spreading of optimistic

or pessimistic beliefs among home buyers through their social interactions. Our learning-

based mechanism is also different from Nathanson and Zwick (2014), which studies the

hoarding of land by home builders in certain elastic areas as a mechanism to amplify price

volatility in the recent U.S. housing cycle. Informational frictions in our model anchor on

the elasticity of housing supply, which is different from the amplification to price volatility

induced by dispersed information and short-sale constraints featured in Favara and Song

(2014). Furthermore, while our model does not differentiate learning of in-town and out-

of-town home buyers, our framework can serve as a basis for future studies of out-of-town
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speculators, which are shown to be important by a recent study of Chinco and Mayer (2013).

By focusing on information aggregation and learning of symmetrically informed house-

holds with dispersed private information, our study differs in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014).

There are extensive studies in the housing literature highlighting the roles played by

both demand-side and supply-side factors in driving housing cycles. On the demand side,

Himmelberg, Mayer and Sinai (2006) focuses on interest rates, Poterba (1991) on tax changes,

and Mian and Sufi (2009) on credit expansion. On the supply side, Glaser, Gyourko, Saiz

(2008) emphasizes supply as a key force in mitigating housing bubbles, Haughwout, Peach,

Sporn and Tracy (2012) provides a detailed account of the housing supply side during the

U.S. housing cycle in the 2000s, and Gyourko (2009) systematically reviews the literature

on housing supply. By introducing informational frictions, our analysis shows that supply-

side and demand-side factors are not mutually independent. In particular, supply shocks

may affect housing demand by acting as informational noise in household learning and thus

influencing households’expectations of the strength of the neighborhood.

1 Some Basic Facts

Before we present a model to analyze how supply elasticity affects learning in housing mar-

kets, we present some basic facts regarding the relationship between supply elasticity and

the magnitudes of housing price booms and busts experienced by different counties during

the recent U.S. housing cycle. Even though common wisdom holds that supply elasticity

attenuates boom and bust cycles, the data does not support a robust, monotonic relationship

between the magnitude of the housing cycle in a county and its supply elasticity. In fact,

our analysis uncovers that counties with supply elasticities in an intermediate range had

experienced more dramatic housing booms and busts than counties with the most inelastic

supply.

Our county-level house price data comes from the Case-Shiller home price indices, which

are constructed from repeated home sales. There are 420 counties in 46 states with a large

enough number of repeat home sales to compute the Case-Shiller home price indices. We

use the Consumer Price Index (CPI) from the Bureau of Labor Statistics to deflate the

Case-Shiller home price indices. In addition, we also use population data from the 2000 U.S.

5



census.

For housing supply elasticity, we employ the commonly-used elasticity measure con-

structed by Saiz (2010). This elasticity measure focuses on geographic constraints by defining

undevelopable land for construction as terrain with a slope of 15 degrees or more and areas

lost to bodies of water including seas, lakes, and wetlands. This measure provides an ex-

ogenous measure of supply elasticity, with a higher value if an area is more geographically

restricted. Saiz’s measure is available for 269 Metropolitan Statistical Areas (MSAs). By

matching counties with MSAs, our sample includes 326 counties for which we have data on

both house prices and supply elasticity available from 2000 to 2010. Though our sample

covers only 11 percent of the counties in the U.S., they represent 53 percent of the U.S.

population and 57 percent of the housing trading volume in 2000.

Figure 1 displays the real home price indices for the U.S. and three cities, New York,

Las Vegas, and Charlotte, from 2000 to 2010. We normalize all indices to 100 in 2000. The

national housing market experienced a significant boom and bust cycle in the 2000s with the

national home price index increasing over 60 percent from 2000 to 2006 and then falling back

to the 2000 level through 2010. Different cities in the U.S experienced largely synchronized

price booms and busts during this period, even though the magnitudes of the cycle varied

across these cities. According to Saiz’s measure, the elasticity measure for New York, Las

Vegas, and Charlotte are 0.76, 1.39, and 3.09, repectively. New York, which has severe

geographic constraints and building regulations, had a real housing price appreciation of

more than 80 percent during the boom, and then declined by over 25 percent during the bust.

Charlotte, with its vast developable land and few building restrictions, had an almost flat

real housing price level throughout this decade. Sitting in between New York and Charlotte,

Las Vegas, with its intermediate supply elasticity, experienced the most pronounced price

expansion of over 120 percent during the boom, and the most dramatic price drop of over 50

percent during the bust. Many commentators, including Glaeser (2013), have pointed out

that the dramatic boom and bust cycles experienced by Las Vegas and other cities such as

Phoenix are peculiar given the relatively elastic supply in these areas.

Are Las Vegas and Phoenix unique in experiencing these dramatic housing cycles despite

their relatively elastic housing supply? We now systematically examine this issue by sorting

different counties in our sample into three groups, an inelastic, a middle, and an elastic

group, based on Saiz’s elasticity measure, each with the same number of counties. Figure
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2 plots the average price expansion and contraction experienced by each group during the

housing cycle (the top panel), together with the total population in each group (the bottom

panel). We measure the price expansion from 2003 to 2006, the period that is often defined

as the housing bubble period, and the price contraction from 2006 to 2009. We have also

used an alternative boom period from 2000 to 2006 and obtained qualitatively similar results

as defining the boom from 2003 to 2006.

The top panel of Figure 2 shows that the inelastic group had the largest house price

expansion from 2003 to 2006 and the largest price contraction from 2006 to 2009, the mid-

dle group experienced a milder cycle, and the elastic group had the most modest cycle.

This pattern appears to be consistent with the aforementioned common wisdom that supply

elasticity attenuates housing cycles.

It seems natural to sort the counties into several groups each with an equal number of

counties. In fact, this is a common practice used in the literature to demonstrate a monotonic

relationship between housing cycles and supply elasticity. Interestingly, the bottom panel of

Figure 2 shows that the population is unevenly distributed across the three groups, with the

inelastic group having more than half of the total population. This is consistent with the

fact that inelastic areas tend to be densely populated. As the inelastic group pools together

a large fraction of the population, there might be substantial heterogeneity between counties

within the inelastic group. Indeed, both New York and Las Vegas fall into this inelastic group.

This consideration motivates us to examine alternative ways of grouping the counties.

In Figure 3, we sort the counties into ten groups from the most inelastic group to the

most elastic group, still with each group holding an equal number of counties. The top panel

shows that the housing price expansion and contraction experienced by these ten groups

are no longer monotonic with elasticity. In particular, group 3, which has the third most

inelastic supply, experienced the largest price expansion during the boom, and the largest

price contraction during the bust. Interestingly, Las Vegas falls into group 3, while New York

into group 1. The bottom panel again shows that the population tends to be concentrated

in the more inelastic groups. Taken together, Figure 3 shows that the commonly perceived,

monotonic relationship between housing cycles and supply elasticity is not robust.

In Figure 4, we sort the counties into three groups based on supply elasticity in an

alternative way. Instead of letting different groups have an equal number of counties, we

let them have the same population. If the magnitude of the housing cycle is monotonically
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decreasing with supply elasticity, whether we group the counties by number or population

should not affect the monotonically decreasing pattern across the groups. In contrast, the

top panel of Figure 4 shows that the middle group has the most pronounced housing cycle,

with its price expansion during the boom being substantially more pronounced than that of

the inelastic group, and its price contraction during the bust slighly greater than that of the

inelastic group. The bottom panel shows that the inelastic group has only 40 counties, the

middle group slightly below 120 counties, and the elastic group over 160 counties. Under

this grouping, while New York remains in the inelastic group, Las Vegas is now in the middle

group.

In Figure 5, we further sort the counties into ten groups from the most inelastic group to

the most elastic group, with each group having the same population. This figure shows a finer

non-monotonicity with groups 3 and 5 experiencing the most pronounced price expansions

and contractions.

To further examine whether the more pronounced housing cycles experienced by the

intermediate elasticity groups are robust to controlling for other fundamental factors, such as

changes of income and population and fraction of subprime households, we adopt a regression

approach. Specifically, we separately regress the housing price expansion in 2003-2006 and

contraction in 2006-2009 on two dummy variables that indicate whether a county is in the

middle elasticity group or the most elastic group, which are constructed in Figure 4, together

with a list of control variables. This regression implicitly uses the inelastic group as the

benchmark for the middle and elastic groups. The control variables include the fraction of

subprime households in the county in 2005, which is computed based on individual mortgage

loan applications reported by the “Home Mortgage Disclosure Act”(HMDA) dataset, as well

as the contemporaneous population change and annualized per capita income change.

Table 1 reports the regression results. Columns 1 and 2 report the regressions of the

housing price expansion in 2003-2006 without and with the controls. Columns 3 and 4

report the regressions of the housing price contraction in 2006-2009 without and with the

controls. Among the control variables, the fraction of subprime households is significantly

correlated with both the price expansion during the boom and the price contraction during

the bust. This result is consistent with Mian and Sufi (2009), which shows that credit

expansion to subprime households before 2006 was a key factor in explaining the recent

housing cycle. The changes in population and income are insignificant in explaining either the
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price expansion or the contraction across the cycle. More importantly, even after controling

for these fundamental factors, the middle group experienced a significantly more pronounced

housing price expansion in 2003-2006 and a more pronounced price contraction in 2006-2009

relative to the inelastic group.

Taken together, Figures 2-5 and Table 1 show that the commonly perceived, monotonic

relationship between housing cycle and supply elasticity is not robust to finer groupings of

counties. Finer groupings and an alternative method of grouping counties by population

rather than county number, however, reveal a robust non-monotonic relationship in which

the counties in a median elasticity range experienced more pronounced price booms and busts

in the 2000s than counties with the most inelastic supply. This non-monotonic relationship

is intriguing and cannot easily be explained by the usual role of elasticity in affecting the

supply side of housing. In the next section, we present a simple model to illustrate a learning

mechanism through which supply elasticity affects the informational role of housing prices

and households’learning from housing prices.

2 A Baseline Model

In this section we develop a simple model with two dates t = 1, 2 to analyze the effects of

informational frictions on the housing market equilibrium in a closed neighborhood. One

can think of this neighborhood as a county or a township. A key feature of the model

is that the housing market is not only a place for households to trade housing but also a

platform to aggregate private information about the unobservable economic strength of the

neighborhood. In addition to its direct role in affecting housing supply in the neighborhood,

supply elasticity also indirectly affects the informational noise in the housing prices.

2.1 Model setting

There are two types of agents in the economy: households looking to buy homes in the

neighborhood and home builders. Suppose that the neighborhood is new and all households

need to purchase homes at the same time.1 Each household cares about the quality of the

neighborhood in which it lives, as its utility depends on not only its own housing consumption

and its consumption of the final good it produces, but also on the housing consumption of
1For simplicity, we do not consider the endogenous decision of households choosing their neighborhood,

and instead take the pool of households in the neighborhood as given. See Van Nieuwerburgh and Weill
(2010) for a systematic treatment of moving decisions by households across neighborhoods.
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other households in their neighborhood. This assumption is motivated by the empirical

findings of Ioannides and Zabel (2003). This leads to strategic complementarity in each

household’s housing demand.2 The economic strength of this closed neighborhood is reflected

by the aggregate productivity of its households. A strong aggregate productivity implies

greater output by all households, and thus greater housing demand by them as well. In

the presence of realistic informational frictions in gauging the strength of the neighborhood,

the housing market provides an important platform for aggregating information about this

aggregate productivity. As a consequence, the resulting housing price serves as a useful

signal about the neighborhood’s strength.

Households purchase houses from home builders in a centralized market at t = 1 and

consume both housing and consumption goods at t = 2. Each household will choose to

purchase a bigger house in the first period if it expects to produce more goods in the second.

2.1.1 Households

There is a continuum of households, indexed by i ∈ [0, 1]. Household i has a Cobb-Douglas

utility function over its own housing Hi, consumption good Ci, and the housing consumption

of all other households in the neighborhood {Hj}j∈[0,1], given by3

U
(
{Hj}j∈[0,1] , Ci

)
=

{
1

1− ηH

(
Hi

1− ηc

)1−ηc (∫
[0,1]/i

Hjdj

ηc

)ηc
}1−ηH (

1

ηH
Ci

)ηH
. (1)

The parameters ηH ∈ (0, 1) and ηc ∈ (0, 1) measure the weights of different consumption

components in the utility function. A higher ηH means a stronger complementarity between

housing consumption and goods consumption, while a higher ηc means a stronger comple-

mentarity between the housing of household i and housing of the composite house
∫
[0,1]/i

Hjdj

purchased by the other households in the neighborhood.

The production function of household i is eAili, where li is the household’s labor choice

and Ai is its productivity. Ai is composed of a component A common to all households in

the neighborhood and an idiosyncratic component εi:

Ai = A+ εi,

2There are other types of social interactions between households living in a neighborhood, which are
explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2010).

3Our modeling choice of non-separable preferences for housing and consumption is similar to the CES
specification of Piazzesi, Schneider, and Tuzel (2007).
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where A ∼ N
(
Ā, τ−1A

)
and εi ∼ N (0, τ−1ε ) are both normally distributed. The common

productivity A represents the strength of the neighborhood, as a higher A implies a more

productive neighborhood. As A determines the households’aggregate demand for housing,

it represents the demand-side fundamental.

As a result of realistic informational frictions, neither A nor Ai is observable to the

households. Instead, each household observes a noisy private signal about A at t = 1.

Specifically, household i observes

si = A+ νi,

where νi ∼ N (0, τ−1s ) is signal noise independent across households. The parameter τ s

measures the precision of the private signal. As τ s → ∞, the households’signals become
infinitely precise and the informational frictions about A vanish.

We assume that each household experiences a disutility for labor l1+ψi

1+ψ
, and that it maxi-

mizes its utility subject to its budget constraint:

max
{Hi,{Ci}i∈[0,1],li}

E

[
U
(
{Hj}j∈[0,1] , Ci

)
− l1+ψi

1 + ψ

∣∣∣∣∣ Ii
]

(2)

such that PHHi + Ci = eAili + Πi,

where Πi is the income from building the house. We assume for simplicity that the home

builder for household i is part of the household, and that the builder brings home its wage

Πi = PHHi to the household after construction has taken place. As a result, at t = 2,

household i’s budget constraint satisfies Ci (i) = eAili. The choices of labor and housing are

made at t = 1 subject to each household’s information set Ii = {si, PH} , which includes its
private signal si and the housing price PH .4

2.1.2 Builders

Home builders face a convex labor cost

k

1 + k
e−ζH

1+k
k

S

in supplying housing, where HS is the quantity of housing supplied, k ∈ (0,∞) is a constant

parameter, and ζ represents a shock to the building cost. We assume that ζ is observed by

4We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
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builders but not households,5 and that from the perspective of households ζ ∼ N
(
ζ̄ , 1
)
, i.e.,

a normal distribution with ζ̄ as the mean and unit variance.

Builders at t = 1 maximize their profit subject to their supply curve

Π (HS) = max
HS

PHHS −
k

1 + k
e−ζH

1+k
k

S . (3)

It is easy to determine the builders’optimal supply curve:

HS = P k
He

ξ, (4)

where ξ = kζ has the interpretation of being a supply shock with normal distribution ξ ∼
N
(
ξ̄, k2

)
, where ξ̄ = kζ̄. The parameter k measures the supply elasticity of the neighbohood.

A more elastic neighborhood has a larger supply shock, i.e., the supply shock has greater

mean and variance. In the housing market equilibrium, the supply shock ξ not only affects

the supply side, but also the demand side, as it acts as informational noise in the price signal

when the households use the price to learn about the common productivity A.

We also incorporate a behavioral feature that households may underestimate the supply

elasticity in the neighbhood, and incorrectly believe it to be φk rather than k, where φ ≤
1. This feature is motivated by the observation made by Glaeser (2013) that agents tend to

underestimate supply shocks during various episodes of real-estate speculation observed in

U.S. history. When households underestimate the supply elasticity, they overestimate the

information contained in the housing price, and consequently overreact to the price signal.

2.1.3 Equilibrium

Our model features a noisy rational expectations equilibrium, which requires clearing of the

housing market that is consistent with the optimal behavior of both households and home

builders:

• Household optimization:
{
{Hi}i∈[0,1] , Ci, li

}
solves each household’s maximization prob-

lem in (2).

• Builder optimization: HS solves the builders’maximization problem in (3).

5Even though we assume that builders perfectly observe the supply shock, a more realistic setting would
have builders each observing part of the supply and thus needing to aggregate their respective information
in order to fully observe the supply-side shock. We have explored this more general setting, which entails an
additional layer of information aggregation on the builder side of the housing market. Nevertheless, it gives
qualitatively similar insights as our current setting.
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• At t = 1, the housing market clears:∫ ∞
−∞

Hi (si, PH) dΦ (vi) = P k
He

ξ,

where each household’s housing demandHi (si, PH) depends on its private signal si and

the housing price PH . The demand from households is integrated over the idiosyncratic

component of their private signals {νi}i∈[0,1] .

2.2 The equilibrium

We first solve for the optimal labor and housing choices for a household given its utility

function and budget constraint in (2), which are characterized in the following proposition.

Proposition 1 Households i’s optimal labor choice depends on its expected productivity:

li = E
[
eAi
∣∣ Ii]1/ψ ,

and its demand for housing is

logHi =
1

(1− ηc) ηH + ηc
log

(
1

PH
E

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH) (
eAiE

[
eAi
∣∣ Ii]1/ψ)ηH

∣∣∣∣∣ Ii
])

+
1

(1− ηc) ηH + ηc
log

((
1− ηH
ηH

)ηH (1− ηc
ηc

)ηc(1−ηH)
(1− ηc)

ηH

)
. (5)

Proposition 1 demonstrates that the labor chosen by a household is determined by its

expected productivity, and that its housing demand is determined by not only its own pro-

ductivity eAi but also the aggregate housing consumption of other households. This latter

component arises from the complementarity in the utility function of the household.

By clearing the aggregate housing demand of the households with the supply from the

builders, we derive the housing market equilibrium. Despite the nonlinearity in each house-

hold’s demand and in the supply from builders, we obtain a tractable unique log-linear

equilibrium. The following proposition summarizes the housing price and each household’s

housing demand in this equilibrium.

Proposition 2 At t = 1, the housing market has a unique log-linear equilibrium: 1) The

housing price is a log-linear function of A and ξ:

logPH = pAA+ pξξ + p0, (6)
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with the coeffi cients pA and pξ given by

pA =
ηH

1 + ηHk

1 + ψ

ψ
− (1− ηc) ηH + ηc

1 + ηHk
τ−1s τAb > 0, (7)

pξ = − ηH
1 + kηH

− (1− ηc) ηH + ηc
1 + kηH

τ−1s

(
b

φk

)2
< 0, (8)

where b ∈
[
0, 1+ψ

ψ
ηHτs

((1−ηc)ηH+ηc)τA+ηHτs

]
is the unique positive, real root of equation (28), and

p0 is given in equation (33).

2) The housing demand of household i is a log-linear function of its private signal si and

logPH :

logHi = hssi + hP logPH + h0, (9)

with the coeffi cients hs and hP given by

hs = b > 0, (10)

hP = − 1

ηH
+

(
1 +

1

ψ
+ ηc

1− ηH
ηH

b

) b2 1
(φk)2

τA + τ s + b2 1
(φk)2

1

pA
, (11)

and h0 given by equation (22).

Proposition 2 establishes that the housing price PH is a log-linear function of the neigh-

borhood strength A and the housing supply shock ξ, and that each household’s housing

demand is a log-linear function of its private signal si and the log housing price logPH .

Similar to Hellwig (1980), the housing price aggregates the households’dispersed private

information to partially reveal A. The price does not depend on the idiosyncratic noise in

any individual household’s signal because of the Law of Large Numbers. This last observa-

tion is key to the tractability of our model, and ensures that the housing demand from the

households retains a log-normal distribution after aggregation.

In the presence of informational frictions, the housing supply shock ξ serves the same

role as noise trading in standard models of asset market trading with dispersed information.

This feature is new to the housing literature and highlights an important channel for supply

shocks to affect the expectations of potential home buyers. Since households cannot perfectly

disentangle changes in housing prices caused by supply shocks from those brought about by

shocks to demand, they partially confuse a housing price change caused by a supply shock

to be a signal about the strength of the neighborhood.
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To facilitate our discussion of the impact of learning, it will be useful to introduce a

perfect-information benchmark in which all households perfectly observe the strength of the

neighborhood A. The following proposition characterizes this benchmark equilibrium.

Proposition 3 Consider a benchmark setting, in which households perfectly observe A (i.e.,

si = A, ∀i.) There is also a log-linear equilibrium, in which the housing price is

logPH =
ηH

1 + kηH

1 + ψ

ψ
A− ηH

1 + kηH
ξ +

ηH
1 + kηH

log

(
1− ηH
ηH

)
+ ηc

1− ηH
1 + kηH

log

(
1− ηc
ηc

)
+

ηH
1 + kηH

log (1− ηc) +
1

2

ηH
1 + kηH

(
ηH +

1

ψ

)
τ−1ε .

and all households have the same housing demand

logH =
1 + ψ

ψ
A− 1

ηH
logPH + log

(
1− ηH
ηH

)
+ ηc

1− ηH
ηH

log

(
1− ηc
ηc

)
+ log (1− ηc) +

1

2

(
ηH +

1

ψ

)
τ−1ε .

Furthermore, the housing market equilibrium with information frictions characterized in

Proposition 2 converges to this benchmark equilibrium as τ s ↗ ∞, and the variance of
the housing price V ar [logPH ] has a U-shaped relationship with the supply elasticity k.

It is reassuring that as the households’private information becomes infinitely precise, the

housing market equilibrium converges to the perfect-information benchmark. In this perfect-

information benchmark, the housing price is also a log-linear function of the demand-side

fundamental A and the supply shock ξ, and each household’s identical demand is a log-

linear function of the perfectly observed A and the housing price logPH . Consistent with

the standard intuition, a higher A increases both the housing price and aggregate housing

demand, while a larger supply shock ξ reduces the housing price but increases aggregate

housing demand. It is also easy to see that in this benchmark setting, as the supply elasticity

k rises from zero to infinity, the weight of A (the demand-side fundamental) in the housing

price decreases, while the weight of ξ (the supply-side shock) increases.

Furthermore, in the perfect-information benchmark, the housing price variance has a

U-shaped relationship with the housing supply elasticity k. This is because, as k varies, it

causes the housing price to assign different weights to the demand-side fundamental and the

supply-side shock. The standard intuition from diversification implies that the price has the

lowest variance when the weights of the two factors are balanced, i.e., the supply elasticity

takes an intermediate value. This U-shaped price variance serves a benchmark to evaluate

the housing price variance in the presence of informational frictions.
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2.3 Impact of learning

In the presence of informational frictions about the strength of the neighborhood A, each

household needs to use its private signal si and the publicly-observed housing price logPH

to learn about A. As the housing price logPH is a linear combination of the demand-side

fundamental A and the housing supply shock ξ, the supply shock interferes with this learning

process. A larger supply shock ξ, by depressing the housing price, will have an additional

effect of reducing the households’expectations of A. This, in turn, reduces their housing

demand and consequently further depresses the housing price. This learning effect thus

causes the supply shock to have a larger negative effect on the equilibrium housing price

than it would in the perfect-information benchmark. Similarly, this learning effect also causes

the demand-side fundamental A to have a smaller positive effect on the price than in the

perfect-information benchmark because informational frictions cause households to partially

discount the value of A. The following proposition formally establishes this learning effect

on the housing price.

Proposition 4 In the presence of informational frictions, coeffi cients pA > 0 and pξ <

0 derived in Proposition 2 are both lower than their corresponding values in the perfect-

information benchmark.

The precision of the households’ private information τ s determines the informational

frictions they face. The next proposition establishes that an increase in τ s mitigates the in-

formational frictions and brings the coeffi cient pA closer to its value in the perfect-information

benchmark. In fact, as τ s goes to infinity, the housing market equilibrium converges to the

perfect-information benchmark (Proposition 3).

Proposition 5 pA is monotonoically increasing with the precision τ s of each household’s

private signal and decreasing with the degree of complementarity in households’housing con-

sumption ηc.

Each household’s housing demand also reveals how the households learn from the housing

price. In the presence of informational frictions about A, the housing price is not only the

cost of acquiring shelter but also a signal about A. The housing demand of each household

derived in (9) reflects both of these effects. Specifically, we can decompose the price elasticity

of each household’s housing demand hP in equation (11) into two components: The first
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component − 1
ηH
is negative and represents the standard cost effect (i.e., downward sloping

demand curve), as in the perfect-information benchmark in Proposition 3, and the second

component
(

1 + 1
ψ

+ ηc
1−ηH
ηH

b
) b2 1

(φk)2

τA+τs+b2
1

(φk)2

1
pA
is positive and represents the learning effect.

A higher housing price raises the household’s expectation of A and induces it to consume

more housing through two related but distinct learning channels. First, a higher A implies a

higher productivity for the household itself. Second, a higher A also implies that other house-

holds demand more housing, which in turn induces each household to demand more housing.

As a reflection of this complementarity effect, the second component in the price elasticity of

housing demand increases with ηc, the degree of complementarity in the household’s utility

of its own housing consumption and other households’housing consumption.

As a result of the presence of the complementarity channel, ηc also affects the impact of

learning on the housing price. As ηc increases, each household puts a greater weight on the

housing price in its learning of A and a smaller weight on its own private signal. This in

turn makes the housing price less informative of A. In this way, a larger ηc exacerbates the

informational frictions faced by households. Indeed, Proposition 5 shows that the loading of

logPH on A is decreasing with ηc.

Housing supply elasticity k plays an important role in determining the informational

frictions faced by the households, in addition to its standard supply effect. To illustrate this

learning effect of supply elasticity, we consider two limiting economies as k goes to 0 and∞,
which are characterized in the following proposition.

Proposition 6 As k → ∞ , the housing price and each household’s housing demand con-

verge to

logPH = −ζ,

and

logHi =
1 + ψ

ψ

ηHτ s
((1− ηc) ηH + ηc) τA + ηHτ s

si −
1

ηH
logPH + h0.

As k → 0, the housing price and each household’s housing demand converge to

logPH =
1 + ψ

ψ
ηHA+

1

2
ηH

(
ηH +

1

ψ

)
τ−1e + ηH log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)
,

and logHi = 0.

At one end, as supply elasticity goes to zero, the housing price is completely driven

by A and thus fully reveals it. In this case, each household precisely learns A from the
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price, and as a result, both the housing price and each household’s housing demand coincide

with their corresponding values in the prefect-information benchmark. At the other end, as

supply elasticity goes to infinity, the housing price is completely driven by the supply shock

ξ and contains no information about A. In this case, each household has to rely on its own

private signal to infer A. As the housing price, however, is fully determined by the supply

shock and independent of the demand-side fundamental, informational frictions about A do

not matter for the housing price. Consequently, the housing price also coincides with that

in the perfect-information benchmark, even though informational frictions still affect each

household’s housing demand. Taken together, when housing supply is either perfectly elastic

or inelastic, the housing price is not affected by informational frictions and coincides with

that in the perfect-information benchmark.

The following proposition characterizes the housing price at an intermediate supply elas-

ticity and, in particular, analyzes the role of the households’underestimation φ of supply

elasticity.

Proposition 7 Consider an intermediate level of supply elasticity k ∈ (0,∞) . 1) In the

presence of informational frictions, both pA and |pξ| are monotonically decreasing with φ. 2)
When φ = 1, the housing price variance with informational frictions is lower than that of

the perfect-information benchmark. 3) The variance of the housing price logPH is monoton-

ically decreasing with φ, and a suffi cient condition 1 − ηH
(1−ηc)ηH+ηc

τs
τA
≤ φ2 ≤ 1

2
ensures the

price variance to be at least as large as its corresponding value in the perfect-information

benchmark.

Proposition 7 shows that, at an intermediate supply elasticity, the households’underes-

timation of supply elasticity causes them to over-interpret the information contained in the

price signal and thus overreact to the price signal. Consequently, the positive loading of

the equilibrium housing price pA on the demand-side fundamental A becomes larger and the

negative loading pξ on the supply shock becomes more negative. That is, the housing price

becomes more responsive to both demand and supply shocks.

Proposition 7 also shows that, in the absence of the households’underestimation of supply

elasticity, the presence of informational frictions reduces the housing price variance. This is

because informational frictions make households less responsive to demand shocks, causing

the housing price to load less on demand shocks. When households underestimate the supply

elasticity (φ < 1), their overreaction to the price signal amplifies the price effects of both
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supply and demand shocks, and implies that the housing price variance is monotonically

decreasing with φ. In fact, Proposition 7 shows that when φ is suffi ciently small, the housing

price variance is at least as large as its value in the perfect-information benchmark.

Interestingly, the volatility amplification induced by the households’overreaction to the

housing price is most pronounced when the supply elasticity is in an intermediate range.

This follows from our earlier discussion of the two limiting cases when the elasticity goes

to either zero or infinity. At one end, when the supply is infinitely elastic, the households’

learning about the demand side is irrelevant for the price. At the other end, when the supply

is infinitely inelastic, the price fully reveals the demand-side fundamental and there is no

room for the households to overreact. In between these two limiting cases, the demand-side

fundamental plays a significant role in determining the housing price and at the same time

households face substantial uncertainty about the demand-side fundamental, which leaves

room for their overreaction to amplify the price volatility.

In Figure 6, we provide a numerical example to illustrate how informational frictions and

households’overreaction jointly affect the housing price variance. The figure depicts the

log-price variance V ar [logPH ] against the supply elasticity under the following parameter

values:

τ s = 1, τA = φ = 0.25, ηc = 0.5, ψ = ηH = 0.75.

For comparison, it also depicts the log-price variance in the perfect-information benchmark,

which is obtained as τ s → ∞. As the supply elasticity k rises from 0 to 1 (i.e., from

infinitely inelastic to more elastic), the log-price variance decreases with the supply elasticity.

In contrast, when the households face informational frictions with τ s = 1, Figure 6 shows

that the log-price variance first increases with k, when k is lower than an intermediate level

around 0.1, and then decreases with k.6 The difference between this humped shape and the

monotonically decreasing curve in the perfect-information benchmark illustrates the joint

effect of informational frictions and the households’overreaction to the price signal.

The humped log-price variance illustrated in Figure 6 provides an explanation for the

aforementioned, non-monotonic relationship between the housing boom and bust cycles ex-

perienced by different U.S. counties in the 2000s and supply elasticity.

6Outside the range of k depicted in the figure, both of these two lines are decreasing and eventually
converge to each other as k →∞, as derived in Proposition 6.
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3 Elasticity and Housing Speculation

In this section, we further explore the effects of household learning on housing speculation.

We first extend the baseline model presented in the last section to incorporate secondary

homes and, in particular, to show that the same learning effect discussed earlier leads to

a new prediction regarding a non-monotonic relationship between housing speculation and

supply elasticity. Then, we examine this prediction in the data and provide some supportive

evidence.

3.1 A model extension

We extend the model presented in the previous section to incorporate three types of agents

in the economy: households, home builders, and immigrants looking to move into the neigh-

borhood. These immigrants are the new addition to this extension. Suppose that these

immigrants make their decision on whether to move into the neighborhood at t = 1, which

determines the migration inflow into the neighborhood at t = 2. They provide additional

labor to households, the wages from which they use to buy secondary homes owned initially

by the households. For simplicity, we assume that these immigrants use all of their resources

to consume housing at t = 2. Importantly, immigrants are outside the household community

and therefore do not receive any private signal about the strength of the neighborhood. As

a result, they rely on the housing price at t = 1 to infer the neighborhood’s strength.

At t = 1, households purchase primary and secondary houses from home builders from

two separate markets and decide how much of their goods to produce at t = 2.

Households have the same preferences as in the baseline model. They supply their own

labor li and employ immigrants who migrate into the neighborhood at t = 2 and supply

labor L for a wage wiL. The production function of household i is eAi (li + L), with the

labor supplied by itself and immigrants being perfect substitutes. Households operate in

perfectly competitive industries, and therefore, in equilibrium, wi = eAi . Households again

receive a private signal si about the strength of the neighborhood.

Builders build two types of housing at t = 1 for households to purchase, one type as their

primary residence and the other as secondary homes, which the households sell at t = 2 to

the immigrants. Our separate treatment of primary and secondary homes is consistent with

the fact that, in practice, primary homes tend to be single houses, while secondary homes

tend to be apartments and condominiums. Another advantage of giving separate supply
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curves to primary and secondary homes is that we are able to maintain a tractable log-linear

equilibrium.

Let Hi be the demand for primary housing by household i, and hi its demand for sec-

ondary housing. Each household now maximizes

max
{Hi,Ci,li}

E

[
U
(
{Hj (i)}j∈[0,1] , Ci

)
− l1+ψi

1 + ψ

∣∣∣∣∣ Ii
]

(12)

such that PHHi + Phhi + Ci = eAi (li + L)− wiL+Rhhi + ΠHi + Πhi,

where PH is the price of primary homes, Ph is the price of secondary homes, Rhhi =

E [wi|A]L is the income for household i to rent its secondary home to immigrants at t = 2,

and ΠHi and Πhi are the income from building the primary and secondary houses, respec-

tively, delivered at t = 2. We assume for simplicity that the primary home builder for

household i is part of the household, so that ΠHi = PHHi in equilibrium, and that the net

builder for secondary homes consumes the net profit from the construction and sale of the

secondary homes Πhi = (Ph −Rh)hi. The choice of goods consumption is made at t = 2,

while the choices of labor and housing are made at t = 1 subject to each household’s infor-

mation set Ii = {si, PH , Ph} , which includes its private signal si and the housing prices PH
and Ph.

Since it is often costly to move and takes time to find a place to live, the immigrants have

to make their moving decision based on the expected wage at t = 1 rather than the realized

wage L at t = 2. Specifically, immigrants move into the neighborhood at t = 2, but make a

decision on the move at t = 1 based on their expectations of the neighborhood strength, by

choosing how much labor to supply to the households in the neighborhood. Similar to the

households, they face a disutility of labor 1+ψ
ψ
L

1+ψ
ψ and solve the optimization problem

max
L

E [wiL| Ic]−
ψ

1 + ψ
L

1+ψ
ψ , (13)

subject to each immigrant’s information set Ic = {PH , Ph} , from which follows that

L = E [wi| Ic]ψ = E
[
eAi
∣∣ Ic]ψ . (14)

The labor choice L can be viewed as the size of the immigrant population moving into the

neighborhood at t = 2. For simplicity, we assume that immigrants spend all of their wages

on housing at t = 2 when they enter the neighborhood.
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Home builders face separate production processes for building primary and secondary

homes. Specifically, they face the following convex labor cost for building each type of home:

k

1 + k
e−ζjH

1+k
k

S,j

where j ∈ {H, h} indicates the type of homes with H representing primary homes and

h representing secondary homes, HS,j is the quantity of type-j homes supplied, and ζj

represents a supply shock. We assume that ζj is observed by builders but not households.

From the perspective of households, there are two components in the supply shock of type-j

homes:

ζj = ζ + ej, j ∈ {H, h} .

The first component ζ is common to the two types of homes. It has a normal distribution

with ζ̄ as the mean and unit variance. The second component ej is idiosyncratic to type-j

homes. It has a normal distribution with zero mean and α as its standard deviation.

Builders of each type of homes maximize their profit at t = 1:

Π (HS,j) = max
HS,j

PHHS,j −
k

1 + k
e−ζjH

1+k
k

S,j .

It is easy to determine the builders’optimal supply curve:

HS,j = P k
He

ξj ,

where ξj ∼ N
(
ξ̄, (1 + α2) k2

)
and ξ̄ = kζ̄.

We derive the noisy rational expectations equilibrium as in the baseline model. The

equilibrium features the clearing of both primary and secondary homes, and the households’

learning from the prices of both primary and secondary homes. As the nature of the equilib-

rium and the key steps of deriving the equilibrium are similar to the baseline model, we leave

the detailed description and derivation of the equilibrium in an Internet Appendix. Instead,

we briefly summarize the key features of the extended model here.

There is a unique log-linear equilibrium where the primary home price is a log-linear

function of A, ξH , and logPh:

logPH = pAA+ pξξH + pp logPh + p0,

and the secondary housing price is a log-linear function of A, ξh, and logPH :

logPh = p̃AA+ p̃ξξh + p̃P logPH + p̃0.
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All coeffi cients are given in the Internet Appendix. As a result of the separate supply shocks

in the primary and secondary home markets, the prices of primary and secondary homes

are not perfectly correlated. Both of them serve to aggregate the private information of

households regarding the strength of the neighborhood A. In turn, each household, say

household i, treats both prices PH and Ph as useful signals, in addition to its private signal

si, in forming its expectation of A.

Following our discussion of the baseline model, through this informational channel, in-

formational frictions and households’overreaction to the price signals can jointly lead to a

humped-shape relationship between the log-price variance of both primary and secondary

homes and the supply elasticity. To illustrate this relationship, we again use a numerical

example based on the following parameter choices:

τ s = 1, τA = φ = .2, ηc = .5, ψ = ηH = .75, α = 1. (15)

Figure 7 depicts the log-price variance of both primary and secondary homes against supply

elasticity in the top panel. It shows humped-shapes for both curves, consistent with that in

Figure 6 for the baseline model.

As the households’demand for secondary homes is entirely driven by their expectation

of the neighborhood strength and the future housing demand of immigrants, the households’

learning effects are particularly important on the demand for secondary homes. Thus, in

this extended model, the households’demand for secondary homes provides an additional

dimension to examine learning effects. Specifically, the demand of household i for primary

and secondary homes are both log-linear function of its private signal si, logPH , and logPh:

logHi = hssi + hP logPH + hp logPh + h0,

log hi = h̃ssi + h̃P logPH + h̃p logPh + h̃0,

with all coeffi cients given in the Internet Appendix. We are particularly interested in the

ratio of demand for secondary homes relative to demand for primary homes log
(
hi
Hi

)
, as this

ratio is directly measurable in the data.

Figure 7 further depicts the variance of log
(
hi
Hi

)
, which measures the variability of

investment-driven housing demand relative to consumption-driven housing demand with

respect to supply elasticity in the presence and absence of informational frictions. In the

absence of informational frictions, V ar
[
log
(
hi
Hi

)]
is monotonically increasing with supply
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elasticity. This pattern is intuitive and reflects the households’use of secondary homes to

buffer housing supply shocks. The households will demand more secondary homes if the

supply shock turns out to be positive, and less secondary homes if the supply shock turns

out to be negative. In areas with more elastic supply, housing supply is more variable and

consequently the ratio of demand of secondary homes relative to primary homes is also more

variable.

Interestingly, in the presence of informational frictions, Figure 7 shows a humped-shape

pattern of V ar
[
log
(
hi
Hi

)]
with respect to supply elasticity. This humped-shape highlights

the learning effects on the households’demand for secondary homes. Building on the same

insight from our earlier discussion, the demand for secondary homes is most variable in an

intermediate range of supply elasticity because the joint effects of informational frictions

and the households’overreaction to the price signals are most influential in affecting the

households’expectation of the neighborhood strength, and thus their demand for secondary

homes.

The non-monotonic relationship between the variability of secondary-home demand rel-

ative to primary-home demand and housing supply elasticity is in sharp contrast to the

monotonic relationship in the perfect-information benchmark. This non-monotonic relation-

ship provides a new prediction for us to explore in the data.

3.2 Empirical evidence

In this subsection, we examine how investment home purchases vary across the counties in

our sample. Motivated by the extended model presented in the previous subsection, we test

whether during the recent U.S. housing boom, the share of investment home purchases in the

total home purchases of a county was most dramatic in counties with intermediate supply

elasticities.

We construct the share of non-owner-occupied home purchases at the county level from

the “Home Mortgage Disclosure Act” (HMDA) data set. The HMDA has comprehensive

coverage for mortgage applications and originations in the U.S. We use mortgages originated

for home purchases. Specifically, HMDA data identifies owner occupancy of the home for

individual mortgages. We then aggregate the HMDA data to the county level and calculate

the fraction of mortgage originations for non-owner-occupied homes in the total mortgage

originations as our measure of the share of investment home purchases.
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Figure 8 depicts the share of non-owner-occupied home purchases for the U.S. and for

three cities, New York, Las Vegas, and Charlotte. At a national level, the share of non-

owner-occupied home purchases rose steadily from a modest level of 7% in 2000 to peak at

a level above 15% in 2005. It then fell gradually to less than 10% in 2010. The peak of the

share of non-owner-occupied home purchases in 2005 was slightly in advance of the peak of

the national home price index in 2006, as shown in Figure 1. Nevertheless, the rise and fall

of the share of non-owner-occupied home purchases were roughly in sync with the boom and

bust of home prices.

Across the three cities, it is interesting to note that Las Vegas had the most dramatic

rise and fall in the share of non-owner-occupied home purchases, followed by Charlotte, and

with New York having the most modest rise and fall. The most variable share of non-owner-

occupied home purchases experienced by Las Vegas is particularly interesting as Vegas also

had the most dramatic price cycle among these cities.

We now systematically examine the share of non-owner-occupied home purchases across

counties with different housing supply elasticities. We focus on 2005, which is the peak year

of the share at the national level. We have also examined the average share in an alternative

period from 2003-2006, which leads to similar results.

In Figure 9, we sort the counties in our sample into three groups in the top panel and

ten groups in the bottom panel using the Saiz’s elasticity measure, with each group having

the same number of counties. The top panel shows that the fraction of non-owner-occupied

home purchases decreases monotonically across the three groups, from inelastic to the middle

and elastic groups. As we discussed before, this coarse grouping might hide finer non-

monotonicity. Indeed, the bottom panel shows that the fraction of non-owner-occupied home

purchases displays a non-monotonic pattern across ten elasticity groups with the largest share

of non-owner-occupied home purchases in groups 3 and 4. This non-monotonic pattern is

consistent with the prediction of the exended model.

In Figure 10, we sort the counties into elasticity groups each with an equal population

rather than number of counties. Across either the three groups shown in the top panel or

the ten groups shown in the bottom panel, there is a non-monotonic pattern in the share of

non-owner-occupied home purchases across the elasticity groups, with the share peaking in

the middle of the groups.

To further examine whether the largest share of non-owner-occupied home purchases in
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the middle elasticity groups are robust to controling for other fundamental factors, we also

adopt a regression approach in Table 2. Similar to the regressions reported in Table 1, we

regress the share of non-owner-occupied home purchases in 2005 on two dummy variables

that indicate whether a county is in the middle elastic group or the elastic group, which are

constructed in top panel of Figure 10, together with a list of control variables. This regression

implicitly uses the inelastic group as the benchmark for the middle and elastic groups. The

control variables include the fraction of subprime households in the county in 2005, the

population change, and annualized per capita income change. Columns 1 and 2 of Table

2 report the regressions without and with the controls. In either regression specification,

we observe the middle group has a significantly larger share of non-owner-occupied home

purchases than the other groups. Furthermore, none of the control variables is significant.

Taken together, Figures 9 and 10 and Table 2 confirm the new prediction of the extended

model that there is a non-monotonic relationship between the variability of investment home

purchases relative to primary home purchases and housing supply elasticity.

4 Conclusion

This paper highlights a non-monotonic relationship between the magnitude of housing cycles

and housing supply elasticity in the cross-section of U.S. county data during the U.S. hous-

ing cycle of the 2000’s. We develop a tractable model to analyze information aggregation

and learning in housing markets to explain this phenomenon. In the presence of pervasive

informational frictions regarding economic strength and housing supply of a neighborhood,

households face a realistic problem in learning about these fundamental variables with hous-

ing prices serving as important signals. Our model highlights how the households’learning

interacts with characteristics endemic to local housing supply and demand to impact hous-

ing price dynamics. In particular, supply elasticity affects not only housing supply but also

the informational noise in the price signal for the households’learning of the neighborhood

strength. Our model predicts that housing price and share of investment home purchases

are both most variable in areas with intermediate supply elasticities, which is supported by

our empirical analysis.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The first order conditions for household i’s choices of Hi and li at an interior point are

Hi :
(1− ηc) (1− ηH)

Hi

E
[
U
(
{Hj}j∈[0,1] , Ci

)∣∣∣ Ii] = λiPH , (16)

li : lψi = λiE
[
eAi
∣∣ Ii] . (17)

Taking expectation of equation (1) and imposing λi = 1 to equation (16), one arrives at

PHH
(1−ηc)ηH+ηc
i =

(
1− ηH

ηH (1− ηc)

)ηH (1− ηc
ηc

)ηc(1−ηH)
E

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH) (
eAili

)ηH ∣∣∣∣∣ Ii
]
.

From equation (17), it follows that

li = E
[
eAi
∣∣ Ii]1/ψ ,

from which we see that

logHi =
1

ηH + ηc (1− ηH)
log

(
1

PH
E

[
eηHAi

(∫
[0,1]/i

Hjdj

)ηc(1−ηH)∣∣∣∣∣ Ii
]
E
[
eAi
∣∣ Ii]ηH/ψ)

+
1

ηH + ηc (1− ηH)
log

((
1− ηH
ηH

)ηH (1− ηc
ηc

)ηc(1−ηH)
(1− ηc)

ηH

)
.

Note that integrating over the continuum of other households’housing choices is equivalent

to taking an expectation with respect to a representative household’s housing decision. We

then obtain equation (5).

A.2 Proof of Proposition 2

We first conjecture that each household’s housing purchasing and the housing price take the

following log-linear forms:

logHi = hP logPH + hssi + h0, (18)

logPH = pAA+ pξξ + p0, (19)

where the coeffi cients h0, hP , hs, p0, pA, and pξ will be determined by equilibrium conditions.

Given the conjectured functional form for Hi, we can expand equation (5). It follows

that

E

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH) (
eAiE

[
eAi
∣∣ Ii]1/ψ)ηH

∣∣∣∣∣ Ii
]

= eηc(1−ηH)(h0+hP logPH+
1
2
h2sτ
−1
s )+ 1

2
ηH(ηH+ 1

ψ )τ−1ε E
[
e(ηH+ηc(1−ηH)hs)A

∣∣ Ii]E [eA∣∣ Ii]ηH/ψ
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where we use the fact that A is independent of εj and exploit the Law of Large Number

for the continuum when integrating over households, which still holds if we subtract sets of

measure 0 from the integral.

Define

q ≡ logPH − p0 − pξ ξ̄
pA

= A+
pξ
pA

(
ξ − ξ̄

)
,

which is a suffi cient statistic of information contained in PH . Then, conditional on observing

its own signal si and the housing price PH , household i’s expectation of A is

E [A | si, logPH ] = E [A | si, q] =
1

τA + τ s +
p2A
p2ξ

1
(φk)2

(
τAĀ+ τ ssi +

p2A
p2ξ

1

(φk)2
q

)
,

and its conditional variance of A is

V ar [A | si, logPH ] =

(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1
.

Therefore,

log
(
E
[
e(ηH+ηc(1−ηH)hs)A

∣∣ Ii]E [eA∣∣ Ii]ηH/ψ)
=

((
1 +

1

ψ

)
ηH + ηc (1− ηH)hs

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1(
τAĀ+ τ ssi +

p2A
p2ξ

1

(φk)2
q

)

+
1

2

(
(ηH + ηc (1− ηH)hs)

2 +
ηH
ψ

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1
.

Then,

logE

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH) (
eAiE

[
eAi
∣∣ Ii]1/ψ)ηH

∣∣∣∣∣ Ii
]

=

((
1 +

1

ψ

)
ηH + ηc (1− ηH)hs

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1

·
(
τAĀ+ τ ssi +

pA
p2ξ

1

(φk)2
(
logPH − p0 − pξ ξ̄

))

+ηc (1− ηH)

(
h0 + hP logPH +

1

2
h2sτ

−1
s

)
+

1

2
ηH

(
ηH +

1

ψ

)
τ−1ε

+
1

2

(
(ηH + ηc (1− ηH)hs)

2 +
ηH
ψ

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1

28



Substituting this expression into equation (5) and matching coeffi cients with the conjectured

log-linear form in (18), it follows that

hs =
1

(1− ηc) ηH + ηc

((
1 +

1

ψ

)
ηH + ηc (1− ηH)hs

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1
τ s,(20)

hP = − 1

ηH
+

(
1 +

1

ψ
+ ηc

1− ηH
ηH

hs

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1
pA
p2ξ

1

(φk)2
, (21)

h0 =

(
1 +

1

ψ
+ ηc

1− ηH
ηH

hs

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1(
τAĀ−

pA
p2ξ

1

(φk)2
(
p0 + pξ ξ̄

))

+
1

2ηH

(
(ηH + ηc (1− ηH)hs)

2 +
ηH
ψ

)(
τA + τ s +

p2A
p2ξ

1

(φk)2

)−1
(22)

+
1

2ηH

(
ηc (1− ηH)h2sτ

−1
s + ηH

(
ηH +

1

ψ

)
τ−1ε

)
+ log

((
(1− ηc) (1− ηH)

ηH

)ηH (1− ηc
ηc

)ηc 1−ηHηH

)
.

By aggregating households’housing demand and the builders’supply and imposing market

clearing in the housing market, we have

h0 + hP (p0 + pAA+ pξξ) + hsA+
1

2
h2sτ

−1
s = ξ + k (p0 + pAA+ pξξ) .

Matching coeffi cients of the two sides of the equation leads to the following three conditions:

h0 + hPp0 +
1

2
h2sτ

−1
s = kp0, (23)

hPpA + hs = kpA, (24)

hPpξ = 1 + kpξ. (25)

It follows from equation (25) that

pξ = − 1

k − hP
, (26)

and further from equation (24) that

pA =
hs

k − hP
. (27)

Thus, by taking the ratio of equations (27) and (26), we arrive at

pA
pξ

= −hs.
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Substituting pA
pξ

= −hs into equation (20), and defining b = −pA
pξ
, we arrive at

1

(φk)2
b3 +

(
τA +

ηH
(1− ηc) ηH + ηc

τ s

)
b− 1 + ψ

ψ

ηH
(1− ηc) ηH + ηc

τ s = 0. (28)

We see from equation (28) that b has at most one positive root since the above 3rd order

polynomial has only one sign change, by Descartes’Rule of Signs. By setting b → −b, we
see that there is no sign change, and therefore b has no negative root. Furthermore, by the

Fundamental Theorem of Algebra, the roots of the polynomial (28) exist. Thus, it follows

that equation (28) has only one real, nonnegative root b ≥ 0 and 2 complex roots.7

Furthermore, by dropping the cubic term from equation (28), one arrives at an upper

bound for b :

b ≤ 1 + ψ

ψ

ηHτ s
((1− ηc) ηH + ηc) τA + ηHτ s

.

Since hs = −pA
pξ

= b, we can recover hs = b > 0 and pξ = −1
b
pA < 0. From equation (21)

and b = −pA
pξ
, it follows that

hP = − 1

ηH
+

(
1 +

1

ψ
+ ηc

1− ηH
ηH

b

) (
b
φk

)2
τA + τ s +

(
b
φk

)2 1

pA
. (29)

From equation (25), one also has that hP = k + p−1ξ . Since pξ ≤ 0, it follows that hP < k

whenever k > 0.

From hs = b and equations (27) and (29), we arrive at

pA =
ηH

1 + kηH

b+

(
1 +

1

ψ
+ ηc

1− ηH
ηH

b

) (
b
φk

)2
τA + τ s +

(
b
φk

)2
 > 0. (30)

One arrives at pξ from recognizing that pξ = −1
b
pA. Manipulating equation (28), we first we

recognize that

1 +
1

ψ
+ ηc

1− ηH
ηH

b =
(1− ηc) ηH + ηc

ηH

((
b

φk

)2
+ τA + τ s

)
bτ−1s . (31)

Substituting equation (31) into equation (30), and invoking equation (28) to replace kτ̃ ξb3,

one arrives at

pA =
ηH

1 + ηHk

1 + ψ

ψ
− (1− ηc) ηH + ηc

1 + ηHk
τ−1s τAb. (32)

7The uniqueness of the positive, real root also follows from the fact that the LHS of the polynomial
equation is monotonically increasing in b.
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and from equation (30) and pξ = −1
b
pA, one also has that

pξ = − ηH
1 + ηHk

− (1− ηc) ηH + ηc
1 + kηH

τ−1s

(
b

φk

)2
< 0.

From hs = b, b = −pA
pξ
, and equations (29), (23) and (22), one also finds that

p0 =
ηH

1 + ηHk

(
1 +

1

ψ
+ ηc

1− ηH
ηH

b

) τAĀ+ b 1
(φk)2

ξ̄

τA + τ s + b2 1
(φk)2

(33)

+
1

2

1

1 + ηHk

(ηH + ηc (1− ηH) b)2 + ηH
ψ

τA + τ s + b2 1
(φk)2

+
1

2

ηH
1 + ηHk

b2τ−1s

+
1

2

ηH
1 + ηHk

(
ηc

1− ηH
ηH

b2τ−1s +

(
ηH +

1

ψ

)
τ−1e

)
+

ηH
1 + ηHk

log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)
.

Given p0, pA, and b = −pA
pξ
, we can recover h0 from equation (22).

Since we have explicit expressions for all other equilibrium objects as functions of b, and

b exists and is unique, it follows that an equilibrium in the economy exists and is unique.

A.3 Proof of Proposition 3

When all households observe A directly, there are no longer information frictions in the

economy. Since the households’ idiosyncratic productivity components are unobservable,

they are now symmetric. Then, it follows that Hj = Hi = H. Imposing this symmetry in

equation (5), we see that each household’s housing demand is then given by

logH =
1 + ψ

ψ
A− 1

ηH
logPH + log

(
1− ηH
ηH

)
+ ηc

1− ηH
ηH

log

(
1− ηc
ηc

)
+ log (1− ηc) +

1

2

(
ηH +

1

ψ

)
τ−1ε .

By market clearing, logH = ξ + k logPH , it follows that

logPH =
ηH

1 + kηH

1 + ψ

ψ
A− ηH

1 + kηH
ξ +

ηH
1 + kηH

log

(
1− ηH
ηH

)
+ ηc

1− ηH
1 + kηH

log

(
1− ηc
ηc

)
+

ηH
1 + kηH

log (1− ηc) +
1

2

ηH
1 + kηH

(
ηH +

1

ψ

)
τ−1ε .

This characterizes the economy in the limit as information frictions dissipate.

31



To see that the economy with information frictions (finite τ s) converges to this perfect-

information limit, we consider a sequence of τ s that converges to ∞. From equation (28), it

follows that, as τ s ↗∞, b→ 1+ψ
ψ
. Since hs = b, it follows that

hs →
1 + ψ

ψ
.

Taking the limit τ s ↗ ∞ in equation (30), recognizing that hs = b remains finite in the

limit, we see that

pA →
ηH

1 + ηHk

1 + ψ

ψ
.

Since pξ = −1
b
pA, it follows that

pξ → −
ηH

1 + kηH

In addition, from equation (29), we find that as τ s ↗∞,

hP → −
1

ηH

Finally, from equations (33) and (22), it follows that

p0 →
ηH

1 + ηHk
log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)
+

1

2

ηH
1 + ηHk

(
ηH +

1

ψ

)
τ−1ε ,

h0 → log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)
+

1

2

(
ηH +

1

ψ

)
τ−1ε .

Thus, we see that the economy with information frictions converges to the perfect-information

benchmark as τ s ↗∞.
Furthermore, the variance of the log housing price is given by

V ar [logPH ] =

(
ηH

1 + kηH

1 + ψ

ψ

)2
τ−1A +

(
kηH

1 + kηH

)2
,

from which follows that

∂V ar [logPH ]

∂k
= 2

(
ηH

1 + kηH

)2
1

1 + kηH

(
k −

(
1 + ψ

ψ

)2
τ−1A ηH

)
.

As k → 0, ∂V ar[logPH ]
∂k

< 0. For k >
(
1+ψ
ψ

)2
τ−1A ηH ,

∂V ar[logPH ]
∂k

> 0. Thus it follows that the

log housing price is U-shaped in k.
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A.4 Proof of Proposition 4

From equation (32), it is clear that

pA =
ηH

1 + ηHk

1 + ψ

ψ
− (1− ηc) ηH + ηc

1 + ηHk
τ−1s τAb <

ηH
1 + ηHk

1 + ψ

ψ
.

Thus, it follows that pA is always lower than its corresponding value in the perfect-information

benchmark.

Similarly, since pξ = −1
b
pA, it follows from equation (30) that we can express pξ as

pξ = − ηH
1 + kηH

− ηH
1 + kηH

(
1 +

1

ψ
+ ηc

1− ηH
ηH

b

) b 1
(φk)2

τA + τ s + b2 1
(φk)2

< − ηH
1 + kηH

,

which is the corresponding value of pξ in the perfect-information benchmark.

A.5 Proof of Proposition 5

Note that b is determined by the polynomial equation (28). We define the LHS of the

equation as G (b). By using the Implicit Function Theorem and invoking equation (28), we

have

∂b

∂ηc
= −∂G/∂ηc

∂G/∂b
= −

1+ψ
ψ
− b

3 1
(φk)2

b2 + τA + ηH
(1−ηc)ηH+ηc

τ s

(1− ηH) ηHτ s

((1− ηc) ηH + ηc)
2

= −
1+ψ
ψ
− b

2 1
(φk)2

b3 + 1+ψ
ψ

ηH
(1−ηc)ηH+ηc

τ s

(1− ηH) ηHτ sb

((1− ηc) ηH + ηc)
2 .

Since, from Proposition 2, 0 ≤ b ≤ 1+ψ
ψ

ηHτs
((1−ηc)ηH+ηc)τA+ηHτs

≤ 1+ψ
ψ
, it follows that

1 + ψ

ψ
− b ≥ 0

Thus ∂b
∂ηc

< 0. Similarly,

∂b

∂τ s
= −∂G/∂τ s

∂G/∂b
= −

b− 1+ψ
ψ

3 1
(φk)2

b2 + τA + ηH
(1−ηc)ηH+ηc

τ s

ηH
(1− ηc) ηH + ηc

=

1+ψ
ψ
− b

2 1
(φk)2

b3 + 1
ψ

(1+ψ)ηH
(1−ηc)ηH+ηc

τ s

ηHb

(1− ηc) ηH + ηc
> 0.

From the expression for pA in Proposition 2,

∂pA
∂ηc

= − 1− ηH
1 + ηHk

τ−1s τAb−
(1− ηc) ηH + ηc

1 + ηHk
τ−1s τA

∂b

∂ηc
.
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Then, it follows that

∂pA
∂ηc

= −
2 1
(φk)2

b2 + ηHτs
(1−ηc)ηH+ηc

2 1
(φk)2

b3 + 1
ψ

(1+ψ)ηH
(1−ηc)ηH+ηc

τ s

1− ηH
1 + ηHk

τ−1s τAb
2 < 0.

Similarly, with respect to τ s, we have

∂pA
∂τ s

=
(1− ηc) ηH + ηc

1 + ηHk
τ−2s τAb

(
1− 1

b
τ s
∂b

∂τ s

)
=

(1− ηc) ηH + ηc
1 + ηHk

τ−2s τAb
2 1
(φk)2

b2 + ηH
(1−ηc)ηH+ηc

τ s

2 1
(φk)2

b3 + 1+ψ
ψ

ηH
(1−ηc)ηH+ηc

τ s
> 0.

A.6 Proof of Proposition 6

We first consider the limiting case for the economy as k →∞. Rewrite equation (28) as(
b

φk

)3
+

(
τA +

ηH
(1− ηc) ηH + ηc

τ s

)
b

φk
− 1

ψ

(1 + ψ) ηH
(1− ηc) ηH + ηc

1

φk
τ s = 0. (34)

Then it is apparent from equation (34) that, as k → ∞, that either b
φk

= 0 or b
φk

=

±i
√
τA + ηH

(1−ηc)ηH+ηc
τ s. Thus, as k → ∞, one has that b

φk
→ 0, and therefore b

k
→ 0.

Consequently, from equation (32), pA → 0 and the housing price is completely driven by the

supply shock ξ. From equation (29), then, since b
k
→ 0 and b is bounded from above by 1+ψ

ψ
,

one has that

hP → −
1

ηH
.

In addition, from Proposition 2, one has that

pξk = − ηHk

1 + ηHk

1+ψ
ψ
− (1−ηc)ηH+ηc

ηH
τ−1s τAb

1+ψ
ψ
− (1−ηc)ηH+ηc

ηH
τ−1s τAb− (1−ηc)ηH+ηc

ηH
τ−1s

1
(φk)2

b3
→ −1,

since b is bounded from above by 1+ψ
ψ
. Thus, logPH = −ζ.

From equation (20), it is straightforward to see that, as k →∞,

hs = b→ 1 + ψ

ψ

ηHτ s
((1− ηc) ηH + ηc) τA + ηHτ s

.

Since hs remains bounded in the limit, it is easy to see from equation (33) that p0 → 0 as
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k →∞. It further follows from equation (22) that in the limit

h0 → log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)

+
1

2

(
1+ψ
ψ
ηHτ s

((1− ηc) ηH + ηc) τA + ηHτ s

)2
ηc (1− ηH) ηHτ s

+

1+ψ
ψ

((1− ηc) ηH + ηc) τA

((1− ηc) ηH + ηc) τA + ηHτ s
Ā (35)

+
1

2

(
ηH + 1+ψ

ψ
ηc(1−ηH)ηHτs

((1−ηc)ηH+ηc)τA+ηHτs

)2
+ ηH

ψ

τA + τ s
+

1

2

(
ηH +

1

ψ

)
τ−1ε .

In the case k → 0, it follows from equation (34) that b → 0 and b
k
→ ∞. From equation

(20), it follows that as k → 0 one has that hs = b → 0. Furthermore, from equation (32),

one has that

pA →
1 + ψ

ψ
ηH .

Since hs → 0, and pA remain bounded as k → 0, we also see from equation (24) that hP → 0.

Thus as k → 0, b
k
→∞, and therefore pξk → 0 and the demand shock A completely drives

the housing price.

Since hs remains bounded in the limit, it is easy to see from equation (33) that as k → 0,

p0 →
1

2
ηH

(
ηH +

1

ψ

)
τ−1e + ηH log

(
(1− ηc)

1− ηH
ηH

(
1− ηc
ηc

)ηc 1−ηHηH

)
. (36)

It further follows from equation (23) that in the limit h0 → 0.

A.7 Proof of Proposition 7

We first prove that pA is decreasing with φ and pξ < 0 is increasing with φ. Note that b is

determined by the polynomial equation (28). We define the LHS of the equation as G (b).

Comparative statics of b with respect to φ reveal, by the Implicit Function Theorem and

invoking equation (28), that

∂b

∂φ
= −∂G/∂φ

∂G/∂b
=

2 1
(φk)2

b3

3 1
(φk)2

b2 + τA + ηH
(1−ηc)ηH+ηc

τ s

1

φ

=
2 1
(φk)2

b4

2 1
(φk)2

b3 + 1
ψ

(1+ψ)ηH
(1−ηc)ηH+ηc

τ s

1

φ
> 0.
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From the expression for pA in Proposition 2,

∂pA
∂φ

= −(1− ηc) ηH + ηc
1 + ηHk

τ−1s τA
∂b

∂φ
< 0.

Furtermore, by the Implicit Function Theorem, it follows that

∂pξ
∂φ

= −2

φ

(1− ηc) ηH + ηc
1 + kηH

τ−1s

(
b

φk

)2(
φ

b

∂b

∂φ
− 1

)
=

2

φ

(1− ηc) ηH + ηc
1 + kηH

τ−1s

(
b

φk

)2 1+ψ
ψ

ηH
(1−ηc)ηH+ηc

τ s

2 1
(φk)2

b3 + 1+ψ
ψ

ηH
(1−ηc)ηH+ηc

τ s
.

Since φ ∈ [0, 1] , it follows that ∂pξ
∂φ

> 0.

The variance of the housing price V ar [logPH ] is given by

V ar [logPH ] = p2Aτ
−1
A + p2ξk

2,

from which follows that

∂V ar [logPH ]

∂φ
= 2pAτ

−1
A

∂pA
∂φ

+ 2pξk
2∂pξ
∂φ

< 0,

since pA
∂pA
∂φ

< 0 and pξ
∂pξ
∂φ

< 0.

From Proposition 3, the variance of the housing price in the perfect-information bench-

mark is

V ar
[
logP perf

H

]
=

(
ηH

1 + kηH

)2((
1 + ψ

ψ

)2
τ−1A + k2

)
.

It then follows, substituting for pA and pξ with Proposition 2, that

V ar [logPH ]− V ar
[
logP perf

H

]
=

(
p2A −

(
ηH

1 + kηH

)2(
1 + ψ

ψ

)2)
τ−1A +

(
p2ξ −

(
ηH

1 + kηH

)2)
k2

=

(
(1− ηc) ηH + ηc

1 + ηHk

)2
τ−1s b

(
τ−1s τAb−

2ηH
(1− ηc) ηH + ηc

1 + ψ

ψ

)
+

(
(1− ηc) ηH + ηc

1 + kηH

)2
τ−1s

(
b

φ

)2(
2ηH

(1− ηc) ηH + ηc
+ τ−1s

(
b

φk

)2)
,

from which follows, substituting with equation (28), that V ar [logPH ]−V ar
[
logP perf

H

]
≥ 0

whenever

b ≥
((
φ2 − 1

)
τA +

ηH
(1− ηc) ηH + ηc

τ s

)−1 (
2φ2 − 1

) 1 + ψ

ψ

ηH
(1− ηc) ηH + ηc

τ s. (37)

36



Since b ≥ 0, it is thus suffi cient for 1 − ηH
(1−ηc)ηH+ηc

τs
τA
≤ φ2 ≤ 1

2
for the condition in (37) to

be satisfied.

When φ = 1, then the condition in (37) becomes b ≥ 1+ψ
ψ
. Since

0 ≤ b ≤ 1 + ψ

ψ

ηHτ s
((1− ηc) ηH + ηc) τA + ηHτ s

≤ 1 + ψ

ψ

from Proposition 2, this condition can be satisfied only when b = 1+ψ
ψ
, which is the value

of b in the perfect-information benchmark, in which case V ar [logPH ] = V ar
[
logP perf

H

]
.

Thus, when φ = 1, variance with informational frictions is always less than that of the

perfect-information benchmark.
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Figure 1: Case-Shiller Home Price Index 

This figure plots the Case-Shiller home price index for the U.S. and three cities, New York, Las 
Vegas and Charlotte. The price index is deflated by the CPI and normalized to 100 in 2000. 
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Figure 2: Housing Cycle across Three Elasticity Groups with an Equal Number of Counties 

This figure is constructed from sorting the counties in the U.S. into three groups based on the 
Saiz’s housing supply elasticity measure, with each group holding an equal number of counties. 
The top panel depicts the average housing price expansion during the boom years of 2003 to 2006 
and the average housing price contraction during the bust years of 2006 to 2009 in each of the 
groups.  The bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 3: Housing Cycle across Ten Elasticity Groups with an Equal Number of Counties 

This figure is constructed from sorting the counties in the U.S. into ten groups based on the Saiz’s 
housing supply elasticity measure, with each group holding an equal number of counties. The top 
panel depicts the average housing price expansion during the boom years of 2003 to 2006 and the 
average housing price contraction during the bust years of 2006 to 2009 in each of the groups.  
The bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 4: Housing Cycle across Three Elasticity Groups with an Equal Population 

This figure is constructed from sorting the counties in the U.S. into three groups based on the 
Saiz’s housing supply elasticity measure, with each group holding an equal population. The top 
panel depicts the average housing price expansion during the boom years of 2003 to 2006 and the 
average housing price contraction during the bust years of 2006 to 2009 in each of the groups.  
The bottom panel depicts the population in each group in the 2000 U.S. census. 
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 Figure 5: Housing Cycle across Ten Elasticity Groups with an Equal Population 

This figure is constructed from sorting the counties in the U.S. into ten groups based on the Saiz’s 
housing supply elasticity measure, with each group holding an equal population. The top panel 
depicts the average housing price expansion during the boom years of 2003 to 2006 and the 
average housing price contraction during the bust years of 2006 to 2009 in each of the groups.  
The bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 6: Housing Price Variance in the Baseline Model 

This figure depicts the log-price variance in the baseline model against the supply elasticity, 
based on the following parameters: ߬௦ ൌ 1, ߬ ൌ ߶ ൌ ߟ ,0.25 ൌ 0.5, ߰ ൌ ுߟ ൌ 0.75. The solid 
line depicts the log-price variance in the presence of informational frictions, while the dashed line 
depicts the log-price variance in the perfect-information benchmark. 
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Table 7: Variance of Housing Prices and Ratio of Secondary to Primary Homes in the 
Extended Model 

This figure depicts the log-price variance of both primary and secondary homes in the extended 
model in the top panel and the variance of the log ratio of secondary to primary home demands in 
the bottom panel, based on the following parameters: ߬௦ ൌ 1, ߬ ൌ ߶ ൌ 1, ߟ ൌ 0.5, ߰ ൌ ுߟ ൌ

0.75, ߙ ൌ 1.  
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Figure 8: The Shares of Non-Owner-Occupied Home Purchases 

This figure plots the share of non-owner-occupied home purchases for the U.S. and three cities, 
New York, Las Vegas and Charlotte.  

 

  

0%

5%

10%

15%

20%

25%

30%

35%

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Sh
ar
e
 o
f 
n
o
n
‐o
w
n
e
r‐
o
cc
u
p
ie
d
 h
o
m
e
 p
u
rc
h
as
e
s

Year

New York

Las Vegas

Charlotte

US



Figure 9: The Share of Non-Owner-Occupied Home Purchases in 2005 across Elasticity 
Groups with an Equal Number of Counties 

We use the Saiz’s (2010) measure of supply elasticity measure to sort the counties in our sample 
into three groups in the top panel and ten groups in the bottom panel, with each group holding the 
same number of counties.  Each bar measures the average share of non-owner-occupied home 
purchases in 2005 in each group. The share of non-owner-occupied home purchases in each 
county is computed from the “Home Mortgage Disclosure Act” data set.   
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Figure 10: The Share of Non-Owner-Occupied Home Purchases in 2005 across Elasticity 
Groups with an Equal Population 

We use the Saiz’s (2010) measure of supply elasticity measure to sort the counties in our sample 
into three groups in the top panel and ten groups in the bottom panel, with each group holding the 
same population.  Each bar measures the average share of non-owner-occupied home purchases 
in 2005 in each group. The share of non-owner-occupied home purchases in each county is 
computed from the “Home Mortgage Disclosure Act” data set. 
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Table 1: Housing Boom and Bust during the Recent Cycle 

This table presents coefficient estimates from regressing the change in real house price from 2003 to 2006 (housing boom period) and from 2006 
to 2009 (housing bust period) on the dummies indicating whether a county is in the middle-elasticity group or the elastic group, with the inelastic 
group as the benchmark and a list of control variables. Robust standard errors are in parentheses. ***, **, * indicate coefficient estimates 
statistically distinct from 0 at the 1%, 5%, and 10% levels, respectively. 
 
 (1) (2) (3) (4) 
 Annualized real house price change  

from 2003 to 2006 
Annualized real house price change  

from 2006 to 2009 
     
Middle group dummy 0.0145* 0.0233*** -0.00559 -0.0387*** 
 (0.00871) (0.00857) (0.0119) (0.0107) 
Elastic group dummy -0.0308*** -0.0173** 0.0591*** 0.0125 
 (0.00798) (0.00834) (0.0105) (0.0102) 
Fraction of subprime households in 
2005 

 0.173*** 
(0.0475) 

 -0.605*** 
(0.0636) 

     
Annualized population change 
from 2003 to 2006 

 0.00325 
(0.00696) 

  

     
Annualized per capita income 
change from 2003 to 2006 

 -0.0346 
(0.0286) 

  

     
Annualized population change 
from 2006 to 2009 

   -0.00254 
(0.00954) 

     
Annualized per capita income 
change from 2006 to 2009 

   0.0171 
(0.0431) 

     
Constant 0.0677*** 0.0297** -0.118*** 0.0150 
 (0.00700) (0.0119) (0.00907) (0.0153) 
     
Observations 326 322 326 322 
R-squared 0.146 0.209 0.160 0.476 



Table 2: Fraction of Non-Owner-Occupied Home Purchases in 2005 

 
This table presents coefficient estimates from regressing the fraction of non-owner occupied home purchases in 2005 on the dummies indicating 
whether a county is in the middle-elasticity group or the elastic group, with the inelastic group as the benchmark and a list of control variables. 
Robust standard errors are in parentheses. ***, **, * indicate coefficient estimates statistically distinct from 0 at the 1%, 5%, and 10% levels, 
respectively. 
 
 
 
 (1) (2) 
 Fraction of non-owner occupied home purchases in 2005 
   
Middle group dummy 0.0731*** 0.0770*** 
 (0.0138) (0.0137) 
Elastic group dummy 0.0323*** 0.0333*** 
 (0.00948) (0.00981) 
Fraction of subprime households in 2005  0.0114 

(0.0669) 
Population change in 2005  0.00184 
  (0.00460) 
Per capita income change in 2005  -0.0143 
  (0.0195) 
Constant 0.0937*** 0.0910*** 
 (0.00806) (0.0164) 
   
Observations 326 322 
R-squared 0.074 0.083 
   
 


