THE CUTOFF STRUCTURE OF TOP TRADING CYCLES IN SCHOOL CHOICE

Jacob Leshno & Irene Lo (Columbia University)

ASSA Annual Meeting, Philadelphia PA, January 2018

TOP TRADING CYCLES FOR SCHOOL CHOICE

- **School Choice: Assigning students to schools**
	- Allow students to choose schools
	- Account for siblings, neighborhood status
- **Top Trading Cycles (TTC) is an attractive mechanism**
	- **Pareto efficient and strategy-proof for students**
	- Policy lever: school priorities can guide the allocation
- **But TTC is rarely used**
	- Difficult to assess how changes in input (priorities and preferences) affect the TTC allocation

THE CUTOFF STRUCTURE OF TTC

- Characterizing the TTC assignment
	- TTC assignment given by n^2 admissions cutoffs

► Calculating the TTC cutoffs

- **Solve for sequential trade by looking at trade balance equations**
- TTC cutoffs are solutions to a differential equation

Structure of the TTC assignment

- **Comparative statics**
- Welfare comparisons with other school choice mechanisms
- **Designing TTC priorities**

RELATED LITERATURE

- \triangleright School choice theory and practice
	- Abdulkadiroğlu & Sönmez (2003)
	- Abdulkadiroğlu, Pathak, Roth, Sönmez (2005), Abdulkadiroğlu, Pathak, Roth (2009), Pathak & Shi (2017), Pathak & Sönmez (2013)
- Cutoff representations of school choice mechanisms
	- Abdulkadiroğlu, Angrist, Narita, Pathak (2017), Agarwal & Somaini (2017), Kapor, Neilson, Zimmerman (2016)
	- Azevedo & Leshno (2016), Ashlagi & Shi (2015)
- Characterizations of TTC mechanism
	- Shapley & Scarf (1973), attributed to David Gale
	- Abdulkadiroğlu, Che & Tercieux (2010), Morrill (2013), Abdulkadiroğlu et al.(2017), Dur & Morrill (2017)

School Priorities

Step 1:

- **Schools point to their favorite student**
- **Students point to their favorite school**
- **Choose a cycle, assign included students to their favorite school.**

Step 1:

- **Schools point to their favorite student**
- **Students point to their favorite school**
- Choose a cycle, assign included students to their favorite school.

Step 1:

- **Schools point to their favorite student**
- **Students point to their favorite school**
- Choose a cycle, assign included students to their favorite school.

Step k :

- **Schools point to their favorite remaining student**
- **Students point to their favorite remaining school**
- Choose a cycle, assign included students to their favorite school.

Step k :

- **Schools point to their favorite remaining student**
- **Students point to their favorite remaining school**
- **Choose a cycle, assign included students to their favorite school.**

Step k :

- **Schools point to their favorite remaining student**
- **Students point to their favorite remaining school**
- Choose a cycle, assign included students to their favorite school.

CHARACTERIZING THE TTC ASSIGNMENT

SCHOOL CHOICE MODEL

- Finite number of students $\theta = (\succ^\theta, r^\theta)$
	- Student θ has preferences $>^{\theta}$ over schools
	- $r_{\!}^{\theta} \in [0,1]$ is the rank of student θ at school c (percentile in c 's priority list)
- \triangleright Finite number of schools c
	- School c can admit \overline{q}_c students
	- \gt^c a strict ranking over students

SCHOOL CHOICE VISUALIZATION

Student θ_1

- prefers I to 2
- highly ranked at 1
- highly ranked at 2

Student θ_2

- prefers 2 to 1
- highly ranked at 1
- poorly ranked at 2

- ► 2/3 students prefer school 1
- Ranks are uniformly i.i.d. across schools

$$
q_1 = q_2
$$

EXAMPLE – TTC ASSIGNMENT

EXAMPLE – TTC ASSIGNMENT

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_b^c\}$ where:

Each student θ has a budget set

$$
B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}
$$

Students assigned to their favorite school in their budget set

$$
\mu(\theta) = \max_{\gt^{\theta}}(B(p, \theta))
$$

Interpretation: p_b^c is the minimal priority at school b that allows trading a seat at school b for a seat at school c

EXAMPLE – ASSIGNMENT VIA CUTOFFS

$$
B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}
$$

EXAMPLE – ASSIGNMENT VIA CUTOFFS

 $B_1(\theta, \mathbf{p})$: Budget set from rank at school 1

$$
B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}
$$

EXAMPLE – ASSIGNMENT VIA CUTOFFS

Rank at school 1

GENERAL STRUCTURE OF CUTOFFS

There is a renaming of the schools such that

Each student's budget set is

$$
C^{(\ell)} = \{\ell, \ldots, n\}
$$

F The cutoffs are ordered

$$
p_c^1 \ge p_c^2 \ge \dots \ge p_c^c = p_c^d
$$

for all $c < d$

CALCULATING TTC CUTOFFS

CONTINUUM MODEL

- Finite number of schools $c \in C = \{1, ..., n\}$
	- School c can admit a mass q_c of students
- \triangleright Measure η specifying a distribution of a continuous mass of students
	- A student $\theta \in \Theta$ is given by $\theta = \bigl(\! >^{\theta}, r^{\theta} \bigr)$
	- Student θ has preferences $>^{\theta}$ over schools
	- $r_{\!}^{\theta} \in [0,1]$ is the student's rank at school c (percentile in c priority list)

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_b^c\}$ where:

Each student θ has a budget set

$$
B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^c\}
$$

Students assigned to their favorite school in their budget set

$$
\mu(\theta) = \max_{\gt^{\theta}}(B(p, \theta))
$$

Cutoffs p_b^c are the solutions to a differential equation

CALCULATING TTC CUTOFFS

Theorem.

The TTC cutoffs $\{p_b^c\}$ are given by $p_b^c=\gamma_b(t^{(c}$

where γ satisfies the *marginal trade balance equations*

$$
\sum_{a \in C} \gamma'_a(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma'_c(t) H_c^a(\gamma(t)) \ \forall t, c.
$$

 $H_b^c(x)$ is the marginal density of students who have rank $\leq x$, are top ranked at school b and most prefer school c .

TRADE BALANCE EQUATIONS

- **Necessary condition for aggregate trade**
- Equivalent to the differential equation $\gamma'(t) = d(\gamma(t))$, where $\gamma_c(t)$ is the rank of students pointed to by school c at time t.
- $\rightarrow \gamma$ is the TTC path

 $\gamma_c(t)$: Rank of students pointed to by school c at time t

 $\gamma_c(t)$: Rank of students pointed to by school c at time t

 $\gamma_c(t)$: Rank of students pointed to by school c at time t $\gamma_2'(t)$ (density of $1 > 2$) = $\gamma_1'(t)$ (density of $2 > 1$

 $\gamma_c(t)$: Rank of students pointed to by school c at time t $\gamma_2'(t)$ (density of $1 > 2$) = $\gamma_1'(t)$ (density of $2 > 1$

CAPACITY EQUATIONS

Stopping times
$$
t^{(c)}
$$

$$
t^{(c)} = min \left\{ t : # \begin{cases} \text{Students} \\ \text{assigned to } c \\ \text{by time } t \end{cases} \geq q_c \right\}
$$

- \triangleright Necessary condition for $\boldsymbol{\gamma}(t)$ market clearing
- **Equivalent to equations** involving $\gamma\bigl(t^{(c)}\bigr)$

CALCULATING TTC CUTOFFS

Theorem.

The TTC assignment is given by computing cutoffs $\{p^{\,c}_b\}$ $p_b^c=\gamma_b\big(t^{(c}% -\epsilon,\sigma_b^c)-D_b^c\big(\epsilon^{(c)}-\epsilon^{(c)}\big)\big)$

where γ satisfies the *marginal trade balance equations*, and assigning students to their favorite school in their budget set $B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \geq p_b^c\}$ $\mu(\theta) = \max$ \succ^θ $B(p, \theta)$).

- Closed form solutions, comparative statics
- **Admissions probabilities**

2/3 of students prefer school 1, ranks are uniformly *i.i.d.* across schools, $q_1 = q_2$

2/3 of students prefer school 1, ranks are uniformly *i.i.d.* across schools, $q_1 = q_2$

 $1 > \theta$ 2 $2 > \theta$ 1 $1 > \theta$ 2

2/3 of students prefer school 1, ranks are uniformly *i.i.d.* across schools, $q_1 = q_2$

E Marginal trade balance equations given valid gradient: $\gamma'(t) = d(\gamma(t))$

 $1 > \theta$ 2

2/3 of students prefer school 1, ranks are uniformly *i.i.d.* across schools, $q_1 = q_2$

• TTC path γ with initial condition $\gamma(0) = 1$ and satisfying $\sum_{a \in C} \gamma'_a(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma'_c(t) H_c^a(\gamma(t))$

2/3 of students prefer school 1, ranks are uniformly *i.i.d.* across schools, $q_1 = q_2$

- **TTC** path γ indicates the run of TTC
- **Cutoffs** p are the points at which schools reach capacity

$$
\text{Valid gradient}
$$
\n
$$
d(x) = -\left[\frac{x_1}{x_1 + 2x_2} \quad \frac{2x_2}{x_1 + 2x_2}\right] \quad \text{(d(\cdot) balances} \text{marginal densities)}
$$

TTC path

$$
\gamma(t) = \left(t^{1/3}, t^{2/3}\right) \qquad \qquad (\gamma'(t) = d(\gamma(t)))
$$

• TTC cutoffs

$$
p^{1} = \left((1 - 3q_{1})^{1/3}, \left((1 - 3q_{1})^{2/3} \right) \right) \quad (p_{b}^{c} = \gamma_{b}(t^{(c)}))
$$

TRADE BALANCE IS SUFFICIENT

- Trade balance of gradient is mathematically equivalent to stationarity of a Markov chain
	- \triangleright schools \Leftrightarrow states
	- r transition probability $p_{hc} \Leftrightarrow$ mass of students b points to, who want c
	- \cdot trade balance \Leftrightarrow stationarity
- Unique solution within each communicating class
- **Different solutions yield the same allocation**
	- **Multiplicity only because of disjoint trade cycles**
	- Different paths clear the same cycles at different rates

CONTINUUM TTC GENERALIZES DISCRETE TTC

FIFALER Balance Uniquely Determines the Allocation

• Differential equation and TTC path may not be unique, but all give the same allocation

► Consistent with Discrete TTC

- Can naturally embed discrete TTC in the continuum model
- The continuum embedding gives the same allocation as TTC in the discrete model

► Convergence

If two distributions of students have full support and total variation distance ε , then the TTC allocations differ on a set of students of measure $O(\varepsilon|\mathcal C|^2)$.

APPLICATIONS

COMPARATIVE STATICS

Effect of marginal increase in desirability of school 2

COMPARATIVE STATICS -WELFARE

schools, MNL utility model (McFadden 1973)**:**

Student preferences given by MNL utility model:

- δ_c is invested quality, $\varepsilon_{\theta\textit{c}}$ is mean 0 random EV iid
- Random priority, independent for each school
- Constraints on total quality

 \triangleright What are the welfare maximizing quality levels $\sum_{c} \delta_{c} \leq N$?

COMPARATIVE STATICS -WELFARE

Effects of increasing school quality on student welfare: $($ under MNL model, for $n=2$ and $\frac{{\delta}_1}{q}_1>\frac{{\delta}_2}{q}_2$ 2 *)*

- Directly improves welfare of those who stay at the school
- \cdot Indirectly affects welfare through changing the allocation

TTC WELFARE GIVEN $n = 2$, $\delta_1 + \delta_2 = 2$

DESIGNING TTC PRIORITIES

- Symmetric economy with two schools
	- **Equal capacities**
	- **Student equally likely to prefer** either
	- priorities are uniformly random iid
- \triangleright Consider changing the ranking of students with

$$
r_c^{\theta} \geq m
$$
 for both $c = 1,2$

TTC PRIORITIES ARE "BOSSY"

 \boldsymbol{m}

- The change affects the allocation of other students
- Changed students have the same assignment

CONCLUSIONS

- **EX Cutoff description of TTC**
	- n^{2} admissions cutoffs

Fig. 3 Tractable framework for analyzing TTC

- \cdot Trade balance equations
- TTC cutoffs are a solution to a differential equation
- Can give closed form expressions

Structure of the TTC assignment

- Equalizing school popularity leads to more efficient sorting on horizontal preferences
- Welfare comparisons
- **TTC** priorities are "bossy"

Thank you!