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What do fund flows reveal about asset pricing models and investor sophistication? 

Recent literature uses the relative strength of the relation between fund flows and alphas 

with respect to various multifactor models to draw inferences about the best asset pricing model 

and about investor sophistication. This paper analytically shows that such inferences are tenable 

only under certain assumptions and we test their empirical validity. Our results indicate that any 

inference about the true asset pricing model based on alpha-flow relations is empirically untenable. 

The literature uses a multifactor model that includes all factors as the benchmark to assess investor 

sophistication. We show that the appropriate benchmark excludes some factors when their betas 

are estimated from the data, but even with this benchmark the rejection of investor sophistication 

in the literature is empirically tenable. 
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An extensive literature documents that net fund flows into mutual funds are driven by 

funds’ past performance. For example, Patel, Zeckhauser, and Hendricks (1994) document that 

equity mutual funds with bigger returns attract more cash inflows and they offer various behavioral 

explanations for this phenomenon. Other papers that document a positive relation between fund 

flows and past performance include Ippolito (1992), Chevalier and Ellison (1997), and Sirri and 

Tufano (1998).   

Some papers in the early literature also examine whether abnormal performance (or alphas) 

measured with respect to some benchmarks better predict fund flows than others. For example, 

Gruber (1996) compares the mutual fund flow-performance relation for alphas measured with 

respect to one- and four-factor models, while Del Guercio and Tkac (2002) compares sensitivity 

of flows to raw returns vis-à-vis alphas from market model in mutual funds and pension funds. 

Fung et. al. (2008) makes similar comparisons with a different set of factor models for a sample 

of hedge funds.  

While comparison of flow-alpha relations across models was not the primary focus of 

earlier papers, recent papers in this area have shown a renewed interest in such comparisons using 

a broader range of asset pricing and factor models. The primary driving force for this resurgence 

is the argument that these comparisons can potentially help us answer important economic 

questions that extend beyond a descriptive analysis of mutual fund flows. For example, Barber, 

Huang and Odean (2016) (hereafter “BHO”) compare the relation between fund flows and alphas 

measured with respect to various models to evaluate mutual fund investors’ sophistication. They 

argue that sophisticated investors should use all common factors to compute alphas and evaluate 

fund performance regardless of the underlying true asset pricing model. BHO find that fund flows 

are more highly correlated with market model alphas than with other alphas.  Because investors 

do not seem to be using alphas with respect to a model that includes all common factors, BHO 

conclude that investors in aggregate are not sophisticated in how they use past returns to assess 

fund performance.  

Berk and van Binsbergen (2016) (hereafter “BvB”) argue that such comparisons serve as a 

new and fundamentally different test of asset pricing models and that the results can determine 

which asset pricing model is the closest to the true asset pricing model in the economy. Because 

of the asset pricing model implications, they include several versions of equilibrium consumption-
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CAPM as well in their comparisons. Agarwal, Green and Ren (2017) and Blocher and Molyboga 

(2017) carry out similar tests with samples of hedge funds.  

BvB find that fund flows are most highly correlated with alphas computed with a market 

model in their tests as well. They conclude that therefore the CAPM “is still the best method to 

use to compute the cost of capital of an investment opportunity.” Berk and van Binsbergen (2017) 

also prescribe that practitioners should use the CAPM to make capital budgeting decisions based 

on this evidence. The true asset pricing model has been a holy grail of the finance literature and 

BvB’s conclusions potentially have broad implications that go well beyond just the mutual fund 

literature.  

The far reaching inferences drawn in the recent literature based on comparisons of flow-

alpha relations stand in contrast with the much more limited inferences drawn in the early 

literature. A natural question that arises is, under what assumptions can one draw reliable 

inferences about asset pricing models or about investor sophistication based on these results? Are 

the inferences about asset pricing models and investor sophistication in the recent literature 

empirically tenable?  

 We address these questions in this paper. We analytically show that one can draw reliable 

inferences about the true asset pricing model based on flow-alpha relations only if certain critically 

important assumptions are valid, and their validity can only be empirically determined. For 

example, it is possible that in some situations CAPM may not be true but investors may still 

optimally use the market model to estimate alphas. Also, in some other situations, it is possible 

that CAPM may be true but investors may optimally use a multifactor model to estimate alphas. 

There are also situations where investors may optimally use the market model to estimate alpha 

when CAPM is true, which would justify inferences about asset pricing model. Therefore, one 

cannot identify the true asset pricing model solely based on flow-alpha comparison without further 

tests to determine which of these multiple possibilities are true in the data.  

We find similar issues with drawing inferences about investor sophistication as well. 

Sophisticated investors would use the model that yields the most precise alpha estimates. We show 

that the optimal model depends on the following factors: the underlying true asset pricing model, 

the incremental explanatory power of each factor in a multifactor model, the dispersion of factor 

betas across funds and the potential error in estimating factor betas. Our results indicate that this 
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optimal model need not be the true asset pricing model, nor does it need to use all common factors 

to estimate betas. Therefore, the optimal model can only be empirically identified and we need the 

identity of this model to draw reliable inferences about investor sophistication based on flow-alpha 

relations.  

We empirically assess whether inferences about asset pricing models and investor 

sophistication based on flow-alpha relations are tenable. Our tests estimate the relevant parameters 

from the data and run simulation experiments under various “true” asset pricing models. These 

tests enable us to determine the multifactor model that provides the most precise estimator of 

alphas in the data and assess the tenability of the inferences about asset pricing and investor 

sophistication in the literature. 

 

1. Fund flows and alphas: Foundation for empirical tests and inferences 

 This section presents a model that forms the basis for our analysis of the implications of flow-

alpha relations for asset pricing models and tests of investor sophistication. Broadly, we use the 

model to answer the following questions: 

(a) How do investors optimally update their priors about the skills of fund managers when they 

observe fund returns each period? 

(b) How are equilibrium fund flows related to the information investors use to update their 

priors? 

(c) What are the implications of the answers to the above questions for interpreting the results 

of an alpha-fund flow horse race with alphas computed using different multifactor models?  

 We answer these questions using the Berk and Green (2004) model augmented with a 

multifactor return generating process and an equilibrium asset pricing model that we describe in 

the next subsection.  

1.1 Return generating process and asset pricing model 

 The following K-factor model is the true asset pricing model: 

𝐸[𝑟𝑖] = 𝑟𝑓 +∑𝛽𝑘,𝑖𝛾𝑘

𝐾

𝑘=1

, (1) 
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where 𝐸[𝑟𝑖] is the expected return on asset i, 𝑟𝑓 is the risk-free rate, 𝛽𝑘,𝑖 is the beta of asset i with 

respect to factor k, and  𝛾𝑘 is the premium for a unit of factor risk. If K=0 then all assets have same 

expected returns and  𝐸[𝑟𝑖] = 𝐸[𝑟𝑚], where 𝑟𝑚 is the market return. We refer to the model with 

K=0 as the “no-beta risk premium” (NBRP) model. For the CAPM, K=1 and for Fama-French 

three-factor model, which we refer to as FF3, K=3. 

 Asset returns follow the J-factor model below: 

𝑟𝑖,𝑡 = 𝐸[𝑟𝑖] +∑𝛽𝑘,𝑖 𝑓𝑘,𝑡 + 𝜉𝑖,𝑡

𝐽

𝑘=1

, 
(2) 

 

where 𝑓𝑘,𝑡 is the realization of the common factor k, and 𝜉𝑖,𝑡 asset specific return at time t. Factor 

realization 𝑓𝑘,𝑡 is the innovation or the unexpected component of factor k. For instance, if 𝐹𝑘,𝑡 is 

the total factor realization of the kth factor then 𝑓𝑘,𝑡 = 𝐹𝑘,𝑡 − 𝐸[𝐹𝑘,𝑡 ] and 𝐸[𝑓𝑘,𝑡 ] = 0. If this factor 

is traded and it is prices then 𝐸[𝐹𝑘,𝑡 ] = 𝛾𝑘 .  The return generating process has J common factors 

and in general 𝐽 ≥ 𝐾, where K factors are priced and J-K factors are unpriced. Factor returns and 

asset specific returns are all normally distributed. 

For ease of exposition, the analytics section assumes that sample average market beta, 

which we denote as �̅�1,𝑝 = 1, and �̅�𝑘,𝑝 = 0 for 𝑘 > 1.  This assumption is mathematically true if 

the average mutual fund mirrors the market index, but to the extent funds deviate from the market 

index average fund betas would differ from the market average. However, our simulations use 

average betas that match the corresponding parameters in the sample.  

1.2 Fund alphas and optimal signal 

 This subsection presents a rational expectations model that describes the relation between 

investors’ assessment of fund manager skills and fund flows. We use the Berk and Green (2004) 

model augmented with an equilibrium asset pricing model and a return generating process 

described in the last subsection.  

 The model assumes the following: 

(a) All agents in the rational expectations economy are symmetrically informed. 
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(b) The manager of fund p is endowed with stock selection skills that allow them to generate 

gross returns of 𝜙𝑝
𝐾 in excess of the K-factor asset pricing benchmark. Investors know the 

true asset pricing model. 

(c) Fund manager skill 𝜙𝑝
𝐾~𝑁 (𝜙0,

1

𝜈
), where 𝜙0 is average skill and 

1

𝜈
 is the unconditional 

variance of skill across funds at time 0, and 𝜈 is the precision. 𝜙0 and 𝜈 are common 

knowledge. 

(d) The cost of active management is C(q) where q is the size of the fund, and C(q) is a convex 

function of q. Therefore, 𝑞 ≥ 0, 𝐶(𝑞) ≥ 0, 𝐶′(𝑞) > 0 and  𝐶′′(𝑞) > 0.  Also, 𝐶(𝑞) =

0 and  lim lim
𝑞→∞

𝐶′(𝑞) = ∞. Berk and Green (2004) argue that the cost per unit of fund 

would increase with fund size because of potentially larger price impact when funds trade 

larger positions and also because as fund size grows managers may run out of ideas and 

resort to closet indexing for part of their funds.  

 In addition to these costs, fund p charges investors a fee of  Ϝ𝑝 per unit.  The total 

cost and fees per unit of the fund is 𝑐(𝑞) =
𝐶(𝑞)

𝑞⁄ +  Ϝ𝑝. 𝑐(𝑞) is common knowledge. 

(e) Let 𝑅𝑝,𝑡 and 𝑟𝑝,𝑡 be fund p’s gross and net returns at time t, respectively. 𝑅𝑝,𝑡 =

𝑟𝑝,𝑡+ 𝑐(𝑞𝑡−1). Funds’ net returns are observable, both to investors in the model economy 

and to econometricians. Investors can also compute 𝑅𝑝,𝑡 since they know q and c(q) but 

econometricians observe only 𝑟𝑝,𝑡. 

(f) Eqs. (1) and (2) specify the expected returns and the return generating process in this 

economy, which are both common knowledge. The net return at time t is:1 

𝑟𝑝,𝑡 = 𝜙𝑝
𝐾 + 𝑟𝑓 +∑𝛽𝑘,𝑝𝛾𝑘

𝐾

𝑘=1⏟        
Expected return Eq.  (1)

+ ∑𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡

𝐽

𝑘=1⏟            
Unexpected return  Eq.  (2)

−  𝑐(𝑞𝑡−1), (3) 

 

 Investors have a diffuse prior at time 0 about the skills of all funds at time t=0, and 

hence investors expectation of skill is 𝜙0 for all funds. Berk and Green (2004) specify that 

investors use fund returns in excess of their benchmarks to update their priors about skill. 

                                                           
1 Funds’ gross returns follow the return generating process (2),  plus 𝜙𝑝

𝐾. Investors earn net returns in (3) after all 

costs.    
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This assumption is adequate for their purposes, but since our objective is to understand the 

inferences one can draw from fund flow and alpha relations, investors in our model 

estimate alphas with respect to the particular factor model that enables them to optimally 

update their priors.    

 If investors use an 𝜂-factor model, then fund p’s alpha at time t, say �̂�𝑝,𝜂, is:     

�̂�𝑝,𝜂,𝑡 = (𝑟𝑝,𝑡 − 𝑟𝑓,𝑡) − 𝑟𝑓 −∑𝛽𝑘,𝑝𝐹𝑘,𝑡 

𝜂

𝑘=1

, (4) 

where 𝐹𝑘,𝑡 is realized factor returns. If 𝜂 = 𝐾, then Eqs. (1) and (2) imply: 

�̂�𝑝,𝐾,𝑡 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡

𝐽

𝑘=𝐾+1

. 
(5) 

 

We can decompose Eq. (4) as follows: 

�̂�𝑝,𝜂,𝑡 =

{
 
 
 

 
 
 
− ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝜂

𝑘=𝐾+1⏟            
  +

𝑀𝑜𝑑𝑒𝑙 𝑀𝑖𝑠𝑠𝑝𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡

𝐽

𝑘=𝜂+1⏟            
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

  if  𝜂 ≥ 𝐾

 ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1⏟          

  +

𝑀𝑜𝑑𝑒𝑙 𝑀𝑖𝑠𝑠𝑝𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡

𝐽

𝑘=𝜂+1⏟            
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

  if  𝜂 < 𝐾

 ≡ 𝜃𝜂,𝑝 + 𝜀𝜂,𝑝. 

 

(6) 

 The first part of the equation is model misspecification error, which we denote by 𝜃𝜂,𝑝, which 

is zero if 𝜂 = 𝐾. If 𝜂 > 𝐾, we mistakenly attribute premium for risks that are not truly priced in 

the economy and therefore we add noise to our alpha estimate. For example, if CAPM were the 

true model but we use FF3 to compute alphas, we mistakenly assume that funds with positive HML 

or SMB command bigger expected returns than their true expected returns. This misspecification 

adds to alpha estimation error.  The second part of the equation is statistical estimation error which 

we denote by 𝜀𝜂,𝑝.  

  How does the precision of alpha estimator affect the decision of investors about how they 

should optimally update their priors about fund manager skill each period and arrive at their 

investment decisions? The following proposition presents the distribution of investors’ posterior 

each period conditional on using a particular 𝜂-factor model to compute alphas. As we state in the 
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corollary to the proposition, investors would choose the 𝜂-factor model that yields the most precise 

posterior.  

 Proposition 1: Suppose investors use an 𝜂-factor model to compute alphas. Let 𝜙𝑝,𝜂,𝑡
𝐾  be the 

mean of investors’ time t posterior of fund k’s skill conditional on the realization of 𝑋𝑝,𝜂,1, 𝑋𝑝,𝜂,2,

… 𝑋𝑝,𝜂,𝑡, where 𝑋𝑝,𝜂,𝑡 = �̂�𝑝,𝜂,𝑡 + 𝑐(𝑞𝑡−1), and let �̅�𝑝,𝜂,𝑡 be the mean of these realizations. 

Investors’ posterior of  𝜙𝑝
𝐾 is normally distributed with mean 𝜙𝑝,𝜂,𝑡

𝐾 , where: 

 

𝜙𝑝,𝜂,𝑡
𝐾 =

𝜈 𝜙0 + 𝑡𝜗�̂�,𝜂 �̅�𝑝,𝜂,𝑡 

𝜈 +  𝑡𝜗�̂�,𝜂
, (7) 

 

and precision 𝜈 + 𝑡𝜗�̂�,𝜂 , where 𝜗�̂�,𝜂 =
1

𝜎�̂�,𝜂
2   . Note that the precisions of 𝑋𝑝,𝜂,𝑡 and �̂�𝑝,𝜂,𝑡 are equal 

conditional on information available at time t-1 since 𝑐(𝑞𝑡−1) is known at that time. 

 

Proof: See Theorem 1 in DeGroot (1970, p. 167). 

  

 Berk and Green (2004) also use this theorem to show that 𝜙𝑡 and 𝑐(𝑞𝑡) satisfy the recursive 

relations  

𝜙𝑡 = 𝜙𝑡−1 +
𝜔

𝛾 + 𝑡𝜔
× �̂�𝑝,𝜂,𝑡, 

𝑐(𝑞𝑡) = 𝑐(𝑞𝑡−1) +
𝜔

𝛾 + 𝑡𝜔
× �̂�𝑝,𝜂,𝑡 

(8) 

Equation (8) shows how investors update their priors each period based on the new information 

they get at time t (i.e. in �̂�𝑝,𝜂,𝑡 ). 

 In Eqs. (7) and (8) investors update their priors using alphas computed with net returns 

although skill allows them to generate gross returns. The reason is that 𝑐(𝑞𝑡−1) is known at time 

t-1 and therefore new information at time t is entirely captured by alphas.  

 Our model is the same as Berk and Green (2004) except Berk and Green (2004) assume that 

the only new information in fund return in each period is the difference between fund returns and 

benchmark returns. However, we allow for the fact that investors can potentially extract more 

information from realized returns if they use the information in the return generating process.  

 

Corollary: Investors would use the 𝜂-factor model with the smallest variance (or largest precision) 

to revise their priors about fund skills.  
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 We denote the number of factors in the factor model with the smallest total error as 𝜂∗.  

 

1.3 Alphas and Fund Flows  

 We use the results from Berk and Green (2004) to describe the relation between fund flows 

and the signals that investors use to update their priors about fund manager skills. In Berk and 

Green, the mutual fund market is perfectly competitive. Therefore, expected alpha net of fees and 

costs for investing in any mutual fund equals zero in equilibrium: 

 

𝐸𝑡(𝑟𝑝,𝑡+1) ≡ 𝜙𝑝 − 𝑐(𝑞𝑡) = 0 (9) 

 

 Each period, investors form their posteriors using Equation (8) and the information 

conveyed by �̂�𝑝,𝜂∗,𝑡 to update their priors about 𝜙𝑝. Equation (9) market forces would ensure that 

the amount of funds that flow into or out of mutual funds result in changes in 𝑐(𝑞𝑡) that exactly 

offset any revisions in skill assessments (i.e. 𝜙𝑝,𝑡 − 𝜙𝑝,𝑡−1).  Berk and Green (2004) then derive 

the relation between the signal investors use to update their priors in Eq. 8 (i.e. �̂�𝑝,𝜂∗,𝑡) and net 

flow of funds following updates to their priors. Their results indicate that fund flows positively 

covary with �̂�𝑝,𝜂∗,𝑡. The exact functional form of this relation is not important for our purposes, 

and we formally state the positive covariance in the proposition below: 

Proposition 2: Let Γ𝑝,𝑡 be the net inflow of funds into fund p at time t. The covariance between 

the signal that investors use to update their priors at time t and Γ𝑝,𝑡 is positive: 

𝐶𝑜𝑣(�̂�𝑝,𝜂∗,𝑡, Γ𝑝,𝑡) > 0 (10) 

 

Proof: See Figure 1 in Berk and Green (2004).  

 Equation (35) in Berk and Green is the basis for this proposition. This equation is quadratic 

with positive slope for �̂�𝑝,𝜂∗,𝑡 > 0, but the slope is hard to compute analytically for �̂�𝑝,𝜂∗,𝑡 < 0, 

because of their boundary conditions that funds liquidate if investors’ posteriors are below a 

critical value. Therefore, we rely on the numerical results that they present in their Figure 1 and 

their stated conclusions in the paper to prove this proposition. This proposition basically states that 
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bigger alphas would attract more funds than smaller alphas and it makes economic sense. What is 

more important for our purposes is that Berk and Green’s results directly relate the signals 

investors use to update their priors to fund flows in equilibrium.2 

1.4 Alpha-fund flows horse race  

 To compare alphas-flow relations across models, consider the following univariate cross-

sectional regression specification used in the literature: 

Γ𝑝,𝑡 = 𝑎𝜂,𝑡 + 𝑏𝜂,𝑡 × �̂�𝑝,𝜂,𝑡 + 𝜔𝑝,𝜂,𝑡. 
(11) 

 

The estimate �̂�𝜂 measures the strength of the alpha-flow relation of each estimator. The literature 

runs a horse race among multifactor models based on �̂�𝜂. What can we learn about the true asset 

pricing model or about investor sophistication based on this horse race? 

 

 The slope coefficient estimate is: 

𝑝𝑙𝑖𝑚 𝑏𝜂 =
𝐶𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂,𝑡)

𝜎�̂�𝑝,𝜂,𝑡
2  (12) 

where 𝜎�̂�𝑝,𝜂,𝑡
2  is cross-sectional  variance of  �̂�𝑝,𝜂,𝑡. As the Corollary to Proposition 1 states, 

investors optimally use the 𝜂∗-factor model to estimate alphas. We can therefore express other 

estimators as: 

�̂�𝑝,𝜂,𝑡 = �̂�𝑝,𝜂∗,𝑡 + 𝜁𝑝,𝜂,𝑡, 
(13) 

 

where 𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡) > 0 for 𝜂 ≠  𝜂
∗, and 𝐶𝑜𝑣(𝜁𝑝,𝜂,𝑡 , �̂�𝑝,𝜂∗,𝑡  ) =  0. 

 In equilibrium, flow positively covaries with �̂�𝑝,𝜂∗,𝑡 as Berk and Green (2004) show and we 

restate in Proposition 2 and the covariance is not through the noise in less efficient estimators. 

Therefore,  

𝐶𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂,𝑡) = 𝐶𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂∗,𝑡  ), and (14) 

                                                           
2 Roussanov, Ruan and Wei (2018) present a modified model that incorporates investors search costs and mean 

reversion in skill. Their model also yields a similar positive correlation.  
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𝑝𝑙𝑖𝑚 𝑏𝜂 =
𝐶𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂∗,𝑡  )

𝜎�̂�𝑝,𝜂∗,𝑡
2 +  𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡)

 

 

Since 𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡) > 0 for 𝜂 ≠  𝜂
∗, and  𝑏𝜂∗ will win this horse race in a rational economy. 

Therefore, to determine what implications we can draw from this horse race about asset pricing 

models and investor sophistication, we need to identify 𝜂∗ based on the parameters in the data.  

 Note that our analysis does not require that the true relation between alpha and flow be linear. 

In fact, Berk and Green (2004) show that the equilibrium relation is non-linear. We only use the 

fact that in equilibrium fund flow positively covaries with the signal investors use to update their 

priors.   

 

1.5 Precision of alpha estimate 

 Equation (6) decomposes the measurement error in alphas into model misspecification 

error and statistical estimation error. The model misspecification error depends on the true model 

which the econometrician does not observe. However, we can analytically determine the variance 

of the estimation error component. As a starting point, suppose betas are estimated without error. 

Recall that 𝜀𝜂,𝑝 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡
𝐽
𝑘=𝜂+1 . Therefore,  

𝜎𝜀𝜂,𝑝
2 = 𝜎𝑟𝑝

2 (1 − 𝑅𝑎𝑑𝑗,𝜂,𝑝
2 ) (15) 

where 𝜎𝑟𝑝
2 is the variance of fund returns and 𝑅𝑎𝑑𝑗,𝜂,𝑝

2  the fraction of fund return variance that is 

explained by 𝜂 factors with appropriate adjustment for degrees of freedom. Suppose 𝜀𝜂,𝑝 is 

uncorrelated across funds.3 Then statistical estimation error is the average of 𝜎𝜀𝜂,𝑝
2 across funds. 

Therefore, Eq. (15) indicates that any common factors that increases 𝑅𝑎𝑑𝑗
2 , whether that factor is 

priced or unpriced, would reduce estimation error. 

 Measurement errors in betas would also add to statistical estimation error and affect the 

choice of factors that one would include in computing alphas. For instance, a factor that may 

                                                           
3 For 𝜂 < 𝐽, the error terms will be correlated across funds and our simulation allow for such correlations. Also, our 

simulations allow 𝑅𝑎𝑑𝑗
2  to vary across funds.  
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marginally increase 𝑅𝑎𝑑𝑗
2  may still not be desirable if the measurement error in beta with respect 

to that factor increases the alpha estimation error. This issue is particularly important if that factor 

is correlated with other factors in the regression because the addition of that factor would increase 

the measurement errors of other factor betas as well.  

 There are two potential sources of measurement error in betas. Even if true betas were 

constant, beta estimates using a time-series would contain statistical estimation errors. 

Additionally, fund betas would vary over time because individual stock betas may be time-varying 

and active funds typically revise their portfolios over time. Therefore, the difference between the 

true betas at time t+1 and the average beta during the estimation period would add to the 

measurement error in betas. 

 Eq. (6) indicates that if 𝜂 < 𝐾, each factor that we omit from K adds to both 

misspecification error and to estimation error. Therefore, if betas with respect to a priced factor 

are known without error then inclusion of that factor would reduce measurement error. However, 

if  𝜂 > 𝐾, each additional factor would reduce the estimation error, but add to misspecification 

error. Therefore, whether investors would optimally include these additional factors depend on the 

relative contribution to these components in the data, which can only be empirically determined.  

1.6 CAPM vs. No-beta risk premium model: An illustrative example 

 This subsection considers an example that illustrates the contribution of 𝜎𝜀𝜂
2  and 𝜎𝜃𝜂

2  to 

precision of the alpha estimates. Suppose asset returns are generated by the following single factor 

model: 

𝑟𝑝,𝑡 = 𝐸[𝑟𝑝] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡. 
(16) 

 

Expected returns are determined by one of the following two models:  

i. NBRP model: The expected returns on all stocks are equal, i.e.  

𝐸[𝑟𝑝] = 𝐸[𝑟𝑚]  ∀ 𝑝 (17) 

where  𝐸[𝑟𝑚] is the expected return on the market portfolio. 
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ii. CAPM:  

𝐸[𝑟𝑝] = 𝑟𝑓 + 𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓) 
(18) 

 

Consider the following two Estimators of alpha: 

 Market adjustment (No-beta risk model):  

�̂�𝑝,0 = 𝑟𝑝,𝑡 − 𝑟𝑚,𝑡 
(19) 

 

 Market model adjustment (CAPM):  

�̂�𝑝,1 = 𝑟𝑝,𝑡 − [𝑟𝑓 + �̂�𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] 
(20) 

where �̂�𝑝 is computed using market model regression. 

 The variance of measurement errors of �̂�𝑝,0 and �̂�𝑝,1, which include both model 

misspecification error and statistical estimation error are tabulated below (Appendix 1 presents the 

derivations): 

 Alpha Estimator 

a. Estimated with Mkt Adj. (Eq. 19) b. CAPM (Eq. 20) 

True model:   

i. No-beta risk 

premium model 
𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2(𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])
2
+ 𝜎𝜉

2|𝑟𝑚,𝑡 

 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2𝐸(𝑟𝑚)
2 + 𝜎

�̂�−𝛽
2 𝑟𝑚,𝑡

2 + 𝜎𝜉
2|𝑟𝑚,𝑡 

 

ii. CAPM 𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2 𝑟𝑚,𝑡
2 + 𝜎𝜉

2|𝑟𝑚,𝑡 

 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎�̂�−𝛽

2 𝑟𝑚,𝑡
2 + 𝜎𝜉

2|𝑟𝑚,𝑡 

 

The variables in the table above are: 

Variables Definition 
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𝜎𝑢
2|𝑟𝑚,𝑡 Variance of total measurement error conditional on the realization of market return 

i.e. 𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎�̂�−𝛼 

2 |𝑟𝑚,𝑡 

𝜎𝛽
2 Variance of true beta across funds. 

𝜎
�̂�−𝛽
2  Variance of measurement error across funds both due to the standard error of 

regression estimates and also due to time-variation in beta. 

𝜎
�̂�
2 Variance of �̂�𝑝 across funds = (𝜎𝛽

2 + 𝜎
�̂�−𝛽
2 ) 

𝜎𝜉
2|𝑟𝑚,𝑡 Variance of fund specific returns (assumed to be the same for all funds for 

expositional convenience) conditional on the realization of market return 

 

 The results in the above table illustrate the factors that contribute to total measurement 

error and the inherent trade-offs. For example, the term in cell (i)(b) can be grouped as: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2𝐸[𝑟𝑚]
2

⏟      
𝑀𝑜𝑑𝑒𝑙 𝑀𝑖𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟

+ 𝜎
�̂�−𝛽
2 𝑟𝑚,𝑡

2 + 𝜎𝜉
2|𝑟𝑚,𝑡⏟            

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟

 

 

(21) 

The first term in this expression is variance of model misspecification error, which arises because 

of using market model adjustment in equation (20) when ‘no-beta risk’ model is true. The last two 

terms are due to statistical estimation error. 

  To consider the trade-offs between model misspecification error and estimation error, 

consider the last row where CAPM is true. The variances of estimation errors in alpha using 

Equations (19) and (20) are given in the last row of the table, and they both contain the term 𝜎𝜉
2.  

The variance of alpha estimated with Equation (19) contains the additional term 𝜎𝛽
2𝑟𝑚,𝑡
2 , which is 

the cross-sectional variation of true fund beta, and that with Equation (20) contains the term 𝜎
�̂�−𝛽
2 , 

which is the variance of measurement error in beta. If the beta estimates are sufficiently noisy (i.e. 

big 𝜎
�̂�−𝛽
2 ) or if differences in betas across funds are small, then the variance of measurement error 

with Eq. (19) could be smaller than with estimator (20). In this case, we can infer from equation 
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(14) that the slope coefficient 𝑏𝜂 in equation (11) would be bigger for the market adjusted  �̂� from 

estimator (19) compared to the market model �̂� from estimator (20). In other words, estimate of 

alpha using Eq. (19) would win out in a horse race of slope coefficients against alpha estimated 

with Eq. (20) even when CAPM is true (a counterexample to the underlying assumption in BvB), 

and even if investors were truly sophisticated (a counterexample to the underlying assumption in 

BHO because investors optimally do not use all factors in the return generating process). Of course, 

this is only an illustrative example, and we should empirically examine the true parameters to 

understand what we can learn from the horse races.  

2. Simulation Experiment  

 

 BVB hypothesize that the winner of the alpha-fund flow horse race is the true asset pricing 

model, but BHO hypothesize that the winner would be the model that includes all priced and 

unpriced factors if investors are sophisticated. We can formally state their hypotheses as follows: 

Suppose the true asset pricing model is a K-factor asset pricing model and returns are generated 

by a J-factor model. When we fit regression (11) with alpha computed with each  𝜂-factor model 

where 0 ≤ 𝜂 ≤ 𝐽, the biggest slope coefficient obtains when 𝜂=𝜂∗ i.e. when �̂�𝑝,𝜂∗ is computed with 

respect to an 𝜂∗-factor model.  

A1. Asset Pricing test hypothesis: The model that yields the biggest correlation is the true asset 

pricing model, i.e. 𝜂∗=K. 

 

A2. Investor Sophistication hypothesis (BHO): The most accurate model is the J-factor model that 

generates asset returns, i.e. 𝜂∗=J. 

 

 However we show in Section 1 the winner need not necessarily be a K or J factor model 

because the winner broadly depends on the following factors: (i) extent to which various factor 

models explain fund returns (i.e. model 𝑅𝑎𝑑𝑗
2 ), (ii) beta estimation error (𝜎

�̂�−𝛽
2 ), (iii) variation of 

betas across funds (𝜎𝛽
2) and (iv) the “true” asset pricing model. Therefore, the winner would 

depend on the characteristics of the data, and we can only empirically identify 𝜂∗.  

 To do so, we can estimate the first three of the four items we list above from the data but 

we do not know the “true” asset pricing model. Therefore, we estimate the first three items and 

use these parameters to generate simulated returns under each asset pricing model. We then run 

the horse race with regressions (11) in the simulation to determine which factor model would win 
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the race in a rational expectations economy, which in turn would inform us the implications we 

can draw from the horse race. 

  

2.1 Data and Simulation parameters  

 We estimate the parameters for the simulation with the sample of funds in the CRSP 

survivor-bias free mutual fund database. Our sample includes all actively managed domestic equity 

funds in the January 1990 to June 2017 sample period. Our sample is comprised of all actively 

managed domestic equity funds. CRSP identifies these funds with objective codes ‘EDC’ and 

‘EDY.’ When a fund has multiple share classes, we add assets in all share classes to compute its 

TNA and we compute fund level return as the weighted average of returns of individual share 

classes with lagged TNA as weights. The sample for month t includes all funds with at least $10 

million assets under management as of the end of month t-1. We follow BHO and exclude funds 

that had flows smaller than -90% or greater than 1000% in any month from the sample to avoid 

the effect of outliers. The sample for month t includes only funds that have returns data in all 

months from t-61 to t-1 to estimate betas.4   

 Table 1 presents the summary statistics for the funds in our sample. The sample is 

comprised of 1224 funds per month on average.  The average monthly fund flow into a fund is 

0.25% of its TNA the previous month. Around half of the funds in the sample have either an entry 

or exit load.  

 

2.2 𝑹𝒂𝒅𝒋
𝟐  and beta measurement error: A first look 

 We use the seven factor model from BHO as the J-factor model that generates returns. The 

seven factors are the three Fama-French factors (market (𝑚𝑘𝑡 − 𝑟𝑓),   𝑆𝑀𝐵 and 𝐻𝑀𝐿), Carhart 

(1996) momentum factor (UMD), and three industry factors (𝐼𝑁𝐷1, 𝐼𝑁𝐷2 and 𝐼𝑁𝐷3). Following 

BHO, we construct the three industry factors as the first three principal components of residuals 

from regressing Fama-French 17 equal weighted industry portfolios on FFC4 factors.   

                                                           
4 This sample selection criterion excludes funds from the sample during the first 60 months of their existence. 

Therefore, our sample is not exposed to potential incubation bias that Evans (2010) and Elton, Gruber and Blake 

(2001) document.  
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 Before we proceed with the simulation, we take a first look at some of the determinants of 

the accuracy of alpha estimates. One important determinant is the incremental explanatory power 

of each additional factor. We fit the following time series regression with 𝜂 factors each month t 

using data for each fund from months t-60 to t-1 and compute average 𝑅𝑎𝑑𝑗
2  for each model:  

𝑟𝑝,𝜏 = 𝑎𝑝,𝜂,𝑡 +∑𝛽𝑘,𝑝,𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝜂,𝜏,         𝜏 =

𝜂

𝑘=1

𝑡 − 60 to 𝑡 − 1. (22) 

 

Table 2 reports the time-series averages. For the market model, we compute 𝑅𝑎𝑑𝑗
2  as  1 −

(∑(𝑟𝑝,𝑡 − 𝑟𝑚𝑘𝑡)
2
∑(𝑟𝑝,𝑡 − �̅�𝑝)

2
⁄ ).   

 Market-adjusted returns have the lowest 𝑅𝑎𝑑𝑗
2  of .774. The 𝑅𝑎𝑑𝑗

2  for the single factor market 

model is bigger at .820. 𝑅𝑎𝑑𝑗
2  increase to .892 for the Fama-French three-factor model, but the 

increase is fairly gradual as we go from the Fama-French three-factor model to the seven factor 

model.  

 Another important component in the measurement error of  �̂� is the variance of 

measurement error in betas across funds (𝜎
�̂�−𝛽
2 ). The term 𝜎

�̂�−𝛽
2  would differ from the time series 

variance of OLS estimation error in regression (11) for two reasons. First, if the fund-specific 

returns are correlated across funds, then the average variance of time-series errors will not equal 

𝜎
�̂�−𝛽
2 . Secondly, as we discussed earlier the OLS estimates are unbiased estimates of mean betas 

during the estimation periods and any difference between this average and the realized beta in 

month t+1 is an additional source of measurement error.   

 To estimate the magnitude of this error we first estimate the following regressions for each 

fund for each month: 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝛽𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝑘,𝜏                           𝜏 = 𝑡 − 60 to 𝑡 − 1, 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

+ 𝛽𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 𝐹𝑘,𝜏 + 𝑒𝑝,𝑘,𝜏                   𝜏 = 𝑡 to 𝑡 + 11 

(23) 

 

where 𝐹𝑘,𝜏 is the factor with respect to which betas are estimated. Suppose betas for a particular 

fund are constant over time.  

�̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 = 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡, and (24) 
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�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 

where 𝛽𝑝,𝑘is fund p’s true beta with respect to factor k. 

Consider the following cross-sectional regression for month t: 

�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝑒𝑝,𝑡 

(25) 

 

Since we use non-overlapping sample periods to estimate 𝛽𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 and 𝛽𝑝,𝑘,𝑡

𝑓𝑢𝑡𝑢𝑟𝑒
,  𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡  and 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 

are uncorrelated.  With a sufficiently large number of funds, the probability limit of the slope 

coefficient is:  

plim𝑏𝑡 =
𝑣𝑎𝑟(𝛽𝑝,𝑘)

𝑣𝑎𝑟(𝛽𝑝,𝑘) + 𝑣𝑎𝑟 (𝑢𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡)

 (26) 

 

Therefore, the slope coefficient of regression (24) is the ratio of the cross-sectional variance of the 

factor betas divided by the sum of this variance plus the variance of the measurement error. If this 

slope coefficient is smaller than 0.5 then the variance of true beta is smaller than the variance of 

measurement error. 

 We fit regression (24) each month for each of the betas. All betas are estimated using 

univariate regressions as per equation (23). Table 3 reports the time-series averages of the slope 

coefficients for each beta. The slope coefficients are all greater than .75 for betas with respect to 

the three Fama-French factors, but they are less than .5 for UMD and industry factors. Therefore, 

the variance of measurement error is bigger than the variance of true betas for the latter set of 

factors.  

 

2.3 Simulation: Experimental design 

 To understand how the true asset pricing model and estimation error in alphas impact the 

outcome of the alpha-flow horse race regressions, we simulate a mutual fund economy with 

parameters that match the actual sample of domestic equity funds described in section 2.1. and we 

match the entry and exit of funds in the simulation to that in the actual data. In this simulated 

economy, the fund size evolves over time with flows, net returns generated from managerial skill 
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and net returns from passive factor exposures. And fund size affects net returns through its effect 

on costs.  

 The sample of mutual funds and their TNA evolve as follows in the simulation:  

a. Fund origin: We start the simulation with the number of funds equal to that in the sample 

on January 1985. At origin, the TNA of all funds is $10.  

b. Skill: The average four factor alpha in our actual sample of domestic equity funds, gross 

of fund fees Ϝ𝑝, is around 5 bps per month. To account for unobservable costs 𝐶(𝑞)/𝑞, we 

add 10 bps per month to this estimate to account for average transaction costs5. We 

randomly draw 𝜙𝑝 for each fund from a normal distribution with mean equal to 0.15% and 

standard deviation of 0.2% per month.6 

c. Betas:  We randomly generate the seven factor betas for each fund from a normal 

distribution with means and standard deviations equal to the parameters tabulated in Table 

4.7 Each factor beta is drawn independently and is constant over the entire sample period. 

d. Fund specific return: We generate monthly fund specific return 𝜖𝑝,𝑡 for each fund from a 

normal distribution with mean zero and standard deviation equal to 2.5%. 

e. Asset pricing model and expected returns: Steps (b) through (d) describe the return 

generating process for the funds and this process does not vary with the asset pricing model. 

However, different common factors that are priced vary across asset pricing models and 

hence different asset pricing models imply different expected return for each fund. The 

term 𝐸𝑚𝑜𝑑𝑒𝑙(𝑟𝑝 − 𝑟𝑓) is the “true” expected excess return and it depends on the model. We 

conduct simulations under three asset pricing models and expected excess returns under 

each model are computed as follows: 

 NBRP risk model: 𝐸𝑁𝑅(𝑟𝑝 − 𝑟𝑓) = 0.699%, 

 CAPM: 𝐸𝐶𝐴𝑃𝑀(𝑟𝑝 − 𝑟𝑓) = 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), 

(27) 

                                                           
5 Elton et. al. (2012) report that the transaction costs are of the same order of magnitude as expense ratios which 

average to around 10 bps per month. 
6 The monthly cross-sectional variance of �̂�s in the real data is the variance of true alphas plus the measurement error 

of alphas. The measurement error variance in �̂�s is the squared OLS standard errors from the time-series regressions 

used to estimate alphas. The average standard deviation of the difference across models is roughly 0.2% per month.  
7 As Eq. (26) shows, the standard deviation of true beta distribution in the data is the standard deviation of estimated 

beta multiplied by the square root of the respective slope coefficients in Table 3. 
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 Fama-French three factor model (FF3): 𝐸𝐹𝐹3(𝑟𝑝 − 𝑟𝑓) = −0.016% +

𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,𝑠𝑚𝑏 × (𝑆𝑀𝐵̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,ℎ𝑚𝑙 × (𝐻𝑀𝐿̅̅ ̅̅ ̅̅ ̅),  

The overbars above common factor returns indicate sample means. The constant in the 

equation for each model is chosen so that the average fund returns equal sample average 

of market excess returns.  

f. Gross returns: We generate fund returns using the following seven-factor model:  

𝑅𝑝,𝑡 = 𝜙𝑝+𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) + 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓)𝑡

̃ +𝛽𝑝,𝑠𝑚𝑏 × 𝑆𝑀𝐵�̃� + 𝛽𝑝,ℎ𝑚𝑙 × 𝐻𝑀𝐿𝑡̃

+   𝛽𝑝,𝑢𝑚𝑑 × 𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1 × 𝐼𝑁𝐷1𝑡̃ +𝛽𝑝,𝑖𝑛𝑑2 × 𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3

× 𝐼𝑁𝐷3𝑡̃ +𝜖𝑝,𝑡 

 

(28) 

g. Cost function: Following Berk, Green (2004), we specify cost per unit size as 𝑐(𝑞𝑡−1) =

𝛿 × 𝑞𝑡−1, where 𝑞 represents the Total Net Assets (TNA) and the parameter 𝛿 captures 

decreasing returns to scale. We set 𝛿 = 0.2 bps/$ 100 mn, which closely matches the value 

reported in Table 3 of Pastor, Stambaugh, Taylor (2015).  

h. Net returns: We compute net returns as 𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − 𝑐(𝑞𝑡−1). 

i. Fund flow: For each month, we compute flows using the flowing equation:  

𝑓𝑙𝑜𝑤𝑝,𝑡 = 𝑎 + 𝑏 × �̂�𝑝,𝜂∗,𝑡 + 𝜓𝑝,𝑡. 
(29) 

We estimate a and b from the data, and our estimates are a = -0.00225 and b =.2, using 

𝜂∗ = 7. In the simulation, we draw 𝜓𝑝,𝑡 from a normal distribution with mean zero and 

standard deviation of 0.09 (9%). All these parameters match the corresponding parameters 

in the data. 

j. Fund exit and entry: If the number of funds in the data in month t is smaller than the 

number of funds in month t-1, the appropriate number of funds exit the simulation sample 

as well. We sort funds in the simulated sample based on their TNA at the end of t-1 and 

drop the bottom most funds (i.e. least TNA) equal in number to the actual exits for that 

month. If the number of funds in the data in month t is bigger than the number of funds in 

month t-1, the appropriate number of funds enter the sample with TNA of $10 mn.  

We repeat the simulation 50 times.  
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2.4 Simulation: Tests and results 

 We first examine the relation between alphas and fund flows under various models. We 

conduct two sets of tests. In the first set of tests, we use true betas and compute  �̂�𝑝,𝜂,𝑡 using Eq. 

(4).  In the other set of tests, we examine the effect of beta measurement error on the choice of 

optimal factor model. For this set of tests, we estimate betas for each month t with simulated returns 

using Regression (22).8 We then compute alpha for month t as follows: 

�̂�𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑�̂�𝑘,𝑝,𝑡𝐹𝑘,𝑡 

𝜂

𝑘=1

, (30) 

where �̂�𝑘,𝑝,𝑡 is the time t estimate of beta.   

We first examine the components of measurement error in compute �̂�𝑝,𝜂,𝑡. Allowing for 

measurement error in betas, we can generalize Eq. (6) 

�̂�𝑝,𝜂,𝑡 = 

{
 
 
 

 
 
 
− ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝜂

𝑘=𝐾+1⏟            
  +

𝑀𝑜𝑑𝑒𝑙 𝑀𝑖𝑠𝑠𝑝𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽

𝑘=𝜂+1

+∑(�̂�
𝑘,𝑝,𝑡

− 𝛽
𝑘,𝑝
)

𝜂

𝑘=1

𝐹𝑘,𝑡 + 𝜉𝑝,𝑡
⏟                            

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

  for  𝜂 ≥ 𝐾,

 ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1⏟          

  +

𝑀𝑜𝑑𝑒𝑙 𝑀𝑖𝑠𝑠𝑝𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽

𝑘=𝜂+1

+∑(�̂�
𝑘,𝑝,𝑡

− 𝛽
𝑘,𝑝
)

𝜂

𝑘=1

𝐹𝑘,𝑡 + 𝜉𝑝,𝑡
⏟                            

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

  for  𝜂 < 𝐾

 

 

 

(31) 

The term ∑ (�̂�𝑘,𝑝,𝑡 − 𝛽𝑘,𝑝)
𝜂
𝑘=1 𝐹𝑘,𝑡 is the error due to measurement error in betas. Therefore,  

𝑉𝑎𝑟(�̂�𝑝,𝜂) = 𝑉𝑎𝑟(𝜃𝜂) +  𝑉𝑎𝑟(𝜀𝜂) +  𝐶𝑜𝑣(𝜃𝜂 , 𝜀𝜂), 
(32) 

where 𝜃𝜂 and 𝜀𝜂 denote the misspecification error and estimation error components. 

To estimate the variances in Eq (32), we first compute the values of 𝜃𝜂 , 𝜖𝜂 for different 𝜂- 

and 𝐾-factor models in our simulated sample based on the analytical expressions in Eq (31). Using 

                                                           
8 Since we generate excess returns in simulations, Eq. (22) does not use risk-free rate.  
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these values, we compute the monthly cross-sectional variances of 𝜃, 𝜖 as well as their covariance. 

We then average these values across time to get the required estimates. 

Table 5 presents the components of alpha estimation error variance for each asset pricing 

model and 𝜂-factor model. Consider the results when true betas are known. Estimation error 

variance decreases monotonically as we increase 𝜂 from zero to seven for all asset pricing models. 

For example, under the CAPM, estimation error variance is 875 for 𝜂 = 0, which reduces to 

reduces to 625 for  𝜂 = 0.  

The model misspecification error variance increases monotonically as we move away from 

the true asset pricing model. However, model misspecification error variance is an order of 

magnitude smaller than estimation error variance. For instance, the smallest estimation error 

variance is 625 and in comparison the largest model misspecification error variance is 1.75, which 

is about 2.8% of 625.  

The total error variance also monotonically declines as we increase the number of factors, 

which is similar to the pattern we see for the estimation error.  Model misspecification error is so 

small in all instances that it hardly moves the needle. Therefore, if we can observe betas without 

error then the J-factor model is the optimal model, as long as each factor increases the 𝑅𝑎𝑑𝑗
2 . 

When betas are not known and we estimate betas using data for 60 months, estimation error 

variance exhibits a U-shaped pattern. It decreases as we go from  𝜂 = 0 to FF3 and then increases 

monotonically as we add more factors. For example, under the CAPM, estimation error variance 

decreases from 874.5 for 𝜂 = 0 to 702.4 for 𝜂 = 3, but then increases to 760.4 for 𝜂 = 7. As we 

saw in Table 3, beta measurement error is relatively large for UMD and the three factor industry 

factors. Consequently, accounting for these factors to compute alpha increases estimation error 

variance. As before, model misspecification error is so small that it does not make difference when 

we compare total estimation error across models.  

We next fit Regression (11) each month and estimate the coefficients and standard errors 

using the Fama-MacBeth approach. Table 6 reports the results. As we showed analytically, the 

magnitude of the slope coefficients across models would be negatively related to the precision of 

alpha estimates, and we see this pattern in Table 6. Without beta measurement error, the slope 
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coefficient increases monotonically as we add factors. For example, under the CAPM, the slope 

increases from 13.93 for 𝜂 = 0 to 19.97 for 𝜂 = 7. The average regression R2 also increases from 

.29 to .39. 

The ordering of the slope coefficients across models when we estimate betas from the data 

is exactly the opposite of the ordering of estimation error variance in Table 5. For all asset pricing 

models, we find the biggest slope coefficients for 𝜂 = 3. The slope coefficients for 𝜂 = 4 and 7 

are comparatively smaller, but the magnitude of the difference is not large. For example, with 

CAPM, the slope coefficient is 17.81 for 𝜂 = 3 and 17.55 for 𝜂 = 4, and it only reduces to 17.32 

for 𝜂 = 7. 

The slope coefficients are almost identical under different true asset pricing models both 

when we know the true beta and when we estimate beta from the data. These results indicate that 

the relation between alpha and flow is not particularly sensitive to the true asset pricing model. 

Therefore, one cannot identify the true asset pricing model using the alpha-flow horse race.  

3. Binary variable regression 

 Our analysis in the last section uses a linear regression for the alpha-fund flow horse race. 

However, Berk and Green (2004) show that the equilibrium relation between alpha and fund flows 

nonlinear. Because of the non-linearity, BvB transform flows and alpha estimates to binary 

variables and run the horse race with these transformed variables. Specifically, the transformed 

binary variables are defined as follows: 

𝑄𝑥 = {
1 if 𝑥 ≥ 0
−1 if 𝑥 < 0

 
(33) 

where 𝑥 is any random variable. BvB run the following OLS regression: 

𝑄Γ𝑝 = 𝐴𝜂 + 𝐵𝜂 × 𝑄 �̂�𝑝,𝜂 + 𝜊𝑝,𝜂 , 
(34) 

 

and compare �̂�𝜂 . To relate our analysis based on Regression (11) to that based on Regression (34), 

we first establish the following propositions: 
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Proposition 3: Let  �̂�𝑝,𝜂1 and �̂�𝑝,𝜂2be the alphas computed with respect to 𝜂1- and 𝜂2-factor models 

using Equation (4). �̂�𝜂1and �̂�𝜂2are the corresponding Regression (11) slope coefficients and �̂�𝜂1and 

�̂�𝜂2 are the corresponding Regression (34) slope coefficients. Under the augmented Berk and 

Green model,  

If  �̂�𝜂1 > �̂�𝜂2then �̂�𝜂1 > �̂�𝜂2, when the number of funds in the sample is sufficiently large.  

Proof: See Appendix 2. 

Corollary: The ordering of the slope coefficients of Regressions (11) and (34) are identical.  

Proposition 3 and its corollary show that our analysis of the horse race based on Regression 

(11) applies exactly to that of the horse race based on Regression (34). 

4. Results in Perspective 

BvB, BHO, Agarwal, Green and Ren (2017) and Blocher and Molyboga (2017) report that 

single factor alpha is most highly correlated with fund flows into mutual funds and hedge funds 

among alphas computed with respect to many multifactor models. BvB and some other papers 

conclude that these results indicate that the CAPM is the true asset pricing model. However, BHO 

conclude that these results indicate that investors lack the sophistication to use the most precise 

model to estimate alphas for their investment decision. What are the assumptions that are necessary 

to draw these inferences? Are these assumptions satisfied in the data? 

Our analysis shows that any inference about the true asset pricing model is tenable only if 

inclusion of any of the unpriced factors to compute alphas in Eq. (4) increases alpha estimate 

variance due to model misspecification error more than it reduces statistical estimation error. BvB 

effectively make such an assumption when they assume “if a true risk model exists, any false risk 

model cannot have additional explanatory power.” BvB note that this assumption “rules out the 

possibility that 𝜀𝑖𝑡
𝑐  contains information about managerial ability that is not also contained in 𝜀𝑖𝑡” 

where their notations 𝜀𝑖𝑡 and 𝜀𝑖𝑡
𝑐  denote alpha estimation errors with the true asset pricing model 

(i.e.  �̂�𝑝,𝐾 estimated using the K-factor model)  and with any other multifactor model  

(i. e.  �̂�𝑝,𝜂 ∀ 𝜂 ≠ 𝐾 ), respectively.  

Is this assumption empirically tenable? Our simulation shows for the parameters in the 

data, the precision of alpha estimate is insensitive to the true asset pricing model. For example, if 

CAPM were the true model but we estimate alphas using the seven-factor model, the increase in 
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model misspecification error is an order of magnitude smaller than the decrease in estimation error 

compared with the error in  �̂�𝑝,𝐾. In fact, the winner of the horse race does not depend on the true 

asset pricing model both if we know the true betas and if we estimated betas from the data. 

Therefore, any inference about the true asset pricing model based on alpha-fund flow horse race is 

empirically untenable.    

Regarding inferences about investor sophistication, an important question is, what is the 

appropriate benchmark that sophisticated investors would use? BHO hypothesize that 

sophisticated investors would use the J-factor model, a model that includes all priced and unpriced 

common factors. Our analysis shows that this hypothesis ignores the potential contribution of 

model misspecification error and the effect of measurement error in factor betas.  

Our simulation results indicate that J-factor model indeed wins out horse race regardless 

of the true asset pricing model if betas are known. However, when we estimate betas with 60 

months of data, alphas are estimated more precisely with the three factor model than with the seven 

factor model. Therefore, in this case the appropriate benchmark for assessing investor 

sophistication is the three factor model rather than the seven factor model. The evidence in BHO 

that market model alphas win the horse race indicates that investors use this alpha to inform their 

investment decision rather than the most precise three factor alpha. Therefore, their conclusion 

that investors are not sophisticated enough to use the most precise estimate of alpha to inform their 

mutual fund investment decisions is empirically tenable. 

5. Conclusion 

Investors reveal their preferences for mutual funds through investments in or withdrawals 

from them. Since non-satiated investors prefer more abnormal returns to less, investors’ fund flows 

reveal their views on abnormal returns that they can earn from their investments. Because flows 

reveal investors’ perceptions, the recent literature has proposed that a comparison of relations 

between fund flows and alphas measured with respect to a number of models can be used to 

identify the best asset pricing model and also to assess investor sophistication.  

We show analytically that the empirical tenability of any inferences we draw based on such 

flow-alpha horse race critically depend on the sources of measurement error in alphas estimated 

under various models. For instance, we show that we can draw reliable inferences about asset 

pricing models only if the dominant source of error in alphas is due to the misspecification of the 
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true asset pricing model. However, we find that the true asset pricing model has no effect on the 

ordering of the flow-alpha relations in our simulations with parameters estimated form the data. 

These findings indicate that asset pricing model misspecification error is a trivial of alpha 

estimation error in the data. Therefore, any inference about the true asset pricing model based on 

the flow-alpha horse race is empirically untenable.  
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Table 1: Summary statistics 

This table presents the summary statistics for the sample of funds included in the sample. The 

number of fund-month observations is 404,042. The table first computes the respective statistics 

across funds each month and reports the averages over the entire sample period. The sample period 

is from January, 1990 to June, 2017. 

 Mean Std. Dev. Median 

Number of funds each month 1224   

Flow (%) 0.25 10.8 -0.42 

TNA ($ mn) 1120.4 4507.4 223.6 

Age (months) 376.8 306.6 299.2 

Expense Ratio (%) 1.22 0.45 1.19 

Load Dummy 0.49 0.50 0 

Ret. Volatility (t-1,t-12) 4.7 2.3 4.2 
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Table 2: Factor model R2 

This table fits the following regression: 

(𝑟𝑝,𝑡 − 𝑟𝑓,𝑡) = 𝛼𝑝,𝜂 +∑𝛽𝑘,𝑝 𝐹𝑘,𝑡 + 𝑒𝑝,𝜂,𝑡.

𝜂

𝑘=1

          

Where 𝑟𝑝,𝑡, 𝑟𝑓,𝑡 and 𝐹𝑘,𝑡  are fund return, risk-free rate and realization of factor k in month t, 

respectively. For each month 𝑡, the regression is fitted from 𝑡 − 60 to 𝑡 − 1. The table reports the 

cross-sectional averages of time-series means of adjusted R2 of the OLS regressions under each 

model. For market-adjusted and benchmark-adjusted returns we compute this metric as 1 −

(∑(𝑟𝑖𝑡 − 𝑟𝑚𝑘𝑡)
2 ∑(𝑟𝑖𝑡 − �̅�𝑖)

2⁄ ), 1 − (∑(𝑟𝑖𝑡 − 𝑟𝑏/𝑚)
2
∑(𝑟𝑖𝑡 − �̅�𝑖)

2⁄ )  using full sample of returns for 

each. Benchmark is the fund benchmark identified by Cremers and Petajisto (2009).  The sample 

period is January, 1990 to June, 2017. 

Model Adj. R2 

Market Adj. Return 0.774 

Benchmark Adj. Return 0.870 

CAPM  0.820 

FF3  0.892 

FFC4  0.901 

FFC4 + 3 IND  0.910 
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Table 3: Measurement Errors in betas 

This table reports the slope coefficients from the following cross-sectional regressions: 

�̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝑒𝑝,𝑡, 

where for each fund f, �̂�𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 and �̂�𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡

 are estimated using time-series regressions with data 

from t to t+11, and t-1 to t-60, respectively. All betas are estimated with univariate time-series 

regressions. The above regression is fitted each month for betas with respect to each factor and the 

table reports time-series averages of the slope coefficients. Standard errors from the second stage 

of Fama-MacBeth regressions are adjusted for serial correlation using Newey-West correction 

with lag length of 11 months. Sample period for these regressions is Jan-1990 to Jul-2016. ***, 

**, * indicate statistical significance at the 1%, 5%, and 10% levels respectively. 

 

Betas Average 𝑏𝑡 Std. Err. 

Market 0.821*** 0.07 

SMB 0.876*** 0.03 

HML 0.765*** 0.05 

UMD 0.409*** 0.08 

IND1 0.356*** 0.09 

IND2 0.362*** 0.09 

IND3 0.090 0.10 
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Table 4: Simulation Parameters 

This table shows the parameters used in generating simulated returns and flows during 1990-2017. 

We generate net returns each month using the following seven-factor model: 

𝑟𝑝,𝑡 = 𝜙𝑝
𝐾 − 𝛿 × 𝑞𝑡−1 + 𝐸

𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) + 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓)𝑡̃ +𝛽𝑝,𝑠𝑚𝑏 × 𝑆𝑀𝐵�̃� + 𝛽𝑝,ℎ𝑚𝑙 × 𝐻𝑀𝐿𝑡̃

+   𝛽𝑝,𝑢𝑚𝑑 × 𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1 × 𝐼𝑁𝐷1𝑡̃ ∗+𝛽𝑝,𝑖𝑛𝑑2 × 𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3 × 𝐼𝑁𝐷3𝑡̃

+𝜖𝑝,𝑡 

where 𝜙𝑝
𝐾  is fund manager skill, 𝑞𝑡−1 is fund’s Total Net Assets at the end of 𝑡 − 1 and 𝛿 × 𝑞𝑡−1 

is the cost per unit for active fund management. The variables under 𝑡𝑖𝑙𝑑𝑒 are demeaned 

realizations of the following factors: market, SMB, HML, UMD, and three industry factors and 𝛽s 

are the corresponding factor sensitivities. We generate monthly flow as: 

𝑓𝑙𝑜𝑤𝑝,𝑡 = 𝑎 + 𝑏 × �̂�𝑝,𝜂∗,𝑡 + 𝜓𝑝,𝑡, 

where �̂�𝑝,𝜂∗,𝑡 is computed using the fund’s realized return and the seven factor returns as 𝑟𝑝,𝑡 −

∑ 𝛽𝑝,𝑘 × 𝐹𝑘,𝑡
7
𝑘=1 . All randomly drawn parameters are generated from a normal distribution with 

means and standard deviations shown in the table. 

Panel A: Randomly drawn parameters 

Parameter Mean Standard Deviation 

𝜙𝑝
𝐾 0.15% 0.2% 

𝛽𝑚𝑘𝑡 1 0.154 

𝛽𝑠𝑚𝑏 0.25 0.328 

𝛽ℎ𝑚𝑙 0 0.262 

𝛽𝑢𝑚𝑑 0 0.096 

𝛽𝐼𝑁𝐷1 0 0.036 

𝛽𝐼𝑁𝐷2 0 0.036 

𝛽𝐼𝑁𝐷3 0 0.024 

𝜖 0 0.025 (2.5%) 

𝜓 0 0.09 (9%) 

Panel B: Fixed parameters 

Parameter Value 

𝛿 0.2 bps/$ 100 mn 

𝑞𝑡=0 $10 mn 

𝑎 -0.00225 

𝑏 0.2 

𝜂∗ 7 factor model 
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Table 5: Measurement error components in simulated sample 

This table shows the empirical estimates of various components in the variance decomposition of measurement error in �̂� from Eq (32). 

Each month, in the simulated sample, we compute the model misspecification error (𝜃) and statistical estimation error (𝜖) for various 

combinations of true asset pricing models (K=0, 1, 3) and estimation models (𝜂=0, 1, 3, 4, 7) using the analytical expressions from Eq. 

(31). From these values, we compute the monthly cross-sectional variances and covariance and then average them across time and across 

50 simulation samples and report the values scaled by 10−6. Columns (1), (2), (3) of each Panel in the table below show the variances 

of estimation error, misspecification error and the covariance of the two respectively. Panel A shows the variance estimates when we 

use true betas of the funds to compute  �̂�𝜂 in which case the beta measurement error part drops in the estimation error component. And 

panel B shows the variance estimates where we use 60 month rolling window estimates of  �̂� to compute  �̂�𝜂 in which case the 

measurement error in betas shows up as part of column (1). The expressions we use to compute 𝜃, 𝜖 are: 

𝜃 = −∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)
𝜂
𝑘=𝐾+1  if 𝜂 ≥ 𝐾, 𝜃 = ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1
 if 𝜂 < 𝐾 and 𝜖 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽
𝑘=𝜂+1 + ∑ (�̂�𝑘,𝑝,𝑡 − 𝛽𝑘,𝑝)

𝜂
𝑘=1 𝐹𝑘,𝑡 + 𝜉𝑝,𝑡. 

Betas used to estimate alphas are: Panel A: True Betas  Panel B:  �̂�s from 60 month rolling regressions 

  𝜎𝜖
2 𝜎𝜃

2 𝐶𝑜𝑣(𝜃, 𝜖) (1)+(2)+(3)  𝜎𝜖
2 𝜎𝜃

2 𝐶𝑜𝑣(𝜃, 𝜖) (1)+(2)+(3) 

  (1) (2) (3) 
 

 

(1) (2) (3) 
 

True asset pricing Model (𝐾): Alpha Estimated Using (𝜂):         

No-beta risk premium model 

(K=0) 

Mkt adj. ret. 875.2 0 0 875.2  874.5 0 0 874.5 

Market model 832.3 1.151 0.005 833.5  833.3 1.148 0.005 834.5 

FF3 661.4 1.494 0.003 662.9  702.4 1.49 0.005 703.9 

FFC4 640.2 1.743 -0.001 642.0  717.0 1.739 -0.001 718.7 

FFC4+3 IND 625.0 1.755 -0.001 626.7  760.9 1.751 0.007 762.7 
           

CAPM 

(K=1) 

Mkt adj. ret. 875.2 1.151 -0.110 876.3  874.5 1.148 -0.103 875.6 

Market model 832.3 0 0 832.3  833.3 0 0 833.3 

FF3 661.4 0.350 -0.002 661.8  702.4 0.35 -0.006 702.8 

FFC4 640.2 0.602 -0.005 640.8  717.0 0.601 -0.010 717.6 
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FFC4+3 IND 625.0 0.614 -0.004 625.6  760.9 0.613 -0.008 761.6 
           

FF3 

(K=3) 

Mkt adj. ret. 875.2 1.494 -0.052 876.7  874.5 1.49 -0.039 876.0 

Market model 832.3 0.350 0.058 832.7  833.3 0.35 -0.004 833.7 

FF3 661.4 0 0 661.4  702.4 0 0 702.4 

FFC4 640.2 0.252 -0.004 640.5  717.0 0.252 -0.005 717.2 

FFC4+3 IND 625.0 0.264 -0.002 625.3  760.9 0.263 -0.002 761.2 
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Table 6: Flow-Performance relation in simulated sample  

This table presents univariate flow-performance regression results in the simulated sample. Columns (1), (2) and (3) in each of panels 

A and B report the results with true expected returns generated under No-beta risk premium (NBRP), CAPM, and FF3 models. The 

alphas which are the independent variables are computed with respect to the models indicated in the first column. Panel A shows the 

results using true betas to compute these alphas while panel B shows the results with �̂�s estimated using the prior month returns. Monthly 

flow is simulated in the sample as 𝑓𝑙𝑜𝑤𝑝.𝑡 = −0.00225 + 0.2 ∗ �̂�𝑝,𝜂∗=7,𝑡 + 𝜓𝑝,𝑡 which is the dependent variable. The table presents the 

average value of slope coefficients multiplied by 100 with flows as the dependent variable and alphas as independent variables across 

50 simulated samples.  

 Panel A: True betas used to estimate alphas  Panel B: 60 month rolling window  �̂�s used to estimate alphas 

 (1)  (2)  (3)  (1)  (2)  (3) 

True asset pricing model (K): NBRP model  CAPM  FF3  NBRP model  CAPM  FF3 

 Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2 

Alpha Estimated Using (𝜂):                  

Market Adjusted Ret 13.949*** 0.294  13.935*** 0.293  13.929*** 0.293  14.517*** 0.339  14.499*** 0.339  14.494*** 0.339 

 (0.445)   (0.442)   (0.440)   (0.624)   (0.623)   (0.622)  

Market model 14.691*** 0.305  14.686*** 0.305  14.679*** 0.305  15.258*** 0.352  15.252*** 0.351  15.249*** 0.351 

 (0.462)   (0.460)   (0.458)   (0.674)   (0.673)   (0.673)  

FF3 18.753*** 0.370  18.753*** 0.369  18.753*** 0.369  17.793*** 0.392  17.790*** 0.392  17.791*** 0.391 

 (0.541)   (0.539)   (0.535)   (0.694)   (0.694)   (0.693)  

FFC4 19.454*** 0.380  19.456*** 0.380  19.456*** 0.380  17.810*** 0.392  17.807*** 0.392  17.808*** 0.392 

 (0.589)   (0.588)   (0.584)   (0.688)   (0.688)   (0.687)  

FFC4+1 IND 19.698*** 0.384  19.700*** 0.384  19.701*** 0.384  17.557*** 0.388  17.553*** 0.388  17.553*** 0.388 

 (0.592)   (0.591)   (0.587)   (0.674)   (0.674)   (0.673)  

FFC4+2 IND 19.939*** 0.388  19.941*** 0.387  19.942*** 0.387  17.326*** 0.385  17.323*** 0.384  17.323*** 0.384 

 (0.610)   (0.609)   (0.605)   (0.663)   (0.662)   (0.661)  

FFC4+3 IND 19.970*** 0.388  19.973*** 0.388  19.973*** 0.388  16.963*** 0.379  16.959*** 0.378  16.958*** 0.378 

 (0.603)   (0.601)   (0.597)   (0.670)   (0.670)   (0.669)  
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Coefficient Difference Test                  

FFC4 - (FFC4+3 IND) -0.516***   -0.517***   -0.517***   0.847***   0.849***   0.849***  

 (0.082)   (0.082)   (0.083)   (0.171)   (0.171)   (0.171)  

FFC4 - True Asset Pricing Model 5.505***   4.770***   0.703***   3.294***   2.556***   0.017  

 (0.302)   (0.278)   (0.116)   (0.335)   (0.315)   (0.144)  
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Appendix 1: 

This appendix derives the results presented in section 1.4 of the paper. For expositional 

convenience, we set the risk-free rate to zero. 

Let returns be generated by a single factor model as shown in equation (16). The true model of 

expected returns is either a no-beta risk premium model in equation (17) or CAPM in equation 

(18). �̂� is estimated using either a market adjustment as shown in equation (19) or a market model 

adjustment as shown in equation (20). 

In the cross-section of funds, the following hold true: 

𝑐𝑜𝑣(𝛽, 𝜉) = 0 

𝑐𝑜𝑣(�̂�, 𝜉) = 0 

𝑐𝑜𝑣(�̂� − 𝛽, 𝜉) = 0, 

(𝐴. 1.1) 

 

where 𝛽 represents true beta of a fund, �̂� represents the estimated beta of the fund, �̂� − 𝛽 is the 

measurement error in estimated beta, and 𝜉 represents the fund specific returns. 

We also have, by definition: 

𝑐𝑜𝑣(�̂� − 𝛽, 𝛽) = 0 (𝐴. 1.2) 

 

From the two models of expected returns and two estimators, we have the following four cases. 

Case 1: Market adjustment when the no-beta risk model is true 

From equations (16), (17), (19): 

�̂�𝑝,0 = 𝑟𝑝,𝑡 − 𝑟𝑚,𝑡 = 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼𝑝 + 𝑢𝑡   where 𝑢𝑡 = (𝛽𝑝 − 1) × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 

Therefore, the cross-sectional variance of 𝑢𝑡 after using the results in (𝐴. 1.1) will be: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])

2
× 𝑣𝑎𝑟(𝛽𝑝 − 1|𝑟𝑚,𝑡) + 𝜎𝜉𝑝,𝑡

2 | 𝑟𝑚,𝑡 

= (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])
2
× 𝜎𝛽𝑝

2 |𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 

Since the true betas and the fund specific returns are drawn from identical distributions across 

funds, we can drop the subscript p to arrive at: 
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𝜎𝑢
2|𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])

2
× 𝜎𝛽

2|𝑟𝑚,𝑡 + 𝜎𝜉
2|𝑟𝑚,𝑡 

(𝐴. 1.3) 

 

Case 2: Market model adjustment (i.e. CAPM) when the no-beta risk model is true 

From equation (20): 

�̂�𝑝,1 = 𝑟𝑝,𝑡 − �̂�𝑝 × 𝑟𝑚,𝑡 − (1 − �̂�𝑝) × 𝑟𝑓 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − �̂�𝑝𝑟𝑚,𝑡 − (1 − �̂�𝑝) × 𝑟𝑓 from equations (13), (14) 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − �̂�𝑝𝑟𝑚,𝑡 − (1 − �̂�𝑝) × 𝑟𝑓 

= 𝛼𝑝 + 𝑢𝑡  where 𝑢𝑡 = (1 − 𝛽𝑝) × 𝐸(𝑟𝑚) − (�̂�𝑝 − 𝛽𝑝) × 𝑟𝑚,𝑡 − (1 − �̂�𝑝) × 𝑟𝑓 + 𝜉𝑝,𝑡 

Using (𝐴. 1.1), (𝐴. 1.2), and the following two results 

𝐶𝑜𝑣(1 − 𝛽𝑝, 1 − �̂�𝑝) = 𝑣𝑎𝑟(𝛽𝑝) 

𝐶𝑜𝑣(�̂�𝑝 − 𝛽𝑝, 1 − �̂�𝑝) = −𝑣𝑎𝑟(�̂�𝑝 − 𝛽𝑝), 

the cross-sectional variance of 𝑢𝑡 will be: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝐸(𝑟𝑚) × (𝐸(𝑟𝑚) − 𝑟𝑓) × 𝜎𝛽

2|𝑟𝑚,𝑡 + 𝑟𝑚,𝑡 × (𝑟𝑚,𝑡 − 𝑟𝑓)

× 𝜎
�̂�−𝛽
2 |𝑟𝑚,𝑡 + 𝑟𝑓

2 × 𝜎
�̂�
2| 𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 
(𝐴. 1.4) 

 

When the risk-free rate is set to zero: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝐸(𝑟𝑚)

2 × 𝜎𝛽
2|𝑟𝑚,𝑡 + 𝑟𝑚,𝑡

2 × 𝜎
�̂�−𝛽
2 |𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.5) 

 

Case 3: Market adjustment when CAPM is true 

From equations (16), (18), (19): 

�̂�𝑝,0 = 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼 + 𝑢𝑡 where 𝑢𝑡 = −(1 − 𝛽𝑝) × (𝑟𝑚,𝑡 − 𝑟𝑓) + 𝜉𝑝,𝑡 

 

Using (𝐴. 1.1), the cross-sectional variance of 𝑢𝑡 is: 
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𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝑟𝑓)

2
× 𝜎𝛽𝑝

2 | 𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 (𝐴. 1.6) 

 

Dropping the subscript p since betas and fund specific returns are drawn from identical 

distributions across funds and with risk free rate set to zero, we get: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝑟𝑚,𝑡

2  × 𝜎𝛽
2|𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.7) 

 

Case 4: Market model adjustment when CAPM is true 

From (16), (18), (20): 

�̂�𝑝,1 = 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − [𝑟𝑓 + �̂�𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] 

= 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − [𝑟𝑓 + �̂�𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] 

= 𝛼 + 𝑢𝑡 where 𝑢𝑡 = −(�̂�𝑝 − 𝛽𝑝) × (𝑟𝑚,𝑡 − 𝑟𝑓) + 𝜉𝑝,𝑡   

 

Using (𝐴. 1.1), the cross-sectional variance of 𝑢𝑡 is: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝑟𝑓)

2
× 𝜎

�̂�𝑝−𝛽𝑝

2 | 𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 (𝐴. 1.8) 

 

After dropping subscript p and setting risk free rate to zero, we get: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = 𝑟𝑚,𝑡

2 × 𝜎
�̂�−𝛽
2 | 𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.9) 
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Appendix 2:  

This appendix proves Proposition 3. 

Proof of Proposition 3: 

Denote 

�̂�𝑝,𝜂 = �̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 , (𝐴. 2.1) 

where �̂�𝑝,𝜂∗ is the alpha estimated using the most optimal 𝜂∗-factor model. Under the rational 

expectations equilibrium of Berk, Green (2004), flow positively covaries with �̂�𝑝,𝜂∗,𝑡 and is 

uncorrelated with the noise term 𝑣𝑝,𝜂. 

Under the model of Berk, Green (2004), �̂�𝑝,𝜂1, �̂�𝑝,𝜂2 are normally distributed with mean zero and 

are therefore symmetric around zero. Therefore: 

Pr(𝑄𝑝,𝜂 = −1) = Pr(𝑄𝑝,𝜂 = 1) = .5 for 𝜂 = 𝜂1, 𝜂2, 

𝐸(𝑄𝑝,𝜂1) = 𝐸(𝑄𝑝,𝜂2) = 0 , and 

𝑉𝑎𝑟(𝑄𝑝,𝜂1) = 𝑉𝑎𝑟(𝑄𝑝,𝜂2) = 1. 

(𝐴. 2.2) 

 

It also follows from the definition in (𝐴. 2.1) that: 

𝐸(𝑣𝑝,𝜂) = 0 (𝐴. 2.3) 

 

Consider the following OLS regressions from (11) and (34): 

Γ𝑝 = 𝑎𝜂 + 𝑏𝜂�̂�𝑝,𝜂 + 𝜔𝑝,𝜂 

𝑄Γ𝑝 = 𝐴𝜂 + 𝐵𝜂𝑄𝑝,𝜂 + 𝜊𝑝,𝜂 

From Regression (11), after using 𝐶𝑜𝑣(Γ𝑝, 𝑣𝑝,𝜂) = 0, we get: 

𝑏𝜂 =
𝑐𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂)

𝑣𝑎𝑟(�̂�𝑝,𝜂)
=

𝑐𝑜𝑣(Γ𝑝, �̂�𝑝,𝜂∗)

𝑣𝑎𝑟(�̂�𝑝,𝜂∗) + 𝑣𝑎𝑟(𝑣𝑝,𝜂)
 (𝐴. 2.4) 

 

Given that �̂�𝜂1 > �̂�𝜂2. Therefore, from (𝐴. 2.4) we get: 
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𝑣𝑎𝑟(𝑣𝑝,𝜂1) < 𝑣𝑎𝑟(𝑣𝑝,𝜂2) (𝐴. 2.5) 

 

From Regression (34), after using the result in (𝐴. 2.2), we get: 

𝐵𝜂 =
𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

𝑉𝑎𝑟(𝑄𝑝,𝜂)
=  𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂) 

(𝐴. 2.6) 

 

To evaluate this covariance term, we use the law of total covariance which states: 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑐𝑜𝑣(𝑋, 𝑌|𝑍)) + 𝑐𝑜𝑣(𝐸(𝑋|𝑍), 𝐸(𝑌|𝑍)) (𝐴. 2.7) 

 

Using (𝐴. 2.7), we can write: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= 𝐸 (𝑐𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)) + 𝑐𝑜𝑣 (𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) , 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)) 
(𝐴. 2.8) 

 

Since Γ𝑝 is independent of the noise part of �̂�𝑝,𝜂, the conditional covariance 𝑐𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂|𝑄𝑝,𝜂∗) 

will be zero on average. Hence the first term on the RHS of (𝐴. 2.8) will be zero. Expanding the 

second term in (𝐴. 2.8), we get: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= 𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] − 𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗)]

× 𝐸[𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] 

(𝐴. 2.9) 

 

The two terms in (𝐴. 2.9) can further be expanded as: 

𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] = 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ =

1) + 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1), and 
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𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗)] × 𝐸[𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] = {𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ = 1) +

𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1)} × {𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ = 1) +

𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1)}  

Substituting these into (𝐴. 2.9), using 1 − Pr(𝑄𝑝,𝜂∗ = 1) = Pr(𝑄𝑝,𝜂∗ = −1), and rearranging the 

terms yields: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= {𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) − 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1)}

× {𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)} × Pr(𝑄𝑝,𝜂∗ = 1)

× Pr(𝑄𝑝,𝜂∗ = −1) 

(𝐴. 2.10) 

 

From (𝐴. 2.6) and (𝐴. 2.10) we can see that comparing coefficients 𝐵𝜂1, 𝐵𝜂2 reduces to comparing 

{𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)} for 𝜂 = 𝜂1 & 𝜂2, since 𝜂∗ is same across the two 

models. 

By definition, this term can be expressed as: 

𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)

= Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|�̂�𝑝,𝜂∗ ≥ 0)

− Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 < 0|�̂�𝑝,𝜂∗ ≥ 0)

− Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|�̂�𝑝,𝜂∗ < 0)

+ Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 < 0|�̂�𝑝,𝜂∗ < 0) 

  

(𝐴. 2.11) 

Where the conditional probabilities are defined as: 

Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|�̂�𝑝,𝜂∗ ≥ 0)

= ∫ Pr(�̂�𝑝,𝜂∗ ≥ −𝑣𝑝,𝜂|�̂�𝑝,𝜂∗) × 𝑓(�̂�𝑝,𝜂∗|�̂�𝑝,𝜂∗ ≥ 0) × 𝑑�̂�𝑝,𝜂∗
∞

0

 
(𝐴. 2.12) 

 

with 𝑣𝑝,𝜂|�̂�𝑝,𝜂∗ distributed as Normal with mean zero. 

We get similar expressions for the remaining three terms on the RHS of equation (𝐴. 2.11). 

When 𝑋~𝑁(0, 𝜎2), the following definitions apply: 
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Pr(𝑋 ≤ 𝑎) = 𝐹(𝑎) =
1

2
× [1 + erf (

𝑎 − 𝜇

𝜎√2
)] =

1

2
× [1 + erf (

𝑎

𝜎√2
)] 

Pr(𝑋 ≥ 𝑎) = 1 − 𝐹(𝑎) =
1

2
× [1 − erf (

𝑎 − 𝜇

𝜎√2
)] =

1

2
× [1 − erf (

𝑎

𝜎√2
)] 

(𝐴. 2.13) 

 

Where erf (𝑥) is the error function given by: 

erf(𝑥) =
2

√𝜋
×∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

 

 

This is an odd function with erf(−𝑥) = −erf (𝑥) and is monotonically increasing in its argument 

𝑥. From these two properties and the definitions in (𝐴. 2.13), we can infer the following: 

Pr(𝑋 ≥ 𝑎)  is {
decreasing with 𝜎 if 𝑎 < 0
increasing with 𝜎 if 𝑎 > 0

 

Pr(𝑋 ≤ 𝑎)  is {
increasing with 𝜎 if 𝑎 < 0
decreasing with 𝜎 if 𝑎 > 0

 

(𝐴. 2.14) 

 

From (𝐴. 2.5), we have 𝜎𝑣𝑝,𝜂1 < 𝜎𝑣𝑝,𝜂2. Therefore, from (𝐴. 2.12) and (𝐴. 2.14), we can see that: 

Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂1 ≥ 0|�̂�𝑝,𝜂∗ ≥ 0) > Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂2 ≥ 0|�̂�𝑝,𝜂∗ ≥ 0), 

Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂1 < 0|�̂�𝑝,𝜂∗ < 0) > Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂2 < 0|�̂�𝑝,𝜂∗ < 0), 

−Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂1 < 0|�̂�𝑝,𝜂∗ ≥ 0) > −Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂2 < 0|�̂�𝑝,𝜂∗ ≥ 0), 

−Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂1 ≥ 0|�̂�𝑝,𝜂∗ < 0) > −Pr(�̂�𝑝,𝜂∗ + 𝑣𝑝,𝜂2 ≥ 0|�̂�𝑝,𝜂∗ < 0) 

(𝐴. 2.15) 

 

Substituting (𝐴. 2.15) into (𝐴. 2.11) gives: 

𝐸(𝑄𝑝,𝜂1|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂1|𝑄𝑝,𝜂∗ = −1) > 𝐸(𝑄𝑝,𝜂2|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂2|𝑄𝑝,𝜂∗ =

−1)  
(𝐴. 2.16) 

 

Finally, substituting this into (𝐴. 2.10) and using the definition of 𝐵𝜂 from (𝐴. 2.6), we get 𝐵𝜂1 >

𝐵𝜂2. Q.E.D.  


