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Abstract

Standard experimental designs are geared toward point estimation and hypothesis test-
ing, while bandit algorithms are geared toward in-sample outcomes. Here, we instead
consider treatment assignment in an experiment with several waves for choosing the best
among a set of possible policies (treatments) at the end of the experiment. We propose a
computationally tractable assignment algorithm that we call “exploration sampling,” where
assignment probabilities in each wave are an increasing concave function of the posterior
probabilities that each treatment is optimal. We prove an asymptotic optimality result
for this algorithm and demonstrate improvements in welfare in calibrated simulations over
both non-adaptive designs and bandit algorithms. An application to selecting between six
different recruitment strategies for an agricultural extension service in India demonstrates
practical feasibility.
Keywords: Experimental design, field experiments, optimal policy, multi-

armed bandits

1 Introduction

The first objective of an academic researcher conducting a randomized controlled trial (RCT)
is typically to generate a point estimate of the treatment effect and a corresponding standard
error. These might in turn be used for testing the null hypothesis that the average effect
equals 0. The research design is chosen to minimize the estimation error or to maximize the
power for tests of this null, for example by assigning an equal number of units to different
treatments, and by stratifying the sample by pre-determined covariates (see for instance Athey
and Imbens 2017). Such RCTs are designed to answer the question “Does this program have a
significant effect?” However, the objective of an NGO or government conducting an experiment
to evaluate its programs is often different: Instead of estimating effect sizes, they are interested
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in identifying and implementing the best out of several possible policies or policy variants. In
other words, they would like to answer “Which program will have the largest effect?”

We consider an experimental setting with multiple waves of experimental units, and multiple
treatments. We assume that the outcome of interest is binary. At the beginning of each
wave, the number of units assigned to each treatment arm is decided. After conclusion of
the wave, prior beliefs about treatment effects are updated based on the observed outcomes.
Then treatments are assigned for the next wave. Once the experiment is concluded, one of the
treatments is picked for full-scale implementation. The objective is to maximize the average
outcomes for this full-scale implementation.

This setting defines a finite-horizon dynamic stochastic optimization problem. It can be
solved analytically using backward induction, but finding exact solutions is computationally
challenging. We therefore propose a new assignment algorithm, “exploration sampling,” a mod-
ification of Thompson sampling. In Thompson sampling, the probability that a treatment d
is assigned to a given experimental unit arriving at t is equal to the posterior probability pdt
(given outcomes up to t−1) that this treatment is in fact optimal. For exploration sampling, we
replace pdt with the assignment share qdt = St ·pdt · (1−pdt ), where St is a normalizing constant.1

We provide theoretical results and simulations showing that this modification improves
expected welfare. It avoids assigning more than 50% of the sample to the highest-performing
treatment, and in large samples equalizes power for rejecting each of the sub-optimal treatments.
This is optimal for the convergence rate of welfare (while standard Thompson sampling is
not). In Section 8, we discuss how the algorithm and its characterization extend to settings
with heterogeneous treatment costs, non-binary outcomes, non-linear objectives, and targeted
treatment assignment based on covariates.

The idea of adaptive treatment assignment is almost as old as that of randomized ex-
periments (Thompson, 1933). Adaptive experimental designs have been used for example in
clinical trials (Berry, 2006; FDA, 2018) and in the targeting of online advertisements (Russo
et al., 2018), but they are not yet common in economics. Our setting is closely related to
multi-armed bandit problems (Scott, 2010), but with the key difference that there is no “ex-
ploitation” motive, and thus no exploitation-exploration tradeoff. Under some conditions, the
optimal solution to the bandit problem can be expressed in terms of choosing the arm corre-
sponding to the highest “Gittins index,” cf. Weber (1992). In practice, most applications use
heuristic algorithms such as the Upper Confidence Bound algorithm (UCB) and Thompson
sampling (Russo et al., 2018). A recent literature characterizes the expected in-sample regret
of these algorithms, see for example Bubeck and Cesa-Bianchi (2012); Kock and Thyrsgaard
(2017); Kock et al. (2018). Russo (2016) considers the closely related problem of maximizing
the probability of picking the best treatment (rather than maximizing expected welfare). Our
theoretical analysis in Section 4 below draws on insights from this paper, on the characteriza-
tion of oracle-optimal allocations in Glynn and Juneja (2004), and on the impossibility result

1An interactive app implementing exploration sampling is available at https://maxkasy.shinyapps.io/
exploration_sampling_dashboard/
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of Bubeck et al. (2011). Approximations to our optimization problem are also considered in
the literature on Bayesian optimization, Frazier (2018).

2 Setup

Consider a policymaker who wants to maximize the expected value of a binary outcome variable,
that is, a success rate. She has to choose between three or more different policies (treatments)
and she can use an experiment that proceeds in multiple waves (repeated cross-sections). At the
end of each experimental wave, outcomes are observed, and treatment assignment in subsequent
waves can be based on these observed outcomes. After the experiment concludes, a treatment
is chosen for large-scale implementation.
Treatments and potential outcomes. The experiment takes place in waves t = 1, . . . , T .
Each wave t is a new random sample of Nt experimental units i = 1, . . . , Nt drawn from
the population of interest (so that the waves are repeated cross-sections, and each unit is
treated only once). The total sample size is M =

∑T
t=1Nt. Each person or unit i in period

t can receive one of k different treatments Dit ∈ {1, . . . , k}, resulting in a binary outcome
Yit ∈ {0, 1} determined by the potential outcome equation Yit =

∑k
d=1 1(Di = d) · Y dit . This

assumption implies in particular that there is no interference, i.e., outcomes are not affected
by the treatments others receive. Random sampling means that the potential outcome vector
(Y 1
it , . . . , Y

k
it ) for unit i in period t is an i.i.d. draw from the population of interest. Each

treatment d has a stationary average potential outcome (also known as average structural
function) θd = E[Y dit ].

Treatment assignment and state space during the experiment. Denote by ndt =∑
i 1(Dit = d) the number of units assigned to treatment d in wave t. The treatment as-

signment in wave t is summarized by the vector nt = (n1t , . . . , n
k
t ) with

∑
d n

d
t = Nt. Denote

sdt =
∑
i 1(Dit = d, Yit = 1) the number of successes (Yit = 1) in treatment group d in wave t.

The outcome of wave t can be summarized by the vector st = (s1t , . . . , s
k
t ), where sdt ≤ ndt . These

outcomes are observed at the end of wave t. Denote the cumulative versions of these terms
from 1 to t by md

t =
∑
t′≤t n

d
t′ , r

d
t =

∑
t′≤t s

d
t′ , andmt = (m1

t , . . . ,m
k
t ), rt = (r1t , . . . , r

k
t ). With

i.i.d. potential outcomes, the total observations and successes in each treatment arm (mt, rt)

are sufficient statistics for the likelihood of the data given θ (regardless of the wave in which
each unit was observed), and they summarize all relevant information for the experimenter at
the beginning of period t+ 1.
Bayesian updating. Under our assumptions, Y dit has a Bernoulli distribution with un-
known parameter θd: Y dit ∼ Ber(θd). We assume that the policymaker holds prior belief
θd ∼ Beta(αd0, β

d
0 ). The θd are independent across d. A special case, and the default for the

applications later in this paper, is the uniform prior, corresponding to αd0 = βd0 = 1 for all
d. After the outcomes for periods 1, . . . , t are realized, the posterior distribution is given by
θd|mt, rt ∼ Beta(αdt , β

d
t ), where αdt = αdt−1+sdt = αd0+rdt and βdt = βdt−1+ndt−sdt = βd0+md

t−rdt .
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Policy choice and regret. After wave T , the experimenter implements a policy d∗T ∈ 1, . . . , k,
with the objective of maximizing the expected average of the outcome Y for the whole (remain-
ing) population. At the conclusion of the experiment, per-capita expected social welfare of
policy d is given by SWT (d) = E[θd|mT , rT ] =

αd
0+r

d
T

αd
0+β

d
0+m

d
T

and the optimal policy choice

is d∗T ∈ argmax d SWT (d). Denote the true optimal treatment d(1) ∈ arg maxd′ θ
d′ , and let

∆d = θd
(1)−θd be the policy regret when choosing treatment d, relative to the optimal treatment.

Note that the objective considered in the bandit literature is in-sample regret 1
M

∑
i,t ∆Dit

rather than policy regret ∆d∗T , as considered here. Disregarding the welfare of participants in
the experiment is justified if their number is small relative to the population of interest.
Expected regret. The experimenter chooses the treatment assignment nt at the beginning
of wave t. This treatment assignment can depend on the outcomes of waves 1 to t− 1, and on
a randomization device. We will evaluate treatment assignment algorithms based on expected
social welfare, or equivalently expected policy regret (conditional on the true θ), for the policy
d∗T :

Rθ(T) = E
[
∆d∗T |θ

]
=
∑
d

∆d · P (d∗T = d|θ) , (2.1)

where T denotes the number of waves of the experiment, and the expectation is over all possible
success realizations and treatment assignment choices.
Optimal treatment assignment. The choice of treatment assignment nt for each t =

1, . . . , T is a dynamic stochastic optimization problem that can in principle be solved using
backward induction, with full enumeration of all possible states and actions. The state at the
end of wave t − 1 is given by (mt−1, rt−1), and the action in t is given by nt. The transition
between states is described bymt = mt−1 +nt, rt = rt−1 +st, where the success probabilities
follow a Beta-Binomial distribution, P (sdt = s|mt−1, rt−1,nt) =

(
nd
t
s

)B(αd
t−1+s,β

d
t−1+n

d
t−s)

B(αd
t−1,β

d
t−1)

. In
the online supplement we discuss the derivation of value functions and the corresponding opti-
mal assignment functions, which map the state (mt, rt) into the assignment nt. Under optimal
treatment assignment, Rθ(T) is minimized. We use numerical examples with two waves to show
that the optimal treatment assignment in wave 2 assigns more units to those treatments that
performed better in wave 1.
Computational complexity. We also show in the online supplement that the time complexity
for dynamic programming with full memoization (storing all intermediate results) in this setting
is of order

∑T−1
t=1 O

(
(MtNt+1)2k−1

)
+ O(M2k−1

T k), and the memory complexity is of order∑T
t=1O

(
M2k−1
t

)
. An alternative to full optimization is the use of heuristic algorithms, which

are widely used for bandit problems. This reduces computational complexity but may increase
expected policy regret Rθ(T). Below, we first briefly discuss one of the most popular (and
oldest) bandit algorithms, so-called Thompson sampling, originally proposed by Thompson
(1933). We then propose a new, closely related algorithm that we call exploration sampling.
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3 Thompson sampling

We next define Thompson sampling and review its large-sample behavior, in order to compare
it with our proposed algorithm below. Consider first the special case of our setting where units
arrive one at a time. In each period t, assign treatment d with probability pdt equal to the
posterior probability, given past outcomes, that it is in fact the optimal treatment,

pdt = P

(
d = argmax

d′
θd
′
|mt−1, rt−1

)
. (3.1)

This prescription can be implemented by sampling one draw θ̂t from the posterior given mt−1

and rt−1, and setting Dt = argmax d θ̂
d
t . In the context of the Beta-Binomial model above, θ̂t

is sampled from its Beta posterior. Thompson sampling can be applied much more generally;
an excellent overview is in Russo et al. (2018). When treatment assignment takes place in
waves, it is natural to adapt Thompson sampling by assigning a non-random number bpdtNtc
of observations in wave t to treatment d, in order to reduce randomness. The remainder of
observations are assigned randomly so that expected shares remain equal to pdt . We will refer
to this method of assignment as expected Thompson sampling.
The large-sample behavior of Thompson sampling. In many bandit problems, the goal
is to minimize average in-sample regret E( 1

T

∑T
t=1 ∆Dt). Agrawal and Goyal (2012) (Theorem

2) have shown that in-sample regret for Thompson sampling (in the binary outcome setting,
with sequential arrival) satisfies the bound

lim
T→∞

E

[∑T
t=1 ∆Dt

log T

]
≤

 ∑
d6=d(1)

1

(∆d)2

2

. (3.2)

As first shown by Lai and Robbins (1985), no adaptive experimental design can do better
than this log T rate; the proof of this lower bound is reviewed in Section 2.3 of Bubeck and
Cesa-Bianchi (2012). This result implies that Thompson sampling only assigns a share of units
of order log(T )/T to treatments other than the optimal treatment, so that we effectively stop
learning about the performance of suboptimal treatments very quickly. This benefits in-sample
welfare, but is not optimal for ex-post policy choice.

Bubeck et al. (2011) formalize this intuition. Their Theorem 1 implies that any algorithm
that achieves a log(T )/T rate for in-sample regret, such as Thompson sampling, can at most
achieve a polynomial rate of convergence to 0 for the probability of choosing a sub-optimal
treatment after the experiment, and thus for policy regret. This contrasts with algorithms
which assign a fixed, non-zero share of observations to each treatment, such as conventional
(non-adaptive) designs. In general, algorithms that converge to non-zero shares achieve an
exponential rate of convergence.
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4 Exploration Sampling

Based on Thompson sampling, we propose a modified treatment assignment algorithm which
we call exploration sampling. It replaces the Thompson assignment shares (p1t , . . . , p

k
t ) with the

following transformed shares:

qdt = St · pdt · (1− pdt ), St = 1∑
d p

d
t ·(1−pdt )

. (4.1)

This modification shifts weight away from the best performing option to its close competitors.
Since there is at most one d for which pdt > 1/2, we have that across the components pdt (given
St) the mapping from pdt to qdt is monotonically increasing and concave.
Heuristic motivation. Exploration sampling would arise if we used Thompson sampling
but never assigned the same treatment twice in a row, thus improving power for comparisons
of relevant alternatives. Suppose that within a given wave, we sequentially draw treatment
assignments based on the Thompson probabilities p, but the draw is repeated, if necessary, until
the current unit is assigned a different treatment from the previous unit. This algorithm defines
a Markov chain for the sequence of assigned treatments where the probability of transitioning
from treatment d′ to treatment d 6= d′ is given by pd

1−pd′ . This Markov chain has a stationary

distribution q that satisfies qd =
∑
d′ 6=d q

d′ pd

1−pd′ for all d. By the mean ergodic theorem,
the assignment shares converge to this stationary distribution. Solving for q yields Equation
(4.1). Thus, for large wave sizes, this algorithm assigns the same share of observations to each
treatment as exploration sampling.

4.1 The large-sample behavior of exploration sampling

Our key result, Theorem 1, shows that exploration sampling achieves the best possible expo-
nential rate of convergence, subject to the constraint that in the limit half the observations
are assigned to the best treatment. It achieves in particular a better exponential rate than
non-adaptive assignment, and converges much faster than Thompson sampling, which only
converges polynomially. In a second characterization, Proposition 1, we show that for a large
first wave, exploration sampling splits the second wave equally between the two best treatments.
Many waves. Theorem 1 characterizes the behavior of exploration sampling in settings with
many waves and fixed wave size Nt = N ≥ 1. Let q̄dt = md

t /(Nt) denote the share of observa-
tions assigned to d over all waves until t, and write “→p” for convergence in probability.

Theorem 1 Consider exploration sampling in the setting of Section 2, with fixed wave size
Nt = N ≥ 1. Assume that the optimal policy d(1) is unique and that θd

(1)

< 1. As T →∞, the
following holds:

1. The share of observations q̄d
(1)

T assigned to the best treatment converges in probability to
ρd

(1) ≡ plimT→∞ q̄d
(1)

T = 1/2.
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2. The share of observations q̄dT assigned to each treatment d 6= d(1) converges in probability to
a non-random share ρd. ρd is such that
− 1
NT log pdt →p Γ∗ for some Γ∗ > 0 that is constant across d 6= d(1).

3. Expected policy regret converges to 0 at the same rate Γ∗, that is,
− 1
NT log Rθ(T)→ Γ∗. No algorithm with limit assignment shares ρ̂ 6= ρ and ρ̂d

(1)

= 1/2

exists for which Rθ(T) goes to 0 at a faster rate than Γ∗.

The proof of Theorem 1 can be found in Appendix A, where we first state six preliminary
lemmas before proceeding to the main proof. Lemmas 1 through Lemma 3 draw on Glynn
and Juneja (2004) and characterize the oracle optimal allocation of observations across the
treatments d 6= d(1). This allocation maximizes the rate of convergence of policy regret to 0

as T goes to infinity by asymptotically equalizing the power of tests comparing the optimal
treatment to each suboptimal treatment. Lemmas 4 through 6, drawing on Russo (2016),
leverage results on posterior consistency and the rate of convergence of posterior probabilities
to give sufficient conditions for q̄T to converge to this allocation.

The main proof of Theorem 1 then proceeds in several steps. First, we show that each
treatment is assigned infinitely often. This implies that pdT goes to 1 for the optimal treatment
and to 0 for all other treatments. Claim 1 then follows from the definition of exploration
sampling. Second, we show claim 2 by contradiction. Suppose pdt goes to 0 at a faster rate
for any one of the sub-optimal treatments d. Then exploration sampling would effectively stop
assigning this treatment d. This in turn allows the other sub-optimal treatments to “catch
up.” Lastly, efficiency (claim 3) holds because the algorithm balances the rate of convergence
of posterior probabilities (or equivalently, of power) across treatments. This is optimal because
the rate of convergence of policy regret is dominated by the slowest rate of convergence across
treatments.
Large first wave. Consider now the case of large wave size N1. With small T , the potential
for adaptivity is limited, so no optimality guarantees exist. We can nonetheless characterize
the behavior of adaptive algorithms. For large N1, with high probability Thompson sampling
assigns all observations in the second wave to the best performing treatment, while exploration
sampling splits the second wave equally between the best two treatments.

Proposition 1 Consider the setting of Section 2, and assume that both the optimal policy d(1)

and the second best policy d(2) = argmax d6=d(1) θ
d are unique. Then the following holds.

1. Suppose that treatment is assigned using Thompson sampling. Then, as N1 → ∞, the
second period assignment shares satisfy pd

(1)

2 →p 1, and pd2 →p 0 for d 6= d(1).

2. Suppose that treatment is assigned using exploration sampling. Then, as N1 → ∞, the
second period assignment shares satisfy qd2 →p 1

2 for d ∈ {d(1), d(2)}, and qd2 →p 0 for
d /∈ {d(1), d(2)}.
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Figure 5.1: Average treatment outcomes in experimental data.

Ashraf, Berry, and Shapiro (2010) Bryan, Chowdhury, and Mobarak (2014) Cohen, Dupas, and Schaner (2015)
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Notes: Treatment arms labeled 1 up to 7: Kw 300 - 800 price for water disinfectant, treatment 1 (Kw 300) is
optimal (Ashraf et al.); migration incentives - cash, credit, information, and control, treatment 1 (cash) is
optimal (Bryan et al.); price of Ksh 40, 60, and 100 for malaria tablets, each with and without free malaria
test, and control of Ksh 500, treatment 2 (Ksh 40, no test) is optimal (Cohen et al.).

5 Calibrated simulations

We next present simulation evidence on the performance of alternative treatment assignment
algorithms, using parameter vectors and sample sizes calibrated to data from published ex-
periments in development economics. The purpose of the calibration is to “tie our hands” in
choosing research designs and data characteristics for our simulations.
Experiments. We use data from the experiments in Ashraf et al. (2010), Bryan et al. (2014),
and Cohen et al. (2015). They each have multiple treatments and a binary outcome (more
information is in the online supplement). Our simulations use the same sample sizes as the
original experiments, but for simplicity ignore any clustering. We assume that the policymaker’s
goal is to maximize the average measured outcome (which was not necessarily the goal of the
original experiments).

Figure 5.1 shows the average outcomes across treatment arms for each of the three experi-
ments. We set the “true” parameter vectors θ equal to these average outcomes for the purpose
of our simulations. For Ashraf et al. (2010), average outcomes are roughly evenly spaced. This
makes it comparatively easy to statistically detect which treatments are performing better, so
we would expect benefits of adaptation even for moderate sample sizes. For Bryan et al. (2014),
two treatments are clearly better, but they are also very close. It is easy to distinguish these
from the other two treatments, but it takes a large amount of information to figure out which
is the best, and the returns to doing so are not very large. For Cohen et al. (2015), the top
six treatments are again roughly evenly spaced, but the best treatments are close together and
thus hard to distinguish.
Simulation results. We compare three different algorithms. The non-adaptive algorithm
assigns an equal share of units to each of the treatment arms and serves as a benchmark.
Expected Thompson assigns a non-random share of units in each wave based on the Thompson
probabilities. Exploration sampling, our preferred approach, is as described in Section 4.
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We evaluate the performance of these algorithms using the distribution of policy regret
across 100,000 simulation draws. Recall that policy regret is given by ∆d∗T = maxd θ

d − θd∗T .
For each experiment, the vector θ, and in particular maxd θ

d, is fixed across simulation draws.
Table 1 shows performance metrics for each of the three algorithms considered, and for

varying numbers of waves, holding total sample size constant. We report average policy regret,
as well as the share of simulation draws for which the optimal treatment d(1) would be chosen
after T . Finally, we report average in-sample regret, 1

M

∑
i,t ∆Dit .

The results show that exploration sampling consistently outperforms expected Thompson
sampling in terms of average policy regret, and both outperform non-adaptive assignment.
Adaptive designs with more waves perform better than designs with fewer waves (for the same
total sample size). The gains from adaptive designs are largest in the application to Ashraf
et al. (2010), followed by Cohen et al. (2015).

The probability of choosing the best treatment is strictly larger than under non-adaptive
assignment as well; figures in the online supplement furthermore show that the distribution of
policy regret under exploration sampling first-order stochastically dominates the distribution
under non-adaptive assignment. For Ashraf et al. (2010) and Bryan et al. (2014), both ap-
proaches pick one of the best two treatments with high probability. For Cohen et al. (2015),
the distribution is more dispersed, owing to smaller treatment differences.

In-sample regret is the objective of bandit algorithms, for which Thompson sampling is rate-
optimal, but exploration sampling is not. Here, Thompson performs best among the algorithms
compared. However, because exploration sampling shifts sampling toward the better performing
options, it dominates non-adaptive assignment in terms of in-sample regret.

6 Implementation in the field

Precision Agriculture for Development (PAD) is an NGO that works with government partners
to provide a phone-based personalized agricultural extension service to farmers. We designed
an experiment using exploration sampling as in Section 4 to help PAD choose among a variety
of different call methods to enroll rice farmers in one state in India.2 The outcome is a binary
variable describing call completion: It equals one if the call recipient answered five questions
asked during the call (which enables processing). PAD tested six treatments that combined
automated voice calls in the morning or evening with possible text message alerts sent up to
24 hours ahead.

The sample was selected from a list of phone numbers provided by the government partner.
PAD set aside a batch of 10,000 valid numbers that are not on the Indian “do-not-disturb” list,
and randomly selected waves of 600 phone numbers for testing. Starting on June 3, 2019, a
new experimental wave was started every other day and completed the next day (with a one-

2The pre-analysis plan for this experiment was registered at www.socialscienceregistry.
org/trials/4263. The R-code used for implementation can be found at github.com/maxkasy/
Precision-Agriculture-for-Development.
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Table 1: Simulation results
Ashraf, Berry, and Shapiro (2010)

Statistic 2 waves 4 waves 10 waves
Average policy regret

exploration sampling 0.0017 0.0010 0.0008
expected Thompson 0.0022 0.0014 0.0013
non-adaptive 0.0051 0.0050 0.0051

Share optimal
exploration sampling 0.978 0.987 0.989
expected Thompson 0.971 0.981 0.982
non-adaptive 0.933 0.935 0.933

Average in-sample regret
exploration sampling 0.1126 0.0828 0.0701
expected Thompson 0.1007 0.0617 0.0416
non-adaptive 0.1776 0.1776 0.1776

Units per wave 502 251 100

Bryan, Chowdhury, and Mobarak (2014)
Statistic 2 waves 4 waves 10 waves
Average policy regret

exploration sampling 0.0045 0.0041 0.0039
expected Thompson 0.0048 0.0044 0.0043
non-adaptive 0.0055 0.0054 0.0054

Share optimal
exploration sampling 0.792 0.812 0.820
expected Thompson 0.777 0.795 0.801
non-adaptive 0.747 0.748 0.749

Average in-sample regret
exploration sampling 0.0655 0.0386 0.0254
expected Thompson 0.0641 0.0359 0.0205
non-adaptive 0.1201 0.1201 0.1201

Units per wave 935 467 187

Cohen, Dupas, and Schaner (2015)
Statistic 2 waves 4 waves 10 waves
Average policy regret

exploration sampling 0.0070 0.0063 0.0060
expected Thompson 0.0074 0.0065 0.0061
non-adaptive 0.0086 0.0087 0.0085

Share optimal
exploration sampling 0.567 0.586 0.592
expected Thompson 0.560 0.582 0.589
non-adaptive 0.526 0.524 0.529

Average in-sample regret
exploration sampling 0.0489 0.0374 0.0314
expected Thompson 0.0467 0.0345 0.0278
non-adaptive 0.0737 0.0737 0.0737

Units per wave 1080 540 216

Notes: Average policy regret, share optimal, and average in-sample regret across 100,000 simulation draws.
The vector θ equals average outcomes in the original experiment in all draws. The total sample size is as in
the original experiment.
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Table 2: Outcomes of the adaptive experiment for PAD.
Treatment Outcomes Posterior

Call time SMS alert md
T rdT rdT /m

d
T mean SD pdT

10am - 903 145 0.161 0.161 0.012 0.009
10am 1h ahead 3931 757 0.193 0.193 0.006 0.754
10am 24h ahead 2234 400 0.179 0.179 0.008 0.073
6:30pm - 366 53 0.145 0.147 0.018 0.011
6:30pm 1h ahead 1081 182 0.168 0.169 0.011 0.027
6:30 pm 24h ahead 1485 267 0.180 0.180 0.010 0.126

Notes: For each treatment arm: total observations, total successes, share of successes, posterior mean and
standard deviation of the success rate, and probability that the arm is optimal. 10,000 units and 17 waves.

Figure 6.1: Assignment frequencies over time.
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day delay on June 17).3 The success rate of each treatment arm was estimated starting with
a uniform prior over θ in order to determine the assignment frequencies for each consecutive
wave.

Findings. Table 2 shows treatment assignments and success rates, and the posterior mean
and standard deviation of the success rate θd, as well as the posterior probability pdT that
each treatment is optimal. Figure 6.1 plots the assignment shares over time. The figure
shows that one treatment was assigned the most units from wave 2 onwards, but some closely
competing treatments got a high share of observations, especially in early waves. The number
of observations per wave assigned to each of the treatments did stabilize towards later waves,
as predicted by our characterization of exploration sampling in Theorem 1.

Calling farmers at 10am after a text message an hour ahead of time is with over 75 percent
probability the treatment with the greatest success rate, estimated to be 19.3 percent. Across

3The schedule got delayed by one day starting June 17 due to internet connectivity issues in India.
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treatments, higher success rates are associated with a higher number of observations, and
correspondingly smaller posterior standard deviation. This holds by design for exploration
sampling. Cumulatively, nearly 40 percent of farmers received the most successful type of call,
whereas under four percent received the least successful call (at 6:30pm without a text message
alert). Based on the posterior estimated success rates, exploration sampling not only improved
learning, but also increased overall success rates within the experiment (18.04%) compared to
a standard design with equal assignment to treatment arms (where the estimated success rate
based on posterior means would be 17.15%).

7 Alternatives to exploration sampling

Theorem 1 shows that exploration sampling achieves the best possible exponential rate of
convergence of expected policy regret, subject to the constraint that in the limit half the
observations are assigned to the best treatment, or γ ≡ plim q̄d

(1)

T = 1/2. This result raises
several questions.
Other algorithms. A first question is whether there are other algorithms that achieve the
same form of constrained efficiency. The answer is yes; Proposition 3 in Appendix A.6 shows
that there is a larger class of algorithms for which the assignment shares for d 6= d(1) converge to
the oracle-optimal limit shares characterized by Lemmas 1 to 3. In these algorithms, the vector
of assignment shares in wave t, qt, is given by a function ψ(pt) of the Thompson shares pt which
satisfies the properties stated in Appendix A.6. An algorithm satisfying these properties might
for instance be constructed by setting qd

∗
t
t = γ, and qdt =

[
(1− γ)/(1− pd∗t )

]
· pdt for d 6= d∗t .4

We will call the limit allocation of such an algorithm ργ . In this notation the assignment shares
under exploration sampling converge to ρ1/2.

Relative to algorithms such as the one just proposed and those proposed in Russo (2016),
exploration sampling has additional advantages that are not reflected in the large-deviation
asymptotics of Theorem 1. In these algorithms, there tends to be initial instability in assignment
shares, due to the fixed share γ assigned to d∗T , and due to initial uncertainty about which
treatment is best. Exploration sampling leads to more stable assignment shares in initial
periods. This advantage would be reflected in worst-case (local to 0) asymptotics, the analysis
of which is left for future research.
Different share for the top treatment. A second question is whether γ = 1/2 is a good
choice. The following proposition, which is related to Lemma 3 in Russo (2016), provides a
partial answer. It implies that γ = 1/2 provides a tight bound on the rate of convergence of
expected policy regret, relative to the efficient unconstrained allocation which uses the (un-

4Russo (2016) proposes another algorithm satisfying these conditions, which takes the form of assigning units
with a fixed probability γ to the arm with the highest pdt , and the remainder to the arm with the second highest
pdt . Our setting differs from that of Russo (2016), since (1) our objective is to maximize expected welfare rather
than the probability of picking the best treatment, and (2) Russo’s algorithm is less well suited for the batched
setting, as it assigns all observations to two treatments. Unlike exploration sampling, Russo’s algorithm and
the alternative algorithms characterized here require a tuning parameter γ.
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known) rate-maximizing choice of γ. Consider again the setting of Section 2. Suppose that an
algorithm is used under which q̄T converges in probability to the limit allocation ργ that is
rate-optimal for policy regret, subject to ρd

(1)

γ = γ. Denote by Γ∗γ the rate of convergence of
Rθ(T), that is, Γ∗γ = limT→∞

(
− 1
NT log Rθ(T)

)
, for such assignment shares.

Proposition 2 Under these assumptions, Γ∗γ ≥ min (γ, 1− γ) · maxγ′ Γ
∗
γ′ , and in particular,

Γ∗1/2 ≥
1
2 ·maxγ′ Γ

∗
γ′ .

Data-dependent share for the top treatment. A third question is whether it would be
possible to do better by choosing γ in a data-dependent manner. Asymptotically, the answer
is again yes. In Section 5 of Glynn and Juneja (2004), an algorithm with data-dependent γ
is proposed. This algorithm is based on a plug-in procedure that works as follows. Given the
available data, form an estimate of θ. Based on this estimate, calculate the optimal sample
shares ρ for maximizing the asymptotic rate of convergence Γ of policy regret, as derived from
large deviations theory. Use these plug-in shares for the allocation of treatments. Glynn and
Juneja (2004) prove consistency of this approach under some conditions.

8 Extensions

More general outcome distributions and objective functions. Above, we assumed that
outcomes are binary and social welfare is linear in the success rate θd. This setting immediately
generalizes in a number of ways. For normal outcomes with appropriately modified posterior
probabilities, the definition of exploration sampling and the characterizations of Section 4 apply
with minor modifications. We can also allow for known per-unit costs cd of treatment d.5

More generally, population outcomes may follow some other distribution F , and the planner
may be interested in other moments of F besides the mean, such as the variance (inequality)
or certain percentiles (poverty levels). For example, we may assume that there is a family of
outcome distributions F that can be parameterized with a vector θd, and the planner learns
about θd in order to maximize E[U(θd)], where U is a utility function that may depend on
these parameters in complex ways.

The exploration sampling algorithm generalizes in a straightforward way to this setting, as
long as we can simulate draws of θ = (θd)kd=1 from the posterior in each t. We can simulate
θ, determine the utility-maximizing treatment for each draw, calculate the share pdt of draws
for which d is optimal, and obtain the exploration sampling shares qdt by formula (4.1). We
conjecture that exploration sampling improves learning, and the asymptotic characterizations
in section 4.1 hold, in a range of more general settings of this form. In the specific case where

5In the binary outcome setting with treatment costs cd, Theorem 1 needs the additional conditions θd
(1) −

cd
(1)

< 1 − cd and −cd(1) < θd − cd ∀d. These conditions ensure that the problem is “hard” enough, so
that we cannot exclude any treatment from being optimal without observations on that treatment. They are
immediately satisfied if the costs are the same for all d.
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outcomes are binary, but regret ∆d is replaced with U(θd
(1)

)− U(θd), our convergence results
apply verbatim for any utility function U that is increasing in θd.
Covariate-specific treatment assignment. Instead of one treatment for the whole pop-
ulation, the planner may be interested in the optimal treatment assignment d∗T (·) that maps
covariates X into treatments D. Such assignment rules are studied in the literature on contex-
tual bandits (Dudik et al., 2011; Dimakopoulou et al., 2017; Bastani et al., 2017; Dimakopoulou
et al., 2018) and on targeted treatment assignment based on observational data (e.g. Kitagawa
and Tetenov, 2018).

A natural adaptation of our algorithm to targeted treatment assignment policies uses hi-
erarchical Bayesian models. Consider the case of binary outcomes Y and discrete covariates
X. Let θdx = E[Y d|X = x]. We might model θdx ∼ Beta(αd0, β

d
0 ) independently across x

given d, with (αd0, β
d
0 ) ∼ π distributed independently across d for some prior π. We can sam-

ple from the posterior using Markov-chain Monte Carlo, and based on such samples estimate
pdxt = P

(
d = argmax d′(θ

d′ − cd′)|X = x,mt−1, rt−1

)
. The exploration sampling algorithm

for this setting then uses stratum-specific conditional assignment shares qdxt = Sxt ·pdxt ·(1−pdxt ).
Combining bandit and policy objectives. When the experimental sample is not negligible
relative to the policy population, the planner may consider a combination of policy regret and
in-sample regret. This is easily accommodated in the fully optimal assignment discussed in
the supplement. Adapting the exploration sampling algorithm is less immediate. A possible
alternative approach could build on the knowledge gradient method discussed in the literature
on Bayesian optimization (Frazier, 2018), which is based on a one-period truncated version of
the dynamic optimization problem; its approximation to the value function could be modified
to take into account in-sample welfare.
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A Proofs

Consider an experiment of length T that uses exploration sampling. We are interested in
the behavior of Rθ(T) as T → ∞. Throughout this appendix, all probability statements are
frequentist (conditional on the true θ). We start with three lemmas that characterize the rate-
optimal treatment allocation q̄, based on results from Glynn and Juneja (2004). We then restate
some lemmas from Russo (2016) that help establish the convergence of exploration sampling
to this rate-optimal allocation, before proceeding to the proof of Theorem 1 based on these
lemmas.

A.1 The rate-optimal allocation

Lemma 1 states that the rate of convergence of expected policy regret Rθ(T) to zero is equal
to the slowest rate of convergence Γd across d 6= d(1) for the probability of d being estimated to
be better than d(1). For a given limit assignment share ρd

(1)

= γ for d(1), Lemma 2 draws on
the theory of large deviations to characterize Γd as a function of the treatment allocation share
for each d 6= d(1), ρd. It also states that the posterior probability pdT of d being optimal, and
therefore the Thompson allocation shares, converge at the same rate Γd. Lemma 3 characterizes
the allocation of observations across the treatments d 6= d(1) which maximizes the rate of Rθ(T).

Lemma 1 Denote the estimated success rate of d at time T by θ̂dT =
αd

0+r
d
T

αd
0+β

d
0+m

d
T

.

Assume that the optimal policy d(1) is unique.
Suppose that limT→∞− 1

NT logP
(
θ̂dT > θ̂d

(1)

T

)
= Γd for all d. Then

lim
T→∞

(
− 1

NT
log Rθ(T)

)
= min
d6=d(1)

Γd.
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Proof: The expected policy regret can be written as Rθ(T) =∑
d ∆d · P

(
argmax d′ θ̂

d′

T = d
)
. We can bound this from below and above:

(
min
d 6=d(1)

∆d

)
·
(

max
d 6=d(1)

P
(
θ̂dT > θ̂d

(1)

T

))
≤ Rθ(T)

≤
(

(k − 1) max
d 6=d(1)

∆d

)
·
(

max
d 6=d(1)

P
(
θ̂dT > θ̂d

(1)

T

))
.

The claim follows. �

Lemma 2 Suppose that q̄dT = md
T /(NT ) converges to ρd for all d, with ρd

(1)

= γ. Then

1. limT→∞− 1
NT logP

(
θ̂dT > θ̂d

(1)

T

)
= Γd, and

2. plimT→∞− 1
NT log pdT = Γd,

where Γd = Gd(ρd) for a function Gd : [0, 1] → R that is finitely valued, continuous, strictly
increasing in ρd, and satisfies Gd(0) = 0.

Proof: The first claim follows from the arguments in Glynn and Juneja (2004), Section 2. The
second claim follows from Proposition 5 and Lemma 2 in Russo (2016). The function Gd is
given by Gd(ρd) = infx

(
γ · Id(1)(x) + ρd · Id(x)

)
, where Id is the Legendre transform of the log

moment generating function of Y d. �

Lemma 3 The rate-optimal allocation ργ , subject to ρd
(1)

γ = γ, is given by the unique solution
to the system of equations∑

d6=d(1)
ρdγ = 1− γ and Gd(ρdγ) = Γ∗ > 0 for all d 6= d(1) (A.1)

for some Γ∗. No other allocation ρ̂, subject to ρ̂d
(1)

= γ, can achieve a faster rate of convergence
of Rθ(T) than Γ∗.

Proof: Based on Lemma 1 and part (1) of Lemma 2, the allocation that maximizes the
convergence of Rθ(T) is given by arg maxρmind 6=d(1) G

d(ρd), subject to
∑
d ρ

d = 1 and ρd
(1)

= γ.
The claim follows from the properties of Gd in Lemma 2. �

Theorem 1 in Glynn and Juneja (2004) states an unconstrained version of this result, max-
imizing the probability of picking the optimal policy, rather than minimizing policy regret.

For the remainder of this section, we take Equation (A.1) as the definition of ρ. Theorem
1 states that q̄T converges to ρ for exploration sampling.

A.2 Sufficient conditions for convergence to the optimal allocation

To prove Theorem 1, we draw on several Lemmas from Russo (2016), which we restate here in
our notation. Lemma 4 shows that q̄dt converges to the optimal share ρd as in Equation (A.1)

17



if the assignment share is “self-correcting”, in the sense that the current assignment qdt is small
whenever total assignment q̄dt to d is too high. Lemma 5 shows that if q̄dt is too high, then pdt
converges to zero exponentially faster than pd

′

t for some other d′ 6= d(1), which will allow us to
show that qdt will be such that Lemma 4 applies. Lemma 6 is a posterior consistency result for
adaptive assignments.

Lemma 4 (Lemma 12 of Russo 2016) Suppose that q̄d
(1)

t →p γ and

∞∑
t=1

qdt · 1(q̄dt > ρd + δ) <∞

for all d 6= d(1) and all δ > 0, with probability 1. Then q̄dt →p ρd.

Lemma 5 (Lemma 13 of Russo 2016) Suppose that q̄d
(1)

t →p γ and consider any d 6= d(1)

and any δ > 0. Then there exists a δ′ > 0 and a sequence εt → 0 such that for all t

q̄dt > ρdγ + δ ⇒ pdt
maxd′ 6=d(1) p

d′
t

≤ exp(−t(δ′ + εt)).

Lemma 6 (Proposition 4 of Russo 2016) Denote the posterior probability after wave t that
θd is in some set A by P dt (A). Suppose that

∑
t q
d
t =∞. Then P dt ([θd− ε, θd+ ε])→p 1 for any

ε > 0 and the true θd. Suppose that
∑
t q
d
t < ∞. Then inft P

d
t (A) > 0 for any open interval

A ⊂ [0, 1].

A.3 Proof of Theorem 1

Recall that exploration sampling assigns a share qdt =
pdt ·(1−p

d
t )∑

d′ p
d′
t ·(1−pd

′
t )

of wave t to treatment d,

where pdt is the posterior probability that d is optimal.
Step 1: Each treatment is assigned infinitely often.

Suppose that treatment d is only assigned finitely often. Then there is some wave t′ after which
d is not assigned anymore, and the posterior probability pdt of d being optimal is bounded away
from 0 for all t > t′. To see this, note that the posterior (Beta) distribution for θd assigns
positive mass to the interval (1 − ε, 1] for any ε > 0. Let ε = (1 − θd(1))/2 > 0. For any other
d′ and any t, there is positive posterior probability that θd

′
< 1 − ε: If

∑
t q
d′

t = ∞ then the
posterior probability that θd

′
< 1 − ε converges to 1 by Lemma 6. If

∑
t q
d′

t < ∞, then the
posterior probability that θd

′
< 1 − ε remains bounded away from 0, again by Lemma 6. It

follows that inft p
d
t > 0.

Under exploration sampling, the denominator in the expression defining qdt is bounded above
by 1, and thus the assignment share qdt is bounded below by pdt · (1 − pdt ). It follows that qdt
is bounded away from 0 when the same holds for pdt . This implies that treatment d will be
assigned again with probability 1 after t′; contradiction.
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Step 2: The share of observations q̄d
(1)

T assigned to the best treatment converges
in probability to 1/2 as T →∞.
We can derive upper and lower bounds on qdt , by considering the maximum and minimum of
the expression defining qdt with respect to the vector pt, for a given pdt > 0.

The denominator of the expression defining qdt ,
∑
d′ p

d′

t · (1−pd
′

t ), is concave as a function of
the vector pt. The maximum of qdt is therefore achieved at a corner of the simplex of possible
values for pt given pdt . Each corner is such that pd

′

t is equal to 0 for all but two values of d′

(one of them d). For any such pt we get qdt = 1/2. This implies qdt ≤ 1/2 for all values of pt
and all d.

In the reverse, again by concavity and symmetry of the denominator, the minimum of qdt
with respect to {pd′t }d′ 6=d, given pdt , is achieved when pd

′

t is equal to 1−pdt
k−1 for all d′ 6= d. We

therefore get

qdt ≥
pdt · (1− pdt )

pdt · (1− pdt ) +
∑
d′ 6=d

1−pdt
k−1

(
1− 1−pdt

k−1

) =
pdt

pdt +
(

1− 1−pdt
k−1

) ≥ pdt
pdt + 1

.

Since each treatment is assigned infinitely often, we have that pd
(1)

t →p 1 in probability by

Lemma 6 and uniqueness of the optimal treatment d(1), and therefore pd
(1)

t

pd
(1)

t +1
→p 1/2. We get

that qd
(1)

t →p 1/2 in probability. The claim for the average across t, q̄d
(1)

T , follows by the law of
large numbers.

Step 3: The share of observations q̄dT assigned to each treatment d 6= d(1) con-
verges in probability to a non-random share ρd. ρd is such that − 1

NT log pdT →p Γ∗

for all d 6= d(1) and some Γ∗ > 0 that is constant across d 6= d(1).
Consider a sub-optimal treatment d and a subsequence of t where the share of observations
allocated to d up to time t exceeds ρd. Lemma 5 implies that along this subsequence, the pos-
terior probability pdt that d is optimal has to go to zero exponentially faster than maxd′ 6=d(1) p

d′

t

(we assume wlog k > 2, since the claims of Theorem 1 are immediate for k = 2). Note now
that by definition of qdt

qdt ≤
pdt · (1− pdt )

maxd′ 6=d(1) p
d′
t · (1− pd

′
t )
≤ 2

pdt
maxd′ 6=d(1) p

d′
t

,

where the second inequality holds as long as maxd′ 6=d(1) p
d′

t ≤ 1/2. Since pdt /maxd′ 6=d(1) p
d′

t

converges to 0 at an exponential rate, by Lemma 5, the same holds for qdt . Thus, along any
subsequence where the share of observations allocated to d up to time t exceeds ρd we have
that qdt goes to 0 sufficiently fast (i.e., at an exponential rate). By Lemma 4, we have that the
share of observations assigned to d has to converge to ρd. The second part of the claim follows
from the definition of ρ in Lemma 3.

Step 4: Expected policy regret converges to 0 at the same rate Γ∗, that is,
− 1
NT log Rθ(T)→ Γ∗. No algorithm with limit assignment shares ρ̂ 6= ρ and ρ̂d

(1)

= 1/2

exists for which Rθ(T) goes to 0 at a faster rate than Γ∗.
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By Lemma 1 and Lemma 3. �

A.4 Proof of Proposition 1

To show this result, let us consider the posterior probabilities pd2 that d is optimal after wave
1, for each d. Note first that pd

(1)

2 →p 1 as N1 → ∞ by consistency of posteriors (Schwartz’s
theorem, e.g. Theorem 6.16 in Ghosal and Van der Vaart 2017). Further, from Proposition 5 in
Russo (2016), it follows that pd2/pd

(2)

2 →p 0 for d /∈ {d(1), d(2)}: The posterior probability of the
set Θd of values for θ which are such that d is the optimal treatment converges in probability
to 0 at an exponential rate equal to the KL-divergence of the closest element in Θd to the
true data generating θ. Given uniqueness of d(2), this KL-divergence is strictly larger for any
d /∈ {d(1), d(2)} than for d(2), and pd2/pd

(2)

2 →p 0 follows.

1. From these conditions on p2, the claim for Thompson sampling follows immediately.

2. To show the claim for exploration sampling, recall that qd2 =
pd2 ·(1−p

d
2)∑

d′ p
d′
2 ·(1−pd

′
2 )

. Note that

under these conditions on p2, for d /∈ {d(1), d(2)}

0 ≤ pd2
1− pd(1)2

≤ pd2
pd

(2)

2

→p 0

pd
(2)

2

1− pd(1)2

= 1−
∑

d/∈{d(1),d(2)}

pd2
1− pd(1)2

→p 1, and thus

qd
(1)

2 =
1

1 +
1−pd(2)2

pd
(1)

2

pd
(2)

2

1−pd(1)2

+
∑
d6=/∈{d(1),d(2)}

1−pd2
pd

(1)

2

pd2

1−pd(1)2

→p 1

2
,

qd
(2)

2 =
1

1 +
pd

(1)

2

1−pd(2)2

1−pd(1)2

pd
(2)

2

+
∑
d6=/∈{d(1),d(2)}

pd2

pd
(2)

2

1−pd2
1−pd(2)2

→p 1

2
. �

A.5 Proof of Proposition 2

We compare two algorithms in which the limit shares ρd allocated to the sub-optimal treatments
d 6= d(1) are chosen to maximize the rate of convergence of policy regret, as in Lemma 3. The
first algorithm has limit share assignment ργ with ρd

(1)

γ = γ and therefore rate of convergence
Γ∗γ . Call the associated experiment, with T waves with N experimental units each, experiment
A. The second algorithm has limit share assignments ργ∗ , where γ∗ = argmax g′ Γ

∗
g, so that

the rate of convergence Γ∗γ∗ is the highest possible rate of convergence.
Define a hypothetical experiment B that uses the second algorithm with limit shares ρ∗γ ,

but with a number of waves equal to bmin (γ, 1− γ) · T c for any T = 1, . . . ,∞. Denote regret
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for experiment B, as a function of T , by R̃θ(T). By Lemmas 1 and 2,

1

bmin (γ, 1− γ) · T c ·N
log R̃θ(T)→ Γ∗γ∗ .

Since lim bmin(γ,1−γ)·Tc
T = min (γ, 1− γ) , it follows that

Γ′ ≡ lim
T→∞

1

TN
log R̃θ(T) = min (γ, 1− γ) · Γ∗γ∗ .

It remains to show that Γ∗γ ≥ Γ′. By assumption, the number of observations assigned to
d(1) under experiment A, divided by the total number of observations NT , converges to γ in
probability. The number of observations assigned to d(1) under experiment B, divided by NT ,
converges to min(γ, 1− γ) · γ∗ < γ in probability (since 0 < γ∗ < 1; otherwise Γ∗γ∗ = 0, which
can not be optimal). By a symmetric argument, the number of observations assigned to all
d 6= d(1) under experiment A, divided by NT , converges to 1 − γ, while under B it converges
to min(γ, 1− γ) · (1− γ∗) < 1− γ.

Therefore, with probability going to 1 as T goes to∞, under experiment A more observations
are assigned to treatment d(1), as well as to all other treatments d 6= d(1) combined, relative to
experiment B. Furthermore, for A, the allocation among the treatments d 6= d(1) is such that
it provides the largest possible value of Γ∗γ . This, in combination with the fact that the rate of
convergence of expected policy regret is monotonically increasing in the number of observations
available for any treatment arm, yields the claim. �

A.6 Generalizing Theorem 1

Generalizing Theorem 1, Proposition 3 below shows that similar properties are enjoyed by any
algorithm satisfying the following conditions:

1. The vector of assignment shares in wave t, qt, is given by a function ψ(pt) of of the vector
pt.

2. limp→ed ψ
d(p) = γ, where ed is the d’th unit vector and γ < 1.

3. qdt ≤ C ·
pdt

max
d′ 6=d(1)

pd
′

t

, for some constant C and all d 6= d(1).

4. Each treatment is assigned infinitely often.

Conditions 2 and 3 are immediately verifiable properties of the function ψ. Condition 4 requires
case-specific proofs.

Proposition 3 Consider any algorithm satisfying the conditions stated above, in the setting of
Section 2, with fixed wave size Nt = N ≥ 1. Assume that the optimal policy d(1) is unique and
that θd

(1)

< 1. As T →∞, the following holds:
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1. The share of observations q̄d
(1)

T assigned to the best treatment converges in probability to
ρd

(1)

γ ≡ plimT→∞ q̄d
(1)

T = γ.

2. The share of observations q̄dT assigned to treatment d 6= d(1) converges in probability to a
non-random share ρdγ . ρdγ is such that
− 1
NT log pdt →p Γ∗ for some Γ∗ > 0 that is constant across d 6= d(1).

3. Expected policy regret converges to 0 at the same rate Γ∗, that is,
− 1
NT log Rθ(T) → Γ∗. No algorithm with limit assignment shares ρ̂γ with ρ̂d

(1)

γ = γ

exists for which Rθ(T) goes to 0 at a faster rate than Γ∗.

As an example of an algorithm satisfying these properties, consider treatment assignment
using the assignment shares qd

∗
t
t = γ, and qdt =

[
(1− γ)/(1− pd∗t )

]
· pdt for d 6= d∗t . Properties

1 and 2 are immediate. Property 3 holds with C = 1. Noting that qdt is bounded away from 0

when the same holds for pdt , Property 4 holds by arguments exactly analogous to those in step
1 of the proof of Theorem 1.

The proof of Proposition 3 follows the same steps as our proof of Theorem 1.
Step 1: Each treatment is assigned infinitely often.

This holds by assumption.
Step 2: The share of observations q̄d

(1)

T assigned to the best treatment converges
in probability to γ as T →∞.
Since each treatment is assigned infinitely often, we have that pd

(1)

t →p 1 in probability by
Lemma 6 and uniqueness of the optimal treatment d(1), and therefore qd

(1)

t = ψd
(1)

(pt) →p γ

in probability, by our assumption on ψ. The claim for the average across t, q̄d
(1)

T , follows by the
law of large numbers.

Step 3: The share of observations q̄dT assigned to treatment d converges in prob-
ability to a non-random share ρdγ, for all d.
ρdγ is such that − 1

NT log pdT →p Γ∗ for all d 6= d(1) and some Γ∗ > 0 that is constant
across d 6= d(1).
Consider a sub-optimal treatment d and a subsequence of t where the share of observations
allocated to d up to time t exceeds ρdγ . Lemma 5 implies that along this subsequence, the pos-
terior probability pdt that d is optimal has to go to zero exponentially faster than maxd′ 6=d(1) p

d′

t

(we assume wlog k > 2, since the claims of Proposition 3 are immediate for k = 2). Note
now that by assumption qdt ≤ C · pdt

max
d′ 6=d(1)

pd
′

t

, for some constant C and all d 6= d(1). Since

pdt /maxd′ 6=d(1) p
d′

t converges to 0 at an exponential rate, by Lemma 5, the same holds for qdt .
Thus, along any subsequence where the share of observations allocated to d up to time t exceeds
ρdγ we have that qdt goes to 0 sufficiently fast (i.e., at an exponential rate). By Lemma 4, we
have that the share of observations assigned to d has to converge to ρdγ . The second part of the
claim follows from the definition of ργ in Lemma 3.
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Step 4: Expected policy regret converges to 0 at the same rate, that is, − 1
NT log Rθ(T)→

Γ∗. No other assignment shares ρ̂dγ exist for which ρ̂d
(1)

γ = γ and Rθ(T) goes to 0 at
a faster rate than Γ∗.
By Lemma 1 and Lemma 3. �
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