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Abstract

We study how violations of structural assumptions like expected utility and
exponential discounting can be connected to reference dependent preferences with
set-dependent reference points, even if behavior conforms with these assumptions
when the reference is fixed. An axiomatic framework jointly and systematically
relaxes general rationality (WARP) and structural assumptions to capture refer-
ence dependence across domains. It gives rise to a linear order that determines
references points, which in turn determines the preference parameters for a choice
problem. This allows us to study risk, time, and social preferences collectively,
where seemingly independent anomalies are interconnected through the lens of
reference-dependent choice.

1 Introduction

The standard model of choice in economics faces two separate strands of empirical chal-
lenges. First, structural assumptions such as the expected utility form (Independence)
and exponential discounting (Stationary) are violated in simple choice experiments,
most notably the Allais paradox and present bias. Second, and separately, studies have
shown that choices are affected by reference points, resulting in “non-rational ” behavior
that violates the weak axiom of revealed preferences (WARP). With few exceptions,
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these two classes of prominent departures from standard models have been studied sep-
arately, and independently for each domain of choice, propelling models that seek to
explain one phenomenon in isolation of the others.1

In this paper, we propose a unified framework that uses reference dependency to
jointly explain failures of WARP and violations of structural assumptions across the
risk, time, and social domains. This novel approach allows us to study different types
of documented departure from standard models as related to one another, and in doing
so suggests new empirical directions.

The intuition comes from a simple observation: If decision makers have preferences
(e.g., utility functions, discount factors) that depend on a reference point, then even if
they are otherwise standard and maximize exponentially discounted expected utility,
they would still violate both WARP and structural assumptions like the Independence
and Stationarity axioms from time to time—when reference points change.

Working with choice behavior, we provide the axiomatic foundation for a set of
four models—generic choice, risk preference, time preference, and social preference—in
which behavioral anomalies are explained through a common channel: changing prefer-
ences due to reference dependence. In these models, reference points are endogenously
determined by reference orders, which rank each alternative by their relevance in af-
fecting the reference point and influencing preferences.

To illustrate, consider a decision maker who exhibits increased risk aversion in
the presence of safer options and therefore defies the expected utility theory (EU).
This behavior is consistent with a myriad of anomalous choice documented in Herne
(1999); Wakker & Deneffe (1996); Andreoni & Sprenger (2011), and prominently Allais
(1953)’s paradox.2 However, choice pattern of this kind can be explained without fully
rejecting the expected utility form—that decision makers maximize the expectation of

1For reference dependence, see for example Kahneman & Tversky (1979), Kőszegi & Rabin (2006),
Masatlioglu & Ok (2005), Masatlioglu & Ok (2013), Ok et al. (2015), and Dean et al. (2017). For
models weakening the expected utility form see Quiggin (1982), Bell (1982); Loomes & Sugden (1982),
Chew (1983); Fishburn (1983); Dekel (1986), Gul (1991), and Cerreia-Vioglio et al. (2015). For models
weakening the discounted utility form see Loewenstein & Prelec (1992), Laibson (1997) and Frederick
et al. (2002). For models that use reference dependency to explain violations of structural assumptions,
see for example Kőszegi & Rabin (2007), Ortoleva (2010). An exception where both WARP and
structural assumptions are relaxed is Bordalo et al. (2012).

2In the Allias paradox, a decision maker is drawn to the safe option when it is available, contradict-
ing the irrelevance of common consequence assumption in standard expected utility theory. We will
(re)introduce the Allais paradox and discuss the application of our model in Section 3. Herne (1999);
Wakker & Deneffe (1996); Andreoni & Sprenger (2011) document other behaviors consistent with our
risk model, discussed in Section 3.
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some utility function for each choice problem—but by allowing for reference dependent
utility functions that varies in concavity. This leads to our model in the risk domain:
a decision maker’s utility function depends on the safest available alternative, which
reflects changing risk aversion. When the safest alternative is fixed, standard expected
utility holds. But when reference point changes, then the safer the reference, the more
concave the utility function. We then show that the same concept can be applied to
time preference and social preference. Hence, we have a “unified framework”.

This framework has two persistent components: (i) a complete and transitive bi-
nary relation that determines the reference points and (ii) preference parameters (i.e.,
utility functions, discount rates, utility from sharing) that depend on the reference
point. Through our three applications, we demonstrate that our framework allows for
a reference point that takes the form of an alternative (risk preference), a feature of an
alternative (time preference), or an external index such as the Gini coefficient (social
preference).

Our first step is a general representation theorem for choices in a generic domain:
Ordered-Reference Dependent Utility (ORDU) (Section 2). In this model, the decision
maker uses a reference order to identify the reference alternative of a choice problem.
In turn, this determines a utility function that she maximizes. Hence, it is as if that
alternatives are ranked by their relevance in affecting preferences, and the underlying
preference for a given choice problem is determined by the alternative that ranks highest
in this order among those that are available.

The key behavioral postulate, Reference Dependence (RD), provides a general con-
dition that captures reference dependency in choice. It posits that if we fix the reference
point, WARP holds. Since we do not know which alternative is the reference point, we
scarcely posit that there is one option in every choice problem such that if we keep said
option when taking subsets, WARP holds. To illustrate, consider two choice sets B ⊂ A

such that WARP is violated; for instance, when an alternative is available in both A

and B but is only chosen from A. Our axiom RD makes the behavioral assumption
that the reference alternative of A is not present in B, causing a change in reference
and therefore a WARP violation. Hence for any choice set A, RD demands that choices
from subsets of A satisfy WARP as long as a certain (reference) alternative remains
present. A formal definition is provided in Section 2. This axiom, along with a standard
continuity assumption when X is infinite, characterizes the ORDU representation.

Next, we consider the special case of risk preference in Section 3. Now the postu-
late becomes: preserving one of the safest alternatives in a choice set preserves WARP

3



and the Independence condition. The intuition remains the same: by maintaining the
reference point, normative postulates hold, which include Independence in addition to
WARP in the case of risk preference. We call this Risk Reference Dependence. A sec-
ond axiom, Avoidable Risk, states that if we expand a choice problem, then choices are
weakly more risk averse, since an even safer reference increases risk aversion. Together
with standard continuity and first order stochastic dominance we obtain the Avoid-
able Risk Expected Utility (AREU) representation, in which a decision maker’s utility
function depends on the safest alternative available, and safer references lead to more
concave utility functions. Once a utility function is determined, standard expected
utility maximization follows.

We then turn to the time domain in Section 4. The standard model for time pref-
erences is Exponentially Discounted Utility, yet it is routinely challenged in empirical
studies as economic agents are less patient for short-term decisions, or present bias.3 In
our model, a decision maker uses a discount factor that depends on the earliest avail-
ability of a payment from a choice problem, and the availability of a sooner payment
makes the decision maker impatient. The key axiom, Time Reference Dependence, is
the counterpart of RD, where now we require WARP and Stationarity to hold only
when we preserve the earliest alternative. The reference effect is characterized by the
axiom Present Bias, which simply posits that symmetrically advancing the options can
only increase delay aversion, where the decision maker is less willing to wait. The re-
sulting model explains the well-known violation of dynamic consistency, in which the
same delay between consumption is tolerable in the future but not in the present. The
model also captures WARP violations that occur in the same spirit, where the avail-
ability of an immediate payment tempts the decision maker toward sooner payments,
even if the immediate payment is not itself chosen.

The application for social preference is studied in Section 5. Often viewed as a
desire to be fair, subjects in economics and psychology experiments display increased
altruism when a more balanced split of payment is available than when it is not.4 In our
setup, an alternative is an income distribution between the decision maker and another
individual. Decision makers agree on what it meas to be equal, but disagree on what
it means to be fair. They use the Gini coefficient to measure equality, and attainable
equality is therefore the lowest Gini coefficient that can be achieved in a given choice

3See for example Laibson (1997), Frederick et al. (2002), and Benhabib et al. (2010).
4See for example Ainslie (1992), Rabin (1993), Nelson (2002), Fehr & Schmidt (2006), and Sutter

(2007).
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problem. When attainable equality is higher (lower Gini), they experience greater (sub-
jective) utility from sharing, which reflects their desire to be fair. This type of behavior
is a result of our unified framework adapted to this setting—the presence of certain
alternatives, as given by a reference order, affects the underlying preference for sharing.
Like before, the main axiom Equality Reference Dependence calls for conformity with
WARP and quasi-linear preferences when we preserve the most-balanced option. A
second axiom, Fairness, posits that decision makers are weakly more willing to share
when options are added to a choice problem, since this can only increase attainable
equality. In addition to capturing changing altruism, the model also explains increased
sharing when splitting a fixed pie due to the availability of a more balanced division,
as well as increased tendency to forgo a larger pie in favor of sharing a smaller one.

In our three applications, failures of WARP and failures of structural assumptions
are inextricably linked. For example in the risk domain, adding WARP to our model
immediately implies full compliance with Independence, and vice-versa (Proposition 1).
Therefore, our model departs from standard expected utility only when both WARP
and Independence fail. The same results are obtained for time and social preferences
(Proposition 3 and Proposition 4). These findings separate our work from models
that weaken structural assumptions but retain WARP—often interpreted as a stable
preference that simply lacks structural properties. In fact, necessary violation of WARP
suggests a behavioral manifestation of changing preferences in our models. It provides
a new perspective to study classic paradoxes like Allais and present bias using WARP
violations in non-binary choice, which we elaborate in their respective sections.

In relation to the existing literature, we first note that reference points are not
exogeneously observed in our models. This strikes a fundamental difference in primi-
tives/datasets to prospect theory by Kahneman & Tversky (1979), the endowment effect
by Kahneman et al. (1991), and models of status quo bias led by Masatlioglu & Ok
(2005).5 Our models belong to a separate set of literature built on endogenous reference,
where reference points are neither part of the primitive nor directly observable, such as
in Kőszegi & Rabin (2006) and Ok et al. (2015). Unlike these models, our reference al-
ternatives are given by a reference order. This added structure allows us to quickly pin
down reference points that may not be otherwise observable. Subsection 2.2 discusses
the identification of our reference points and the consequent out-of-sample predictions
via the reference order. Using this defining feature, Appendix B provides in details

5For other models of status quo bias, see Masatlioglu & Ok (2013) and Dean et al. (2017). Ortoleva
(2010) extends this idea to preferences under uncertainty.
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testable distinctions between ORDU and related non-WARP models (Kőszegi & Rabin
(2006), Ok et al. (2015), Manzini & Mariotti (2007), Masatlioglu et al. (2012)).

Our most general model, in which choices are over generic alternatives, is most
similar in spirit and concurrent to Kıbrıs et al. (2018) albeit having different axioma-
timization. Their paper focuses on choices over generic alternatives and contains no
counterpart to our applications in the risk, time, and social domains. Their axiom de-
picts a conspicuity ranking between any two alternatives: if dropping x in the presence
of y results in a WARP violation, then dropping y in the presence of x does not. Our
approach is different and more involved, as it requires comparison between multiple
choice problems differing by more than one alternative. However, this allows us to ac-
commodate a wide range of behavioral postulates (in addition to WARP), such as the
Independence and Stationarity conditions, with which we deliver reference-dependent
expected utility and reference-dependent exponential discounting respectively. More-
over, their model is limited to a finite set of alternatives, whereas we allow the set to
be any separable metric space. This is not (just) a technical contribution, as the added
generality is indispensable for choices over lotteries.

We compare our applications in risk, time, and social preferences to existing models
in their respective sections. However our main contribution is, instead of a single model
that captures a specific departure from standard theory, a unified framework. The
closest work that also takes the form of a unified framework is salience, pioneered by
Bordalo et al. (2012, 2013), where options are evaluated differently depending on which
attribute is salient. We are different in that our framework comprises of a systematic
reference dependence approach of weakening normative postulates, with which we apply
universally to the risk, time, and social domains. This approach allows us to study
reference dependence in risk as related to reference dependence in time, and failure of
WARP as related to failure of structural assumptions. Indispensable to this innovation
is the use of choice correspondences as opposed to preference relations as primitive and
foregoing WARP—the conventional “rationality” assumption increasingly scrutinized by
empirical evidence. Otherwise, behavior is summarized by binary comparisons, leaving
behind useful information about how people make decisions when they face more than
two choices at once. This richer scope utilizes behavior from large choice sets to help
us further understand anomalies traditionally found in binary choice.

The remainder of the paper is organized as follows. In Section 2, we provide the
axioms and the representation theorem for a generic ordered-reference dependent utility
representations. Later in that section, we introduce a companion result to incorporate
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the accommodation of properties other than WARP, and a template for additional
structure in the reference order R. Section 3, Section 4, and Section 5 each provides
a representation theorem under this unified framework for the risk, time, and social
preference settings respectively, discusses the model’s implications, as well as compares
it to related models in the literature.

2 Ordered-Reference Dependence

We start with most general model, in which a decision maker chooses from generic
alternatives.

2.1 Reference Dependent Choice

We introduce a reference-based approach of imposing a standard behavioral postulate.
In this section, said postulate is WARP.

Let Y be an arbitrary set of alternatives, A the set of all finite and nonempty
subsets of Y , and c : A → A, c (A) ⊆ A, a choice correspondence. Recall that c
satisfies WARP if for all choices problems A,B such that B ⊂ A, c (A)∩B 6= ∅ implies
c (A) ∩B = c (B).6

Even though choices may violate WARP, it may still be the case that they comply
with it among a subset of all choice problems S ⊂ A. We define this notion formally.

Definition 1. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies
WARP over S if for all A,B ∈ S,

B ⊂ A, c (A) ∩B 6= ∅ ⇒ c (A) ∩B = c (B) .

WARP is hence equivalent to the statement “c satisfies WARP over A.”
Our first axiom is a reference-based generalization of WARP.

Axiom 1 (Reference Dependence (RD)). For every choice problem A ∈ A, there exists
an alternative x ∈ A such that c satisfies WARP over S = {B ⊆ A : x ∈ B}.

Note that this axiom generalizes WARP, since “c satisfies WARP over A” implies
“c satisfies WARP over S” for any S ⊆ A.

6For an arbitrary A, this definition of WARP is weaker than another popular version: x ∈ c (A),
y ∈ c (B), and x, y ∈ A∩B implies x ∈ c (B). They are equivalent whenever A contains all doubletons
and tripletons subsets of Y .
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We explain the intuition of Axiom 1. Suppose choices between choice problems A
and B (⊂ A) violate WARP; for example, y ∈ c (A) but y ∈ B\c (B). We postulate
that this is due to a change in reference point. Specifically, that the reference alterna-
tive of A must have been removed when take subset B of A, that is, it is in the set
A\B. Then, a natural limitation of WARP violations arise: have we not removed the
reference alternative of A when taking an arbitrary subset B of A, choices would have
complied with WARP. To put it differently, suppose that when taking subsets of A, if
by preserving some alternative x in this process choices from these subsets comply with
WARP. x is hence an endogenous candidate for “the reference alternative of A”.7 Ax-
iom 1 demands that every choice problem contains (at least) one candidate alternative
that achieves this.

Next we provide an example of compliance. Consider the following choice corre-
spondence for Y = {a, b, c, d}, where the notation {a, b, c, d} means b is chosen from the
choice problem {a, b, c, d}.

{a, b, c, d}
{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

This choice correspondence does not satisfy WARP globally (there are three instances
of WARP violations: (i) between {a, b, c, d} and {b, c, d}, (ii) {b, c, d} and {b, c}, and
(iii) {a, c, d} and {c, d}). Yet WARP is satisfied from choice sets that contain a. To
reconcile with Axiom 1, when S = Y , a is a candidate reference alternative. This is also
true for any choice set S that contains a. Likewise, for S = {b, c, d}, d is a candidate
reference, and this is true for any choice set S that contains d but not a. The only
choice set left to be checked is S = {b, c}, but since the only non-singleton subset of
{b, c} is itself, WARP is trivial.

Although Axiom 1 allows for WARP violations, it is falsifiable as long as |Y | ≥ 3

(i.e., as soon as WARP is non-trivial). For example, the following choice correspondence
violates Axiom 1.

{a, b, c} {a, b} {b, c} {a, c}

In this example, instances of WARP violations are (i) between {a, b, c} and {a, b} and
(ii) between {a, b, c} and {b, c}. So when A = {a, b, c}, a does not preserve WARP since

7Using the language in Ok et al. (2015), this alternative can be called a potential reference alternative
of A.
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the first instance is not excluded, b does not preserve WARP since neither instance is
excluded, and c does not preserve WARP since the second instance is not excluded.
Hence the axiom does not hold.

Another way of “measuring” falsifiability is to count the number of observations
(choice problems) required to falsify an axiom. For standard WARP that number is
2: for example, when WARP is violated between {a, b, c} and {a, b}. Whereas for
Axiom 1, a weakening of WARP, that number is 3: for example {a, b, c}, {a, b}, and
{a, c}, since the reference of {a, b, c} is in {a, b} and/or {a, c}, but WARP is violated
both between {a, b, c}, {a, b} and between {a, b, c}, {c, b}.8 Thus reference dependence
makes Axiom 1 harder to reject relative to WARP by one additional observation.

When Y is infinite, we also assume Continuity. Say (Y, d) is a metric space.

Axiom 2 (Continuity). We say c : A → A satisfies Continuity if it has a closed-graph
(with respect to the Hausdorff distance): xn →d x, An →H A, and xn ∈ c (An) for every
n = 1, 2, ... implies x ∈ c (A).9

2.2 Representation theorem

Let R be a complete and transitive binary relation, arg max
x∈A

R denotes the set

{x ∈ A : xRy ∀y ∈ A}.

Definition 2 (Ordered-Reference Dependent Utility). c admits an Ordered-Reference
Dependent Utility (ORDU) representation if there exist a complete, transitive, and
antisymmetric reference order R on Y and a set of reference-indexed utility functions
{ux : Y → R}x∈A such that

c (A) = arg max
y∈A

ur(A) (y) ,

where r (A) = arg max
x∈A

R.

Theorem 1.

1. Let Y be a finite set. c satisfies RD if and only if it admits an ORDU represen-
tation.

8This can be generalized: Axiom 1 is falsified when there are WARP violations between A,B1 and
between A,B2 such that B1 ∪B2 = A, where A,B1, B2 ∈ A.

9By →H we mean convergence in the Hausdorff distance, defined by dH (X,Y ) =
max

{
supx∈X infy∈Y d2 (x, y) , supy∈Y infx∈X d2 (x, y)

}
.
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2. Let Y be a separable metric space. c satisfies RD and Continuity if and only
if it admits an ORDU representation where c (A) = arg maxy∈A ur(A) (y) has a
closed-graph.

ORDU represents a special type of context-dependent preferences. A decision
maker’s preference may change with the choice set, but depends only on its refer-
ence alternative, characterized by reference-dependent utilities. Reference-dependent
utilities are more restrictive than set-dependent utilities, where each choice problem has
its own utility function.10 When |Y | is finite, there are at most |Y | distinct utility func-
tions but around 2|Y | choice problems, and this difference increases exponentially in |Y |.
Furthermore, a linear order, called reference order, uniquely pins down the reference
point for each choice problem.

The reference order has natural interpretations in richer settings, as we demonstrate
in the risk, time, and social preference sections. When the setting is choices over generic
alternatives, an interpretation of the reference order is a subjective salience ranking of
alternatives. The most salient alternative determines the underlying preference used
with the problem. In this setting, it is as if that the decision maker’s attention is drawn
to a certain salient alternative, and her preference ranking depends on that alternative.
It is the fact that her attention is not always drawn to the same (reference) alternative
that gives rise to WARP violations. But when she has the same reference alternative
for a set of choice problems, her choices are consistent with a stable preference ranking.

The suggestion that certain salient component of a choice problem affect choices
is not new, for example Bordalo et al. (2012, 2013). In their model, alternatives have
attributes, and depending on which alternatives are being compared certain attributes
are more salient than others, and weighted differently, from one choice problem to
another. This is the source of WARP violations in their model. In ORDU, attributes
are not part of the primitive/model, allowing for a different but related characterization
of salience when the modeler either does not observe attributes or do not know the
relevant attributes that play in role in decision making.

Combining reference-dependent utilities with a reference order yields out-of-sample
predictions. For example, when the reference alternative in choice problem A is present
in the choice problem B ⊂ A, that alternative is still the reference, and the preference
ranking remains the same. This is a feature of the reference order. So once we have

10Set-dependent utilities, that each choice problem A has a utility function uA (x) that is maximized,
puts no restriction on behavior, since we can simply set uA (c (A)) = 1 and uA (x) = 0 for all x 6= c (A).
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identified the reference alternative r of A, we know choices from subsets of A that
contain r use the same utility function. Due to this defining feature, ORDU neither
nests nor is nested by Ok et al. (2015)’s revealed (p)reference, Kőszegi & Rabin (2006)’s
reference-dependent preferences (personal equilibrium), Manzini & Mariotti (2007)’s
rational shortlist method, and Masatlioglu et al. (2012)’s choice with limited attention,
for which we elaborated and provide testable distinctions in Appendix B.

Furthermore, reference alternatives are uniquely identified whenever we observe
WARP violation upon removing them, since it is only through changes in references
points that WARP violations arise. For example if WARP is violated between A and
B, and B = A\ {x}, then x is the reference of A. Hence it is through inconsistency
or incoherence in choice with respect to WARP that we infer the presence of reference
points, pin them down uniquely, and identify their “effects”. Instead, if a decision
maker complies with WARP, the idea that preferences are reference dependent cannot
be substantiated.

Together, the model allows us to make out-of-sample predictions between two
worlds: On one end, the decision maker’s reference alternatives are not identifiable
with choice data precisely because she satisfies WARP and maximizes a single prefer-
ence ranking; on the other end, the decision maker’s choices are reference-dependent
and result in WARP violations, which allows us to identify reference points and subse-
quently make predictions using the reference order.

2.3 A unified framework for structural anomalies

ORDU has natural applications. The rest of the paper demonstrates it in the risk,
time, and social preference domains. In each setting, a domain-specific interpretation
is given to the reference order. In the risk setting, the minimum amount of risk the de-
cision maker must take, as measured by the safest alternative in a choice problem, may
influence risk aversion. In the time setting, the earliest available payday creates temp-
tation for immediate consumption, which may reduce patience. In the social preference
setting, the lowest possible Gini coefficient from a choice problem, which characterizes
how equatable a distribution could have been, may induce a greater desire to share.
We formally present these models in Section 3, Section 4, and Section 5 respectively.

Reference Dependence (Axiom 1) weakened WARP by demanding that WARP
is satisfied among choice problems that share a reference alternative (as opposed to
all choice problems). This method of generalizing an axiom is applicable not only
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to WARP, but also a wide range of behavioral properties defined on choice behavior.
For example, we can call for compliance with the Independence condition in a similar
way, where Independence is not necessarily satisfied between every two choices, but is
complied with whenever the choices come from choice problems that have the same
reference point. We therefore have a reference dependence approach of weakening an
arbitrary set of postulates, which we apply to different choice domains.

In their respective sections, we adapt Axiom 1 to postulates of the form “For ev-
ery choice problem A, there exists an alternative x ∈ A such that c satisfies T over
S = {B ⊆ A : x ∈ B}”. T is “WARP and Independence” for the risk domain, “WARP
and Stationarity” for the time domain, and “WARP and Quasi-linearity” for the social
domain.

The result is anticipated—ordered-reference expected utility, ordered-reference ex-
ponentially discounted utility, and ordered-reference quasi-linear utility. In fact, the
representation theorems for all four models in the present paper start with a quintessen-
tial result in Appendix A, Lemma 2, which demonstrates the wide applicability of our
approach by accommodating a class of behavioral postulates we call finite properties,
for which WARP, Independence, Stationarity, Quasi-linearity, Transitivity, Convexity,
Monotonicity, Stochastic dominance are examples. Then, complemented with addi-
tional structure on reference orders, we obtain the reference-dependent versions of the
corresponding utility representations.

The next three sections are applications of this approach.

3 Risk Preference

We now turn to an application in the domain of risk, where we provide a utility repre-
sentation, with axiomatic foundation, that explains increased risk aversion when safer
options are present than when they are not. Consider a decision maker whose willing-
ness to take risk depends on how much of it is avoidable, as measured by the safest
alternative among those that are available. This depends on the underlying choice set:
Sometimes, we have the option to fully avoid risk by keeping our asset in cash or by
buying an insurance policy, and so the safest option is quite safe. In other situations,
all options are risky and we are forced to take some risk, and so the safest option is
quite risky. The premise of our model, in the risk setting, is that a decision maker’s
risk aversion may differ between these two types of choice problems in a particular way:
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she could be more risk averse when risk is avoidable than when it is not.
Suggestive evidence for this behavior is present in the literature. In the well-known

paradox introduced by Allais (1953), when one choice problem contains a safe option
and the other does not, subjects tend to chose the safer option in the former. This
observation is consistent with increased risk aversion when safer options are present.
We provide a quick recap of the Allais paradox and its relevance as pertain to our model
when we discuss applications. We will also present a result that shows that Allais-type
behavior is the consequence of changing utility functions by concave transformations,
which characterizes greater risk aversion under the expected utility form.

In a separate setting meant to test for the compromise effect, Herne (1999) showed
that the presence of a safer option results in WARP violations in the direction of more
risk averse behavior. Wakker & Deneffe (1996) introduced the tradeoff method to elicit
risk aversion without using a sure prize and showed that the estimated utility functions
are in general less concave relative to the standard certainty equivalent / probability
equivalent methods.11 Andreoni & Sprenger (2011) reinforces this observation when
the safest option is close to certainty.

3.1 Preliminaries

Consider a finite set of prizes X ⊂ R. Let Y = ∆ (X) be the set of all lotteries over
X endowed with the Euclidean metric d2. Let A be the set of all finite and nonempty
subsets of ∆ (X). We call A ∈ A a choice problem. We take as primitive a choice
correspondence c : A → A that gives, for each choice problem A, a subset c (A) ⊆ A.

We assume throughout that c satisfies first order stochastic dominance.

Axiom 3 (FOSD). For any p, q ∈ ∆ (X) such that p 6= q, if p first order stochastically
dominates q, then p ∈ A implies q /∈ c (A).

Notations: Per convention, δx denotes the lottery that gives prize x ∈ X with
probability 1. For p, q ∈ ∆ (X) and α ∈ [0, 1], we denote by pαq the convex combination
αp ⊕ (1− α) q ∈ ∆ (X). Let b := max≥X and w := min≥X denote the highest and
lowest prizes respectively. Finally, we denote by p (x) the probability that lottery p

gives prize x ∈ X, where
∑

x∈X p (x) = 1.

11Certainty equivalent method finds the value of a sure prize such that a subject is indifferent to a
fixed lottery. Probability equivalent method fixes the sure prize and alters the probability of a lottery
until the subject is indifferent. Tradeoff method finds the indifferent point between two lotteries by
varying one of the prizes.
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3.2 Risk Reference Dependence

Recall that in Section 2 we defined what it means for WARP to hold on an arbitrary
set of choice problems. We now do the same for Independence.

Definition 3. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies
Independence over S if for all A,B ∈ S and α ∈ (0, 1),

1. p ∈ c (A), q ∈ A, qαs ∈ c (B) and pαs ∈ B ⇒ pαs ∈ c (B), and

2. pαs ∈ c (A), qαs ∈ A, q ∈ c (B) and p ∈ B ⇒ p ∈ c (B).

In standard expected utility, c satisfies WARP and Independence over A.
We depart from standard expected utility and focus on behavior where risk aversion

depends on the safest available alternatives even though WARP and Independence are
complied with whenever a collection of choice problems share the same safest available
alternative.

First we define what the safest available alternative means. We do so using two
partial orders. A mean-preserving spread (MPS) is clearly not safest, this is our first
order. However, mean-preserving spread is a (very) incomplete order, where many
lotteries are left unranked. This makes it hard to predict when should WARP and
Independence hold.

To account for this limitation, we also deem riskier any lottery that is an extreme
spread, our second risk order, which we now define. We call p an extreme spread of q
(denoted by pESq) if p = βq+(1− β) (α (δb) + (1− α) (δw)) for some β ∈ [0, 1) and α ∈
(q (b) , 1− q (w)). This notion captures lotteries that assign more probability to extreme
prizes while being proportionally identical for intermediate prizes. Extreme spread
shares the intuition of Aumann & Serrano (2008)’s risk index (which in their paper
only applies to gain-loss prospects), where lotteries are deemed safer in the “economics
sense”—decision makers who are more risk averse always prefer them whenever decision
makers who are less risk averse do.12

12For every q, the set of extreme spreads of q is small and lives entirely within the probability triangle
that contains q, δb, and δw. In this probability triangle, it consists of all lotteries such that a more risk
loving decision maker would prefer (to q) whenever a more risk averse one does, under the framework
of standard expected utility. In particular, it is a superset of mean-preserving spreads in this triangle.
The intuition behind this notion is that, when probabilities are allocated to the most extreme prizes,
even if mean is not preserved, we should still deem the resulting lottery riskier. Note that an extreme
spread need not be a mean-preserving spread, and vice versa.

14



Although the two risk orders never contradict each other, they are also
not nested. Let MPS (A) = {p ∈ A : ∃q ∈ A s.t. pMPSq} and ES (A) =

{p ∈ A : ∃q ∈ A s.t. pESq} denote the mean-preserving spreads and extreme spreads
in A respectively. The remaining lotteries in A are therefore least risky in the sense
that no other lotteries in A are safer than them according to our risk orders.

Definition. For each A ∈ A, define by Ψ (A) := A\ (MPS (A) ∪ ES (A)) the set of
least risky lotteries in A.

We now replace Reference Dependence from Section 2 with a stronger axiom that
demands (i) reference-dependent compliance with both WARP and Independence and
that (ii) the reference is a least risky lottery.

Axiom 4 (Risk Reference Dependence). For every choice problem A ∈ A, there exists
p ∈ Ψ (A) such that c satisfies WARP and Independence over S = {B ⊆ A : p ∈ B}.

Axiom 4 identifies a candidate reference for choice problem A. If Ψ (A) = {p},
and B1 and B2 are subsets of A containing p, then neither a violation of WARP nor a
violation of Independence is produced between c (B1) and c (B2).

Like Reference Dependence (Axiom 1 in Section 2), Risk Reference Dependence
postulates that there is a reference point, in the sense that WARP holds in its presence.
But it additionally postulates that Independence also holds, and that this reference
point is in Ψ (A)—a least risky lottery.13

Clearly, Axiom 4 weakens the axioms of standard expected utility, which demands
compliance of WARP and Independence over the entire A.

3.3 Avoidable Risk

Our next axiom captures the behavioral property that reflects increased risk aversion
when more options are available. Consider the following axiom.

Axiom 5 (Avoidable Risk). For any choice problems A,B ∈ A such that B ⊂ A,

δαr ∈ c (B) , pαr ∈ B, pβq ∈ c (A) , δβq ∈ A ⇒ δβq ∈ c (A) ,

13This is where the decision maker’s subjectivity enters the model: For two lotteries not ranked
by objective notions of risk, one individual may deem one lottery riskier, whereas another individual
disagrees. The axiom demands that a reference point exists and is a least risky alternative, but in
instances where |Ψ (A) | > 1, the decision maker’s choices subjectively determine which lottery in Ψ (A)
is the reference.
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where p, q, r ∈ ∆ (X), δ is a degenerate lottery, and α, β ∈ [0, 1].

It is standard that a preference relation %1 is deemed more risk averse than another
%2 if for any degenerate alternative δ and lottery p, δ %2 p ⇒ δ %1 p. We extend this
definition to lotteries that are not entirely riskless, but differ by a degenerate and (pos-
sibly) non-degenerate components: δαq and pαq (where δ is a degenerate alternative).14

Under standard expected utility, the two notions coincide, and this extension is without
loss.15 It is precisely because we depart from the standard expected utility model that
we require this extended definition—the choice between δ and p does not pin down the
choice between δαq and pαq due to changing risk aversion.

Axiom 5 postulates that a decision maker is not more risk loving when a choice
problem expands. When new alternatives are added to an existing choice problem,
they can only increase the amount of risk that is avoidable, and therefore a decision
maker may view risk less favorably and become more risk averse.

Standard expected utility satisfies this axiom trivially. An expected utility max-
imizer can neither be more risk loving nor more risk averse between any two choice
problems, a consequence of the Independence axiom. Therefore, our departure is in
fact very limited; of the various ways in which Independence can fail, we only permit a
specific kind of failure: increased risk aversion.

The final two axioms are standard: that choice is continuous (defined in Section 2)
and abides by first order stochastic dominance.

3.4 Representation theorem

We now introduce the utility representation.

Definition. We say an order R is risk-consistent if, whenever (i) p is a mean-preserving
spread of q or (ii) p is an extreme spread of q (or both), we have qRp.

Definition 4. c admits an Avoidable Risk Expected Utility (AREU) representation if
there exist (i) a complete, transitive, and antisymmetric reference order R on ∆ (X)

14pαq is obtained from δαq by moving probabilities from one prize to one or more prizes. We hence
deem δαq safer than pαq, and say that a more risk averse decision maker prefers δβq to pβq whenever
a less risk averse decision maker prefers δαr to pαr.

15This is the consequence of the Independence axiom of standard expected utility, in which δαq is
chosen over pαq if and only if δβr is chosen over pβr if and only if δ is chosen over p.
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and (ii) a set of strictly increasing utility functions {up : X → [0, 1]}p∈∆(X), such that

c (A) = arg max
p∈A

Epur(A) (x) ,

where

• r (A) = arg max
q∈A

R,

• R is risk-consistent,

• qRp implies uq = f ◦ up for some concave f :[0, 1]→ [0, 1],

• arg maxp∈A Ep
[
ur(A) (x)

]
has a closed-graph.

Theorem 2. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Risk Reference Dependence, Avoidable Risk, FOSD and Continuity.

2. c admits an AREU representation.

Furthermore in every AREU representation, given R, up is unique for all p 6= (δb)
α (δw).

When choices admit an AREU representation, it is as if the decision maker goes
through the following decision making process: Facing a choice problem, she first looks
for the safest alternative using R, which is risk consistent—it ranks safer alternatives
higher. This determines the (Bernoulli) utility function for the choice problem and she
proceeds to choose the option that maximizes expected utility. Moreover, the safer
the reference, a more concave utility function is used, resulting in weakly more risk
averse choices. This generalizes the standard model where a decision maker chooses the
option that maximizes expected utility using a single utility function. It departs from
standard expected utility by allowing greater risk aversion when alternatives are added
to a choice set, but prohibits any other types of preference changes.

Note that utility functions in AREU are generically unique (up to an affine transfor-
mation). This property guarantees that their relationships by concave transformations
are not arbitrary, and choices manifest changing risk aversions. Here, each utility func-
tion up is used to evaluate options for a set of choice problems that deem p as the safest
alternative. When p 6= (δb)

α (δw), there are many of these choice problems in which p
is not the chosen alternative, making up non-arbitrary.
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3.5 Applications of AREU

First, we show that AREU provides a natural explanation for the Allais paradox and
proposes new form of Allais paradox manifested in the form of a WARP violation.

In experimental settings, subjects tend to choose the degenerate lottery p1 = δ3000

over the lottery p2 = 0.8δ4000 + 0.2δ0, but choose q2 = 0.2δ4000 + 0.8δ0 over q1 =

0.25δ3000 + 0.75δ0. This is called the Allais common ratio effect, a prominent “anomaly”
in the study of choices under uncertainty.16

AREU explains this behavior using changes in risk aversion. Given a reference order
R that deems the safest alternative in the first choice problem—in which a sure prize is
available—as safer than the safest alternative in the second choice problem, a decision
maker is more risk averse and prefers p1 over p2 but not q1 over q2. That is, where
A = {p1, p2} and B = {q1, q2}, we have ur(A) = f ◦ur(B) for some concave transform f .17

It is because of this change in utility function characterizing increased risk aversion that
makes p1, the safe option, appealing in the first choice problem. For the same reason,
violation of expected utility theory in the opposite direction—choices of p2 and q1—is
ruled out, making increased risk aversion the only form of expected utility violations
permitted in AREU.18 Moreover, it captures both the common ratio effect and the
common consequence effect, and the lotteries involved can be generalized.19

When a decision maker faces more than two choices at once, AREU predicts WARP
violations that resemble the Allais paradox. Consider a decision maker who prefers
p1 = δ3000 to p2 = 0.5δ4000 + 0.5δ0, q2 = 0.4δ4000 + 0.3δ3000 + 0.3δ0 to q1 = 0.2δ4000 +

0.7δ3000 + 0.1δ0, and q1 to p1. The first two choices correspond to the standard Allais
16This paradox is introduced by Allais (1953). This example is taken from Starmer (2000). Note that

the second pair of options are derived from the first pair using a common mixture, q1 = 0.2p1 + 0.8δ0
and q2 = 0.2p2 + 0.8δ0. Under expected utility theory, those who prefer p1 to p2 should prefer q1 to q2,
and vice versa. Hence choices of p1 and q2 is a direct contradiction of expected utility theory. Camerer
(1995) and Starmer (2000) provide an in-depth survey.

17After normalization (uA (0) = 0 and uA (4000) = 1), uA (3000) > 0.8 and ub (3000) < 0.8.
This come from solving uA (3000) > 0.8uA (4000) + 0.2uA ($0) and 0.25uB (3000) + 0.75uB (0) >
0.2uB (4000) + 0.8uB (0) for uA (3000) and uB (3000). Since uA (3000) > uB (3000), we conclude
uA = f ◦ uB for some concave f : [0, 1]→ [0, 1].

18This is consistent with the behavioral postulate referred to as Negative Certainty Independence in
Dillenberger (2010); Cerreia-Vioglio et al. (2015) and Kahneman & Tversky (1979)’s certainty effect.

19Consider a degenerate lottery δ and a lottery p such that neither of them first order stochastically
dominates another. Consider the lotteries δ′ = δαq and p′ = pαq for some α ∈ (0, 1) and lottery q and
suppose |X| = 3. If δ ∈ c ({δ, p}) and p′ ∈ c ({δ′, p′}), then for all u1, u2 : X → R such that u1 explains
the first choice and u2 explains the second choice, it is straightforward to show that u1 = f ◦ u2
for some concave function f : R → R. Moreover, the choices admit an AREU representation such
that r ({δ, p})Rr ({δ′, p′}). Conversely, suppose the choices c ({δ, p}) and c ({δ′, p′}) admit an AREU
representation. If p ∈ c ({δ, p}), then p ∈ c ({δ′, p′}). If δ′ ∈ c ({δ′, p′}), then δ ∈ c ({δ, p}).
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common ratio effect. Now we depart from binary choice and consider the choice problem
{p1, q1, q2}. AREU predicts that the availability of p1 reduces risk aversion and causes
the decision maker to prefer q1 over q2—the same way it effects the choice of p1 over p2.
Therefore, q1 will be chosen from this choice set, generating a WARP violation since q2

is chosen over q1 in binary choice. This observation connects the failure of rationality to
the Allais paradox. In AREU, the driving force of the Allais paradox can be manifested
in the form of a WARP violation provided that the right choice sets are considered,
offering new empirical directions.

Last we consider another application of AREU. A known phenomenon in behavioral
finance is reaching for yield, in which investors invest less when the risk-free rate is
higher, which is at odds with the standard expected utility model with commonly used
specifications such as those that exhibit constant relative risk aversion. Lian et al.
(2017) shows that this behavior is at odds with utility functions exhibiting constant or
decreasing absolute risk aversion, capturing a large class of utility functions typically
used in behavioral finance. The authors also provided evidence of this behavior.

AREU is consistent with this observation, where the addition of a better sure prize
increases risk aversion. Consider a choice set A that contains a sure prize of $4 and
choice set B obtained from A with an additional option: a sure prize of $7. Although
risk is fully avoidable in both choice problems, the decision maker may find risk less
appealing overall since a better sure prize is now available. AREU captures this behavior
when δxRδy if x > y. Then, the decision maker maximizes expected utility with a more
concave utility function when a better sure prize is present. This predicts WARP
violation in the direction of increased risk aversion, where a riskier option is chosen
over a safer option in A, but the safer option is chosen in B.

3.6 Linkage between WARP violation and Independence viola-

tion

Risk Reference Dependence (Axiom 4) assumes WARP and Independence over certain
subsets of all choice problems. We now study the consequences of imposing each of
these assumptions over the entire set of choice problems A.

It turns out adding any one of WARP and Independence brings us back to standard
expected utility. This suggests a formal separation of AREU from a wide range of non-
expected utility models in which WARP holds. It also suggests that, in our model,
violation of Independence is a matter of changing preferences.
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As is standard, we say c admits a utility representation if there exists a real valued
utility function U : ∆ (X)→ R such that c (A) = arg maxp∈A U (p).

Proposition 1. Suppose c admits an AREU representation. The following are equiv-
alent:

1. c satisfies WARP (over A).

2. c satisfies Independence (over A).

3. c admits an expected utility representation.

4. c admits a utility representation.

AREU seeks to explain non-EU behavior as a consequence of changing preferences,
typically symbolized by the failure of WARP. To this end, Proposition 1 shows that
AREU leaves no explanatory power in explaining the violations separately. Instead,
violation of standard rationality (WARP) and structural violations (Independence) are
inextricably linked to one another, and resolving either one will bring us back to stan-
dard expected utility.

Similarly, a choice correspondence that admits utility representation is often in-
terpreted as the consequence of a stable preference ranking. Proposition 1 connects
AREU’s motivation with this interpretation, that expected utility ensues when prefer-
ences over lotteries are stable, and failure of expected utility is entirely due to changing
preferences.

This also sets us apart from non-EU models that retains WARP. In those cases,
a single utility function is maximized, but it need not take the expected utility form.
In our case, choices come from utility functions that conform with the expected utility
form, but there are multiple of them. Therefore, AREU is the result of a joint weakening
of both WARP and Independence, the core idea of the framework this paper proposes,
and new testable predictions follow. The same results and arguments will hold in the
time and social domain (Section 4 and Section 5).

3.7 AREU, Transitivity, Betweenness

Although Proposition 1 provides a strong separation between AREU and many non-
EU models, we can more meaningfully recover the extent to which AREU is related
to other models by imposing Transitivity partially. To this end, we turn our attention
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to Marschak-Machina triangles (also “probability triangle”) for the next part of our
analysis.

We will show that AREU is in fact very close to (but is not sufficient for) Be-
tweenness, a well-known property introduced (on preference relations) by Chew (1983);
Fishburn (1983); Dekel (1986).20 Like expected utility, models of betweenness prefer-
ences have the characteristic of linear indifference curves, but indifference curves need
not be parallel. Since Betweenness and Transitivity are typically defined on a pref-
erence relation, we first proceed to define Betweenness and Transitivity on a choice
correspondence.

Definition 5. Let c : A → A be a choice correspondence. We say c satisfies Between-
ness over S ⊆ A if for any {p, q} , {p, pαq} , {pαq, q} ∈ S and α ∈ (0, 1),

1. c ({p, q}) = {p} ⇒ c ({p, pαq}) = {p} and c ({pαq, q}) = {pαq},

2. c ({p, q}) = {p, q} ⇒ c ({p, pαq}) = {p, pαq} and c ({pαq, q}) = {pαq, q}.

Definition 6. Let c : A → A be a choice correspondence. We say c satisfies Transitivity
over S ⊆ A if for any {p, q} , {q, s} , {s, p} ∈ S,

p ∈ c ({p, q}) and q ∈ c ({q, s}) ⇒ p ∈ c ({q, s}) .

Our next result uses the following terminology. We will focus our analysis on
Marschak-Machina triangles. For any three prizes {a, b, c} ⊆ X, consider the set of
all lotteries induced by them, ∆ ({a, b, c}). Let Ba,b,c denote the set of all finite and
nonempty subsets of ∆ ({a, b, c}), and therefore Ba,b,c ⊆ A. Going forward, we omit
subscripts and use the notation B. Also, let p be a mean-preserving spread of q. We
say c is weakly risk averse (resp. risk loving) over B if {p, q} ∈ B implies q ∈ c (A)

(resp. p ∈ c (A)). If c ({p, q}) = {p, q} whenever {p, q} ∈ B, we say c is risk neutral
over B. We say that indifference curves fan out (resp. fan in) if they become weakly
steeper (resp. flatter) in the first order stochastic dominance direction.

Proposition 2. Suppose c admits an AREU representation. If c satisfies Transitivity
over a Marchak-Machina triangle B, then:

20AREU does not automatically imply Betweenness preferences. Consider the Allais common ratio
behavior where $3000 for sure is chosen over 80% of $4000 (and otherwise $0), but 80% of $4000 is
chosen over [50% of $3000 and 40% of $4000]. This behavior violates Betweenness, but it is admissible
by AREU where the former choice problem uses a more concave utility function.

21



Figure 3.1: Let a < b < c. Dotted (red) lines are the mean-preserving spread lines.
Solid (blue) lines are indifferent curves. Referring to Proposition 2, the picture on the
left corresponds to point 3 and the picture on the right corresponds to point 4.

1. c satisfies Betweenness over B.

2. c is either weakly risk averse over B, weakly risk loving over B, or risk neutral
over B.

3. Indifference curves fan out if c is weakly risk averse over B.

4. Indifference curves fan in if c is weakly risk loving over B.

Proposition 2 connects AREU to linear indifferent curves—a property of standard
expected utility—and pins down the set of admissible indifferent curves.

While AREU allows a decision maker to have varying magnitudes of risk aversion,
Transitivity puts a bound on this variation so that choices are either exclusively risk
averse or exclusively risk loving (in this probability triangle). In each case, a particular
direction of fanning is also prescribed (Figure 3.1), suggesting that risk averse (resp.
risk loving) agents become even more risk averse (resp. risk loving) when lotteries
become better.

These results provide testable predictions for AREU, and separates it from other
models, which we discuss next.

3.8 Related literature

Various alternatives to expected utility were introduced by Quiggin (1982), Chew
(1983); Fishburn (1983); Dekel (1986), Bell (1985); Loomes & Sugden (1986), Gul
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(1991), Kőszegi & Rabin (2007), and Cerreia-Vioglio et al. (2015). We now use Propo-
sition 1 and Proposition 2 to study their relationship to AREU.

The AREU model has a close relationship with betweenness preferences introduced
by Chew (1983); Fishburn (1983); Dekel (1986). Although the two intersect only at
expected utility, a direct implication of Proposition 1, the two make similar predictions
for binary choices when Transitivity is added to AREU in a probability triangle.

Among models of betweenness preferences, Gul (1991)’s disappointment aversion is
closest in spirit to AREU, but the two predict different behavior. In disappointment
aversion, the set of possible outcomes of each lottery is decomposed into elevation prizes
and disappointment prizes, and the utilities from disappointment prizes are discounted
using a function of the probability of disappointment. An implication of disappointment
aversion is the property of mixed fanning, in which indifference curves first fan in
and then fan out, for example. AREU cannot accommodate mixed fanning, a direct
application of Proposition 2, and so the two models differ in their coverage of non-
expected utility behavior.

For the same reason, AREU and Cerreia-Vioglio et al. (2015)’s cautious expected
utility put fourth different behavioral predictions. In their model, a decision maker
evaluate each lottery as its worst certainty equivalence under a set of (Bernoulli) utility
functions. The result is a behavior that resembles cautiousness. A property resembling
mixed fanning is an implication of their model, where indifferent curves are steepest in
the middle, a consequence of the axiom Negative Certainty Independence: p % δ implies
pαq % δαq.

Like AREU, Kőszegi & Rabin (2007)’s reference-dependent risk preferences uses ref-
erence points to explain non-expected utility behavior. However, both the identification
of reference points and the consequence of changing reference points differ. In AREU,
reference alternatives are given by the safest alternatives in choice problems, and they
serve as a proxy for changing risk preferences. In Kőszegi & Rabin (2007), a decision
maker is subjected to gain-loss utility relative to a reference point, where the reference
point is the lottery she expects to receive. We focus on choice-acclimating personal equi-
librium (CPE), in which reference points are endogenously set as the eventually-chosen
alternatives. Masatlioglu & Raymond (2016) shows that when a CPE specification sat-
isfies first order stochastic dominance, the implied behavior can be explained by the
quadratic utility functionals of Machina (1982); Chew et al. (1991). Yet, Chew et al.
(1991) demonstrates that quadratic functionals intersect with betweenness preferences
only at expected utility, and hence the CPE model of Kőszegi & Rabin (2007) intersects
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with AREU only at expected utility.21

The model closest to AREU, to my knowledge, is the context-dependent gambling
effect by Bleichrodt & Schmidt (2002). In their model, a decision maker’s preferences
are explained by two (Bernoulli) utility functions, one for comparisons that involve
a riskless option and another for the rest. Unlike AREU, their model only applies to
binary decisions, which results in different axioms and applicability. Furthermore, when
a degenerate lottery is slightly perturbed into a non-degenerate one, it produces a choice
reversal, which seems implausible. Their model also does not accommodate violations
of expected utility in choice problems without a riskless option, such as variations of the
Allais paradox. Finally, while their axioms are separately imposed on binary decisions
involving and not involving riskless options, our axioms are imposed on the choice
correspondence without such discrimination.

4 Time Preference

Next, we provide an application of our unified framework for choices over delayed con-
sumption. The canonical model for this setting is Discounted Utility, axiomatized by
Fishburn & Rubinstein (1982), in which a decision maker evaluates each payment-time
pair (x, t) by δtu (x). However, Discounted Utility has routinely faced empirical chal-
lenges as subjects tend to violate the Stationarity condition: The choice between two
payments switches when the decision is made in advance, typically favoring the later
option for the long-term decisions.22 This effect is called the present bias.

In this section, we expand the scope of present bias to study reduced patience as
a result of a WARP-violating preference change. We do so by weakening the axioms
of Fishburn & Rubinstein (1982) using an approach analogous to Section 2’s Refer-
ence Dependence. The outcome is a utility representation in which choices maximize
exponentially discounted utilities using a discount factor that depends on the earliest
available payday.

Although present bias has been explained by various models that reflect reduced
patience for short-term decisions, this is often done under the assumption of WARP.
This falls short of allowing us to study present bias as a matter of preference change,

21Similar conclusions of non-intersection with AREU (other than expected utility) can be made
for Quiggin (1982)’s rank dependent utility (see Chew & Epstein (1989)) and Bell (1985); Loomes &
Sugden (1986)’s disappointment theory. Some of these results, and a comprehensive summary, are
provided by Masatlioglu & Raymond (2016).

22See for example Laibson (1997), Frederick et al. (2002), and Benhabib et al. (2010).
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where the availability of certain options induces an overall decrease in patience that is
manifested in a WARP violation.

To illustrate, suppose $20 in 4 days is chosen over $18 in 3 days, but $18 today is
chosen over $20 tomorrow; this familiar choice pattern is present bias. Now suppose
the decision maker encounters a new choice problem where she faces the choice of $15
today, $18 in 3 days, or $20 in 4 days. In this situation, she might find it tempting
to choose $18 even though she would have chosen $20 if $15 were not available. This
behavior reflects reduced patience in the form of a WARP violation. It is also consistent
with intuition behind present bias, that the availability of something immediate induces
impatience.

4.1 Preliminaries

Let X = [a, b] ⊂ R>0 where b > a be an interval of positive payments and let T =

[0, t̄] ⊂ R+ where t̄ > 0 be an interval of non-negative time points. Y = X × T is
the set of alternatives, in which an alternative (x, t) ∈ X × T is a (single) payment of
x that arrives at time t. We endow X × T with the standard Euclidean metric. Let
A be the set of all finite and nonempty subsets of X × T . Finally, let c : A → A,
c (A) ⊆ A, be a choice correspondence. To avoid redundancy, we assume throughout
that (b, t̄) ∈ c ({(a, 0) , (b, t̄)}), that is, it is possible to find payment at time t̄ that the
decision maker would choose when compared to a payment at time 0.

We maintain the following standard axioms for time preferences, that higher pay-
ments and sooner payments are always chosen from binary choice problems.

Axiom 6.

1. Outcome Monotonicity: if x > y, then c ({(x, t) , (y, t)}) = {(x, t)}.

2. Impatience: if t < s, then c ({(x, t) , (x, s)}) = {(x, t)}.

4.2 Time Reference Dependence

Time consistency in choice is captured by a well-known behavioral property called Sta-
tionarity. Under Stationarity, a decision maker’s preference between two future pay-
ments is consistent regardless of when the decision is made. For this reason, Stationarity
is often deemed a normative postulate in economic analysis.
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Similar to what we did to weaken WARP and Independence in previous sections,
we first define what it means for a choice correspondence c to satisfy Stationarity over
a subset of all choice problems.

Definition 7. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies
Stationarity over S if for all A,B ∈ S, a > 0,

(x, t) ∈ c (A) , (y, q) ∈ A, (y, q + a) ∈ c (B) , and (x, t+ a) ∈ B ⇒ (x, t+ a) ∈ c (B) .

Supplied with Axiom 6, a direct adaption of Fishburn & Rubinstein (1982) into the
framework of choice gives that c satisfies WARP and Stationarity over A if and only if
it admits a (exponential) Discounted Utility representation.

A choice correspondence that exhibits time inconsistency fails to satisfy Stationarity
over A. However, the choice correspondence may still satisfy Stationary over some
subsets of A. Consider the following axiom, which states that Stationarity is satisfied
between any two choice problems that share an earliest payment.

Definition 8. For each A ∈ A, define by Ψ (A) := {(x, t) ∈ A : t ≤ q for all (y, q) ∈ A}
the set of earliest payments in A.

Axiom 7 (Time Reference Dependence). For any A,B ∈ A, if Ψ (A) ∩ Ψ (B) 6= ∅ (A
and B share an earliest payment), then c satisfies WARP and Stationary over {A,B}.

The axiom posits that a violation of WARP and Stationarity between two choice
problems can only occur if they do not share an earliest payment. If we interpret
compliance with Stationarity as having a stable level of patience, the axiom proposes
that patience may depend on how soon any payment can be attained. This allows us to
capture behavior in which compliance with WARP and Stationarity is not necessarily
upheld between long-term and short-term choice problems, such as those exhibited in
time consistency experiments.

Note that this postulate can be rewritten in the style of Reference Dependence
(Axiom 1) and Risk Reference Dependence (Axiom 4) from previous sections, stated
formally in the following lemma.

Lemma 1. Fix a choice correspondence c, the following are equivalent.

1. c satisfies Axiom 7.
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2. For every choice problem A ∈ A and every earliest payment (x, t) in it, c satisfies
WARP and Stationarity over {B ⊆ A : (x, t) ∈ B}.

Albeit straightforward, the lemma reassures us that the unified method of weakening
standard postulates proposed in this paper is not dissimilar to demanding compliance
between pairs of choice problems.

In fact, their equivalence in this setting is due to two details. First, unlike our
general model (Section 2) and application in the risk domain (Section 3), in which the
reference order is either fully or partly subjective, the reference points in the present
setting is completely objective—the earliest payments in the choice sets. Because of this
objectivity, the reference order is pinned down axiomatically, and the axiom does not
involve an existential statement that allows for subjectivity in determining reference
points. Second, WARP and Stationarity are properties between pairs of choices (and
not more). This is not the case for all postulates. For example, Transitivity is an
axiom that is trivially satisfied between any pair of choices, but a violation can be
found when more choices are considered. Identifying this equivalence, and the reasons
thereof, allows us to design more efficient tests of the axioms in our unified framework.

4.3 Present Bias

We postulate that patience (may) increase when options are postponed.
Consider prizes x1 < x3 arriving at time t1 < t3 respectively. We posit that by

postponing the options by d > 0, the decision maker is (weakly) more patient and
will choose (x3, t3 + d) over (x1, t1 + d) if she chose (x3, t3) over (x1, t1). The postulate
differs from Stationarity as it allows for the choice of (x1, t1) over (x3, t3) but (x3, t3 + d)

over (x1, t1 + d), or present bias. To summarize, it allows for violation of Stationarity
in one direction but not the other.

However, this falls short of capturing changes in patience. Difference in delay aver-
sion between individuals cannot be directly categorized into difference in discounting
and difference in consumption utility, an issue discussed in Ok & Benoît (2007). Just
because decision maker A chooses a sooner option, and decision maker B chooses a
later one, it is not conclusive that the first decision maker discounts more. Instead,
it could be due to a difference in consumption utility, where A’s marginal utility for
money is sufficiency lower than that of B, which induces the choice of a sooner but
smaller payment.
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To resolve this issue, we introduce an axiomatic observation that captures fixed
consumption utilities under varying discounting/patience. This can be used to charac-
terize a set of individuals whose consumption utility is the same but may differ in their
patience levels.

Consider c ({(x, t) , (y, q) , (z, s)}) = {(x, t) , (y, q) , (z, s)}, where (x, t) gives the
smallest payment but arrives earliest, (z, s) gives the largest payment but arrives
latest, and (y, q) is intermediate in both. Now consider the new choice problem
{(x, λt) , (y, λq) , (z, λs)}, where 0 < λ < 1; that is, all payments will now arrive at
a (common) fraction of time. Under Stationarity, a decision maker only cares about
the delay between the alternatives and would now strictly prefer the latest option since
the time-difference between any two options is smaller. Yet it is ambiguous how a
decision maker of the present model would behave. On one hand, an earlier choice
problem causes the decision maker to choose more impatiently; on the other hand,
delays between alternatives have decreased, which favor later options. The competing
forces render the choice ambiguous. The same competing forces occur when λ > 1: the
decision maker is more patient, but delays between options are larger. In these situ-
ations, we restrict the decision maker’s behavior in the following way: if the decision
maker chooses both the earliest and the latest alternatives after such a transformation
(and recall that he was indifferent between all three before), then he also chooses the
intermediate option in the new choice problem.

The same restriction is imposed when payments are uniformly delayed/advanced.
This restriction is non-trivial only when the aforementioned competing forces are
present: when “λ < 1 and λt + d < t”, where the decision maker becomes less pa-
tient but has to wait shorter for a better payment, and when “λ > 1 and λt + d > t”,
where she is more patient but has to wait longer for a better payment.

This gives rise to the following axiom.

Axiom 8 (Present Bias). For any t1 < t2 < t3, A = {(x1, t1) , (x2, t2) , (x3, t3)}, and
A′ = {(x1, λt1 + d) , (x2, λt2 + d) , (x3, λt3 + d)},

1. c ({(x1, t1) , (x3, t3)}) = {(x3, t3)} ⇒ c ({(x1, t1 + d) , (x3, t3 + d)}) =

{(x3, t3 + d)} for all d > 0,

2. c (A) = A and (x1, λt1 + d) , (x3, λt3 + d) ∈ c (A′) ⇒ (x2, λt2 + d) ∈ c (A′) for all
0 < λ < 1 and d ∈ R.

This postulate is trivially satisfied by a decision maker whose behavior fully complies
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with Stationarity, since she can neither be more patient nor less patient when options
are symmetrically postponed.

Moreover, Part 2 is a necessary condition for behavior across individuals who share
the same consumption utility but have varying discounting.23

4.4 Representation theorem

We are ready for the utility representation and representation theorem.

Definition 9. c admits a Present-Biased Discounted Utility representation (PBDU) if
there exist a strictly increasing and continuous utility function u : X → R and a set of
time-indexed discount factors {δt}t∈T such that

c (A) = arg max
(x,t)∈A

δtr(A)u (x) ,

where

• r (A) = min {t : (x, t) ∈ A},

• t < t′ implies δt ≤ δt′ ,

• arg max(x,t)∈A δ
t
r(A)u (x) has a closed-graph.

Theorem 3. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Time Reference Dependence, Present Bias, Outcome Monotonicity,
Impatience, and Continuity.

2. c admits a PBDU representation.

Furthermore, in every PBDU representation, discount factors {δt}t∈T\{t̄} are unique
given u.

In this model, it is as if the decision maker maximizes exponentially discounted
utility, but with discount factors that depend on the timing of the earliest available

23Take any two utility functions δAu (x) and δBu (x) such that δA, δB ∈ (0, 1). Suppose for some
(x1, t1) , (x2, t2) , (x3, t3) we have δt1A u (x1) = δt2A u (x2) = δt3A u (x3). Moreover, suppose for some 0 <

λ < 1 and d ∈ R, we have δλt1+dB u (x1) = δλt3+dB u (x2). Then δλt1+dB /δλt3+dB = u (x3) /u (x1) = δt1A /δ
t3
A ,

or δB = δ
1/λ
A . Then by δt1A u (x1) = δt2A u (x2) we have δλt1B u (x1) = δt1A u (x1) = δt2A u (x2) = δλt2B u (x2),

or δλt1+dB u (x1) = δλt2+dB u (x2).
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payment. When the earliest available payment arrives sooner in one choice problem
than another, then the decision maker uses a lower discount factor in the former. Since
discount factors are often interpreted as a measure of patience, our model can be viewed
as one in which the decision maker’s patience changes systematically across choice
problems, where she is less patient when an earlier payment is available.

This model conforms with present bias, the empirically prevalent failure of dynamic
consistency in which decision makers exhibit less delay aversion for long-term decisions.
Take for example the classic observation of present bias, where $x today is preferred to
$y tomorrow (choice problem A) but the opposite decision is made when both payments
are postponed by a year (choice problem B). The model we propose explains the
behavior with the simple interpretation that, since the earliest alternative for A arrives
sooner than that for B (i.e., r (A) < r (B)), the decision maker is less patient in the
former (i.e., δr(A) < δr(B)).

Moreover, even though the choice between $x at time t and $y a day later is not
consistent across the time horizon t, the model predicts that as we gradually postpone
both options with s, the choice can only switch from (x, t+ s) to (y, t+ 1 + s). That
is, if there is a point in time at which the decision maker becomes sufficiently patient
to choose $y over $x, she must continue to do so as we further postpone both options.
This “single switching” property is the direct consequence of the fact that references are
ordered and preference changes are unidirectional along this order.

When we move from binary choice problems to larger choice sets, PBDU predicts
that present bias can be manifested in the form of a WARP violation. Consider the
present bias example in which $20 in 4 days is chosen over $18 in 3 days, but $18 today
is chosen over $20 tomorrow. In PBDU, this behavior is explained by the use of a lower
discount factor for latter choice problem, since the earliest available payment arrives
today. However, it would suggest that it is also possible to induce a choice of $18 in
3 days over $20 in 4 days if a lower discount factor is used. In PBDU, this is possible
by introducing $15 today as a third option, which changes the arrival of the earliest
available payment from 3 days later to today. This in turn induces a lower discount
factor, and $18 in 3 may be chosen over $20 in 4 days, even if the opposite is true be
when $15 today is not available. This behavior reflects reduced patience in the form of
a WARP violation and provides a new perspective to study present bias.

Finally, the underpinning of PBDU is the simultaneous weakening of WARP and
Stationarity in a reference-dependent approach. Reminiscent of the observation made
in Proposition 1, WARP and Stationarity are interconnected in our model in the sense
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that neither of them can be independently weakened:

Proposition 3. Suppose c admits a PBDU representation. Then the following are
equivalent:

1. c satisfies WARP (over A).

2. c satisfies Stationarity (over A).

3. c admits an exponential discounting utility representation.

4. c admits a utility representation.

4.5 Related models of time preferences

The biggest difference between Present-Biased Discounted Utility (PBDU) and hy-
perbolic discounting, a class of models in which future options are discounted dispro-
portionately less, is that PBDU (when non-trivial) necessitates WARP violations and
hyperbolic discounting models satisfy WARP. Furthermore, unlike models of hyper-
bolic discounting, PBDU evaluates all alternatives in a choice problem using a single
discount factor.24 However, the empirically informed intuition that discount factors
vary across time is shared between models of hyperbolic discounting and PBDU, albeit
implemented differently. For our model, PBDU, discount rate changes at the choice
problem level, whereas for hyperbolic discounting it changes at the alternative level.
The difference is stark when we consider choice problems that contain more than two
alternatives. In hyperbolic discounting, the preference between any two options stays
the same regardless of what choice problems they appear in, hence WARP is never
violated. This is not the case for PBDU, where a sooner option may become superior
to a later one from the introduction of a third (but not necessarily chosen) alternative,
and results in WARP violations in PBDU.

Exponential discounting has advantageous properties in economic applications, pro-
pelling Laibson (1997)’s well-known quasi-hyperbolic discounting. In their model, be-
havior complies with Stationarity as long as the choice is between two future payments,
and present bias only arises when an immediate payment is involved. This is not the
case in PBDU, as the switch from choosing the earlier payment to choosing the later
one can occur at any time as we gradually shift both payments into the future. Another

24See for instance Loewenstein & Prelec (1992) and Laibson (1997).
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implication of quasi-hyperbolic discounting in our setting is the failure of continuity,
where an instantaneous change in choice occurs when the earlier payment arrives at
time 1 (“today”). Our model complies with continuity of choice, and instead forgoes
WARP to explain dynamic inconsistency.

We now turn to two other models that both explain dynamic inconsistency and can
explain WARP violations.

Lipman et al. (2013) provides an explanation of dynamic inconsistency that builds
on Gul & Pesendorfer (2001)’s introduction of temptation. In Gul & Pesendorfer (2001),
a decision maker has commitment utilities and temptation utilities, and chooses a menu
(a choice problem) taking into account both. The result is that a larger menu may be
inferior, a departure from the conventional understanding that more options should
never be worse. Lipman et al. (2013) extends this to the setting of time preference and
proposes that a decision maker assess current consumption using temptation utility and
future consumption using commitment utility. When making decisions in advance, it
is as if the decision maker is choosing between singleton menus for her future self, and
the absence of temptation utility allows her to make a more patient decision relative
to choices over immediate consumption. Like quasi-hyperbolic discounting, present-bias
is restricted to immediate consumption, whereas PBDU allows present-bias to kick in
at time frame and as long as its effect is persistent when both options are further
postponed—the “single switching” property discussed earlier.

More recently, Freeman (2016) introduced a framework in which WARP is weak-
ened, and reversals are explained by time-inconsistent preferences. In their model, a
decision maker chooses when to complete a task, and may exhibit choice reversal when
additional opportunities for completions are introduced (a expansion of the choice set).
In particular, in response to the addition of an opportunity for completion, a sophis-
ticated decision maker may choose to complete the task earlier (and never later) in
anticipation that allowing her future self to make that decision would result in an even-
tual completion time that is worse than completing the task now. A naive decision
maker, however, could only end up completing later.

Although PBDU allows for choice reversal in the direction of choosing an earlier
option when the choice set expands, it is incompatible with the behavior in Freeman
(2016). In PBDU, a reversal can only occur when the discount factor changes, which
only happens when an alternative earlier than any other already available is added.
However in Freeman (2016), when this kind of alternatives is added, either that this
added alternative is chosen (which is not a reversal) or the choice remains unchanged,
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and so WARP is complied with. This observation is echoed by the fact that the nec-
essary conditions of their model, Irrelevant Alternatives Delay (for a naive agent) and
Irrelevant Alternatives Expedite (for a sophisticated agent) only hold in PBDU if WARP
were to hold.

5 Social Preference

We now turn to our last application.
Consider a decision maker who has a particular type of set-dependent social prefer-

ence—her willingness to share is greater when greater equality is possible. Experiments
in economics and psychology have shown that, instead of being fully selfish and maxi-
mize monetary payment to oneself, people are often willing to share their wealth. This
leads to models of other-regarding preferences and inequality aversion, first introduced
by Fehr & Schmidt (1999); Bolton & Ockenfels (2000); Charness & Rabin (2002). Fur-
thermore, one’s desire to share, or inequality aversion, may be affected by available
options. When options that promote equality are possible, decision makers end up
sharing more, even if this causes them to violate WARP. One explanation for this be-
havior is outcome-based, where a decision maker becomes more inequality averse in the
presence of more balanced distributions. Another explanation is intention-based, where
the decision maker seeks to be perceived as fair.25 Our model does not distinguish be-
tween these two causes for increased altruism, we refer interested readers to surveys
by Fehr & Schmidt (2006); Kagel & Roth (2016) for the vast evidence and suggested
explanations.

To illustrate, suppose a decision maker is endowed with $10 and is asked to share it
with another individual. However, instead of choosing any split of this $10, the designer
is only giving her a few options to choose from. When she is asked to choose between
giving $2 and giving $3, giving $2 may seem like a fair decision. However, when the
choice is between giving $2, $3 or $5, the decision maker may opt for giving $3 instead.
The pair of choices (over income distributions) c ({($8, $2) , ($7, $3)}) = {($8, $2)} and
c ({($8, $2) , ($7, $3) , ($5, $5)}) = {($7, $3)} violates WARP. Hence the assumption of
utility maximization, even if the utility function captures other-regarding preferences
and inequality aversion, is incapable of explaining this behavior.

Using our unified framework, where both WARP and a standard postulate are
25See for example Ainslie (1992), Rabin (1993), Nelson (2002), and Sutter (2007).
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weakened to capture reference-dependence, we provide a model in which a decision
maker’s willingness to share increases when balanced options are added to a choice
problem.

5.1 Preliminaries

Let Y = X = [w,+∞)×[w,+∞), where w > 0, be a set of positive monetary payments.
We call a pair (x, y) ∈ X an income distribution, where x is the dollar amount the
decision maker will receive for herself and y is the dollar amount for another individual.
We endow X with the standard Euclidean metric. Let A be the set of all finite and
nonempty subsets of X and c : A → A, c (A) ⊂ A a choice correspondence.

The first axiom is standard, an income distribution that gives everyone weakly
more, and at least one person strictly more, is strictly preferred.

Axiom 9 (Monotonicity). c ({(x, y) , (x′, y′)}) = {(x, y)} whenever x ≥ x′, y ≥ y′, and
(x, y) 6= (x′, y′).

5.2 Equality Reference Dependence

Our first axiom for this section is a specialization of Axiom 1 from Section 2. It char-
acterizes behavior in which choices from choice problems that have the same amount
of attainable equality conform with quasi-linear preferences. The use of quasi-linear
preferences for choices involving money is common in the economics. Since our model
introduces reference-dependent utility functions, using quasi-linear utilities when pref-
erences are stable provides meaningful restrictions to choices for our purpose.

Definition 10. Let c : A → A be a choice correspondence and S ⊆ A. We say c

satisfies Quasi-linearity over S if for all A,B ∈ S and a ∈ R\ {0} ,

(x, y) ∈ c (A) , (x′, y′) ∈ A, (x′ + a, y′) ∈ c (B) , and (x+ a, y) ∈ B ⇒ (x+ a, y) ∈ c (B) .

In order to characterize attainable equality, we first need a measure of equality. A
natural candidate is the Gini coefficient (as measured by the relative mean absolute
difference in incomes),

G (x, y) =
|x− y|+ |y − x|

4 (x+ y)
.

In a setting of two incomes, this coefficient ranges from 0 (most balanced) to 0.5 (least
balanced). Moreover, since x, y ≥ w > 0 in our setting, G : X → [0, 0.5).
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Analogous to our approach in other domains, we demand that choices comply with
WARP and Quasi-linearity when the most balanced income distribution of a choice
problem is unchanged (and therefore allow for violation of WARP and Quasi-linearity
when the most balanced income distribution has changed). Formally, we impose a
weakening of WARP and Quasi-linearity in the following way:

Definition 11. For each A ∈ A, define by Ψ (A) :=

{(x, y) ∈ A : G (x, y) ≤ G (x′, y′) for all (x′, y′) ∈ A} the set of most balanced in-
come distributions in A.

Axiom 10 (Equality Dependence). For every choice problem A ∈ A and any most
balanced income distribution (x, y) ∈ Ψ (A), c satisfies WARP and Quasi-linearity over
{B ⊆ A : (x, y) ∈ B}.

5.3 Fairness

We study choices that exhibit increased sharing when greater equality is attainable,
that is, when the most balanced income distribution in one choice problem is more
balanced than the most balanced income distribution of another.

Consider the following postulate. Suppose in a choice problem the decision maker
chooses to share more (x, y) than to share less (x′, y′) (where y > y′). We postulate
that by making more options available, since this will only weakly increase attainable
equality, she does not switch from sharing more to sharing less. Effectively, this restric-
tion imposes a direction on which willingness to share changes—the decision maker is
weakly more altruistic when more options are available. Formally:

Axiom 11 (Fairness). For any A,B ∈ A such that A ⊂ B and (x, y) , (x′, y′) ∈ A such
that y > y′, if (x, y) ∈ c (A) and (x′, y′) /∈ c (A), then (x′, y′) /∈ c (B).

5.4 Representation theorem

Consider the following utility representation in which utility from receiving the amount
$x is always evaluated consistently but utility from giving amount $y depends on how
much equality is attainable from the choice problem.

Definition 12. c admits a Fairness-based Social Preference Utility representation
(FSPU) if there exists a set of strictly increasing functions {vr : [w,+∞)→ R}r∈[0,0.5)
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such that
c (A) = arg max

(x,y)∈A
x+ vr(A) (y) ,

where

• r (A) = min
(x,y)∈A

G (x, y),

• r > r′ implies vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′) for all y > y′,

• arg max(x,y)∈A x+ vr(A) (y) has a closed-graph.

Theorem 4. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Equality Reference Dependence , Fairness, Monotonicity, and Conti-
nuity.

2. c admits a FSPU representation.

Furthermore, in every FSPU representation, vr is unique for all r.

In this model, the decision maker’s utility from giving y is vr(A) (y). It depends
on r (A), which measures how much equality is attainable in the underlying choice
problem A. In particular, recall that a lower Gini coefficient G (x, y) corresponds to
greater equality, and hence attainable equality for choice problem A is simply the lowest
G (x, y) among available income distributions (x, y) ∈ A. When r (A) is lower, the
utility difference between sharing more (y) and sharing less (y′) increases, which reflects
increased willingness to share. Consequently, even though a decision maker chose to
share less (x′, y′) over sharing more (x, y) in some choice problem, where y > y′, the
introduction of a very balanced option could cause the a switch to sharing more: (x, y).

This is a model in which decisions makers agree on how to measure equality, but
retain their own interpretations on what is fair. Each decision maker bases her choice
on the lowest attainable Gini coefficient of a choice problem, r (A), but their ultimate
decisions depend on their subjective utility vr(A) (y).

The model explains increased willingness to share when distributing a fixed pie
with different splitting options. To illustrate, suppose a decision maker must allocate
a fixed amount of money, say $100, between her and another individual, but she is
not allowed to split the amount however she likes. Instead, there is a set of feasible
distributions characterized by D ⊂ [0, 1]; she can choose to allocate α ·$100 to herself if
and only if α ∈ D. By specifying two different sets of feasible distributions, D and D′,
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we have effectively specified two choice problems in our setup. Say D = {0.5, 0.6, 0.7}
and D′ = {0.6, 0.7}. If α = 0.7 is chosen in D′ (the decision maker keeps $70 for herself
and $30 is given to the other individual), she might choose to keep less in D due to
increased altruism from greater attainable equality. However, if she chose α = 0.6 in
D′, then she must not choose α = 0.7 in D; this is a testable prediction.

In FSPU, altruism is maximal when a perfectly balanced income distribution is
available. In particular, the model captures increased altruism not as the result of
the opportunity to give more; instead, it is due to the opportunity to be equal. To
illustrate the difference, consider the same example but with D = {0.5, 0.3, 0.2} and
D′ = {0.3, 0.2}. Even though D contains alternatives that achieve greater equality, the
decision maker’s ability to give is the same across the two choice problems. Yet, since
the feasible allocations are always unfavorable to her (she can never keep more than
half), higher attainable equality results from her ability to take more. In this setting,
our decision maker can be interpreted as being less altruistic when the world is unfair
to her, and she becomes more altruistic when more balanced options are added.

We consider one last application, where FSPU allows for willingness to forgo a
greater surplus in favor of giving more. Suppose the decision maker must choose between
($30, $20) and ($60, $0). The second option is appealing in that the total amount of
money extracted is greater, whereas the first option sacrifices both surplus and payment
to oneself in favor of providing a share to the other individual. Suppose ($60, $0)

is chosen. The model allows for the behavior in which the addition of ($25, $25) to
the choice set causes the decision maker to switch from ($60, $0) to ($30, $20) due to
increased generosity. While this behavior is reasonable, it cannot be explained by any
model that complies with WARP.

Like in Section 3 and Section 4, the familiar linkage between WARP violation and
the violation of a standard postulate, in this case Quasi-linearity, is summarized in the
following statement. This irreducible connection suggests that, in our model, failure of
quasi-linear utility for money is tied to changes in preferences. Instead, if the decision
maker’s choices can be represented by single utility function, her behavior must also
comply with quasi-linear utility.

Proposition 4. Suppose c admits a PBDU representation. Then the following are
equivalent:

1. c satisfies WARP (over A).

2. c satisfies Quasi-linearity (over A).
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3. c admits a quasi-linear utility representation.

4. c admits a utility representation.

5.5 Related literature

Other-regarding preferences have been studied extensively, and well-known models are
introduced by Fehr & Schmidt (1999); Bolton & Ockenfels (2000). However, the pri-
mary focus of these models is to capture inequality aversion using functional forms. In
particular, a single and persistent preference ranking of income distributions is assumed
throughout these models. Charness & Rabin (2002) introduced a departure that allows
for reciprocity by introducing a utility function that lowers the utility from giving when
the other player is deemed to have “misbehaved”.

FSPU, departs from these models by introducing preferences over income distri-
butions that may change from one choice problem to another. In particular, utility
from giving depends on how much equality is attainable in the underlying choice set.
The vast literature on distributional preferences provides suggestive evidence of this
behavior. List (2007); Bardsley (2008); Korenok et al. (2014) showed that in a dictator
game, adding (or increasing) the option to take from the receiver significantly reduces
a dictator’s willingness to give, and in some cases result in choice reversals (WARP
violations). However, although the narratives are related, the design of their experi-
ments does not provide a complete test for the predictions of FSPU, as additions of less
balanced distributions do not affect preferences in FSPU.

The study of audience effect also provides empirical evidence that decision makers
care about how others perceive their choices. In Dana et al. (2006), dictators were
given the option exit (avoid) a $10 dictator game and receive $9, a option that leaves
the receiver with nothing. Since a payoff of $9 (and $10) can be achieved by going
through with the dictator game, exiting is interpreted as a costly effort to avoid the
dictator game. 28% of the subjects chose to exit. When the game is conducted such
that the decision to exit or not is completely veiled from the receivers, only 4% chose
to exit.

In a separate study, Dana et al. (2007) provides dictators a costless opportunity to
find out how much the receivers will receive from each of their two options, (6, 1) and
(5, 5), before making a choice (payoffs to themselves, the first number in each pair, are
always displayed). 44% of dictators chose not to find out, and among them 86% chose
“(6, ?)” over “(5, ?)”. Only 47% of dictators chose to reveal the payoffs and subsequently
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chose (5, 5) over (6, 6). In the baseline, in which all payoffs are displayed by default,
74% of subject chose (5, 5) over (6, 6). Based on subjects’ apparent exploitation of this
“moral wiggle room”, the authors conclude that fair behavior is primarily motivated by
the desire to appear fair, either to themselves or to others.

In game theoretic settings, Rabin (1993)’s pioneering work introduced intention
based reciprocity through a notion of kindness. In their model, kindness is measured
using the set of payoffs an opponent could induce. A player’s kindness depends on
how kind the opponent is, due to the desire to be fair, and vice versa, leading to the
solution concept term fairness equilibrium. Since kindness is measured using the set of
available actions, the Rabin (1993)’s model and FSPU share some conceptual similarity.
However, since FSPU is built on a decision theoretic framework, it is unable to capture
the type of reciprocity concerns depicted in Rabin (1993). The same argument separates
FSPU from related models in game theory.

To my knowledge, Cox et al. (2016) is the only other paper, with a decision theo-
retic setup, that introduces a model to explain WARP violations of this kind. Unlike
FSPU, they take endowment into account, which allows for the study of giving versus
taking. This is different to the approach in FSPU, where only income distributions are
relevant and endowments are not part of the primitive. Based on an intuition related
to FSPU, Cox et al. (2016) uses moral reference points to explain changes in dictator’s
willingness to allocate, where a moral reference point more favorable to the dictator
(and/or less favorable to the receiver) results in allocating more to the dictator herself.
However, unlike FSPU, their reference points are not alternatives, but instead a vector
of reference payoffs that depend on multiple allocations within the feasible set as well as
the endowment. Consequently, there are many choice problems in which the addition of
a more balanced alternative cannot result in choice reversal in their model, since it does
not affect the moral reference point, yet preference reversals as a result of adding more
balanced alternatives is precisely the behavioral tenet in FSPU.26 Although the two
models are different in many ways, they both seek to capture the increasingly evident
intuition that social preference depends on the set of feasible allocations, which results
in WARP-violating behavior.

26For example, if a choice problem contains income distributions (0, 1) and (1, 0), then adding (x, x)
for any x ∈ (0, 1) will not change Cox et al. (2016)’s moral reference point, and their model demands
compliance with WARP.

39



6 Conclusion

This paper presents a unified framework for ordered reference dependent choice. Built
on a reference dependence approach of weakening behavioral postulates, we demon-
strate it usefulness by providing applications in the context of risk, time, and social
preferences. In each setting, predictable changes in preferences governed by reference
dependency account for well-known behavioral anomalies.

Indispensable to our models is the joint weakening of WARP and structural pos-
tulates, which gives us a new way of weakening standard assumptions using behavior
in a choice correspondence. This sets them apart from models that propose a single
non-standard preference ranking. It also suggests new empirical directions, where be-
havioral anomalies that had primarily been studied with preference relations are now
manifested in the form of a WARP violation in choice behavior.

A natural question is the generality of this exercise—does every choice theoretic
model have an ordered reference dependence version by simply having their axioms
weakened using an adapted version of Axiom 1? We provide some answers to this
question in Appendix A.

In Appendix A, we provide a sufficient condition for an arbitrary behavioral pos-
tulate to be accommodated by our method. We call these standard postulates finite
properties, they are axioms that are satisfied whenever a violation fails to be substan-
tiated with just finitely many observations. For example, WARP is a finite property,
since it is inherently a property between a pair (hence “finite”) of choices. To put it
differently, if a choice correspondence fails WARP, a violation can be substantiated
with just two observations. A non-example is continuity, since a choice correspondence
can fail continuity whilst a violation can never be substantiated with finitely many
observations. However, at this level of generality, we are only able to achieve a result
for ordered-reference dependent choice, and not for ordered-reference dependent utility
representations. We formalize and discuss this limitation in Appendix A.

Appendix A: Unified Framework and Finite Properties

In this technical section, we state a companion result to Theorem 1 that allows for
(i) either fully or partially prescribing the reference order R and (ii) expanding the
accommodated property from WARP to a much larger class. For the latter, we call
them finite properties, which we will now define. Theses two expansions are then used
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in our applications in the risk, time, and social domain in Section 3, Section 4, and
Section 5.

Let Y be an arbitrary set of alternatives, A the set of all finite and nonempty
subsets of Y . For any B ⊆ A, we call c : B → A, where c (A) ⊆ A for all A ∈ B, a
choice correspondence. Let C be the set of all choice correspondences one can possibly
observe from Y and A. Formally,

C := {c : B → A s.t. B ⊆ A} .

A property imposed on a choice correspondence can be viewed as a subset of C that
is itself closed under subset operations (where each choice correspondence, a member
of C, is viewed as a set of pairs). For instance, the set of all choice correspondences
satisfying WARP form a collection of choice correspondences defined by the WARP
property. We use this notation to characterize an arbitrary property, formally:

Definition 13. We call T ⊆ C a property if for all c, ĉ ∈ C such that ĉ ⊂ c, c ∈ T
implies ĉ ∈ T .

We use “c satisfies T ” and “c ∈ T ” interchangeably.
In decision theoretic terms, what we call properties here are features of a choice

correspondence that are more likely satisfied when we have less observations (i.e. instead
of observing c, we only observe ĉ). For example, WARP (A ⊂ B and c (A) ∩ B 6= ∅ ⇒
c (A)∩B = c (B)) is a property defined on a pair of a choice sets and their corresponding
choices. If the statement of WARP is satisfied for some c : B → A, that is, all pairs
of choice sets and their corresponding choices satisfy WARP, and ĉ : B′ → A is where
B′ ⊂ B and ĉ(B) = c (B), then the statement of WARP is also satisfied for ĉ.

Fact. The intersection of properties is a property.27

Now, we consider a subset of all properties:

Definition 14. Let T be a property. We call T a finite property if for all c ∈ C,
c /∈ T if and only if there exists a finite set of choice sets A1, ..., An ∈ dom (c) such that
ĉ : {A1, ..., An} → A, where ĉ (B) = c (B), is not in T .

In words, a finite property is (defined as) a property in which non-compliance can
be concluded with finitely many observations (i.e. choices from finitely many choice
sets). The majority of decision theoretic axioms are finite properties.

27To see this: Consider any c ∈ C such that c ∈ T1∩T2. So c ∈ T1, T2. And since T1, T2 are properties,
we have ĉ ∈ T1, T2, and hence ĉ ∈ T1 ∩ T2, for all ĉ ∈ C and ĉ ⊂ c.
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Fact. When Y is finite, any property is a finite property.28

When Y is infinite, examples of finite properties include Convexity (either aαb ∈
c ({aαb, a}) or aαb ∈ c ({aαb, b})), Monotonicity (c ({a, b}) = {a} if a > b), Tran-
sitivity (a ∈ c ({a, b}) and b ∈ c ({b, d}) implies a ∈ c ({a, d})), von Neumann-
Morgenstern (vNM) Independence (p ∈ c ({p, q}) if and only if αp + (1− α) r ∈
c ({αp+ (1− α) r, αq + (1− α) r})), Betweenness, Stationarity, and Separability, to
name a few.

Non-examples of finite properties (that are nonetheless properties) include various
versions of continuity (e.g., xn ∈ c (An), xn → x, An → A implies x ∈ c (A)) and
infinite acyclicity (ai ∈ c ({ai, ai+1}) for i = 1, 2, ..., σ, where σ is an ordinal number,
implies a1 ∈ c ({a1, aσ})). Usually, the determination of whether a property is a finite
property is immediate when a property is defined algorithmically (as in the axioms in
this paragraph) as opposed to defined as an arbitrary subset of C.29

Fact. The intersection of finite properties is a finite property.30

For instance, let T1 be the subset of all choice correspondences that satisfy WARP
and T2 the subset of all choice correspondences that satisfy vNM Independence. These
are both finite properties. We can define “WARP and vNM Independence” as a single
finite property T1∩T2. It characterizes the set of all choice correspondences that satisfies
both WARP and Independence.

Fact. The intersection of finite properties and properties that are not finite properties
may or may not be finite properties.31

28To see this: Fix any c. Sufficiency is a direct result of the definition of a property. Necessity is
also straightforward: Let A1, ..., An = dom (c), then ĉ = c, so c /∈ T completes the proof.

29The empirical falsifiability of a property (that with finitely many observations the property can be
falsified) is not sufficient to establish that it is a finite property. Consider the combination of WARP
and continuity, there is no reason why this cannot be defined as a single property. It is empirically
falsifiable, since WARP needs only two observations to falsify. Yet in the absence of a violation of
WARP, a choice correspondence can very well violate the continuity portion, rendering the property
unsatisfied but not falsified with finitely many observations. Conversely, if a property is empirically
non-falsifiable, then it is a finite property if and only if it is always trivially satisfied.

30To see this: Suppose T1 and T2 are both finite properties, T1 ∩ T2 is a property. We check
Definition 14 that T1∩T2 is a finite property. Fix any c ∈ C. Suppose c /∈ T1∩T2. Then without loss of
generality say c /∈ T1, take the choice sets A1, ..., An ∈ dom (c) such that ĉ : {A1, ..., An} → A, where
ĉ (B) = c (B). Since ĉ /∈ T1, so ĉ /∈ T1 ∩ T2, and the rest is straightfoward. Now suppose there exist
A1, ..., An ∈ dom (c) such that ĉ : {A1, ..., An} → A, where ĉ (B) = c (B), is not in T1 ∩ T2. Without
loss of generality say ĉ /∈ T1, so c /∈ T1, so c /∈ T1 ∩ T2.

31We provide examples. Take Y = [0, 1]. The intersection of WARP and Continuity is clearly not
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Let Ψ : A → A be a correspondence with Ψ (A) ⊆ A such that a ∈ B ⊂ A and
a ∈ Ψ (A) implies a ∈ Ψ (B).

Definition. We say that a linear order (R, Y ) is Ψ-consistent if y ∈ A\Ψ (A) implies
xRy for some x ∈ Ψ (A).

Going forward, given a linear order (R, Y ), we use the notation arg max
y∈B

R to char-

acterize the element x ∈ B such that xRy for all y ∈ B.

Lemma 2. Consider a choice correspondence c : A → A, a finite property T , and a
correspondence Ψ. The following are equivalent:

1. For every finite A ∈ A, there exists x ∈ Ψ (A) such that the choice correspondence
c̃ : {B : B ⊂ A and x ∈ B} → A, where c̃ (B) = c (B), is in T .

2. There exists a complete, transitive, antisymmetric, and Ψ-consistent binary
relation (R, Y ) such that for all x ∈ Y , the choice correspondence c̃ :{
B : arg max

y∈B
R = x

}
→ A, where c̃ (B) = c (B), is in T .

First, consider the case in which Ψ (A) := id (A) = A. The first condition in
Lemma 2 is satisfied when, for each choice problem, an alternative serves as an anchor
that guarantees compliance with finite property T among choices from subsets of the
choice problem containing this anchor. Like before, this anchor is a potential reference
alternative with which desirable properties of c hold. When Ψ is not the identity
function, we are demanding that at least one alternative in a restricted set of each
choice problem (restricted according to Ψ) is a potential reference alternative.

This lemma is the backbone of the models in Section 3, Section 4, and Section 5.
For now, we present a simple demonstration. Consider again the wine example, but
now the set of all alternatives Y contains multiple entries of the same wine at different
prices. Each alternative is hence a wine-price pair (x, p). Like before, a decision maker
was seen choosing a more expensive wine over a cheaper one, but sometimes the reverse
(at the exact same prices). The economist postulates that for each choice problem,
it is either the cheapest or the most expensive wine that the consumer’s underlying

a finite property, since WARP can hold whereas Continuity will (trivially) hold for any set of choices
from finitely many choice sets, but fails to hold in general. The intersection of Monotonicity (that
x > y ⇔ y /∈ c (A) for all A 3 x, y) and Continuity, on the other hand, is a finite property; essentially,
Monotonicity is so strong that Continuity holds whenever Monotonicity does, and since Monotonicity
is a finite property (in fact, it is one where a violation can be detected with just the choice from one
choice set), their intersection is a finite property.
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preference depends on. Given this postulate, let Ψ (A) be the set of cheapest and most
expensive wine-price pairs in A. Furthermore, in addition to WARP, the economist
would like to postulate that for a fixed reference, if the decision maker chooses wine x
at price p over wine y at price q, then he would also choose wine x at price p over wine
y at price q′ > q; we will call this property “Money is Good”. This is an example of a
finite property on c.

Lemma 2 establishes that, for a choice correspondence that satisfies these postulates,
a reference order (R, Y ) can be built such that WARP and Money is Good are satisfied
among choice sets that share the same R−maximal element. Furthermore, for any three
wine-price pairs, the intermediate-in-price option is either reference dominated by the
more expensive option, the cheaper option, or both. A prediction follows: If a wine-
price pair (x, p) reference dominates another wine-price pair (y, q), then all wine-price
pairs (z, s) such that s ∈ [min {p, q} ,max {p, q}] are reference dominated by (x, p).
That is, even if the economist hasn’t fully pinned down this partially subjective R, she
can conclude that among choice sets that contain (x, p) and (z, s), where s is between
p and q, choices satisfy WARP and Money is Good.

If instead the economist makes the weaker postulate that some reference alternative
exists (i.e., Ψ = id), then no structure on R can be guaranteed (other than it is a linear
order). Conversely, if the economist makes the stronger postulate that the cheapest
wine is exactly the reference alternative, then for any two wine-price pairs, the cheaper
option reference dominates the other. This demonstrates the flexibility Ψ provides in
the trade-off between explanation and prediction. If Ψ (A) is a very restrictive set,
such as a singleton, then the model is easy to test and provides strong predictions. If
Ψ (A) is very nonrestrictive, such as Ψ (A) = A, then the model is harder to test but
accommodates more behavior.

To summarize, we expanded the result of Theorem 1 to include (i) how properties of
R can be axiomatically introduced and (ii) what kind of properties, beyond WARP, of a
choice correspondence, can be accommodated in this framework. Theses two expansions
are then used in our applications in the risk, time, and social domain.

Lemma 2 falls short of achieving a utility representation. The underlying difficulty
is related to the literature on limited datasets, in which one observes choices from a
strict subset of all choice problems. de Clippel & Rozen (2014) points out that, in this
case, even if observed choices are consistent with behavioral postulates, it need not be
sufficient for a corresponding utility representation. In our case, even though we started
with an exhaustive dataset (c : A → A), we have effectively created a partition such that
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each part contains only a subset of all choice problems. Nevertheless, as demonstrated in
Section 3, ordered-reference dependent expected utility can be achieved with normative
restrictions on Ψ.

(For Online Publication) Appendix B: Additional Ma-

terials

ORDU vs other non-WARP models

In this section, we study ORDU in comparison with other models that either involve ref-
erence formation or explains WARP violations through the addition/removal of certain
alternatives. To simplify notation, we use “{a, b, c}” for c ({a, b, c}) = {a}.

Under comparable setups, ORDU neither nests nor is nested by any of the fol-
lowing models: (i) Ok et al. (2015)’s revealed (p)reference, (ii) Kőszegi & Rabin
(2006)’s reference-dependent preferences (personal equilibrium), (iii) Manzini & Mari-
otti (2007)’s rational shortlist method, and (iv) Masatlioglu et al. (2012)’s choice with
limited attention.32 The former two models involve reference formation. In the lat-
ter two models, the addition or removal of alternatives directly contribute to WARP
violations.

A key observation separates ORDU from other models: In ORDU, because reference
points are given by a reference order and choices maximize reference-dependent utilities,
then either c ({a, b}) or c ({b, c}) must agree with c ({a, b, c}) in the maximization of a
single utility function. This is because the reference point of {a, b, c} is necessarily in
{a, b} or {b, c} (or both). This defining feature of ORDU can be generalized:

Remark 1. Suppose c admits an ORDU representation and take any finite collection of
choice problems A1, ..., An. For some x ∈ A = A1 ∪ A2 ∪ ... ∪ An, choices between A

and Ai such that x ∈ Ai must comply with standard utility maximization.

In Ok et al. (2015)’s (endogeneous) reference dependent choice, the decision maker
maximizes a single utility function, but only chooses from alternatives that are better
than the reference in all (endogenously determined) attributes. However, references do
not necessarily come from an order. Consider the following choices accommodated by

32That is, for each of the four external models we consider, there are choice correspondences that
admit ORDU but not the eternal model and vice versa. Complete specifications of the choice corre-
spondences used are provided in Appendix B.
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their model but not ORDU.33

{a, b, c, d} {a, b, d} {a, c, d}

In their model, a decoy d blocks the choice of a in {a, b, d} and {a, c, d} due to the
attraction effect, where b and c are elevated because they are better than d in all
attributes while a isn’t. However, since reference formation is flexible as contrasted
with the use of a reference order in ORDU, d need not be the decoy in {a, b, c, d},
resulting in the choice of a. On the contrary, ORDU requires that either the reference
point of {a, b, d} or the reference point of {a, c, d} is the reference point of {a, b, c, d}. As
a result, Remark 1 excludes this behavior from ORDU. On the other hand, intransitive
behavior in binary choice problems, such as {a, b} , {b, c} , {c, a}, can be explained by
ORDU but are ruled out by Ok et al. (2015), since the absence of a third alternative
impedes their decoy-effect from taking place. Hence the two models are not nested.

Kőszegi & Rabin (2006)’s reference-dependent preferences is another related model.
Gul et al. (2006) provided the axiomatic foundation for personal equilibrium (PE),
in which a decision maker has a joint utility function v : X × X → R and chooses
PE (A) = {x : v (x|x) ≥ v (y|x) ∀y ∈ A}. That is, the choice maximizes a reference-
dependent utility function, and the reference point is itself the eventually chosen alter-
native (therefore “equilibrium”). This leads to the following behavior.34

{a, b, c, d} {a, b, c} {a, d}

In this example, b is not chosen in {a, b, c, d}. Yet it is chosen in the subset {a, b, c}, in
which d—an alternative better than b under v (·|b)—was removed. Furthermore, d is
also chosen in the subset {a, d} for the same reason—c, an alternative better than d

33The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d}

Using an Ok et al. (2015) specification where u (a) > u (b) > u (c) > u (d). r ({a, b, d}) = r ({a, c, d}) =
r ({b, d}) = r ({c, d}) = d, r (A) = � otherwise, and U = {U} where U (b) > U (c) > U (d) > U (a).

34The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d}

Gul et al. (2006) shows that PE is equivalent to choices maximizing a complete (but not necessarily
transitive) preference relation. This choice correspondence is explained by a ∼ b, a � c a ∼ d, b ∼ c,
d � b, c � d.
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under v (·|d)—was removed. While ORDU also allows for x ∈ c (B) \c (A) where
B ⊂ A, it does so with two implications: (i) an alternative y ∈ A\B must had been
the reference point of A and therefore (ii) choices are consistent between c (A) and
c (T ) for all T ⊂ A that contains y. This is not satisfied in our example: the first
WARP violation implies that d is the reference point, yet the second WARP violation
occurs while d is remains present. As a consequence, Remark 1 excludes this behavior
from ORDU.

Conversely, an immediate implication of PE is, if x ∈ c (A) and x ∈ B ⊂ A, then
x ∈ c (B). A simple intransitive choice pattern {a, b} , {b, c} , {c, a} is therefore
admissible by ORDU but not PE.35 We conclude that the two models are not nested.

Manzini & Mariotti (2007) proposes a non-WARP model without a reference point
interpretation. In rational shortlist method (RSM), decision makers are endowed with
two asymmetric relations P1 and P2. Facing a choice problem A, she first creates a
shortlist by eliminating inferior alternatives according to P1 (eliminate x if yP1x for
some y ∈ A), and then choose from this shortlist according to P2. WARP violation
occurs when an alternative x is eliminated in a set S but not in its subset T ⊂ S, where
x is subsequently chosen over the choice from S. An example of this behavior is the
follow choice pattern.36

{a, b, c, d} {a, b, d} {b, c, d} {b, c}

For ORDU to reconcile with this behavior, c must be deemed the reference of {a, b, c, d},
but then choices from {b, c, d} and {b, c} must comply with standard utility maximiza-
tion. This behavior is therefore excluded by Remark 1.

RSM, however, cannot accommodate an alternative that makes it to the shortlists
for a small and large choice problems (A1 and A2 where A1 ⊂ A2) but not an interme-
diate one (B where A1 ⊂ B ⊂ A2), generating choices accommodated by ORDU but
not RSM, such as the following.37

35Gul et al. (2006) shows that Kőszegi & Rabin (2006)’s personal equilibrium is equivalent to the
maximization of a complete (but not necessarily transitive) preference relation.

36The complete choice correspondence is

{a, b, c, d} {a, b, c} {b, c, d} {a, c, d} {a, b, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} ,

induced by (aP1b, aP1c, cP1d, dP1b) and (aP2b, aP2c, dP2a, bP2c, dP2b, cP2d).
37The complete choice correspondence is
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{a, b, c, d} {a, b, d} {a, b}

The intuition is that while ORDU is constrained when reference points are fixed, the
model is more flexible than RSM when reference points change, since no restriction is
put on the new utility functions.
Since this is not the case, ORDU does not nest RSM. While ORDU is constrained by
fixed reference points, the model is more flexible than RSM when reference points do
change, since no restriction is put on the new utility function. RSM, however, cannot
accommodate a choice that makes the shortlists in a small and large set but not an
intermediate one. We conclude that ORDU and RSM are not nested.

Last, we compare ORDU to Masatlioglu et al. (2012)’s choice with limited atten-
tion (CLA). A decision maker has a complete and transitive ranking �CLA of alterna-
tives and an attention filter that limits choices to a subset of each choice problem, the
“consideration set”. When another choice problem is derived by removing choices not
originally considered, the consideration set remains the same. Although a single rank-
ing is used—as opposed to ORDU’s many utility functions—flexibility in constructing
consideration sets easily allows for behavior not accommodated by ORDU, for example
the following, which is excluded from ORDU by Remark 1.

{a, b, c} {a, b} {b, c} {a, c}

Interestingly, CLA is provided under the framework of choice functions (no indiffer-
ence), and with that restriction ORDU is nested by CLA.38 However, the two models
make different predictions when indifferences are allowed. For the analysis, we modify
CLA by allowing for indifferences in the ranking of alternatives (replacing �CLA with
%CLA), but preserve in entirety the attention filter/ consideration set component. The
following behavior is accommodated by ORDU but not CLA.39

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} .

This is explained by the ORDU specification: bRaRcRd, ui (a) > ui (b) > ui (c) > ui (d) when
i ∈ {a, b, d}, and uc (b) > uc (a) > uc (c) > uc (d).

38Consider any choice function c that admits an ORDU representation, define CLA’s parameters
as follows: attention filter Γ (A) :=

{
min (A,R) , arg maxx∈A umin(A,R) (x)

}
(singleton if min (A,R) =

arg maxx∈A umin(A,R) (x)) and CLA’s preference x � y if xRy.
39The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} .

This is explained by the ORDU specification: cRbRaRd, ud (a) = ud (b) > ud (c) > ud (d),
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{a, b, c, d} {a, b, c} {b, c}

When indifferences are allowed, the single ranking limitation of CLA becomes the bot-
tleneck in explaining behavior. The two models are hence not nested under comparable
setups.

(For Online Publication) Appendix C : Proofs

Proof of Lemma 2

Lemma 3. Let Z be a set, and Z be the set of all finite and nonempty subsets of Z.
LetR be a self map on Z, R (S) ⊆ S, such that

(i) For all S ∈ Z, R (S) 6= {∅}, and

(ii) α - for all T, S ∈ Z, x ∈ T ⊆ S, if x ∈ R (S), then x ∈ R (T ).

Then, there exist R∗ ⊆ R such that

(i) For all S ∈ Z, R∗ (S) 6= {∅},

(ii) α - for all T, S ∈ Z, x ∈ Z such that x ∈ T ⊆ S, if x ∈ R∗ (S), then x ∈ R∗ (T ),
and

(iii) β - for all T, S ∈ Z, x, y ∈ Z such that x, y ∈ T ⊆ S, if x ∈ R∗ (T ) and
y ∈ R∗ (S), then x ∈ R∗ (S).

Proof. We prove by construction.

1. We say R′ ⊆ R if R′ (S) ⊆ R (S) ∀S ∈ Z. Assume and invoke Zermelo’s
theorem to well-order the set of all doubletons in the domain of R (there may
be uncountable many of them, hence Zermelo’s theorem). Now we start the
transfinite recursion using this order.

2. In the zero case, we have R0 = R. This correspondence satisfies α and is
nonempty-valued. Suppose Rσ satisfies α and is nonempty-valued.

ua (b) = ua (c) > ua (a), ub (b) > ub (c). Now we show non-compliance with CLA (with the indifference
extension): Since a ∈ c ({a, b, c, d}) \c ({a, b, c}), CLA reconciles this by setting the consideration sets
Γ ({a, b, c, d}) = {a, b, d} and Γ ({a, b, c}) = {b, c}, so a is not considered in the smaller set. However,
the property of consideration sets then requires Γ ({b, c}) = {b, c}, and {a, c}
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3. For the successor ordinal σ + 1, we take the corresponding doubleton Bσ+1 and
take x ∈ Bσ+1 such that ∀S ⊃ Bσ+1, R (S) \ {x} 6= ∅. Suppose such an x does not
exist, then for both x, y ∈ Bσ+1, there are Sx ⊃ Bσ+1 and Sy ⊃ Bσ+1 such that
Rσ (Sx) = {x} and Rσ (Sy) = {y} since Rσ is nonempty-valued. Consider Sx ∪
Sy ∈ Z. SinceRσ is nonempty-valued, Rσ (Sx ∪ Sy) 6= ∅. But sinceRσ satisfies α,
it must be that Rσ (Sx ∪ Sy) ⊆ Rσ (Sx) ∪ Rσ (Sy), hence Rσ (Sx ∪ Sy) ⊆ {x, y}.
Suppose without loss x ∈ Rσ (Sx ∪ Sy), then due to α again and that x ∈ Bσ+1 ⊂
Sy, it must be that x ∈ Rσ (Sy), which contradicts Rσ (Sy) = {y}. (That is, we
showed that with nonempty-valuedness and α, no two elements can each have
a unique appearance in the R(·)-image of a set containing those two elements.)
Hence, ∃x ∈ Bσ+1 such that ∀S ⊃ Bσ+1, R (S) \ {x} 6= ∅. Define Rσ+1 from Rσ

in the following way: ∀S ⊃ Bσ+1, Rσ+1 (S) := Rσ (S) \ {x}. Note: (i) Since x
is deleted from Rσ (T ) only if it is also deleted (if it is in it at all) from Rσ (S)

∀S ⊃ T , we are preserving α, and (ii) since x is never the unique element in
Rσ (S) ∀S ⊃ Bσ+1, we preserve nonempty-valuedness.

4. For a limit ordinal λ, define Rλ = ∩σ<λRσ. Note that since Rσ′ ⊂ Rσ′′ ∀σ′ > σ′′,
∩σ≤σ̄ = Rσ̄. Furthermore, for any σ < λ, Rσ is constructed such that α and
nonempty-valuedness are preserved. HenceRλ satisfies α and is nonempty-valued.

5. Note that this process terminates when all the doubletons have been visited, for
we would otherwise have constructed an injection from the class of all ordinals to
the set of all doubletons in Z, which is impossible.

6. Finally, we check that |Rλ (S) | = 1 for all S ∈ Z, hence β is satisfied trivially.
Suppose it is not a function, hence ∃S ∈ Z such that x, y ∈ Rλ (S). Then by α
we have that x, y ∈ Rλ ({x, y}), which is not possible as the recursion process has
visited it and deleted something from R ({x, y}).

7. Set Rλ = R∗.

We state the following observation. Let c : A → A be a choice correspondence.
Recall that A is the set of all finite and nonempty subsets of Y . For any S ⊆ Y and
x ∈ S, define

Ax
S := {A ⊆ S : A ∈ A and x ∈ A} .
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We use the notation (c,Ax
A) to denote the choice correspondence c̃ : Ax

A → A where
c̃ (B) = c (B). In other words, (c,Ax

A) is a subset of c where the domain is restricted to
Ax
A– the set of all subsets of A containing x.

Remark 2. Let c : A → A be a choice correspondence and T a finite property as defined
in Definition 14. Define Γ (S) := {x ∈ S : (c,Ax

A) ∈ T }.

1. If y ∈ Γ (A), then y ∈ Γ (B) whenever B ⊂ A.

2. If y ∈ Γ (A) for all finite A ⊆ D, then y ∈ Γ (D).

We call x a reference alternative for S if x ∈ Γ (S). Remark 2 states that if x is
a reference alternative for some choice problem A, i.e., (c,Ax

A) ∈ T , then x is also a
reference alternative for B ⊆ A. This is an immediate consequence of the definition of
a property (and the fact that Ax

B ⊆ Ax
A whenever B ⊆ A). In words, if a violation is

undetected with more observations, then it cannot be detected with less. Furthermore,
if x is a reference alternative for all finite subsets of an arbitrary set of alternatives D,
then x is also a reference alternative for D; this, is due to T being a finite property.
Otherwise, take a finite set of choice problems S = A1, ..., An, each of which a subset
of D containing x, such that a finite property is violated, i.e., c̃ : S → A, where
c̃ (B) = c (B), is not in T . Since this is a finite tuple of finite choice problems, consider
the finite set A := ∪iAi. Clearly, x /∈ Γ (A), but A is a finite subset of D, hence a
contradiction. Intuitively, if x is not a reference alternative for some arbitrary set of
alternatives D, then violation of a finite property would have been detected in a finite
subset of D, rendering x not a reference alternative for some choice problem A ⊆ D.

Now, let R′ : A → A ∪ {∅} be a set valued function that picks out, for each
choice problem A ∈ A, the set of all reference alternatives R′ (A) ⊆ A; formally,
R′ (A) := {x ∈ S : (c,Ax

A) ∈ T } . Since T is a finite property, by Remark 2, R′ satisfies
property α (as defined in Lemma 3). Furthermore, the hypothesis in Lemma 2 gives
that R′ (A) ∩ Ψ (A) is nonempty for all A ∈ A. Finally, define R : A → A by
R (A) := R′ (A) ∩ Ψ (A). Since both R′ (A) and Ψ (A) satisfy property α, R (A)

satisfies property α.
Putting our R through Lemma 3, we get a set-valued function R∗ : A → A that

is now a singleton everywhere (i.e., |R∗ (A) | = 1 for all A ∈ A). Furthermore, this
function satisfies property α, and satisfies property β trivially. With this, we build the
order (R, Y ) by setting xRy if {x} = R∗ ({x, y}), and xRx. The result is a complete,
transitive, and antisymmetric binary relation.
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Lemma 4. For an (R, Y ) constructed according to the the aforementioned procedure,
y ∈ A\Ψ (A) ⇒ xRy for some x ∈ Ψ (A) (i.e. R is Ψ-consistent).

Proof. Suppose not, say y ∈ A\Ψ (A) but yRx for all x ∈ Ψ (A). Consider
{{x, y} : x ∈ Ψ (A)}. Since this is a finite set of doubletons, suppose without loss of
generality {x∗, y} is the last one (in {{x, y} : x ∈ Ψ (A)}) visited by the procedure in
Lemma 3, and denote the step corresponding to {x∗, y} by the ordinal σ{x∗,y}. Since yRx
for all x ∈ Ψ (A) such that x 6= x∗,Rσ{x∗,y} (A)∩Ψ (A) = {x∗}. SinceRσ ⊆ R0 := R′∩Ψ

for all σ, Rσ{x∗,y} (A) = {x∗}. Hence x∗ uniquely appears in the image of Rσ{x∗,y}

evaluated at some superset of {x∗, y}, and the recursion procedure sets, ultimately,
R∗ ({x∗, y}) = {x∗}. But this implies x∗Ry, a contradiction.

Finally, consider the set

R↓ (x) := {y ∈ Y : xRy} .

This is a set of alternatives that are, according to our binary relation R, reference
dominated by x (including x itself). For any finite subset A ⊆ R↓ (x) such that x ∈ A,
we have x∈ R∗ (A) ⊆ R (A) ⊆ R′ (A), which by definition implies x is a reference
alternative of A. Using point 2 in Remark 2, we conclude that x is reference alternative
for R↓ (x), which need not be finite.

To summarize, we have effectively created a partition of A where the parts are
characterized by

{
Ax
R↓(x)

}
x∈Y

. To see this, take any A ∈ A, since R is a linear order,
there is a unique z ∈ A such that zRy for all y ∈ A, and so A ∈ Az

R↓(z) and A /∈

Ay
R↓(y)

for any y 6= z. Furthermore for each part Ax
R↓(x)

,
(
c,Ax

R↓(x)

)
is in T . Since{

B ∈ A : arg max
y∈B

R = z

}
is simply Az

R↓(z), the proof is complete.

Proof of Theorem 1, Part 1

Suppose Y is finite. We provide an independent proof (without the use of Lemma 2)
that a choice correspondence c that satisfies Axiom 1 has an ORDU representation.

Let Γ (A) be the set of reference alternatives for A. We create a list of alternatives
in the following way; list Γ (Y ) with an arbitrary order. Since Y \Γ (Y ) is again finite,
list Γ (Y \Γ (Y )) with an arbitrary order; and continue until all x ∈ Y are listed. Finally,
let ix denote the position of x in the list. For any x, y ∈ Y , construct xRy if ix > iy

and xRx.
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We now construct %x for each x ∈ Y . Consider the set

R↓ (x) := {y : xRy} .

Consider the choice correspondence c over the subset of choice problems

Ax
R↓(x) :=

{
A ∈ A : A ⊆ R↓ (x) and x ∈ A

}
,

which by construction satisfies WARP.

Construction of %x

1. First we set x %x x for all x ∈ Y .

2. Using the doubletons in Ax
R↓(x)

, all of which would contain x, we set, for all
y ∈ R↓ (x), either y %x x, or x %x y, or both, according to c ({x, y}).

3. Now for all y1, y2 %x x, we set either y1 %x y2, or y2 %x y1, or both, according
to c ({x, y1, y2}), using tripletons in Ax

R↓(x)
. Due to WARP (of c on Ax

R↓(x)
), %x is

now complete on the set

Px := {y : y %x x} =
{
y ∈ R↓ (x) : y ∈ c ({x, y})

}
,

which we call the prediction set of x. It consists of all alternatives that are both
reference dominated by x (i.e. xRy) and are weakly better than x in binary
comparison (i.e. y ∈ c ({y, x})).

4. Now consider
Y \Px = {y : yRx or x �x y} .

We set y1 ∼x y2 for all y1, y2 ∈ Y \Px, and y1 �x y2 for all y1 ∈ Px, y2 ∈ Y \Px.
Our constructed %x is now complete (on Y ).40

Using quadrupletons in Ax
R↓(x)

, we show that %x constructed above is transitive: Sup-
pose y1 %x y2 and y2 %x y3, and that y1, y2, y3 ∈ Px (if any of them is in Y \Px then the
argument is straightforward by ∼x), hence y1 ∈ c ({x, y1, y2}) and y2 ∈ c ({x, y2, y3}).

40That is, for any y1, y2 ∈ Y , either y1 %x y2, or y2 %x y1, or both.
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Furthermore, since y1, y2, y3 ∈ Px, we have {x, y1, y2, y3} ∈ Ax
R↓(x)

, and c on Ax
R↓(x)

sat-
isfies WARP implies y1 ∈ c ({x, y1, y2, y3}), and hence y1 ∈ c ({x, y1, y3}), which implies
y1 %x y3.

Finally, we show that (R, Y ) and {(%x, Y )}x∈Y explain c. Take any A ∈ A, since A
is finite, and R is antisymmetric, there is a unique R−maximizer x ∈ A (i.e., xRy for all
y ∈ A), hence A ⊆ R↓ (x). Suppose for contradiction c (A) * {y ∈ A : y %x z ∀z ∈ A};
so for some a ∈ c (A), a′ �x a for some a′ ∈ A. Then a /∈ c ({x, a′, a}). Since
{x, a′, a} is a subset of A, and both choice problems are elements of Ax

R↓(x)
, this is a

violation of the statement c satisfies WARP on Ax
R↓(x)

:=
{
A ⊆ R↓ (x) ∩ A : x ∈ A

}
,

hence a contradiction. Suppose for contradiction c (A) + {y ∈ A : y %x z ∀z ∈ A}, so
for some a ∈ A, a %x z for all z ∈ A, but a /∈ c (A). Take a′ ∈ c (A); since a %x a

′,
a ∈ c ({x, a′, a}). Since {x, a′, a} is a subset of A, and both choice problems are elements
of Ax

R↓(x)
, a contradiction of the statement c satisfies WARP on Ax

R↓(x)
is reached. Hence

c (A) = {y ∈ A : y %x z ∀z ∈ A}.
It remains to show that for each alternative-indexed preference relation %x, we

can construct a utility function that represents it. Since Y is finite, and each %x is a
complete and transitive preference relation, this is standard.

Proof of Theorem 1, Part 2

We invoke Lemma 2 to prove the intermediary result that, if c satisfies Reference De-
pendence (Axiom 1) and Continuity (Axiom 2), then there exists a linear order (R, Y )

and a set of complete and transitive preference relations {(%x, Y )}x∈Y such that for all
A ∈ A and c (A) =

{
y ∈ A : y %r(A) z ∀z ∈ A

}
where

r (A) := {x ∈ A : xRy ∀y ∈ A} .

Using the terminology developed in Appendix A, define T to be the property
WARP. By Lemma 2, there exists a Ψ-consistent linear order (R, Y ) such that c on
{A ∈ A : r (A) = x} satisfies T for all x ∈ Y . Notice that {A ∈ A : r (A) = x} = Ax

R↓(x)
,

and so we conclude that for all T, S ∈ Ax
R↓(x)

, c (S) ∩ T = c (T ) whenever T ⊂ S ⊆ A

and c (S) ∩ T 6= ∅.
We proceed to build {(%x, Y )}x∈Y using the method outlines in the proof for

Theorem 1 Part 1, which gives us a complete and transitive %x for all x such that
c (A) =

{
y ∈ A : y %r(A) z ∀z ∈ A

}
.
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It remains to show that for each alternative-indexed preference relation %x, we can
construct a utility function that represents it.

Based on our construction, %x is complete and transitive on Y . Moreover, it is
continuous when restricted to the prediction set Px, otherwise a contradiction of Conti-
nuity (Axiom 2) would be rendered in the standard way using choices from a sequence
of choice problems of the form {x, yn, zn} that converges to the discontinuous point
{x, y, z}. Therefore, along with the fact Px is a subset of the separable metric space
Y , %x admits a (continuous) utility function u : Px → [0, 1] that represents %x when
restricted to the alternatives in Px. Now define u (z) = −1 for all z ∈ Y \Px. Now u

also represents y �x z for all y ∈ Px and z ∈ Y \Px and z ∼x z′ for all z, z′ ∈ Y \Px.
And we are done. (This proof does not give us a utility function u : Y → R that is
continuous everywhere, which we do not need.)

Finally, since our system of (R, Y ) and {(%x, Y )}x∈Y explains c, which satisfies
Continuity by Axiom 2, c (A) = arg maxy∈A ur(A) (y) has a closed-graph.

Proof of Theorem 2

We interpret ∆ (X) as a |X| − 1 dimensional simplex, as is conventional, and hence
full-dimensional means |X| − 1 dimensional.

First, we split ∆ (X) into two groups, those that are simply the mixture of δb and
δw, and everything else:

E := ∆ ({b, w})

I := ∆ (X) \E.

Recall that Ψ (A) = A\ (MPS (A) ∪ ES (A)), and therefore a ∈ Ψ (B) if a ∈
B ⊆ A and a ∈ Ψ (A). Applying Lemma 2, we get a linear order (R,∆ (X)) that
gives a partition of A, with parts

{
Ar
R↓(r)

}
r∈∆(X)

, such that c satisfies WARP and

Independence over Ar
R↓(r) for any r ∈ ∆ (X). Furthermore, since R is Ψ-consistent, or

max (A,R) ∈ Ψ (A), we have max (A,R)Rp for all p ∈ A\Ψ (A), and therefore rRp if
pMPSr or pESr, which means R is risk-consistent.

Lemma 5. For any r ∈ I and any open ball Br that contains r, Br ∩ R↓ (r) contains
a full-dimensional convex subset of ∆ (X).

Proof. Take any r ∈ I. By definition, r (x) 6= 0 for some x 6= b, w (r (x) is the
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probability that lottery r gives prize x). Consider the following set

C (r) := ES ({r}) ∪ {r} ∪ (MPS (ES ({r}) ∪ {r})) ,

which consists of r, all extreme spreads of r, and all of their mean-preserving spreads.
First we show that C (r) is convex: First note that since ES ({r}) is a convex set

and r is on the boundary of ES ({r}), ES ({r})∪{r} is convex. Take any two lotteries
p1, p2 ∈ C (r) and consider their convex combination (p1)α (p2) for some α ∈ (0, 1). Since
p1, p2 ∈ C (r), there exist e1, e2 ∈ ES ({r}) ∪ {r} such that either p1 = e1 or p1MPSe1

and either p2 = e2 or p2MPSe2. If pi = ei for both i = 1, 2, then (p1)α (p2) = (e1)α (e2)

and by convexity of ES ({r}) ∪ {r} we are done. Suppose pi 6= ei for some i = 1, 2,
then since the mean-preserving spread relation is preserved under convex combinations,
we have (p1)α (p2)MPS (e1)α (e2). Finally, since (e1)α (e2) ∈ ES ({r}) ∪ {r} by the
convexity of ES ({r}) ∪ {r}, we have (p1)α (p2) ∈MPS (ES ({r}) ∪ {r}) ⊆ C (r).

Moreover, we show that C (r) is full dimensional: For any p ∈ I, ES ({p}) is
not nested in MPS ({p}), which is itself a |X − 2| dimensional object, and therefore
ES ({p})∪MPS ({p}) is full-dimensional. This means C (r) is full dimensional as well
since it contains ES ({p}) ∪MPS ({p}) for some p ∈ I.

Finally, we show that C (r) ⊆ R↓ (r): If p ∈ ES ({r}), rRp since R is risk-consistent.
If q ∈ MPS (ES ({r}) ∪ {r}), qRp for some p ∈ ES ({r}) ∪ {r} since R is risk-
consistent, and by transitivity of R we have qRr. Since Br is also a full-dimensional
and convex set, Br ∩ C (r) is a full-dimensional convex subset of Br ∩R↓ (r).

Define for each r ∈ ∆ (X) the strict prediction set

Pr+ :=
{
p ∈ R↓ (r) : r /∈ c ({p, r})

}
,

this set consists of all lotteries that are both reference dominated by r and is chosen
over r in a binary choice problems.

Lemma 6. For any r ∈ I, Pr+ contains a full-dimensional convex subset of ∆ (X).

Proof. Take r ∈ I. Suppose for contradiction r ∈ c ({e, r}) for all e an extreme spread
of r; then since the lottery (δw)r(w) (δb) is in the closure of the extreme spread of r, con-
tinuity of c implies r ∈ c

({
r, (δw)r(w) (δb)

})
, which is a violation of FOSD (Axiom 3).

Hence there is an extreme spread of r, which we denote by e, such that r /∈ c ({r, e}).
Since rαe ∈ R↓ (r) and c satisfies Independence over Ar

R↓(r) , we can find p := rαe ∈ Pr+
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where α ∈ (0, 1), hence p ∈ I. By continuity of c, there exists an open ball Bp around
p such that r /∈ c ({r, q}) for all q ∈ Bp. By Lemma 5, Bp ∩ R↓ (p) contains a full-
dimensional convex subset of ∆ (X). Since rRp, Bp ∩ R↓ (p) ⊆ Bp ∩ R↓ (r), hence Pr+
contains a full-dimensional convex subset of ∆ (X).

Immediately, this implies that for r ∈ I, we can build an increasing ur : X → R,
unique up to an affine transformation, such that c (A) = arg maxp∈A Epur (x) if
A ∈ Ar

R↓(r). The technique is standard: Let P be a full-dimensional convex subset
of Pr+. First, notice that for all p, q ∈ P, we have {r, p, q} ∈ Ar

R↓(r) and r /∈ c ({r, p, q}).
Recall that c satisfies WARP and Independence over Ar

R↓(r). By defining p %r q if
p ∈ c ({r, p, q}), we get a binary relation (%r,P) that is complete, transitive, continu-
ous, and satisfies the standard von Neumann-Morgenstern Independence. Since P is
full-dimensional and convex, it contains a subset that is essentially a linear trans-
formation of a |X| − 1 dimensional simplex. Since (%r,P) satisfies FOSD, an in-
creasing utility function ur : X → R, unique up to an affine transformation, such
that c (A) = arg maxp∈A Epur (x) for all A ∈ Ar

P. We normalize this function to
ur : X → [0, 1], where ur (w) = 0 and ub (b) = 1.

We now show that this utility function works for c over Ar
R↓(r). First, for any two

lotteries p, q ∈ ∆ (X), there exist p′, q′ ∈ P such that p′ = pαs and q′ = qαs for some
s ∈ ∆ (X) and α ∈ [0, 1]; we call p′, q′ P-common mixtures of p, q. This can be done by
using an arbitrary point in the interior of P, s ∈ Int P, and take α small enough until
both p′ and q′ enter P. Take any p ∈ R↓ (r) and let r′, p′ be P-common mixtures of r, p.
Since c satisfies Independence over Ar

R↓(r) , i
′ ∈ c ({r, r′, p′}) if and only if i ∈ c ({r, p}),

for i = r, p. Now take any p, q ∈ R↓ (r) such that p ∈ c ({r, p}) and q ∈ c ({r, q}),
then again by Independence over Ar

R↓(r), p
′ ∈ c ({r, p′, q′}) if and only if p ∈ c ({r, p, q}),

where p′, q′ are P-common mixtures of p, q.
We have thus shown that c ({r, p}) = arg maxs∈{r,p} Esur (x) for all {r, p} ∈

Ar
R↓(r) and c ({r, p, q}) = arg maxs∈{r,p,q} Esur (x) for all {r, p, q} ∈ Ar

R↓(r) where
p ∈ c ({r, p}) and q ∈ c ({r, q}). Since c satisfies WARP over Ar

R↓(r) , showing
c (A) = arg maxp∈A Epur (x) for all A ∈ Ar

R↓(r) is straightforward from here.

Corollary 1. For any r ∈ ∆ (X) and p ∈ R↓ (r) ∩ I, if r /∈ c ({r, p}), then
there exists q ∈ R↓ (r) ∩ I such that {q} = c ({r, p, q}). Furthermore, Pr+p :={
q ∈ R↓ (r) : {q} = c ({r, p, q})

}
contains a full-dimensional convex subset of ∆ (X).

Proof. The proof utilizes techniques in the proofs of Lemma 5 and Lemma 6. First,
we show the existence of q ∈ R↓ (r) ∩ I such that {q} = c ({r, p, q}). Consider the set
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of extreme spread of of p, we know that this set is a subset of R↓ (p), and is hence
a subset of R↓ (r). Notice that r /∈ c ({r, p, e}) for any extreme spread e of p since c
satisfies WARP over Ar

R↓(r) and r /∈ c ({r, p}). Using the same technique in the proof
of Lemma 6, it must be that for some extreme spread e∗ of p we have p /∈ c ({r, p, e∗}),
otherwise by continuity of c we have p ∈ c

({
r, p, (δw)p(w) (δb)

})
, a violation of FOSD.

Take any non-trivial convex combination pαe∗, this is in R↓ (p) ⊆ R↓ (r), in I, and
{pαe∗} = c ({r, p, pαe∗}), so let q = pαe∗. Finally, by continuity of c, take an open ball
Bq such that q′ ∈ Bq implies {q′} = c ({r, p, q′}). By Lemma 5, Bq ∩ R↓ (q) contains a
full-dimensional convex subset of ∆ (X). Moreover, Bq ∩ R↓ (q) ⊆ Bq ∩ R↓ (r) ⊆Pr+p.
So Pr+p contains a full-dimensional convex subset of ∆ (X).

Lemma 7. For any r1, r2 ∈ I, if r1Rr2, then ur1 = f ◦ ur2 for some concave and
increasing function f : [0, 1]→ [0, 1].

Proof. This proof uses Axiom 5. Take any r1, r2 ∈ I such that r1Rr2. ur1 and ur2

are defined above, let f̄ be defined on the utility numbers ur2 (x), x ∈ X, such that
ur1 (x) = f̄ur2 (x). Since ur1 and ur2 are strictly increasing, f̄ is strictly increasing in
its domain. We show that for any x1, x2, x3 ∈ X such that x1 < x2 < x3, we have

f̄ (αur2 (x1) + (1− α)ur2 (x3)) ≥ αf̄ (ur2 (x1)) + (1− α) f̄ (ur2 (x3)) ,

where α solves
αur2 (x1) + (1− α)ur2 (x3) = ur2 (x2) . (6.1)

Suppose not, then for some β > α, we have

f̄ (αur2 (x1) + (1− α)ur2 (x3)) < βf̄ (ur2 (x1)) + (1− β) f̄ (ur2 (x3)) (6.2)

< αf̄ (ur2 (x1)) + (1− α) f̄ (ur2 (x3)) .

Consider the lotteries δ = δx2 and p = (δx1)
β (δx3). Equation 6.2 gives

Eδur1 (x) < Epur1 (x)

and Equation 6.1 with β > α gives

Eδur2 (x) > Epur2 (x) .

Let δ1, p1 be P-common mixtures of δ, p, where P here is a full-dimensional convex subset
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of Pr1+r2 if r1 /∈ c ({r1, r2}), and of Pr+ otherwise. Let δ2, p2 be P-common mixtures of δ, p,
where P here is a full-dimensional convex subset of Pr2+ . Since ur1 explain c over Ar1

R↓(r)

and ur2 explain c over Ar2
R↓(r)

, we have {p1} = c ({r1, δ1, p1}) and {δ2} = c ({r2, δ2, p2}).
Notice that A := {r1, r2, δ1, δ2, p1, p2} ∈ Ar1

R↓(r1)
, so c (A) = arg maxq∈A Equr1 (x). We

established that Er1ur1 (x) < Ep1ur1 (x), Er2ur1 (x) < Ep1ur1 (x), and Eδiur1 (x) <

Epiur1 (x) for i = 1, 2, so c ({r1, r2, δ1, δ2, p1, p2}) ⊆ {p1, p2}. But this along with
{δ2} = c ({r2, δ2, p2}) violate Axiom 5. Finally, it is straightforward that one can
extend f̄ to a concave function f : [0, 1]→ [0, 1] (for example, by connecting the points
with straight lines).

At this point we left with r ∈ E = ∆ ({b, w}).

Lemma 8. For any r ∈ E and p ∈ R↓ (r) such that p 6= r, either p first order
stochastically dominates r or r first order stochastically dominates p.

Proof. Take r ∈ E and p ∈ R↓ (r), p 6= r. Let α = r (b), then r (w) = 1 − α. If
p (b) < α and p (w) < (1− α), then r is an extreme spread of p and pRr, so p /∈ R↓ (r).
Furthermore, it is not possible that p (b) ≥ α and p (w) ≥ (1− α) if p 6= r. Hence
either p (b) ≥ α and p (w) ≤ (1− α) with at least one strict inequality, or p (b) ≤ α

and p (w) ≥ (1− α) with at least one strict inequality. If the former, p FOSD r; if the
latter, r FOSD p.

With this observation in mind, we now construct ur for r ∈ E. Define

E1 :=
{
r ∈ E : r /∈ c ({r, p}) for some p ∈ R↓ (r) ∩ I

}
E2 := E\E1.

For any r ∈ E1, Pr+ contains a full-dimensional convex subset of ∆ (X) by Corollary 1,
and so we can build ur using the same method we used to build ur for r ∈ I. We will
construct ur for r ∈ E2 after the following result.

Corollary 2. For any r1, r2 ∈ I ∪ E1, if r1Rr2, then ur1 = f ◦ ur2 for some concave
and increasing function f : [0, 1]→ [0, 1].

Proof. Consider the proof in Lemma 7, but that when r2 ∈ E1, we simply let δ1, p1 be P-
common mixtures of δ, p, where P here is a full-dimensional convex subset of P+

r1
. Before,

we let P be a full-dimensional convex subset of P+r2
r1

when r1 /∈ c ({r1, r2}), but now such
subset need not exist since r2 /∈ I. To compensate for this, since δ2, p2 ∈ P+

r2
implies that
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δ2, p2 FOSD r2 due to Lemma 8, we replace the argument “Er2ur1 (x) < Ep1ur1 (x)” with
“Er2ur1 (x) < Ep2ur1 (x)”. Everything else goes through as in the proof in Lemma 7,
giving us the desired result.

For any r ∈ E2, given Lemma 8, any increasing utility function ur : X → [0, 1]

will accomplish c (A) = arg maxp∈A Epur (x) for all A ∈ Ar
R↓(r). With this freedom, we

construct ur to our desired properties.
Formally, consider, for an increasing utility function up, the object ρp =(

ρp2, ..., ρ
p
|X|−1

)
∈ (0, 1)|X|−2 where

ρpi :=
up (xi)− up (xi−1)

up (xi+1)− up (xi−1)

(that is, ρpi satisfies up (xi) = ρpiup (xi+1) + (1− ρpi )up (xi−1)). There is a one-to-one
relationship between up and ρρ. It is an algebraic exercise to show that up = f ◦ uq
for some concave and increasing f : [0, 1] → [0, 1] if and only if ρpi ≥ ρqi for all i ∈
{2, ..., |X| − 1}. Take r ∈ E2 and define ρr :=

(
infp∈K (ρp2) , ..., infp∈K

(
ρp|X|−1

))
, where

Kr := (I ∪ E2) ∩ {p : rRp} ⊆ ∆ (X), and subsequently construct ur using ρr. It is
straightforward to show that R being risk-consistent implies Kr is nonempty for all
r ∈ E2\ {δb, δw}, and so ur is defined other than when r ∈ {δb, δw}.

For the non-generic case where, for some j ∈ {b, w}, we have δj ∈ E2 such that Kδj

is not defined, this implies δjRp for all p ∈ ∆ (X) \ {δb, δw}. Then, we define

ρ
δj
i :=

1

2
(1) +

1

2
sup

p∈∆(X)\{δb,δw}
ρpi

for all i and construct uδj correspondingly. Utility functions indexed by such a δj and
that by any p ∈ ∆ (X) \ {δj} now satisfy ρδji ≥ ρpi , with equality when p also is a δj
falling into this special case (there are at most two of them, δb and δw).

We now show that for r1, r2 ∈ ∆ (X) where r1Rr2, we have ρr1 ≥ ρr2 . This is
already shown for any r1, r2 ∈ I ∪ E1 by Corollary 2. It is also shown for the special
cases in the preceding paragraph. Hence, we restrict attention to the remaining cases.
Say r1 ∈ E2, r2 ∈ I ∪E1, but ρr1i < ρr2i for some i. Then infp∈Kr1

(ρpi ) < ρr2i , so ρ
p
i < ρr2i

for some p ∈ Kr1 . However, p ∈ Kr1 implies pRr2 since R is transitive; since p ∈ I ∪E2,
this contradicts Corollary 2. Say r1 ∈ I ∪ E1, r2 ∈ E2, but ρr1i < ρr2i for some i.
Then ρr1i < infp∈Kr2

(ρpi ), so ρ
r1
i < ρpi for all p ∈ Kr2 . But r1 ∈ Kr2 , a contradiction.

Finally, for r1, r2 ∈ E2 and r2Rr1, eitherKr1 = Kr2 orKr1 ( Kr2 . If it is the former, it is
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immediate that ρr1 = ρr2 . If it is the later, then ρr1i = infp∈Kr1
(ρpi ) ≤ infp∈Kr2

(ρpi ) = ρr2i
for all i, as desired.

Thus, we have now shown that for any r1, r2 ∈ ∆ (X), ρr1 ≥ ρr2 whenever r1Rr2,
or equivalently ur1 = f ◦ ur2 for some concave and increasing f : [0, 1]→ [0, 1].

Proof of Proposition 2

In this proof, we use the notation max (A,R) to characterize the element x ∈ A such
that xRy for all y ∈ A.

(1)

First, we prove the second property of Betweenness in Definition 5, that

c ({p, q}) = {p, q} ⇒ c ({p, pαq}) = {p, pαq} and c ({pαq, q}) = {pαq, q} .

Then, we use it to prove the first property, that

c ({p, q}) = {p} ⇒ c ({p, pαq}) = {p} and c ({pαq, q}) = {pαq} .

Suppose c ({p, q}) = {p, q}. Without loss of generality, either (i)
max ({p, q, pαq} , R) = p or (ii) max ({p, q, pαq} , R) = pαq. If (i), then
max ({p, q} , R) = max ({p, pαq} , R) = p, hence the utility functions used in the two
choice problems c ({p, q}) and c ({p, pαq}) are both up. It is immediate that, since pαq
is a mixture of p and q, we have c ({p, pαq}) = {p, pαq}, and by Transitivity we have
c ({q, pαq}) = {q, pαq}.41 If (ii), then max ({pαq, q} , R) = max ({p, pαq} , R) = pαq.
Suppose for contradiction p /∈ c ({p, pαq}), then pαq /∈ c ({pαq, q}) since pαq is a mix-
ture of p and q.42 But by Transitivity we would have c ({p, q}) = {q}, a contradiction.
We have hence proved the second property of Betweenness in Definition 5.

The first property is given by this second property, Continuity and FOSD (the latter
two are implied by AREU), which we now show.

Suppose c ({p, q}) = {p}. We start by ruling out c ({p, pαq}) = {pαq} (and similarly
c ({pαq, q}) = {q}): Suppose c ({p, pαq}) = {pαq}, then by Continuity, it is well-know
that there exists a a (strict) mixture of q and pαq such that c ({p, a}) = {p, a}. But

41Since
∑
x∈X p (x)up (x) =

∑
x∈X q (x)up (x) =

∑
x∈X [αp (x) + (1− α) q (x)]up (x).

42Since
∑
x∈X p (x)upαq (x) <

∑
x∈X [αp (x) + (1− α) q (x)]upαq (x) implies∑

x∈X [αp (x) + (1− α) q (x)]upαq (x) <
∑
x∈X q (x)upαq (x).
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Figure 6.1: Highlighted region is a full-dimensional subset of the larger triangle, which
necessitates a FOSD violation.

then by the second property in Definition 5, since pαq is a mixture of a and p, we have
c ({p, pαq}) = {p, pαq}, which is a contradiction. A analogous argument can be made
to rule out c ({pαq, q}) = {q}.

Next we rule out c ({p, pαq}) = {p, pαq}. Suppose c ({p, pαq}) = {p, pαq}. Let
δb∗ be the degenerate lottery on b∗ := max (supp (pαq)) ∈ X. If p = δb∗ , then by
FOSD we are done. Suppose p 6= δb∗ , then by FOSD we have c ({b, p}) = {b}. Since
c ({p, q}) = {p}, by Continuity there exists a a (strict) mixture of δb∗ and q such
that c ({p, a}) = {p, a}. Now notice that the convex set formed by p, pαq, a, denoted
Q, is a full-dimensional subset of the convex set formed by p, q, δb∗ , within which by
Transitivity every pairs of lotteries are indifferent to one another (in the sense that for
all p′, q′ ∈ Q, c ({p′, q′}) = {p′, q′}), which necessitates a FOSD violation. Figure 6.1
provides an illustration. An analogous argument, using δb∗ as the degenerate lottery on
min (supp (pαq)) ∈ X, rules out c ({pαq, q}) = {pαq, q}.

Now that we have ruled out c ({p, pαq}) = {pαq}, c ({p, pαq}) = {p, pαq},
c ({pαq, q}) = {q} and c ({pαq, q}) = {pαq, q}, we conclude that c ({p, pαq}) = {p}
and c ({pαq, q}) = {pαq}.

(2) - (4) We first prove point 3. Using Proposition 2 Part 1, we know that indiffer-
ence curves are linear and do not intersect. Take an arbitrary indifference curve and
consider two points p, q on it that lie in the interior of the triangle. Let p′ and q′ be
mean-preserving contractions of p and q, respectively, such that the line connecting p′
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Figure 6.2: Indifference curves fan out when AREU is combined with Transitivity and
risk aversion (Proposition 2). Arrows correspond to mean-preserving spreads.

and q′ is parallel to the line connecting p and q. Since p′, q′ are mean-preserving contrac-
tions, max ({p, q} , R) R max ({p′, q′} , R), and therefore AREU posits that c ({p′, q′})
is explained by a more concave utility function than the one used for c ({p, q}), which
corresponds to a weakly steeper indifference curve. Figure ?? provides an illustration.
Point 4 is proven analogously. Finally, the immediate consequence of these unidirec-
tional fanning, along with Continuity, rules out the possibility of c being both strictly
risk averse and strictly risk loving in this triangle, i.e., point 2 of the proposition.

Proof of Lemma 1

This result is a direct consequence from the fact that WARP and Stationarity are both
properties between pairs of choice problems.

To see (1) ⇒ (2): Take any set A ∈ A and any earliest payment (x, t) ∈ Ψ (A).
Consider the collection of choice problems S := {B ⊆ A : (x, t) ∈ B}. For any pair
of choice problems B1, B2 ∈ S, since (x, t) ∈ Ψ (B1) ∩ Ψ (B2), c satisfies WARP and
Stationarity over {B1, B2}. Therefore, c satisfies WARP and Stationarity over S.

To see (2) ⇒ (1): Take any B1, B2 such that Ψ (B1) ∩ Ψ (B2) 6= ∅. Take (x, t) ∈
Ψ (B1) ∩ Ψ (B2). Consider A := B1 ∪ B2. Since B1 and B2 are both finite, A is finite,
and therefore A ∈ A. Since (x, t) ∈ Ψ (B1) ∩Ψ (B2), (x, t) ∈ Ψ (A). By (2) this means
c satisfies WARP and Stationarity over S := {B ⊆ A : (x, t) ∈ B}, which contains B1

and B2. This means c must satisfy WARP and Stationarity over {B1, B2} otherwise
this is a direct contradiction of the preceding statement.
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Proof of Theorem 3

The proof for necessity (utility representation implies axioms) is straightforward, the
necessity of Axiom 8 is shown in the main body as a footnote. The proof for sufficiency
(axioms imply utility representation) is three-fold.

In Stage 1, we show that with Axiom 6 and Axiom 7, for any time r ∈ T , the set of
all choice problems such that the earliest payment arrives at time r can be explained
by a nonempty set of Discounted Utility specifications, where a generic element of this
set is (ũ, δ), a utility function and a discount factor. In Stage 2, we show that at least
one utility function u can be supported for all r ∈ T , and for each r ∈ T we set as
δr the corresponding discount factor associated with u for r; this is the more involved
portion of the proof and it uses Axiom 8. Lastly in Stage 3, with Axiom 8 again, we
show the desired relationship between δr and δr′ for any two r, r′.

Denote by Ψ (A) the set of payments in A that arrive soonest, Ψ (A) :=

{(x, t) ∈ A : t ≤ q ∀ (y, q) ∈ A}.

Stage 1: DU representation for each r ∈ T

By Lemma 1 and Lemma 2, for any x ∈ X and r ∈ T , c satisfies WARP and Stationarity
over S(x,r) := {A ∈ A : (x, r) ∈ Ψ (A)} (S(x,r) is the collection of choice sets such that
the earliest payment is (x, r)). In fact, WARP and Stationarity hold even when we
consolidate the collection of choice problems in which the earliest payment arrives at
the same time (although the payments themselves may be different), which we now
show.

Lemma 9. For any r ∈ T , c satisfies WARP and Stationarity over S(·,r) := ∪x∈XS(x,r).

Proof. Take any two choice sets A,B ∈ S(·,r) such that either WARP or Stationarity
fails. Therefore, it must be that Ψ (A) ∩Ψ (B) = ∅. Now let’s take the worse payment
at r for each set: (x∗, r) ∈ A such that x∗ ≤ x for all (x, r) ∈ A and (y∗, r) ∈
B such that y∗ ≤ for all (y, r) ∈ B. Suppose without loss of generality x∗ < y∗

(strict inequality due to Ψ (A) ∩ Ψ (B) = ∅). By Outcome Monotonicity (Axiom 6),
adding (x∗, r) to B would not change the choice from B: c (B ∪ {(x∗, r)}) = c (B).
Moreover, A,B ∪ {(x∗, r)} ∈ S(x∗,r), and therefore neither WARP nor Stationarity fails
between them. If it is Stationarity that is violated between A and B, a contradiction
is established. If it is WARP that is violated, it remains to show that if A ⊆ B then
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A ⊆ B ∪ {(x∗, r)} and if A ⊇ B then A ⊇ B ∪ {(x∗, r)}, both of which are immediate
since (x∗, r) ∈ A.

Now that we have established c satisfies WARP and Stationarity over S(·,r) :=

∪x∈XS(x,r), it is well-known (Fishburn & Rubinstein (1982)) that along with Axiom 6
we achieve (many) Discounted Utility (DU) representations, for instance by translating
the time-index by −r so that time r is time 0, etc.

Stage 2: ur = u0 for each r ∈ T

Take r = 0 and arbitrarily pick a DU representation (δ0, u0) for c on S(x,r), and define
the ultimate utility function U0 (x, t) : R× R→ R by U0 (x, t) := δt0u0 (x).

We proceed to show that for every other r ∈ T , there exists a DU representation
(δr, ur) such that ur = u0 (and later on, that δ∗ > δ). Fix any r ∈ (a, b). Define
Ur (x, t) : R× R→ R by Ur (x, t) := δtrut (x), a utility function for c on S(x,r).

Lemma 10. For each x ∈ (a, b), there exists an open set (x−, x+) ⊆ (a, b) such that
x− < x < x+ and for all x1, x2 where x− < x1 < x < x2 < x+, we have

U0

(
x, αt̃1 + (1− α) t̃2

)
= U0

(
x1, t̃1

)
= U0

(
x2, t̃2

)
if and only if

Ur (x, αt1 + (1− α) t2) = Ur (x1, t1) = Ur (x2, t2) .

Moreover, there exists λ ∈ R such that for all z1, z2 ∈ (x−, x+),

U0

(
z1, t̃1

)
= U0

(
z2, t̃2

)
if and only if Ur (z1, t1) = Ur

(
z2, t1 + λ

(
t̃2 − t̃1

))
.

Proof. This proof relies primarily on Part 2 of Axiom 8. Fix any x ∈ (a, b). Since
Ur (·, ·) is continuous and decreasing in it’s second argument, there exists q ∈ (r, t̄)

such that c ({(a, r) , (x, q)}) = {(x, q)}. Likewise, there exists q̃ ∈ (0, t̄) such that
c ({(a, 0) , (x, q̃)}) = {(x, q̃)}. Since there is an open set in (r, t̄) that contains q,
by continuity of Ur (·, ·), there exists an open set O in X that contains x such that
x′ ∈ O implies c ({(a, r) , (x, q) , (x′, q′)}) = {(x, q) , (x′, q′)} for some q′ ∈ (r, t̄). Like-
wise, there exists an open set Õ in X that contains x such that x′ ∈ Õ implies
c ({(a, 0) , (x, q) , (x′, q′)}) = {(x, q) , (x′, q′)} for some q′ ∈ (0, t̄). Now take any open
subset (x−, x+) ⊆ O ∩ Õ such that x ∈ (x−, x+).
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What we have done so far is to focus on an outcome space (x−, x+) small enough
so that for any two outcomes x1, x2 ∈ (x−, x+) such that x1 < x2, it is possible to find
t1, t2 ∈ (r, t̄) and t̃1, t̃2 ∈ (0, t̄) such that (x1, t1) is (revealed) indifferent to (x2, t2) under
Ur and

(
x1, t̃1

)
is (revealed) indifferent to

(
x2, t̃2

)
under U0. Since Ur and U0 are DU

representations, subtracting a fixed amount of time from each pairs of options does not
alter the indifferences, and therefore what we are trying to show is

U0

(
x, α0 + (1− α)

(
t̃2 − t̃1

))
= U0 (x1, 0) = U0

(
x2, t̃2 − t̃1

)
(6.3)

if and only if

Ur (x, αr + (1− α) (t2 − (t1 − r))) = Ur (x1, r) = Ur (x2, t2 − (t1 − r)) . (6.4)

Say Equation 6.3 holds, since (x−, x+) ⊆ Õ, c (A) = A where A ={(
x, α0 + (1− α)

(
t̃2 − t̃1

))
, (x1, 0) ,

(
x2, t̃2 − t̃1

)}
for some α ∈ (0, 1). By

the fact that (x−, x+) ⊆ O, there exists t2 − (t1 − r) ∈ T such that
c ({(x1, r) , (x2, t2 − (t1 − r))}) = {(x1, r) , (x2, t2 − (t1 − r))}. Consequently, a
direct application of Part 2 of Axiom 8 gives c (B) = B where B ={(
x, λ

(
α0 + (1− α)

(
t̃2 − t̃1

))
+ d
)
, (x1, r) , (x2, t2 − (t1 − r))

}
and λ, d ∈ R solves

r = λ0 + d and t2 − (t1 − r) = λ
(
t̃2 − t̃1

)
+ d, the solution for which is

d = r

λ =
t2 − t1
t̃2 − t̃1

.

Then, the term λ
(
α0 + (1− α)

(
t̃2 − t̃1

))
+ d simplifies to αr + (1− α) (t2 − (t1 − r)),

which gives Equation 6.4 as desired. The proof that Equation 6.4 implies Equation 6.3
is analogous.

The second portion of the lemma is given by applying the first portion multiple
times.

Likewise, we can come up an analogous result for x = a and x = b (recall that
X = [a, b] ⊆ R>0).

Lemma 11. For x = a (resp. x = b), there exists x+ ∈ (a, b) (resp. x− ∈ (a, b)) such
that for all x1, x2 where a ≤ x1 < x < x2 < x+ (resp. x− < x1 < x < x2 ≤ b), we have

U0

(
x, αt̃1 + (1− α) t̃2

)
= U0

(
x1, t̃1

)
= U0

(
x2, t̃2

)
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if and only if
Ur (x, αt1 + (1− α) t2) = Ur (x1, t1) = Ur (x2, t2) .

Moreover, there exists λ ∈ R such that for all a ≤ z1 < z2 < x+ (resp. x− < z1 < z2 ≤
b),

U0

(
z1, t̃1

)
= U0

(
z2, t̃2

)
if and only if Ur (z1, t1) = Ur

(
z2, t1 + λ

(
t̃2 − t̃1

))
.

Proof. The proof is essentially identical to the proof for Lemma 10, with the exception
that it is impossible to build an open set around x = a and x = b.

Using Lemma 10, we now show that if indifference between some two outcomes are
preserved when the time gap between them are expanded by a certain factor λ, then
indifferences between any two outcomes are also preserved when the time gap between
them are expanded by the factor λ.

Lemma 12. If c
({

(a, 0) ,
(
y, t̃
)})

=
{

(a, 0) ,
(
y, t̃
)}

and c ({(a, r) , (y, t)}) =

{(a, r) , (y, t)}, then for all x∗ ∈ X,

U0

(
a, t̃
)

= U0 (x∗, t∗) if and only if Ur (a, t) = Ur
(
x∗, t+ λ

(
t∗ − t̃

))
where λ = t−r

t̃−0
.

Proof. Note that it is possible to have t∗ > t̄, which is the case that x∗ is so good it is
impossible to make x∗ and x indifferent within the time span allowed in T ; nonetheless,
these utility functions are well defined (e.g., U0 (x∗, t∗) = δt

∗
0 u (x∗) is a number).

Before we provide the complete proof, we illustrate the key component to this proof:
Suppose a < x∗ < y < x+, where x+ is defined in Lemma 11. Then, a direct application
of Lemma 11 where x1 = a, x2 = y and x = x∗ would achieve the desired result.
Whereas if a < y < x∗ < x+, then a direct application of Lemma 11 where x1 = a, x2 =

x∗ and x = y would achieve the desired result. This illustration becomes insufficient
when x∗ > x+. Therefore, the complete proof uses the fact that the collection of open
intervals (x+, x−), one for each x where x ∈ (a, x∗], would create a chain of pseudo-
indifferences from a to x∗.

If x∗ = a, the proof is trivial.
Consider x∗ ∈ (a, b). Let Ĉ := {(x+, x−)x : x ∈ (a, x∗]} be the collection of open

sets (x+, x−)x defined for each x in Lemma 10. Now add [a, x+), defined for x = a in
Lemma 11, to this collection and obtain C := Ĉ ∪ {[a, x+)}. Since this is a collection
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of open neighborhoods (other than at the boundary a) around each element of an
interval, there exists a sequence of intervals, each of which an element of C, that starts
with [a, x+) and ends with (x+, x−)x∗ such that every two consequence intervals have
non-empty intersection. (If a sequence, indexed by x, converges to a point ` < x∗, then
we can build another sequence by removing an infinite tail of original sequence and
continuing with (x+, x−)`.) Therefore, for every two consecutive intervals (x+, x−)y1 ,
(x+, x−)y2 , the second portion of Lemma 10 establishes that if

U0

(
z1, t̃1

)
= U0

(
z2, t̃2

)
Ur (z1, t1) = Ur

(
z2, t1 + λ̂

(
t̃2 − t̃1

))
for some z1, z2 ∈ (x+, x−)y1 and λ̂ ∈ R, then

U0

(
z3, t̃3

)
= U0

(
z4, t̃4

)
if and only if Ur (z3, t3)=Ur

(
z4, t3 + λ̂

(
t̃4 − t̃3

))
for all z3, z4 ∈ (x+, x−)y2 . (Loosely speaking, the intersection helped transfer λ̂ from
the first interval to the second.) Finally, iterating through this sequence of intersections
gives λ̂ = λ = t−r

t̃−0
, and completes the proof.

If instead x∗ = b, then we do the same but with C := Ĉ ∪ {[a, x+), (x−, b]}, where
(x−, b] is defined for x = b in Lemma 11.

Finally, since Continuity (or refer to the proof of Lemma 11) guarantees
the existence of with

(
y, t̃
)

such that c
({

(a, 0) ,
(
y, t̃
)})

=
{

(a, 0) ,
(
y, t̃
)}

and
c ({(a, r) , (y, t)}) = {(a, r) , (y, t)}, with Lemma 12, we conclude that (δr, ur) such that
ur = u0 and δr = δ−λ0 where λ = t−r

t̃−0
is a DU representation for c on S(·,r).

The analysis thus far was for r ∈ [0, t̄). When r = t̄, since every choice problems
in S(·,t̄) contains only payments that arrive at time t̄, a DU representation is trivially
available with any positive δt̄ and any strictly increasing ut̄. Therefore, we set ut̄ = u0

and δt̄ = supr∈[0,t̄) δr. Due to Impatience (Axiom 6), δt̄ ∈ (0, 1).

Stage 3: δr ≥ δr′ for all r > r′

If r = t̄, this is trivial from the construction of δt̄. Consider any r, r′ ∈ [0, t̄). By
continuity of c (or refer to the proof of Lemma 10 and Lemma 11), there exists y > a

such that c ({(a, r) , (y, t)}) = {(a, r) , (y, t)} and c ({(a, r′) , (y, t′)}) = {(a, r′) , (y, t′)}
for some t, t′ ∈ T , and therefore δrru (a) = δtru (y) and δr′r′u (a) = δt

′

r′u (y).
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Suppose for contradiction δr′ > δr, then t′ − r′ > t− r, or t′ > t− r + r′. Consider
(y, t− r + r′), since t ∈ T and r > r′, we have t− r + r′ ∈ T , and therefore

c ({(a, r′) , (y, t− r + r′)}) = {(y, t− r + r′)} (6.5)

from δr
′

r′u (a) = δt
′

r′u (y) < δt−r+r
′

r′ u (y). However, by construction,

c ({(a, r′ + d) , (y, (t− r + r′) + d)}) = {(a, r′ + d) , (y, (t− r + r′) + d)} (6.6)

where d = r − r′ > 0. Equation 6.5 and Equation 6.6 jointly contradict Part 1 of
Axiom 8.

Proof of Theorem 4

The proof for necessity (utility representation implies axioms) is straightforward. The
proof for sufficiency (axioms imply utility representation) is three-fold.

The first two stages show that with Axiom 10 and Axiom 9, for each r, the set of all
choice problems where the most balanced alternative has a Gini coefficient of r can be
explained by the maximization of x+ vr (y) for some unique vr : [w,+∞)→ R. Then,
the third stage shows that r > r′ and y > y′ implies vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′).

Stage 1: x+ v(x,y) (y) for each (x, y) ∈ X

For each alternative (x, y) ∈ X, define the reference-dominated set of (x, y) by

R↓ ((x, y)) := {(x′, y′) ∈ X : G (x, y) ≤ G (x′, y′)}

and the prediction set of (x, y) by

P(x,y) := {(x′, y′) ∈ X : G (x, y) ≤ G (x′, y′) and (x′, y′) ∈ c ({(x′, y′) , (x, y)})} .

By Axiom 10, c satisfies WARP over the collection of choice problems S =

{A ∈ A : r (A) = G (x, y) and (x, y) ∈ A}. By Theorem 1, each alternative (x, y) ad-
mits a real-valued utility function u∗ : X → R that explains the choices from choice
problems in S, which for convenience we notate as c : S → A.

Note that for all (x′, y′) ∈ R↓ ((x, y)), u∗ (x′, y′) ≥ u∗ (x, y) := ū if and only if
(x′, y′) ∈ P(x,y). By Continuity and Axiom 9 (Monotonicity), this is region is character-
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Figure 6.3: This figure illustrates the construction of v(x,y) for a fixed (x, y) ∈ X.
The space X is divided into three regions: (1) X\R↓ ((x, y)) is the set of alterna-
tives that have a lower Gini coefficient than (x, y), and therefore they are never in a
choice problem where (x, y) is the reference. The alternatives in R↓ ((x, y)) are then
split into two groups: (2) those that are chosen when (x, y) is the reference, P(x,y),
and (3) those that are not, R↓ ((x, y)) \P(x,y). These two groups are separated by
the indifference curve passing through (x, y), the red curve, which partially defines
v(x,y) (it is partial because X\R↓ ((x, y)) separates the space). The rest of v(x,y) can
be defined by using the different curve that connects (x+ a, y) and (x∗ + a, y∗), the
purple curve, where G (x∗, y∗) = G (x, y), c ({(x, y) , (x∗, y∗)}) = (x, y) , (x∗, y∗), and
{(x+ a, y) , (x∗ + a, y∗)} ⊂ P(x,y).

ized by the upper graph, Moreover, since c satisfies Quasi-linearity over S (Axiom 10),
the portion of u∗ (x′, y′) with domain P(x,y) (which contains (x, y) itself) must be a
strictly increasing transformation of x′+v(x,y) (y′) for some unique v(x,y) : [w,+∞)→ R.
Also, the portion of u∗ (x′, y′) with domain X\R↓ ((x, y)) is irrelevant, since no choice
problem in S contains any alternative from this set. Finally, for the portion of u∗ (x′, y′)

with domain R↓ ((x, y)) \P(x,y), it must be that x′+v(x,y) (y′) < u∗ (x, y) = x+v(x,y) (y):
Otherwise, since for some a we have {(x+ a, y) , (x′ + a, y′)} ⊆ P(x,y), and therefore
(x′ + a, y′) ∈ c {(x, y) , (x+ a, y) , (x′ + a, y′)}, the fact that (x′, y′) ∈ R↓ ((x, y)) \P(x,y)

and {{(x, y) , (x′, y′)} , {(x+ a, y) , (x′ + a, y′)}} ⊂ S contradicts the fact that c satisfies
Quasi-linearity over S (Axiom 10).

Figure 6.3 provides an illustration of how v(x,y) is constructed.
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Stage 2: x+ vr (y) for each r

Fix an r, we now show that v(x,y) must coincide for all (x, y) where G (x, y) = r.
Consider the collection of choice problems S := {A ∈ A : r (A) = r}. Note that c sat-
isfies WARP and Quasi-linearity over S. To see this, take any two choice problems
A1, A2 in S. For each i = 1, 2, there must be an alternative (xi, yi) ∈ Ai such that
G (xi, yi) = r and G (x′, y′) ≥ r for all other (x′, y′) in Ai. Consider an income distribu-
tion (x∗, y∗) such that x∗ ≤ min{x1, x2} and y∗ ≤ min {y1, y2} and G (x∗, y∗) = r. Due
to (xi, yi) ∈ Ψ (Ai ∪ {(x∗, y∗)}), Axiom 10 (Equality Dependence ), and Axiom 9 (Mono-
tonicity), we have c (Ai) = c (Ai ∪ {(x∗, y∗)}). But (x∗, y∗) ∈ Ψ (A1 ∪ A2 ∪ {(x∗, y∗)}),
so by Axiom 10 again, c (A1 ∪ {(x∗, y∗)}) and c (A2 ∪ {(x∗, y∗)}), which as established
are just c (A1) and c (A2), cannot result in a violation of WARP or Quasi-linearity.
Consequently, v(x,y) must coincide for all (x, y) such that G (x, y) = r.

Stage 3: r < r′ and y > y′ implies vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′)

Finally we show that for all r < r′, vr (y) − vr (y′) ≥ vr′ (y) − vr′ (y
′) for all y > y′

(reminder: higher r implies greater attainable equality). Suppose not, our goal is
to substantiate a contradiction of Axiom 11 in the choice correspondence. Fix any
y, y′ ∈ R+ such that y > y′. Define ṽr = vr (y)− vr (y′) and ṽr′ = vr′ (y)− vr′ (y′). We
want to show that ṽr ≥ ṽr′ .

Suppose for contradiction that this is not true, let z be any value such that ṽr <
z < ṽr′ .

Consider (x0, w) , (x1, w) ∈ X such that

G (x0, w) = r′ (6.7)

G (x1, w) = r, (6.8)

which exist because G (·, w) is continuous and increasing in it’s first argument from
G (w,w) = 0 to limx→+∞G (x,w) = 0.5 and r, r′ ∈ [0, 0.5). Consider x := z + ∆,
x′ := 2z + ∆ for some ∆ > 0 such that

min ({G (x, y) , G (x′, y′)}) ≥ r′ (6.9)

and x′ > x > max ({x0, x1}), which is possible because for any fixed ȳ, G (x, ȳ) is
asymptotically increasing in it’s first argument and limx→+∞G (x, ȳ) = 0.5, and r′ ∈
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[0, 0.5). Essentially, we have introduced reference points (x0, w) , (x1, w) that will not
be chosen, forcing the choice to be between (x, y) and (x′, y′)

We now use the constructed alternatives (x, y) , (x′, y′) , (x0, w) , (x1, w) to
demonstrate a violation of Axiom 11. Consider the choice problem A :=

{(x, y) , (x′, y′) , (x0, w)}. Due to Equation 6.7 and Equation 6.9, c (A) consists of all
maximizers of the utility function x̂ + vr′ (ŷ), and (x0, w) will not be chosen since
x0 < x and w ≤ y. Since ṽr′ > z, or equivalently z + vr′ (y) > 2z + vr′ (y

′), we have
x+ vr′ (y) > x′ + vr′ (y

′) and therefore

c ({(x, y) , (x′, y′) , (x0, w)}) = {(x, y)} . (6.10)

Likewise, due to Equation 6.8 and Equation 6.10, c (A ∪ {(x1, w)}) consists of all
maximizers of the utility function x̂+vr (ŷ) and both (x0, w), (x1, w) will not be chosen.
Since z > ṽr, or equivalently 2z + vr (y′) > z + vr (y), we have x′ + vr (y′) > x + vr (y)

and therefore
c ({(x, y) , (x′, y′) , (x0, w) , (x1, w)}) = {(x′, y′)} . (6.11)

Since y > y′, Equation 6.10 and Equation 6.11 jointly contradict Axiom 11. This
establishes vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′) for all y > y′ and r < r′.

Proof of Proposition 1, Proposition 3, and Proposition 4

In each of the three models, it is straightforward that we arrive at the standard models
(expected utility, exponential discounting, quasi-linear utility) when the corresponding
preference parameters converge. That is, for all r, r′, ur = ur′ in the risk model, δr = δr′

in the time model, and vr = vr′ in the social preference model. Therefore, the key to
showing WARP and structural postulates (Independence, Stationarity, Quasi-linearity)
are independently sufficient for the standard models is by arguing that non-convergent
preference parameters necessitates both WARP violations and violations of structural
postulates.

The remaining statements, that WARP and structural postulates (Independence,
Stationarity, Quasi-linearity) are necessary for standard models ((1) if (3), (2) if (3)),
and that WARP is sufficient and necessary for a standard utility representation ((1) if
and only if (4)), are straightforward and omitted.
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Proof of Proposition 1

(1) WARP implies (3) Expected Utility We first show that if c satisfies Transi-
tivity over A (defined in Subsection 3.7), a necessary condition for WARP, then indif-
ferent curves are linear and parallel on the convex hull of p, δb, δw for every p. For any
p ∈ ∆ (X) \∆ ({b, w}), define p∗ ∈ ∆ (X) by the probabilities

p∗ (x) :=

p (x) / (1− p (b)− p (w)) if x ∈ X\ {b, w}

0 otherwise
.

Furthermore, let τp ⊆ ∆ (X) (“tau” for triangle) be the convex hull

τp := conv ({p∗, δb, δw}) .

Note that p ∈ τp, τp∗ = τp, and ∪p∈∆(X)τp = ∆ (X). Moreover, for every q ∈ τp such
that q (b) , q (w) > 0, q is an extreme spread of p∗ and therefore p∗Rq.

Also, denote by ∂p the (partial) boundary

∂p := [conv ({p∗, δb}) ∪ conv ({p∗, δw})] \ {δb, δw} ,

which is a subset of the boundary of τp.

Lemma 13. Suppose c admits an AREU representation and satisfies Transitivity over
A. For any p ∈ ∆ (X) \∆ ({b, w}), if p1, p2 ∈ τp\∆ ({b, w}), then up1 (x) = up2 (x) for
all x.

Proof. Fix p ∈ ∆ (X) \∆ ({b, w}). For each q ∈ ∂p, due to FOSD and continuity of c,
there exists a lottery that involves only the best and the worst prizes eq ∈ ∆ ({b, w})
such that c ({q, eq}) = {q, eq}. Moreover due to FOSD, eq (b) > q (b) and eq (w) >

q (w), and therefore eq is an extreme spread of q, which implies qReq and therefore
Eq (uq (x)) = eq (b) since uq explains c ({q, eq}) and Eqe (us (x)) = eq (b) for all s (due to
our normalization that us (w) = 0 and us (b) = 1 for all s).

Consider the line Lq := qeq = conv({q, eq}). Every element q′ ∈ Lq is an extreme
spread of q and therefore qRq′, which implies c ({q, q′}) = arg maxs∈{q,q′} Es (uq (x)) =

{q, q′} (since q′ is a convex combination of q and qe, which are indifferent under uq).
By Transitivity, this means for all q1, q2 ∈ Lq, we have c ({q1, q2}) = {q1, q2}, and
therefore for all s ∈ Lq\ {eq}, we have Eq (us (x)) = qe (b), a constant. However, any
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two utility functions u1, u2 in AREU are related by a concave transformation, say
WLOG u1 = f ◦ u2 for some concave f , and therefore either u1 = u2 or u1 (x) > u2 (x)

for all x ∈ X\ {b, w} (recall that ui (w) = 0 and ui (b) = 1). Now, since Eq (us1 (x)) =

Eq (us2 (x)) for all s1, s2 ∈ Lq\ {eq} and q (x) > 0 for some x ∈ X\ {b, w}, we conclude
that for all s1, s2 ∈ Lq\ {eq}, we have us1 = us2 .

We have established that for every line Lq where q ∈ ∂p, the utility function indexed
by every alternative on that line (except eq) is identical to uq. Also, since for any s ∈ τp
there exists some q ∈ ∂p such that c ({s, eq}) = {s, eq} (due to FOSD and continuity of
c), and since for every e ∈ ∂p there exists q ∈ ∂p such that e = eq (due to continuity of
c), we have ∪q∈∂pLq = τp.

We now show that for any two q1, q2 ∈ ∂p, we have uq1 = uq2 .
Consider the set Q+ := {q∗1, q∗2, ...} such that q∗i ∈ ∂p is defined by

q∗i := αiδb + (1− αi) p∗

where α1 = 0 and αi = 1
2
eq∗i−1

(b)+ 1
2
q∗i−1 (b) for all i > 1. This defines an infinite sequence

of lotteries that are convex combinations of δb and p∗, and converges to δb. Consider any
consecutive pair q∗i , q∗i+1 ∈ Q+. By construction (and this is the reason we constructed
them this way), there exist s1 ∈ Lq∗i \

{
eq∗i
}
and s2 ∈ Lq∗i+1

\
{
eq∗i+1

}
such that s1 is an

extreme spread of s2, and therefore s2Rs1, which implies uq∗i+1
is more concave than uq∗i .

Also by construction, there exists s′1 ∈ Lq∗i \
{
eq∗i
}

and s′2 ∈ Lq∗i+1
\
{
eq∗i+1

}
such that

s′2 is an extreme spread of s′1, and therefore s′1Rs′2, which implies uq∗i is more concave
than uq∗i+1

. Together, this gives uq∗i = uq∗i+1
. By iteration, this means uq∗i = up∗ for all

q∗i ∈ Q+. Figure 6.4 provides an illustration.
Analogously, consider the set Q− := {q∗1, q∗2, ...} such that q∗i ∈ ∂p is defined by

q∗i := αiδw + (1− αi) p∗

where α1 = 0 and αi = 1
2
eq∗i−1

(w) + 1
2
q∗i−1 (w) for all i > 1. Using the same line of

argument as above, we conclude that uq∗i = up∗ for all q∗i ∈ Q−.
Now consider any q ∈ ∂p. If q ∈ conv ({p∗, δb}), consider q∗i ∈ Q+ such that

q ∈ conv
({
q∗i−1, q

∗
i

})
. If instead q ∈ conv ({p∗, δw}), consider q∗i ∈ Q− such that

q ∈ conv
({
q∗i−1, q

∗
i

})
. By construction, there exist s1 ∈ Lq\ {eq} and s2 ∈ Lq∗i \

{
eq∗i
}

such that s1 is an extreme spread of s2. Also by construction, there exist s′1 ∈ Lq\ {eq}
and s′2 ∈ Lq∗i \

{
eq∗i
}
such that s′2 is an extreme spread of s′1. Then, by using the same
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line of argument as above, we conclude that uq = uq∗i = up∗ for all q ∈ ∂p.
Therefore, since ∪q∈∂pLq = τp, we have us = uq = up∗ for all s ∈ τp\∆ ({b, w})

where s ∈ Lq and q ∈ ∂p, and we are done.

Lemma 14. Suppose c admits an AREU representation and satisfies Transitivity over
A. For any p1, p2 ∈ ∆ (X) \∆ ({b, w}), we have up1 (x) = up2 (x) for all x.

Proof. Fix any p1, p2 ∈ ∆ (X) \∆ ({b, w}), suppose for contradiction up1 (x) 6= up2 (x)

for some x. Note that by Lemma 13, p∗1 6= p∗2. Then, since up1 and up2 are related
by a concave transformation (and that ui (w) = 0 and ui (b) = 1 for all i), either
up1 (x) > up2 (x) for all x ∈ X\ {b, w} or up1 (x) < up2 (x) for all x ∈ X\ {b, w}. By
Lemma 13, either up∗1 (x) > up∗2 (x) for all x ∈ X\ {b, w} or up∗1 (x) < up∗2 (x) for all
x ∈ X\ {b, w}.

Suppose without loss of generality p∗1Rp∗2. It is established in the proof of Lemma 13
that there exists ep∗1 ∈ ∆ ({b, w}) such that

c
({
p∗1, ep∗1

})
=
{
p∗1, ep∗1

}
. (6.12)

Furthermore, since e∗p1 ∈ τp∗2 , there exists a line qep∗1 ⊆ τp2 where q ∈ ∂p∗2 such that
for all s ∈ qep∗1 , we have Es

(
up∗1 (x)

)
= Ep∗1

(
up∗1 (x)

)
= ep∗1 (b) (the line qep∗1 is the

intersection between τp∗2 and the indifference hyperplane consists of all s ∈ ∆ (X) such
that Es

(
up∗1 (x)

)
= Ep∗1

(
up∗1 (x)

)
). Denote the interior of a set S by Int S. Since

Int τp∗2 ⊆ R↓ (p∗2) ⊆ R↓ (p∗1) (the first inclusion is due to s ∈ Int τp∗2 implies s is
an extreme spread of p∗2, the second inclusion is because R is transitive), we have
c ({p∗1, s}) = {p∗1, s} for all s ∈ Int qep∗1 . Therefore, by continuity c we have

c ({p∗1, q}) = {p∗1, q} . (6.13)

Recall that either up∗1 (x) > up∗2 (x) for all x ∈ X\ {b, w} or up∗1 (x) < up∗2 (x) for all
x ∈ X\ {b, w}. Therefore, by Lemma 13, we have

ep∗1 (b) = Eq
(
up∗1 (x)

)
6= Eq (uq (x)) = eq (b) ,

and therefore
c ({q, eq}) = {q, eq} (6.14)

for some eq ∈ ∆ ({b, w}) where eq 6= ep∗1 . But by Transitivity of c, Equation 6.12,
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Figure 6.4: The figure on the left provides an illustration for the proof of Lemma 13,
the figure on the right provides an illustration for the proof of Lemma 14.

Equation 6.13, and Equation 6.14 would imply c
({
eq, ep∗1

})
=
{
eq, ep∗1

}
, a violation of

FOSD. Figure 6.4 provides an illustration.

Corollary 3. Suppose c admits an AREU representation and satisfies Transitivity over
A. Then c admits an AREU representation such that for any p1, p2 ∈ ∆ (X), we have
up1 (x) = up2 (x) for all x.

Proof. We extend our result from Lemma 14 to all p1, p2 by means of constructing an
AREU representation. Consider the original AREU representation

(
R̃, {ũr}r

)
. Let

R := R̃ and ur := ũr for all r ∈ ∆ (X) \∆ ({b, w}). Also, for any r ∈ ∆ ({b, w}) such
that R↓ (r) * ∆ ({b, w}), let ur := ũr. Consider any s1 ∈ R↓ (r) \∆ ({b, w}) and s2 ∈
∆ (X) \∆ ({b, w}) such that r is an extreme spread of s2. Then, s2RrRs1 and s1, s2 ∈
∆ (X) \∆ ({b, w}), which implies ur = us for all s ∈ ∆ (X) \∆ ({b, w}). Finally, con-
sider any r ∈ ∆ ({b, w}) such that R↓ (r) ⊆ ∆ ({b, w}). Note that any ur where ur (b) =

1 and ur (w) = 0 would explain c over Ar
R↓(r) =

{
A ∈ A : A ⊆ R↓ (r) and r ∈ A

}
.

Therefore, we set ur := us for some s ∈ ∆ (X) \∆ ({b, w}).

We are ready to complete the proof. Suppose c satisfies WARP over A, then c

satisfies Transitivity over A. Therefore, by Corollary 3, if c admits an AREU represen-
tation, it also admits an AREU representation such that for any p1, p2 ∈ ∆ (X), we have
up1 (x) = up2 (x) for all x, which means c admits an expected utility representation.
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(2) Independence implies (3) Expected Utility Suppose c satisfies Independence
overA. Since c admits an AREU representation

(
R̃, {ũr}r

)
, we argue that c also admits

an AREU representation with specifications (R, {ur}r) where R = R̃ and ur = ũr∗ for
all r, where r∗ is the lottery that assigns equal probability to every prize (the choice of
r∗ is not important for the proof as long as r∗ /∈ ∆ ({b, w}).

Since r∗ /∈ ∆ ({b, w}), by Lemma 6, Pr∗+ :=
{
p ∈ R↓ (r∗) : r /∈ c ({p, r∗})

}
contains

a full-dimensional convex subset of ∆ (X). Now suppose for contradiction that for
some r ∈ ∆ (X), ur cannot explain c over Ar

R↓(r) :=
{
A ∈ A : A ⊆ R↓ (r) and r ∈ A

}
,

then by Lemma 6 and Corollary 1, Pr+ also contains a full-dimensional convex sub-
set of ∆ (X). Consider lotteries p1, q1 ∈ Pr+such that Ep1 (ũr (x)) = Eq1 (ũr (x)) but
Ep1 (ur∗ (x)) 6= Eq1 (ur∗ (x)), which exists since Pr+ contains a full dimensional convex
subset of ∆ (X). By construction, we have

c ({r, p1, q1}) = {p1, q1} . (6.15)

Consider also lotteries p2, q2 ∈ Pr∗+ related to p1, q1 by a common mixture, which exists
since Pr∗+ contains a full dimensional convex subset of ∆ (X). By construction, we have

r /∈ c ({r∗, p2, q2}) 6= {p2, q2} (6.16)

since Ep2 (ur∗ (x)) − Eq2 (ur∗ (x)) = Ep1 (ur∗ (x)) − Eq1 (ur∗ (x)) 6= 0, but then Equa-
tion 6.15 and Equation 6.16 jointly violate Independence.

Proof of Proposition Proposition 3

(1) WARP / (2) Stationarity implies (3) Exponential Discounting Utility
Suppose c admits an PBDU representation with specification ({δr}r , u). We show that
if δr 6= δr′ for some r, r′ ∈ [0, t̄), then c violates both WARP and Stationarity. (δt̄ only
plays a role for choice problems A ∈ A where (x, t) ∈ A only if t = t̄, and therefore we
may set it as δt̄ = δ0.)

Suppose for contradiction δr 6= δr′ for some r, r′ ∈ [0, t̄). Say without loss of
generality r > r′ ≥ 0, then δr > δr′ ≥ δ0. Recall that X = [a, b]. Consider alternatives
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(b−∆x, 0) , (b, 0 + ∆t) ∈ X × T such that

∆x ∈ (0, b− a) (6.17)

∆t ∈ (0, t̄− r) (6.18)

δ0
ru (b−∆x) < δ0+∆t

r u (b) . (6.19)

δ0
0u (b−∆x) > δ0+∆t

0 u (b) (6.20)

This is possible due to the assumption that (b, t̄) ∈ c ({(a, 0) , (b, t̄)}). Equation 6.17 and
Equation 6.18 guarantee that (b−∆x, 0) , (b, 0 + ∆t) , (b−∆x, r) , (b, r + ∆t) ∈ X × T .
Then, Equation 6.19 gives

c ({(b−∆x, r) , (b, r + ∆t)}) = {(b, r + ∆t)} , (6.21)

and Equation 6.20 gives

c ({(b−∆x, 0) , (b, 0 + ∆t)}) = {(b−∆x, 0)} (6.22)

c ({(a, 0) , (b−∆x, r) , (b, r + ∆t)}) = {(b−∆x, r)} , (6.23)

where Equation 6.23 is due in part to the assumption that (b, t̄) ∈ c ({(a, 0) , (b, t̄)}).
Note that Equation 6.21 and Equation 6.22 jointly violate Stationarity, whereas

Equation 6.21 and Equation 6.23 jointly violate WARP.
We conclude that if either WARP or Stationarity (or both) holds, then c admits an

exponential discounting utility representation.

Proof of Proposition Proposition 4

(1) WARP / (2) Quasi-linearity implies (3) Quasi-linear Utility Suppose
c admits an FSPU representation with specification {vr}r. We show that if vr (y) −
vr (y′) 6= vr′ (y) − vr′ (y

′) for some r, r′ and y > y′, then c violates both WARP and
Quasi-linearity.

Suppose for contradiction vr (y) − vr (y′) 6= vr′ (y) − vr′ (y′) for some r, r′ ∈ [0, 0.5)

and y > y′. Without loss of generality, say r > r′ ≥ 0. Then vr (y) − vr (y′) <

vr′ (y) − vr′ (y′) ≤ v0 (y) − v0 (y′), and therefore there exist x̃, x̃′ ∈ [w,+∞) such that
x̃′ + vr (y′) > x̃+ vr (y) and x̃′ + v0 (y′) < x̃+ v0 (y).

Consider (x∗, y∗) ∈ X such that y∗ = w and G (x∗, y∗) = r, which is possible
since G (·, w) is continuous increasing in it’s first argument from G (w,w) = 0 to
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limx→+∞G (x,w) = 0.5. Since for any fixed ȳ, G (·, ȳ) is asymptotically increasing in it’s
first argument, there exists ∆ > 0 such that min ({G (x̃+ ∆, y) , G (x̃′ + ∆, y′)}) ≥ r

and x̃ + ∆, x̃′ + ∆ > x∗. Let x := x̃ + ∆ and x′ := x̃′ + ∆. We have now established
that

min ({x, x′}) > x∗ ≥ w,min ({y, y′}) ≥ y∗ = w (6.24)

min ({G (x, y) , G (x′, y′)}) ≥ G (x∗, y∗) = r (6.25)

x′ + vr (y′) > x+ vr (y) (6.26)

x′ + v0 (y′) < x+ v0 (y) . (6.27)

Then, Equation 6.24, Equation 6.25, and Equation 6.26 give

c ({(x∗, y∗) , (x, y) , (x′, y′)}) = {(x′, y′)} . (6.28)

Separately, Equation 6.24 and Equation 6.27 give

c ({(w,w) , (x, y) , (x′, y′)}) = {(x, y)} (6.29)

c ({(w,w) , (x+ ε, y) , (x′ + ε, y′)}) = {(x+ ε, y)} (6.30)

for any ε > 0.
Note that Equation 6.28 and Equation 6.30 jointly violate Quasi-linearity. Sep-

arately, by WARP, Equation 6.28 and Equation 6.29 imply c ({(x, y) , (x′, y′)}) =

{(x′, y′)} and c ({(x, y) , (x′, y′)}) = {(x, y)} respectively, which is also contradiction.
We conclude that if either WARP or Quasi-linearity (or both) holds, then c admits

a quasi-linear utility representation.

References

Ainslie, G. (1992). Picoeconomics: The strategic interaction of successive motivational
states within the person. Cambridge University Press.

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des
postulats et axiomes de l’école américaine. 21(4), 503–546.

Andreoni, J. & Sprenger, C. (2011). Uncertainty equivalents: Testing the limits of the
independence axiom. Technical report, National Bureau of Economic Research.

79



Aumann, R. J. & Serrano, R. (2008). An economic index of riskiness. Journal of
Political Economy, 116(5), 810–836.

Bardsley, N. (2008). Dictator game giving: altruism or artefact? Experimental Eco-
nomics, 11(2), 122–133.

Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research,
30(5), 961–981.

Bell, D. E. (1985). Disappointment in decision making under uncertainty. Operations
Research, 33(1), 1–27.

Benhabib, J., Bisin, A., & Schotter, A. (2010). Present-bias, quasi-hyperbolic discount-
ing, and fixed costs. Games and Economic Behavior, 69(2), 205–223.

Bleichrodt, H. & Schmidt, U. (2002). A context-dependent model of the gambling
effect. Management Science, 48(6), 802–812.

Bolton, G. E. & Ockenfels, A. (2000). Erc: A theory of equity, reciprocity, and compe-
tition. American economic review, 90(1), 166–193.

Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience theory of choice under risk.
Quarterly Journal of Economics, 127(3), 1243–1285.

Bordalo, P., Gennaioli, N., & Shleifer, A. (2013). Salience and consumer choice. Journal
of Political Economy, 121(5), 803–843.

Camerer, C. (1995). Individual decision making. Handbook of experimental economics.

Cerreia-Vioglio, S., Dillenberger, D., & Ortoleva, P. (2015). Cautious expected utility
and the certainty effect. Econometrica, 83(2), 693–728.

Charness, G. & Rabin, M. (2002). Understanding social preferences with simple tests.
The Quarterly Journal of Economics, 117(3), 817–869.

Chew, S. H. (1983). A generalization of the quasilinear mean with applications to the
measurement of income inequality and decision theory resolving the allais paradox.
Econometrica, (pp. 1065–1092).

Chew, S. H. & Epstein, L. G. (1989). A unifying approach to axiomatic non-expected
utility theories. Journal of Economic Theory, 49(2), 207–240.

80



Chew, S. H., Epstein, L. G., & Segal, U. (1991). Mixture symmetry and quadratic
utility. Econometrica: Journal of the Econometric Society, (pp. 139–163).

Cox, J. C., List, J. A., Price, M., Sadiraj, V., & Samek, A. (2016). Moral costs and
rational choice: Theory and experimental evidence. Technical report, National Bureau
of Economic Research.

Dana, J., Cain, D. M., & Dawes, R. M. (2006). What you don’t know won’t hurt
me: Costly (but quiet) exit in dictator games. Organizational Behavior and human
decision Processes, 100(2), 193–201.

Dana, J., Weber, R. A., & Kuang, J. X. (2007). Exploiting moral wiggle room: exper-
iments demonstrating an illusory preference for fairness. Economic Theory, 33(1),
67–80.

de Clippel, G. & Rozen, K. (2014). Bounded rationality and limited datasets. unpub-
lished.

Dean, M., Kıbrıs, Ö., & Masatlioglu, Y. (2017). Limited attention and status quo bias.
Journal of Economic Theory, 169, 93–127.

Dekel, E. (1986). An axiomatic characterization of preferences under uncertainty:
Weakening the independence axiom. Journal of Economic theory, 40(2), 304–318.

Dillenberger, D. (2010). Preferences for one-shot resolution of uncertainty and allais-
type behavior. Econometrica, 78(6), 1973–2004.

Fehr, E. & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation.
The quarterly journal of economics, 114(3), 817–868.

Fehr, E. & Schmidt, K. M. (2006). The economics of fairness, reciprocity and altruism–
experimental evidence and new theories. Handbook of the economics of giving, altru-
ism and reciprocity, 1, 615–691.

Fishburn, P. C. (1983). Transitive measurable utility. Journal of Economic Theory,
31(2), 293–317.

Fishburn, P. C. & Rubinstein, A. (1982). Time preference. International economic
review, (pp. 677–694).

81



Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time discounting and time
preference: A critical review. Journal of economic literature, 40(2), 351–401.

Freeman, D. (2016). Revealing naïveté and sophistication from procrastination and
preproperation. unpublished.

Gul, F. (1991). A theory of disappointment aversion. Econometrica, (pp. 667–686).

Gul, F. & Pesendorfer, W. (2001). Temptation and self-control. Econometrica, 69(6),
1403–1435.

Gul, F., Pesendorfer, W., et al. (2006). The revealed preference implications of reference
dependent preferences. manuscript, Princeton University.

Herne, K. (1999). The effects of decoy gambles on individual choice. Experimental
Economics, 2(1), 31–40.

Kagel, J. H. & Roth, A. E. (2016). The handbook of experimental economics, volume 2.
Princeton university press.

Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment
effect, loss aversion, and status quo bias. Journal of Economic perspectives, 5(1),
193–206.

Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of choice under risk.
Econometrica, 47, 263–291.

Kıbrıs, Ö., Masatlioglu, Y., & Suleymanov, E. (2018). A theory of reference point
formation. unpublished.

Korenok, O., Millner, E. L., & Razzolini, L. (2014). Taking, giving, and impure altruism
in dictator games. Experimental Economics, 17(3), 488–500.

Kőszegi, B. & Rabin, M. (2006). A model of reference-dependent preferences. The
Quarterly Journal of Economics, 121(4), 1133–1165.

Kőszegi, B. & Rabin, M. (2007). Reference-dependent risk attitudes. American Eco-
nomic Review, 97(4), 1047–1073.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of
Economics, 112(2), 443–478.

82



Lian, C., Ma, Y., & Wang, C. (2017). Low interest rates and risk taking: Evidence
from individual investment decisions. unpublished.

Lipman, B. L., Pesendorfer, W., et al. (2013). Temptation. In Advances in Economics
and Econometrics: Tenth World Congress, volume 1 (pp. 243–288).: by D. Acemoglu,
M. Arellano, and E. Dekel, Cambridge University Press.

List, J. A. (2007). On the interpretation of giving in dictator games. Journal of Political
economy, 115(3), 482–493.

Loewenstein, G. & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and
an interpretation. The Quarterly Journal of Economics, 107(2), 573–597.

Loomes, G. & Sugden, R. (1982). Regret theory: An alternative theory of rational
choice under uncertainty. The Economic Journal, 92(368), 805–824.

Loomes, G. & Sugden, R. (1986). Disappointment and dynamic consistency in choice
under uncertainty. Review of Economic Studies, 53(2), 271–282.

Machina, M. J. (1982). " expected utility" analysis without the independence axiom.
Econometrica, (pp. 277–323).

Manzini, P. & Mariotti, M. (2007). Sequentially rationalizable choice. American Eco-
nomic Review, 97(5), 1824–1839.

Masatlioglu, Y., Nakajima, D., & Ozbay, E. Y. (2012). Revealed attention. American
Economic Review, 102(5), 2183–2205.

Masatlioglu, Y. & Ok, E. A. (2005). Rational choice with status quo bias. Journal of
Economic Theory, 121(1), 1–29.

Masatlioglu, Y. & Ok, E. A. (2013). A canonical model of choice with initial endow-
ments. Review of Economic Studies, 81(2), 851–883.

Masatlioglu, Y. & Raymond, C. (2016). A behavioral analysis of stochastic reference
dependence. American Economic Review, 106(9), 2760–82.

Nelson, Jr., W. R. (2002). Equity or intention: it is the thought that counts. Journal
of Economic Behavior & Organization, 48(4), 423–430.

Ok, E. A. & Benoît, J.-P. (2007). Delay aversion. Theoretical Economics, 2(1), 71–113.

83



Ok, E. A., Ortoleva, P., & Riella, G. (2015). Revealed (p) reference theory. American
Economic Review, 105(1), 299–321.

Ortoleva, P. (2010). Status quo bias, multiple priors and uncertainty aversion. Games
and Economic Behavior, 69(2), 411–424.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior &
Organization, 3(4), 323–343.

Rabin, M. (1993). Incorporating fairness into game theory and economics. American
Economic Review, (pp. 1281–1302).

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a
descriptive theory of choice under risk. Journal of economic literature, 38(2), 332–
382.

Sutter, M. (2007). Outcomes versus intentions: On the nature of fair behavior and its
development with age. Journal of Economic Psychology, 28(1), 69–78.

Wakker, P. & Deneffe, D. (1996). Eliciting von neumann-morgenstern utilities when
probabilities are distorted or unknown. Management science, 42(8), 1131–1150.

84


	Introduction
	Ordered-Reference Dependence
	Reference Dependent Choice
	Representation theorem
	A unified framework for structural anomalies

	Risk Preference
	Preliminaries
	Risk Reference Dependence
	Avoidable Risk
	Representation theorem
	Applications of AREU
	Linkage between WARP violation and Independence violation
	AREU, Transitivity, Betweenness
	Related literature

	Time Preference
	Preliminaries
	Time Reference Dependence
	Present Bias
	Representation theorem
	Related models of time preferences

	Social Preference
	Preliminaries
	Equality Reference Dependence
	Fairness
	Representation theorem
	Related literature

	Conclusion
	Appendix A: Unified Framework and Finite Properties
	(For Online Publication) Appendix B: Additional Materials
	(For Online Publication) Appendix C : Proofs

