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1 Introduction

On January 30, 2020, residents of Jungnang district in northeast Seoul received the following

message on their cellphone about the second person in South Korea that tested positive for

COVID: “Korean male, born 1987, living in Jungnang district. Confirmed on January 30,

Hospitalized in Seoul Medical Center.” The text went on to disclose the whereabouts of the

individual in the past few days:

• January 24: Return trip from Wuhan without symptoms.

• January 26: Merchandise store∗ at Seongdong by subway at 12 pm; massage spa∗ by

subway in afternoon; two convenience stores∗ and two supermarkets∗.1

• January 27: Restaurant∗ and two supermarkets∗ in afternoon.

• January 28: Hair salon∗ in Seongbuk; supermarket∗ and restaurant∗ in Jungnang by

bus; wedding shop in Gangnam by subway; home by subway.

• January 29: Tested at hospital in Jungnang.

Over the following weeks, as more people were tested for COVID, South Koreans received

similar texts for every relevant patient that tested positive. This information was widely

disseminated on websites and incorporated into mobile phone applications.

This paper uses South Korea’s experience to show that public disclosure can be an im-

portant tool to combat the spread of a virus. Since a testing regime is likely to only catch

a fraction of infected individuals, disclosure of locations of people that have tested positive

can help non-infected people avoid places where they are more likely to be in contact with

infected people that have not yet been detected. For example, on March 30, local authorities

in Seoul disclosed that a patient visited a coffee shop in Mapo district on March 28. Nobody

visited the coffee shop on May 30.2 If the person who visited the coffee shop on March 28

infected others in the vicinity, this behavior by the public can help reduce the probability

that an undetected infected person spreads the virus.

1An asterisk ∗ indicates that the establishment’s name was disclosed.
2“Seoul’s Radical Experiment in Digital Contact Tracing,” The New Yorker, April 17, 2020.
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Figure 1 shows that the response of the public to the disclosure of the visit by the infected

person to the coffee shop in Mapo district may hold more generally. The figure uses daily

data on commuting flows between neighborhoods in Seoul from South Korea’s largest mobile

phone company.3 It shows the mean and the 95 percent confidence interval of the change

in the number of commuters from other districts of Seoul, relative to the first week for

February, in each of the 25 districts in Seoul during the weekdays. We highlight two facts.

First, commuter inflows in the average district in Seoul decreased by about 10% in March

and April and recovered by the end of May. Second, there is substantial heterogeneity across

districts in the change in commuting inflows. At the peak of the pandemic in early March,

inflows fell by more than 20% in some districts but by only 5% in other districts. In late

May when inflows in the average district were back to “normal,” inflows into some districts

appear to be permanently lower while in other districts, the reverse is true. We show that

commuting inflows fell by more in districts with a large number of COVID patients lived or

visited compared to districts with few COVID patients.

We then quantify the effect of the change in commuting flows in Seoul shown in Figure 1

on the transmission of the virus. We use a SIR model where the virus spreads as susceptible

people in a neighborhood commute and come into contact with infected people from other

neighborhoods. We show that the change in commuting flows observed in mobile phone

location data predicts the heterogeneous spread of the virus across neighborhoods in Seoul.

We also project the effect of public disclosure on the transmission of the virus over the next

two years. Relative to a scenario where there are no changes in commuting patterns, public

disclosure of information lowers the number of COVID patients by 60 thousand over two

years.

We also endogenize the commuting flows in the SIR model. In the model, the flow of

people across neighborhoods generates economic gains from the optimal match of people

with the place of work and leisure. We use the economic commuting model to estimate the

3We describe the mobile phone data in Section 3.

2



Figure 1: Change in Weekday Inflows into Districts in Seoul

Note: The figure shows the mean and the 95 percent confidence interval of the percent change in the inflow
of people into each district of the city of Seoul, relative to the first week of February, calculated from SK
Telecom’s mobile phone data.

economic losses from the disruption of commuting flows shown in Figure 1. Over the next two

years, the predicted disruption in commuting patterns under South Korea’s current strategy

will lower economic welfare an average 0.15 percent per day compared to a scenario with no

changes in commuting flows.

We then compare South Korea’s current strategy to a hypothetical lockdown that results

in the same number of infections over the next two years. There are two advantages of a

disclosure strategy relative to a lockdown. First, a lockdown does not discriminate between

locations. All coffee shops are shut down, not only the ones visited by people who later tested

positive for COVID. Second, a lockdown forces everybody into social isolation, irrespective

of the cost the lockdown imposes on them. In contrast, in our model, people self-select into
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social distancing based on their perceived risks from COVID and costs of social distancing.

As a consequence, under a lockdown, “optimal” commuting patterns are severely disrupted

for a large number of people and the cost of the disruption is about four times as large as in

the disclosure scenario.

Our approach combines the SIR meta-population model, where movements of the popula-

tion transmit the virus across space, with a quantitative model of internal city structure as in

Ahlfeldt et al. (2015), where the flows of people across the city are endogenous. Recent papers

that develop a similar model are Antràs et al. (2020), Fajgelbaum et al. (forthcoming) and

Cuñat and Zymek (2020). Our work differs in that, in our model, commuting costs depend

on the local information and we use detailed mobile phone data to discipline the sensitivity

of commuting flows to information about COVID cases. We do not study the optimal control

problem as do recent papers on the COVID-19 pandemic by Alvarez et al. (forthcoming) and

Farboodi et al. (2020). Instead, we focus on comparing the policy of disclosing information

to both a policy without information disclosure and to a lockdown policy.

The paper proceeds as follows. Section 2 presents the SIR model with commuting choices.

Section 3 discusses the data and how we calibrate the parameters of the model. In section

4 we compare our benchmark model with one with no disclosure and one with a lockdown.

Section 5 concludes.

2 SIR Model with Endogenous Population Flows

In this section, we develop a model where the virus spreads across neighborhoods due to

commuting flows, and where the commuting flows are the endogenous outcome of individuals

maximizing their utility by choosing where to work and to enjoy their leisure. Specifically, we

adopt the canonical meta-population SIR (Susceptible-Infected-Recovered) model to analyze

how the release of public information of COVID-19 cases affects the spread of the virus in

Seoul.4 Individuals live in different neighborhoods in Seoul and the virus spreads when they

4See Keeling et al. (2010) and Keeling and Rohani (2011).
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commute to different neighborhoods, including the neighborhood where they reside. They

can also choose to stay at home. In that case, they do not interact with other people and,

as a result, the virus does not spread.5

Specifically, there is an exogenous number of individuals in each neighborhood. Individu-

als are classified as susceptible (S; at risk of contracting the disease), infectious (I; capable of

transmitting the disease), quarantined (Q; infected but quarantined and not transmitting the

disease), and recovered (R; those who recover or die from the disease). We further differenti-

ate individuals by age a and residential neighborhood i. Time t is defined as a day. We will

show later that commuting flows are different in the weekday vs. the weekend. Because of

this, we distinguish between the days that fall on weekdays vs. weekends. The total number of

non-quarantined residents of neighborhood i at time t of age a is Na
i (t) ≡ Iai (t)+Sai (t)+Ra

i (t).

The change in the number of infected residents of neighborhood i of age a at time t is:

∆Iai (t) = β
∑

j 6=home

[ ∑
s

∑
a π

a
sj(t)I

a
s (t)∑

s

∑
a π

a
sj(t)N

a
s (t)
× πaij(t)Sai (t)

]
− γIai (t)− dIIai (t) (1)

The first term in equation 1 is the number of susceptible residents of i that get infected during

the day, where the key endogenous variables are the commuting flows πij, which denote the

share of residents of neighborhood i that commute to neighborhood j. In the absence of

these flows, a susceptible person does not come into contact with an infected person. When

a susceptible person comes into physical contact with an infected person, the “matching

parameter” β denotes the probability the susceptible person gets infected.6 The second and

third terms in equation 1 are the infected that recover (or die) and the infected that are

detected and quarantined, respectively, and the exogenous parameters are the recovery rate

5Individuals can get infected in the neighborhood where they live. In the context of our model, home can
be seen as a different neighborhood where individuals do not interact with other people and where the virus
does not spread.

6The home sector is one of the destinations. Once a susceptible person chooses to stay at home, she
doesn’t get infected. The summation over the destination neighborhoods in equation 1 excludes the home
sector.
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of infected people γ and the detection rate dI .
7

Next, we follow Ahlfeldt et al. (2015) to endogenize the commuting flows πij as the result

of utility maximizing commuting choices.8 We assume individuals make commuting choices

every day and we distinguish between weekdays and weekends. Specifically, utility of a worker

of age a that lives in i and works in j during the weekdays is Ua
ij(t) = za,wdj /daij(t) where

za,wdj is idiosyncratic productivity from working in j during the weekday and daij(t) is the

cost of commuting from i to j. During the weekends, the utility of the same person from

commuting to j is Ua
ij(t) = za,wnj /daij(t) where za,wnj denotes idiosyncratic preferences from

leisure in neighborhood j during the weekends.

In the absence of a pandemic, we assume that commuting costs only depends on the travel

distance between i and j. We incorporate the effect of disclosure of COVID cases on commut-

ing flows during the pandemic by assuming that the cost of commuting to neighborhood j

also depends on information about the number of infected individuals in that neighborhood.

Specifically,

ln daij(t) = κτij + δaln Cj(t) + ξaln Vj(t) + ζa(t) (2)

Here τij denotes travel distance between i and j, Cj(t) is the number of residents of j

confirmed as COVID patients in the two weeks prior to time t, Vj(t) is the number of visits by

confirmed COVID patients to neighborhood j in the two weeks prior to t, and ζa(t) captures

the change in commuting costs that is independent of destination-specific information. For

every infected person that is detected, we know the exact location of the places she visited

the days before the infection was confirmed. We count each distinct place observed as a

visit.9 The sensitivity of the commuting cost to travel distance τij, confirmed cases Cj,

and visits Vj are governed by κ, δa, and ξa, respectively. When δa and ξa are positive,

disclosure of COVID cases and visits in neighborhood j increases the cost of commuting to

7The change of the other state variables are ∆Sai (t) = −β
∑
j 6=home

[ ∑
s

∑
a π

a
sj(t)I

a
s (t)∑

s

∑
a π

a
sj(t)N

a
s (t) × π

a
ij(t)S

a
i (t)

]
,

∆Qai (t) = dII
a
i (t) − ρaQai (t), ∆Rai (t) = γIai (t) + ρaQai (t) and ∆Na

i (t) = Na
i (t − 1) − ∆Qai (t). 1/ρa is the

amount of time a quarantined person is isolated.
8See also Monte et al. (2018) and Tsivanidis (2019).
9South Korea discloses the information on all the places visited by every infected person that is detected.
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that neighborhood. Finally the change in commuting costs due to forces that are orthogonal

to detailed geographical information on detected individuals is captured by ζa(t).

An individual’s commuting choice then boils down to a discrete choice problem. Given

her idiosyncratic productivity, she chooses to work during the weekday in the neighborhood

that maximizes her income net of the commuting cost. Similarly, given her idiosyncratic

preferences, she chooses the neighborhood that maximizes her leisure net of the commuting

cost during the weekend. We further assume that a person’s idiosyncratic productivity za,wdj is

drawn from an iid Fréchet distribution with mean parameter Ea,wd
j and dispersion parameter

εwd. Similarly, her idiosyncratic preferences during the weekend are drawn from an iid Fréchet

distribution with mean parameter Ea,wn
j and dispersion parameter εwn. Note that Ea,wd

j and

Ea,wn
j vary across neighborhoods, capturing mean differences in the quality of jobs and leisure

activities across neighborhoods.

The probability that a resident of neighborhood i chooses to work in j during the weekday

is:

πa
ij(t = weekday) =

Ea,wd
j daij(t)

−εwd∑
sE

a,wd
s dais(t)

−εwd
(3)

Similarly, the probability she travels to neighborhood j during the weekend is:

πa
ij(t = weekend) =

Ea,wn
j daij(t)

−εwn∑
sE

a,wn
s dais(t)

−εwn (4)

Equations 3 and 4 say that commuting flows to j from residents of i are increasing in Ea,wd
j

(during the weekday) and Ea,wn
j (during the weekends) and decreasing in daij relative to other

neighborhoods. More COVID cases in j relative to the other neighborhoods thus lowers

commuting flows to j. These commuting flows are, in turn, the critical endogenous variables

in the SIR model in equation 1 where a decline in π lowers the transmission of the virus

throughout the city.

Finally, when individuals choose commutes that maximize their utility, expected utility
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of an individual living in neighborhood i is

E[Ua
i (t = weekday)] = Γ

(
1− 1/εwd

)(∑
s

Ea,wd
s dais(t)

−εwd
)1/εwd

(5)

during the weekday and

E[Ua
i (t = weekend)] = Γ (1− 1/εwn)

(∑
s

Ea,wn
s dais(t)

−εwn
)1/εwn

(6)

during the weekend where Γ(·) is a gamma function. Expected utility of residents of neigh-

borhood i is a harmonic mean of the mean parameter of the Frechet distribution in all

neighborhoods and decreasing in the cost of all accessing neighborhoods from location i. Ex-

pected welfare differs between residents of different neighborhoods depending on commuting

costs from that neighborhood to all the other neighborhoods of the city. We refer to the

weighted average of equations 5 and 6 across the residents in all the neighborhoods of Seoul

as economic welfare.10

In summary, the total number of detected cases and visits that are publicly disclosed

affect the commuting costs to each neighborhood, as specified in equation 2. The changes

in commuting costs are reflected in the commuting flows (equations 3 and 4) and affect

not only the spread of the virus through their feedback into the SIR dynamics (equation

1), but also individuals’ economic welfare (equations 5 and 6). The model highlights the

important trade-offs of the public disclosure policy. The availability of information increases

the commuting costs and lowers economic welfare, since it disrupts the optimal match of

people with the place of work and leisure, but it also reduces the transmission of the virus

across neighborhoods.

10See Appendix A for a derivation of equations 3-6.
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3 Model Calibration and Simulation

In this section, we describe the data we use and how we calibrate the parameters of the model

in the previous section. We then simulate the effect of the disclosure of information on the

transmission of the virus and economic losses in Seoul over the next two years.

3.1 Calibration

We infer the economic parameters from data on commuting flows. We measure commuting

flows from proprietary data provided by the SK Telecom mobile phone company.11 Based

on the location of mobile phones, SK Telecom calculates daily bilateral flows of people by

age group and gender between the 25 districts of Seoul.12 We have data on daily bilateral

commuting flows across Seoul’s districts from January 2020 to May 2020. We also have

the data on the monthly average of daily bilateral commuting flows from January 2019 to

December 2019, which we will use to calibrate parameters related to the pre-pandemic period.

The elasticity of commuting flows to commuting costs is εwd (weekdays) or εwn (weekends).

And, before the pandemic, the commuting cost only depends on distance τij and the cost of

distance κ. Specifically, the commuting flow equations 3 and 4 prior to the pandemic can be

written as:

lnπij(t = weekday) = −κεwdτij + θi + θj (7)

lnπij(t = weekend) = −κεwnτij + θi + θj (8)

where θi and θj are residence and commuting destination fixed effects and the elasticity

of commuting flows with respect to distance is the product of ε and κ. Table 1 estimates

equations 7 and 8 from data on bilateral commuting flows from SK Telecom in November

2019 (before the pandemic) and the distance (in kilometers) between 25 districts in Seoul.

11SK Telecom has the largest share (42% in January 2020) of South Korea’s mobile phone market.
12A person’s movement is included when she stays in the origin district for more than two hours, commutes

to another district and stays in that district for more than two hours. If a person moves multiple times during
the day, the data records the main movement. The data excludes daily flows between Seoul and locations
outside of Seoul.
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Table 1 reports κεwd = 0.1413 for the weekday commutes (column 1) and κεwn = 0.1666

during the weekends (column 2).13 Commuting flows during the weekend are more sensitive

to distance compared to commutes during the weekdays.

We next estimate εwd from the coefficient of variation in wages within each of the 25

districts in Seoul.14 Specifically,

Variance

Mean2 =
Γ(1− 2

εwd
)

Γ(1− 1
εwd

)2
− 1 (9)

where Γ is a Gamma function. When we filter the within-district wage dispersion data

through this equation, we get εwd = 4.1642. This estimate of εwd combined with the estimate

of the elasticity of commuting flows during the weekdays implies that κ = 0.0339. We

then use this estimate of κ to infer εwn = 4.9144 from the elasticity of commuting flows

to distance during the weekends. Note that εwn > εwd which says that the variance of a

person’s productivity across districts is larger than the variance of her preferences for leisure

across districts. It also implies that the responsiveness of weekend flows to a given change in

commuting costs will be larger than that of the weekday flows.

We next use the equation for the commuting flows during the pandemic to estimate how

the commuting costs change in response to disclosure of information on COVID cases. Figure

2 shows the variation across districts in Seoul in the number of COVID cases and visits that

we use to estimate the elasticity of commuting costs to information. Specifically, Panel (a)

and (b) of Figure 2 shows the mean and the 95 percent confidence interval of the total number

of confirmed cases for past two weeks (Cj) and the total number of visits by confirmed cases

for past two weeks (Vj) in each district. In March, when weekly inflows declined the most

(Figure 1), the mean of the total cases increased up to around 9 and the mean of the total

visits increased up to around 40. The variation across the districts also increased when the

13We get similar coefficients with the Poisson pseudo-maximum-likelihood (PPML) estimator. For example,
κεwd is estimated to be 0.1493.

14We use data from the 2018 Seoul Survey. This survey collects commuting and labor market information
of household members over age 15 from 20,000 households in Seoul.
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mean increased. Panel (c) of Figure 2 shows the correlation between cases and visits. Overall,

the correlation between Cj and Vj is positive but clearly it is not one.

Figure 2: Cases and Visits in Each District

(a) Cases for Past Two Weeks (b) Visits for Past Two Weeks

(c) Correlation

Notes: Panel (a) shows the mean and the 95 percent confidence interval of the total number of confirmed
cases for past two weeks across 25 districts in Seoul. Panel (b) shows the mean and the 95 percent confidence
interval of the total number of visits by confirmed cases for past two weeks. Panel (c) shows correlation
between cases and visits for past two weeks.

The elasticities of the weekday commuting flows with respect to the number of cases Cj

and visits Vj are δaεwd and ξaεwd, respectively. The corresponding elasticities of the weekend

flows to Cj and Vj are δaεwn and ξaεwn. Specifically, we estimate these elasticities from
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estimating the following commuting flow equation on data during the pandemic:

∆ lnπaij(t) = δaεwd lnCj(t) + δa(εwn − εwd) lnCj(t)×weekend + ξaεwd lnVj(t)+

+ δa(εwn − εwd) lnVj(t)×weekend + ϕa ×weekend + θai + λaj + ζa(t)

(10)

where ζa(t) are the date fixed effects.

The dependent variable is the daily change in the commuting flows relative to the first

week of February 2020 computed from SK Telecom’s data and weekend is an indicator

variable for a day that falls on a weekend.15 The parameters in equation 10 are shown in

columns 3 and 4 in Table 1. Using the estimates of εwn and εwd derived earlier along with

the elasticities of the commuting flows with respect to the disclosure of cases and visits in

Table 1, the elasticities of commuting costs with respect to the disclosure of information are

δ = 0.00209 and ξ = 0.00138 for people with age< 60 and δ = 0.00247 and ξ = 0.00096 for

people with age> 60.

15We account for serial correlation through two-way clustering, bootstrapped to account for the small
number of districts.
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Table 1: Commuting Flow Equation Estimation Before and During Pandemic

ln Commuting Flows ∆ ln Commuting Flows
(November 2019) (relative to week 1, Feb 2020)

τij -0.1413 -0.1666 – –
(0.0028) (0.0034)

lnCj(t) – – -0.0087 -0.0103
(0.0049) (0.0043)

lnCj(t)× weekend – – -0.0016 -0.0019
(0.0009) (0.0008)

lnVj(t) – – -0.0058 -0.0040
(0.0031) (0.0026)

lnVj(t)× weekend – – -0.0010 -0.0007
(0.0005) (0.0005)

weekend – – -0.1360 -0.1008
(0.0539) (0.0502)

Period Nov 2019 Nov 2019 Jan-May 2020 Jan-May 2020
Age Group All All Under 60 Above 60
Days Weekdays Weekends All All

Fixed Effects - - Time Time
Cluster - - Two-way Two-way

(bootstrapped) (bootstrapped)

Observations 625 625 95,000 95,000
R-squared 0.8603 0.8405 - -
Root MSE - - 0.2375 0.2275

Notes: Cj is the number of COVID cases in j, Vj is the number of COVID visitors in j, and weekend is
an indicator variable for a day that falls on a weekend. The table shows the results of estimating equations
7 and 8 (columns 1 and 2) and equation 10 (columns 3 and 4). The dependent variable in columns 1 and 2
is the monthly average of daily commuting probability from district i to district j in November 2019. The
dependent variable in columns 3 and 4 is the change in the daily commuting probability from district i to
district j from February 1 to May 31, 2020 relative to the first week of February 2020. Column 3 includes
only people under the age of 60 and column 4 only those above 60 years of age.

We take three messages from the estimates of δ and ξ calculated from the commuting

flows during the pandemic. First, δ and ξ are negative. This says that part of heterogeneity
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across neighborhoods in Seoul in the change in commuting inflows shown in Figure 1 can be

explained by the disclosure of COVID cases. Second, weekend commuting flows are more

sensitive to COVID cases compared to weekday flows, perhaps because the comparative

advantage across locations is weaker for leisure activities compared to work. This is consistent

with the finding that in the pre-pandemic period εwn > εwd. Third, commuting flows of those

over the age of 60 is more sensitive to information on COVID cases. We interpret this as

evidence that the perceived cost of getting infected is larger for the elderly compared to the

young.

The estimated date fixed effects (ζa(t)) are mostly significant. However, this information

is only available until May 31st. In order to simulate the aggregate commuting change after

that period, we estimate elasticity of the date fixed effects with respect to total number of

cases in Seoul:

ζa(t) = υaC(t) + εa(t)

where C(t) =
∑25

j=1Cj(t). We then use the estimated aggregate commuting change ζ̂a(t) to

calculate the time-varying commuting cost in the simulation.

The last set of parameters of the commuting model are the mean parameters of the

Fréchet distributions of productivity and leisure Ea,wd and Ea,wn. Using the estimates of κ,

εwn and εwd, we estimate Ea,wd and Ea,wn from data on the commuting flows between the 25

districts of Seoul and the initial home sector shares.16 We calculate the initial home sector

shares from the Seoul Survey and Time Use Survey. During the weekdays, we find that 17%

of people with age< 60 and 61% of people with age> 60 are not commuting but earning

positive income. During the weekends, we assume that people who spend less than 5 hours

on outside activities are at the home sector. The inferred shares are 46 percent for people

with age< 60 and 67 percent for people with age> 60.

Turning to the parameters of the SIR model, the rate (per day) at which infected people

16We normalized the geometric average of the location parameter Ea,wd and Ea,wn to one.
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either recover or die is set to γ=1/18, reflecting an estimated duration of illness of 18 days.17

We estimate ρa from the average duration of hospital care in Ferguson et al. (2020), which

is 8 days if critical care is not required and 16 days if critical care is required. Ferguson et

al. (2020) also estimates that 6.3% of those between the ages of 40-49 require critical care

whereas 27% of those between the ages of 60-69 require it. Using these estimates, we set

ρa=1/8.5 for the young and ρa=1/10.2 for the old.

The remaining parameters in the SIR model are β and dI . We calibrate these parameters

internally using two moments from the data. First, we target total number of detected cases

in Seoul (861) until May 31st, which captures the overall spread of the disease. Second, we

target the fraction of undetected infections from the estimates in Stock et al. (2020), who

use results from Iceland’s two testing programs and estimate that the fraction of undetected

infections range from 88.7% to 93.6%. We target a fraction of 90% undetected infections,

which are also consistent with the estimates for the US in Hortaçsu et al. (forthcoming). The

calibrated values of β and dI are 0.1524 and 0.0163, respectively; we show sensitivity analysis

to these values below.

Finally, we will also estimate the number of deaths from COVID. To do this, we set the

fatality rate to 0.21% for the young and 2.73% for the old. We obtain these estimates from

the Korean Centers for Disease Control & Prevention, which estimate fatality rates for the

groups between 40-49 years of age and 60-69 years of age.

3.2 Simulation of SIR Commuting Model

We now simulate the SIR Commuting Model over two years assuming public disclosure of all

COVID cases. Our initial conditions are the first 4 cases confirmed in the city of Seoul placed

at the districts where the people infected reside. Since 90% of the cases are undetected, our

initial conditions are a total of 4 cases in quarantine and 36 cases undetected. The infected

people that are undetected follow the predicted commuting patterns of the model. The first

17This is the value estimated from early evidence from COVID cases in China reported in Wang et al.
(2020).
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day of the simulation is January 30th, 2020. In the data disclosed by local authorities,

infected people who are detected report visiting two distinct districts on average in their

entire travel logs.

We first evaluate the performance of the SIR model in terms of explaining the heterogene-

ity in the spread of the virus across neighborhoods in Seoul. Panel (a) of Figure 3 plots the

cumulative number of reported COVID in each district in Seoul by the end of May against

the model’s prediction of the number of cases in each district. The figure shows that the

model is able to replicate well the geographical spread of the disease, as most dots are close to

the 45 degree line. Panel (b) of Figure 3 shows the dynamics of infected people that will take

place in the upcoming months as predicted by the model. The figure shows that according

to our model, infection increases up to around day 400 and decreases after then. The peak of

infection will involve less than 6% of the population at the same time. Relative to the people

below 60 years of age, there are less people above 60 years of age that are infected at a given

point in time. This is because older people are more likely to stay at the home sector and

respond more to information on the number of confirmed cases and visits in each district.

Panel (c) of Figure 3 shows the change in inflows by district during weekdays and week-

ends. As disease spreads, inflows to each district decline. At the peak of disease, average

inflows are 12 percent lower during weekdays and 25 percent lower during weekends. Consis-

tent with empirical evidence in Figure 1, we also find significant heterogeneity across districts

in the change in inflows in each district. This can be seen in the 95 percent confidence interval

of the change in inflows into each district. Panel (d) of Figure 3 shows the change in eco-

nomic welfare, aggregating weekdays and weekends and residents of different neighborhoods

of Seoul. Economic welfare declines because workers realize the cost of getting infected and

change their commuting behavior. At the peak of disease, economic welfare declines by 0.27

percent.
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Figure 3: Simulated Effect of Disclosure on Commuting, COVID Cases, and
Economic Losses

(a) Detected Cases in District by May 31st (b) Share of Infected People

(c) Inflows by District (d) Economic Welfare

Notes: Panel (a) shows the total number of confirmed cases in the data (y-axis) and in the model (x-axis).
Each dot is a district of Seoul. The blue line indicates the 45 degree line. Panel (b) shows the share of
infected population for the young (age 20-59) and the old (age 60+). Panel (c) shows the change in inflows
by district during weekdays and weekends, along with 95 percent confidence intervals. Panel (d) shows the
change in economic welfare as a 7-day moving average.

4 Welfare Effects of Disclosure

In this section, we evaluate the effectiveness of information disclosure and lockdown. First,

to quantify the effectiveness of the disclosure policy, we simulate the model without allowing
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commuting to respond to destination-specific information. Still, we capture aggregate decline

in commuting flows that could come from multiple sources such as recommended social

distancing and closure of schools.18 We call this the the case without information disclosure.

Second, we quantify the effectiveness of a lockdown policy, another widely used mitigation

strategy, relative to the information disclosure case.

As described in the previous section, detailed information disclosure can be summarized

into two components: (i) the total number of confirmed cases in each district for the past two

weeks, Cj(t), and (ii) total number of visits by confirmed cases to each of the districts for the

past two weeks, Vj(t). We first examine the no information disclosure case, in which both

Cj(t) and Vj(t) are not available. In this case, the commuting flow equation depends only

on the physical distance from origin to destination. Then, we evaluate a partial disclosure

case, where either Cj(t) or Vj(t) is not disclosed; the partial disclosure case reported below

are the chained results of these two scenarios.

Table 2 reports the total number of detected cases, the total number of death, and the

economic welfare losses over two years under different disclosure policies. Under partial

and no information disclosure, we find more detected cases. The difference between the

full information disclosure and partial or no disclosure scenarios is also significant when

comparing the total number of deaths. The scenario with no disclosure of information yields

11 percent more the number of deaths compared to the full disclosure scenario. This is because

individuals above 60 years of age, those that are more vulnerable to the virus, are also more

sensitive to the information disclosed and altered their commuting patterns significantly in

response.

The public health benefits from information disclosure come at the cost of economic

welfare losses. We calculate average economic welfare loss per day. The daily economic

welfare loss for the young (old) is 0.10 (0.12) percent under partial disclosure and 0.13 (0.16)

18Although there was no general lockdown in the city of Seoul (i.e. businesses, supermarkets and other
retailers have remained open throughout the pandemic), there has been restrictions on schools and universities
which were closed soon after the outbreak as well as mandatory social distancing.
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percent under full disclosure. Under the partial or full disclosure, workers are able to choose

their second or third best location when they maximize their utility even if their preferred

commuting choice is disrupted by the information obtained about the confirmed cases.

Table 2: Comparison of Full Disclosure with No Disclosure and Lockdown

No Disclosure Partial Disclosure Full Disclosure 22% Lockdown
(Korea case) Days 280 to 380

Total # of Cases 840,709 811,032 780,907 780,692

Total # of Death 20,744 19,739 18,743 20,488
age 20-59 6,687 6,473 6,255 6,106
age 60+ 14,057 13,265 12,489 14,381

Welfare loss per day(%) 0.07 0.10 0.14 0.50
age 20-59 0.07 0.10 0.13 0.64
age 60+ 0.08 0.12 0.16 0.07

Notes: The table reports the total number of detected cases, the total number of death, and the welfare losses
over two years in the city of Seoul under no disclosure, partial disclosure, information disclosure (Korea case),
and 22% lockdown from day 280 to 380. The economic welfare losses are shown in percent.

We impose a lockdown policy assuming that in this case no information is disclosed. Under

the lockdown policy, the standard mitigation strategy in most countries at the time South

Korea implemented the disclosure policy, a certain fraction of the population is required to

stay at home. In the model, this is implemented by randomly choosing a certain fraction of

people and forcing them to stay in the home sector during weekdays and weekends. Naturally,

the disease does not spread at home; at home, workers who are susceptible cannot be infected

and workers who are infected but not detected do not spread the disease anymore. We assume

that the lockdown policy is implemented from day 280 to 380, when the spread of disease

is the fastest.19 To compare the disclosure policy and lockdown policy, we choose a 22%

19A lockdown implemented earlier delays infections and herd immunity, but has no impact on that total
number of infected once herd immunity is achieved.
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lockdown, which gives the same total number of cases over two years as the full information

disclosure case.

Table 2 reports the total number of detected cases, the total number of deaths, and the

economic welfare losses over two years under the lockdown policy. In this scenario, the total

number of deaths is higher, especially among the old. The economic welfare losses under a

lockdown are substantially higher relative to the full information disclosure scenario. The

lockdown misallocates workers and mitigation efforts. This is because, under the lockdown

policy, workers who do not like working from home are mandated to do so. On the other

hand, under information disclosure, workers who enjoy working from home select themselves

to do so after seeing more confirmed cases and visits at their preferred districts. Similar

circumstances occur with people with low health risks or that have recovered from the disease

as they are mandated to stay home under the lockdown whereas, under full information, those

that have higher health risks are those that choose to stay at home.

4.1 Sensitivity to Transmission and Detection Rates

We check the robustness of our results by checking their sensitivity to alternative values

for the transmission rate β and the daily detection rate dI . First, we run a simulation

and a counter-factual without disclosure both increasing and decreasing β by 20 percent.

Remember however that we choose β to match the total number of reported cases in Seoul

by the end of May 2020 so changing β implies that the model no longer matches this data

moment. Putting this aside, the top panel in Table 3 shows the effect of changing β. When β

is lower, the model delivers much lower number of cases and economic losses, and information

disclosure lowers the number of COVID cases by 28%. On the other hand, higher β results

in a higher number of cases and economic losses. Information disclosure is still effective but

less so, reducing the number of cases by 5%.

We next examine the sensitivity of the results to effectiveness of the testing regime.

Specifically, we re-calibrate the model by targeting a lower and a higher fraction of undetected
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infections. Note that in the benchmark calibration, we target 90% of undetected infections to

be consistent with the estimates in Stock et al. (2020). Under 80% undetected infections, β

(0.1682) and dI (0.0357) are calibrated to be higher than in our baseline calibration (0.1524

and 0.0163) so that they also jointly match the total number of cases by May 31st.20 With

a much higher daily detection rate, there is more information disclosed on the total number

of cases and visits. As a result, workers change their commuting behavior more and the

number of cases declines significantly. Thus, information disclosure is more effective in this

case. On the other hand, when we target 95% of undetected infections, β (0.1515) and dI

(0.0076) are calibrated to be lower than the benchmark calibration. With lower detection

rate, information disclosure is less effective because there is less information disclosed on the

local cases and visits. So information disclosure is more effective when combined with testing

that increases share of the infected that are detected.

20Although by construction our model replicates well the total number of cases in Seoul, our model does
not capture other measures taken in the city to successfully contain the virus in the months that followed,
which include the closure of high-risk business (e.g. nightclubs, gyms), increases in the social distancing level,
and the banning of gatherings of more than 50 people.
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Table 3: Sensitivity to Transmission and Detection Rates

20% lower β=0.1219 20% higher β=0.1829

No disclosure Full disclosure No disclosure Full disclosure

Total # of Cases 81,314 58,384 1,143,903 1,090,291
Welfare Loss per day(%) 0.04 0.06 0.05 0.11

Frac. of undetected=0.8 Frac. of undetected=0.95

β = 0.1682, dI = 0.0357 β = 0.1515, dI = 0.0076
No disclosure Full disclosure No disclosure Full disclosure

Total # of Cases 907,202 776,173 565,072 538,609
Welfare Loss per day(%) 0.08 0.15 0.05 0.11

Notes: The table reports the total number of detected cases and the economic welfare losses over two years
in the city of Seoul under information disclosure and no disclosure with lower and higher β and with lower
and higher fraction of undetected infections. For different fractions of undetected infection, β and dI are
re-calibrated to match this new target moment, along with the number of total cases by May 31st (861). The
economic welfare losses, compared to the no disclosure case, are shown in percent.

Finally, our estimate of the elasticity of commuting costs to information disclosure in

Table 1, combined with our baseline estimate of the detection rate dI of 1.63%, implies that

the effective transmission rate remains significantly above 1 until Seoul reaches herd immu-

nity about 400 days after the pandemic starts (see Figure 3.) Put differently, information

disclosure lowers the transmission of the virus, but not by enough to end the pandemic be-

fore herd immunity is reached. What would it take to bring the effective reproduction rate

below 1 immediately? If the detection rate is dI = 0.0163, we calculate that the sensitivity

of commuting costs to information disclosure would have to be ten times larger than what

we estimate in Table 1 to immediately lower the effective reproduction rate below 1. If the

detection rate is twice as large, so di = 0.0326 and the elasticity of commuting costs to

information disclosure is only twice as large as what we estimated, this would be enough to

immediately bring the effective reproduction rate below 1. The point here is that information

disclosure helps but is not a panacea by itself. But combined with other measures it can be
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a useful complement to bring the end the pandemic.

5 Conclusion

This paper uses an SIR model with multiple sub-populations and an economic model of

commuting choice between the sub-populations to measure the effect of the disclosure of

information about COVID-19 cases in Seoul. We use the model to calibrate the effect of the

change in commuting patterns after the public disclosure of information on the transmission

of the virus and the economic losses due to the change in commuting patterns. We find that

compared to a scenario without disclosure, public disclosure reduces the number of COVID-

19 cases by 60 thousand and deaths by 2 thousand in Seoul over 2 years. And compared to a

lockdown that results in about the same number of cases as the full disclosure strategy, the

latter results in economic losses that are 72% percent lower.

We do not attempt to measure cost of the loss of privacy from disclosure of COVID cases

or other inefficiencies arising from the disclosure of information. One example are the revenue

losses of restaurants and coffee shops visited by infected individuals. These costs, whenever

such measures are available, can be weighted against the benefits of public disclosure we

provide here. Furthermore, one of the limitations of our analysis is that in the short-run not

all commuting options might be available, particularly during weekdays. Our estimates, as

a result, might underestimate the welfare losses of public disclosure which would be larger

if less commuting options are available or if there is an additional cost of switching work

locations (e.g. job-search frictions).

In our analysis the community (in Seoul) reaches herd immunity within the next two

years. We assume no vaccine will be available in the next two years. The analysis will

obviously be different, and the trade-offs between the different scenarios we model in the

paper will be different as well if a vaccine is available within the next two years. The broader

point is that, in the absence of a vaccine, targeted social distancing can be an effective way to
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reduce the transmission of the disease while minimizing the economic cost of social isolation.

Public dissemination of information as one way to accomplish that, but there obviously can

be more effective ways to target social distancing.
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APPENDIX (NOT FOR PUBLICATION)

A Derivation of Equations

We follow Ahlfeldt et al. (2015) to endogenize the commuting flows πij as the result of utility

maximizing commuting choices. We assume individuals make commuting choices every day

and we distinguish between weekdays and weekends. Specifically, utility of a worker who

lives in neighborhood i and works in j during the weekdays is Ua
ij(t) = za,wdj /daij(t) where

za,wdj is idiosyncratic productivity from working in j during the weekday and daij(t) is the

cost of commuting from i to j. During the weekends, the utility of the same person from

commuting to j is Ua
ij(t) = za,wnj /daij(t) where za,wnj denotes idiosyncratic preferences from

leisure in neighborhood j during the weekends.

For each individual worker we assume that idiosyncratic productivity za,wdj is drawn from

an iid Fréchet distribution with mean parameter Ea,wd
j and dispersion parameter εwd. Simi-

larly, idiosyncratic preferences during the weekend are drawn from an iid Fréchet distribution

with mean parameter Ea,wn
j and dispersion parameter εwn.

F (za,wdj ) = e−E
a,wd
j (za,wdj )−ε

wd

(11)

F (za,wnj ) = e−E
a,wn
j (za,wnj )−ε

wn

(12)

Without loss of generality, we omit weekday/weekend and time subscripts. Using the mono-

tonic relationship between the aggregate utility and the idiosyncratic component of utility,

the distribution of utility for a worker living in i and working in j is also Fréchet distributed:

Gij(u) = Pr[U ≤ u] = F (udaij) (13)

where Gij(u) = e−Φiju
−ε

and Φij = Ea
j (daij)

−ε.
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For the measure of residents in i, we evaluate the probability that they commute to j:

πij = Pr[uij ≥ max {uis} ;∀s]

=

∫ ∞
0

∏
s 6=j

Gis(u)gij(u)du

=

∫ ∞
0

e−Φu−εεΦiju
−(ε+1)du

(14)

where Φ =
∑

sE
a
s (daij)

−ε

Note that:

d

du

[
− 1

Φ
e−Φu−ε

]
= εu−(ε+1)e−Φu−ε (15)

Therefore, the probability that a resident of neighborhood i chooses to work in j during

the weekday is:

πa
ij(t = weekday) =

Ea,wd
j daij(t)

−εwd∑
sE

a,wd
s dais(t)

−εwd
(16)

Similarly, the probability she travels to neighborhood j during the weekend is:

πa
ij(t = weekend) =

Ea,wn
j daij(t)

−εwn∑
sE

a,wn
s dais(t)

−εwn (17)

Given equation 13 and 14, the expected utility is

E[u] =

∫ ∞
0

εΦu−εe−Φu−ε (18)

Now define the following change of variables:

y = Φu−ε, dy = −εΦu−(ε+1)du (19)

Using the change of variables, expected utility of an individual living in neighborhood i

is

E[Ua
i (t = weekday)] = Γ

(
1− 1/εwd

)(∑
s

Ea,wd
s dais(t)

−εwd
)1/εwd

(20)
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during the weekday and

E[Ua
i (t = weekend)] = Γ (1− 1/εwn)

(∑
s

Ea,wn
s dais(t)

−εwn
)1/εwn

(21)

during the weekend where Γ(·) is a gamma function.
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