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Abstract. We propose a new algorithm to estimate the structural parameters in dynamic
discrete choice models. The algorithm is based on the conditional choice probability approach,
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to estimate the various value function like terms in the pseudo-likelihood estimator. In es-
timating these terms with functional approximations using basis functions, our approach has
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low dimensional linear equation. For the estimation of dynamic games, our procedure does not
require integrating over the actions of other players, which further heightens the computational
advantage. We show that our estimator is consistent, and efficient under discrete state spaces.
In settings with continuous states, we propose easy to implement locally robust corrections in
order to achieve parametric rates of convergence. Preliminary Monte Carlo simulations confirm
the workings of our algorithm.
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1. Introduction

Dynamic discrete choice (DDC) models are frequently used to describe the intertemporal
choices of forward-looking individuals in a variety of contexts. In these models, agents maximize
their expected future payoff through repeated choice amongst a set of discrete alternatives. Based
on a revealed preference argument, structural estimation proceeds by using microdata on choices
and outcomes to recover the underlying model parameters.1 A key challenge in this literature is
the complexity of estimation. Uncovering the structural parameters typically requires an explicit
solution to the dynamic programming problem in addition to the optimization of an estimation
criterion. In a seminal contribution, Rust (1987) develops an iterative solution algorithm, the
Nested Fixed Point algorithm, that repeatedly solves the dynamic programming problem and
searches for the root of the likelihood equations to update the structural parameters. To ease the
computational burden associated with fully solving the dynamic optimization problem in each
iteration, alternative methods have been developed. A key advance has been Hotz and Miller’s
(1993) Conditional Choice Probability (CCP) algorithm which avoids the repeated solution of the
intertemporal optimization problem by taking advantage of a mapping between value function
differences and conditional choice probabilities. This idea has subsequently been refined by
Hotz et al. (1994) who suggest a simulation-based CCP method, and Aguirregabiria and Mira
(2002) who develop a more efficient recursive CCP algorithm, the nested pseudo-likelihood
(NPL) algorithm. More recently, Arcidiacono and Miller (2011) exploit the property of finite
dependence to speed up CCP estimation. This idea has been extended by Chernozhukov et al.
(2018) to high dimensional states, also under finite dependence. Separately, Semenova (2018)
also allows for high-dimensional states, but the parameters are only partially identified.

Despite these advances, the estimation of DDC models remains constrained by its compu-
tational complexity, particularly in the large class of models where finite dependence does not
hold. While the CCP algorithm substantially reduces the computational burden compared to
traditional methods in such settings, it becomes computationally infeasible if the number of
discrete state variables is large. This problem is even more apparent when the underlying state
variables are continuous and the resulting discretization gives rise to a very high-dimensional
state space. An application that is particularly affected by this issue is the estimation of dynamic
discrete games, where the strategic interaction of agents means that the state space increases
exponentially with the number of players. Furthermore, it is uncommon for finite dependence
to hold under dynamic games. Existing methods in discrete state space settings such as the
pseudo-likelihood estimator proposed by Aguirregabiria and Mira (2007) or the minimum dis-
tance estimator suggested by Pesendorfer and Schmidt-Dengler (2008) become computationally
difficult when the state space is large. If the states are continuous, discretization may be avoided
by using forward Monte Carlo simulations (Bajari et al., 2007), but this may become very in-
volved as the number of continuous state variables or players increases.

To overcome these limitations, we propose a new algorithm for the estimation of DDC models.
Our approach is based on traditional CCP methods, but makes use of a Temporal-Difference

1See Aguirregabiria and Mira (2010) for a detailed survey of the literature on the estimation of DDC models.
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(TD) method from the Reinforcement Learning literature to provide functional approximations
for the various value function terms in the pseudo-likelihood estimator.2 We start by choosing a
set of basis functions in actions and observed state variables. We then project the value function
operator onto the linear span of these basis functions and compute the resulting fixed point
(of the projected value function operator). This fixed point is our functional approximation to
the value function. Unlike most existing estimation approaches, our algorithm does not require
any specification or estimation of transition probabilities. Estimating the parameters requires a
soving a single, low-dimensional linear equation. In the unlikely case where the dimensionality of
the state space and therefore matrix makes the inversion computationally difficult, we propose
an alternative stochastic gradient procedure to obtain the functional approximations for the
terms in the value function. With these at hand, estimation of the structural parameters can
proceed with standard methods such as maximum likelihood estimation (MLE) or minimum
distance estimation.

As noted earlier, a useful feature of our approach is that we do not need to estimate, or impose
any restrictions on the form of transition probabilities. Only an estimate for the conditional
choice probabilities is required. Aguirregabiria and Mira (2002) show that, if the state variables
are discrete, the error from estimation of choice probabilities does not have a first-order impact
on the estimation of structural parameters, but this result does not carry over to estimation of
transition probabilities. Therefore, if the state variables are continuous, the pseudo maximum
likelihood estimator for the structural parameters will no longer converge at parametric rates.
We explain how, following Ackerberg et al. (2014), Newey (1994) and Chernozhukov et al. (2018),
our estimation approach for the functional approximations and the structural parameters can
be easily adapted to continuous state spaces using a correction term to provide locally robust
estimators. The resulting estimator converges at parametric rates under continuous states and
unrestricted transition probabilities. We also propose a recursive version of our algorithm,
similar to the NPL algorithm by Aguirregabiria and Mira (2002), in which the conditional
choice probabilities are updated as part of the estimation of the functional form approximations.
Finally, we incorporate permanent unobserved heterogeneity into our methods by combining the
TD estimation with an Expectation-Maximisation (EM) algorithm (Dempster et al., 1977).

Our estimator is thus consistent, converges at parametric rates and computationally very
cheap, even in models that do not exhibit a finite dependence property. Most importantly, our
TD estimator provides a feasible estimation method when the state variables are continuous or
the state space is large. This is particularly important for the estimation of dynamic discrete
games. Even with discrete states, existing methods for estimation of dynamic games ((Bajari
et al., 2007); Aguirregabiria and Mira (2007); Pesendorfer and Schmidt-Dengler (2008)) require
integrating out the actions of the other players. With many players, or under continuous states
this can get quite cumbersome. By contrast, our procedure works directly with the joint em-
pirical distribution of the states and their sample successors. Thus the ‘integrating out’ is done
implicitly within the sample expectations. Furthermore, the statistical properties of our estima-
tor - consistency, parametric rates of convergence etc. - also carry over to estimation of dynamic
2See Sutton and Barto (2018) for details on TD learning.
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games with continuous states and unknown transition probabilities. A Monte Carlo study based
on the Rust (1987) bus engine replacement problem confirms the workings of our algorithm.

While most of the computational gain is achieved in models with high-dimensional state space,
our approach is also as efficient as other methods in models with fewer state variables. In fact,
we show that in cases where the underlying states and actions are discrete, the basis function in
our functional approximations can be chosen such that our estimate is numerically identical to
the one obtained from standard CCP estimators. We therefore view our method as broadening
the class of DDC models that can be structurally estimated, while being as efficient as existing
estimation approaches for simpler versions of the DDC problem.

In making use of a TD step in the estimation, our method relates to the literature on Re-
inforcement Learning. Reinforcement Learning is an area of machine learning which describes
learning about how to map states into actions so as to maximize an expected payoff.3 A central
component in Reinforcement Learning is the estimation of value functions. Unlike traditional
dynamic programming methods, TD learning updates the current value function using sample
successors. In contrast to other sample updating methods, it uses an estimate of the return
instead of the actual return as target. Finally, it also employs functional approximations to
approximate the value functions under continuous states. The combination of functional ap-
proximation, sample successors and estimated returns makes TD estimation extremely fast. For
this reason TD algorithms are the standard method of choice for approximating value functions
in Reinforcement Learning. The idea of TD learning has a long history, but the formulation in
its current form is due to Sutton (1988). Tsitsiklis and van Roy (1997) studied the theoretical
properties of the algorithm under functional approximation. However these were derived in the
setup of online learning, whereas we intend to use our TD algorithm on a given set of observa-
tional data, i.e in an offline manner. Consequently we develop the statistical properties of TD
estimation using offline data. We find that TD learning behaves very similarly to the usual se-
ries approximation in terms of convergence rates. Indeed, due to the similarity in statistical and
computational properties, we like to think of TD estimation as the counterpart of least-squares
regression, but for approximating value functions.

Our methods also contribute to the literature on approximating value functions. A number of
techniques have been proposed for this in Economics, including parametric policy iteration (Hall
et al., 2000), simulation and interpolation (Keane and Wolpin 1994), and sieve value function
iteration (Arcidiacono et al., 2013). The last of these comes closest in spirit to our own approach,
as the authors propose a non-parametric approximation of the value function. The difference,
however, is that Arcidiacono et al. (2013) propose minimizing the TD error in the sup norm,
while we minimize the projected TD error in expectation. The latter is much easier to compute
and we are also able to provide strong statistical guarantees when the choice and transition
probabilities are unknown, with rates of approximation that mirror standard series estimation.
We also refer to Section 11.4 of Sutton and Barto (2018) for a useful discussion on the differences
between minimizing the TD error and the projected TD error.

3See Sutton and Barto (2018) for a detailed treatment of Reinforcement Learning.
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The remainder of this paper is organized as follows. Section 2 outlines the setup of the
DDC model and fixes notation. Section 3 describes our TD estimation method for the func-
tional approximations of the value functions, proves its theoretical properties and describes the
second-step estimation of the structural parameters under discrete and continuous state vari-
ables. Section 4 describes various extensions including a recursive version of our algorithm which
avoids the initial estimation of conditional choice probabilities. Section 5 incorporates perma-
nent unobserved heterogeneity into our algorithm. Section 6 discusses the estimation of dynamic
discrete games. Section 7 provides preliminary Monte Carlo simulations for our algorithm using
a version of the Rust (1987) bus engine replacement problem. Section 8 concludes.

2. Setup

We start with a single agent DDC model. Our treatment of this uses the same notation as
Aguirregabiria and Mira (2010).

We consider a model in discrete time with t = 1, . . . , T ; 2 ≤ T <∞ periods and i = 1, . . . , n
agents. Typically T � n in applications, so we shall always work within an asymptotic regime
where n → ∞ but T is fixed. We assume that the individuals are homogeneous, relegating
extensions for unobserved heterogeneity to Section 5. In each period, an agent chooses among A
mutually exclusive actions, each of which is denoted by a. The payoff from the action depends
on the current state x. In particular, choosing action a when the state is x gives the agent an
instantaneous utility of z(a, x)ᵀθ+ e, where z(a, x) is some known vector valued function of a, x
and e is an idiosyncratic error term. We denote the realization of the state of an individual i at
time t by xit, and her corresponding action and error terms by ait and eit. We shall assume that
eit is an iid draw from some known distribution ge(·). Let (a′, x′) denote the one-period ahead
random variables immediately following the actions and states (a, x), where x′ ∼ fX(·|a, x). We
do not make any assumptions about fX . The utility from future periods is discounted by β.

Agent i chooses chooses actions ai = (ai1, . . . , aiT ) to sequentially maximize the discounted
sum of payoffs

E

[
T∑
t=1

βt {z(xit, ait)ᵀθ∗ + eit}
]
.

The econometrician observes the state action pairs (xi,ai) = {(xi1, ai1), . . . , (xiT , aiT )} for all
individuals, but not the idiosyncratic error terms eit. Using this data, the econometrician aims
to recover the structural parameters θ∗. By now, a number of different algorithms have been
proposed to estimate θ∗. One such algorithm, which is very popular in the literature due to
its computational simplicity, is the CCP method due to Hotz and Miller (1993). This has been
subsequently refined in many ways by Hotz et al. (1994), Aguirregabiria and Mira (2002), and
Arcidiacono and Miller (2011), among others.

CCP methods utilize the knowledge of the conditional choice probabilities of choosing action
a given state x. We shall denote these by Pt(a|x) for a given period t but shall henceforth drop
the subscript t with the idea that it can be made a part of the state variable x, if needed (we
should also add here that some of our theoretical results are based on assuming stationarity, i.e
Pt(a|x) is independent of t). Denote e(a, x) as expected value of the idiosyncratic error term e
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given that action a was chosen. Hotz and Miller (1993) show that if the distribution of e follows
a Generalized Extreme Value (GEV) distribution, it is possible to express e(a, x) as a function of
the choice probabilities P (a|x), i.e e(a, x) = G(P (a|x)). For concreteness we shall assume in this
paper that e follows a Type I Extreme Value distribution, which is perhaps the most common
choice in the literature. In this case e(a, x) = γ − lnP (a|x), where γ is the Euler constant.

The standard procedure in the CCP approach is as follows: Under the given distributional
assumptions, the parameters are obtained as the maximizers of the pseudo-likelihood function

Q(θ) =
n∑
i=1

T−1∑
t=1

log exp {h(ait, xit)ᵀθ + g(ait, xit)}∑
a exp {h(a, xit)ᵀθ + g(a, xit)}

,

where h(.) and g(.) solve the following recursive expressions:

h(a, x) = z(a, x) + β
∑
x′

fX(x′|a, x)
∑
a′

P (a′|x)h(a′, x′),

g(a, x) = β
∑
x′

fX(x′|a, x)
∑
a′

P (a′|x)
{
e(a′, x′) + g(a′, x′)

}
.

Note that we omit the subscripts in (a, x) to denote the random variables, as opposed to realiza-
tions (ait, xit). The above assumes a discrete state space. To obtain more insight, let us convert
the above equations to expectations:

h(a, x) = z(a, x) + βE
[
h(a′, x′)|a, x

]
, (2.1)

g(a, x) = βE
[
e(a′, x′) + g(a′, x′)|a, x

]
,

where E[.] denotes the expectation over the distribution of (a′, x′) conditional on (a, x). Note that
P is a function of the distribution F of the transition and choice probabilities given by (fX , P ).
The above formulation is also valid for continuous state spaces. Both h(a, x) and g(a, x) have
a ‘value-function’ form, which turns out to be useful as there now exist fast algorithms for
computing value functions.

Observe that h(.) and g(.) are functions of the probability distributions fX and P (.|.), which
represent the transition and conditional choice probabilities respectively. Since these are typ-
ically unknown, one usually proceeds by first estimating these as (f̂X , P̂ ). Typically, f̂X is
obtained by MLE based on a parametric form of fX(x′|a, x; θf ), while P̂ is estimated non-
parametrically using either a blocking scheme or kernel regression. Then, given (f̂X , P̂ ), the
values of h(.) and g(.) can be estimated by solving the recursive equation 2.1. This is done by
first discretizing the state space, and then solving for h(.), g(.) in terms of z(.), e(.), using either
backward induction or matrix inversion.

When the underlying state variables are really continuous, discretization effectively gives
rise to a very high-dimensional state space, making estimation of h(.), g() computationally
extremely expensive. To ameliorate this issue, Hotz et al. (1994) propose forward simulation
based estimators for h(.) and g(.). Nevertheless, the computational requirements remain quite
high, given that such a simulation estimate has to be carried out for every possible combination
of a and x. Furthermore, the simulation errors create another source of bias in small samples.
Additionally, given that all the common CCP-based methods require initial estimators of θf and

6



P , these procedures often suffer from heavy bias in small samples, as θf and P are estimated very
imprecisely and enter non-linearly in the optimization problem for the structural parameters.

In the next section we propose an alternative algorithm for maximizing Q(θ) that allows for
continuous states and does not require any knowledge about or estimation of fX(·). In Section
4.2, we go further and show how we can also avoid the estimation of the choice probabilities.

Notation. We shall assume that the distribution of (ait, xit) is time stationary. This greatly
simplifies our notation, but is not strictly necessary for many of our results; see Appendix A
for extensions. Let P denote the stationary population (i.e, in the limit as n→∞) probability
distribution of (a, x, a′, x′), and E[·] the corresponding expectation over P. We shall also define
En[·] as the expectation over the empirical distribution Pn of (a, x, a′, x′). In particular, we set
En[f(a, x, a′, x′)] := (n(T − 1))−1∑n

i=1
∑T−1
t=1 f(ait, xit, ait+1, xit+1), i.e we always drop the last

time period in the summation index even if f(·) does not depend on a′, x′.
Let F denote the space of all square integrable functions over the domain A × X of (a, x).

We shall use E[·] to define a pseudo-norm ‖·‖2 over F as ‖f‖2 := E[|f(a, x)|2]1/2 for all f ∈ F .
Finally, we use |·| to denote the usual Euclidean norm on a Euclidean space.

3. Temporal-difference estimation

This section presents our TD method for estimating h(.) and g(.). Let us first start with the
h(·) function. Our method is based on a functional approximation for h(.) . To this end, we
(approximately) parameterize this as

h(j)(a, x) :≈ φ(a, x)ᵀω∗(j),

where φ(a, x) consists of a set of basis functions over the domain (a, x), and the superscript
j represents the jth dimension of h(). Here, ω∗(j) denotes some approximation weights (more
on this below). For the remainder of this paper, we shall drop the superscript j indexing the
dimension of h(.) and proceed as if the latter, and therefore θ∗, is a scalar. However, it should
be taken as implicit that all our results hold for general h(.), as long as each dimension is treated
separately.4 Also, to simplify the notation, we shall denote φit := φ(ait, xit) and zit := z(ait, xit).

For any candidate function, f(a, x), for h(a, x), denote the TD error by

δ(a, x; f) := z(a, x) + βE
[
f(a′, x′)|a, x

]
− f(a, x),

and the dynamic programming operator by

Γz[f ](a, x) := z(a, x) + βE[f(a′, x′)|a, x].

Clearly, h(a, x) is the unique fixed point of Γz[·]. However we want to approximate h(a, x) with
a function from the linear span, Lφ, of φ(a, x). The difficulty with the dynamic programming
operator is that in general Γz[f ] /∈ Lφ even if f ∈ Lφ. This suggests that to find a suitable
approximation for h(a, x) within Lφ, we should project the dynamic programming operator

4Even with component-wise estimation, the computational difficulty will be quite low since the most burdensome
step, involving a matrix inversion, is common to all j.
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back into this space. To do so, denote by Pφ the projection operator into the linear span of Lφ:

Pφ[f ](a, x) := φ(a, x)ᵀE[φ(a, x)φ(a, x)ᵀ]−1E[φ(a, x)f(a, x)].

We then obtain our approximation φ(a, x)ᵀω∗ to h(a, x) as the fixed point of the projected
dynamic programming operator PφΓz[·]:

PφΓz[φ(a, x)ᵀω∗] = φ(a, x)ᵀω∗.

In Lemma 1 in the Appendix, we show that this in turn is equivalent to

E
[
φ(a, x)

{
z(a, x) + βφ(a′, x′)ᵀω∗ − φ(a, x)ᵀω∗

}]
= 0, (3.1)

which enables us to identify ω∗ as

ω∗ = E
[
φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ]−1 E [φ(a, x)z(a, x)] . (3.2)

Lemma 2 in the Appendix assures that E [φ(a, x) (φ(a, x)− βφ(a′, x′))ᵀ] is indeed non-singular as
long as β < 1 and E[φ(a, x)φ(a, x)ᵀ] is non-singular. We will discuss the properties of φ(a, x)ᵀω∗

in the next sub-section, but let us note here that in general

φ(a, x)ᵀω∗ 6= Pφ[h(a, x)].

Thus φ(a, x)ᵀω∗ is not the best linear approximation of h(a, x), although it comes very close, as
we will see shortly.

As defined above, ω∗ cannot be computed directly, since it is a function of the true expectation
E[·]. We can however obtain an estimator, ω̂, after replacing E[·] with En[·]:

ω̂ = En
[
φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ]−1 En [φ(a, x)z(a, x)] . (3.3)

Using the above, we obtain an estimate of h(·) as ĥ(a, x) = φ(a, x)ᵀω̂.
We now turn to the estimation of g(·). We approximate g(·) using basis functions r(a, x):

g(a, x) :≈ r(a, x)ᵀξ∗.

We allow r(a, x) to be generally different from φ(a, x). As before, denote by f(a, x) any candidate
function for g(a, x). Now, g(a, x) is the unique fixed point of the operator Γe[·], where

Γe[f ](a, x) := βE[e(a′, x′) + f(a′, x′)|a, x].

We then obtain our approximation r(a, x)ᵀξ∗ to g(a, x) as the fixed point of the projected
operator PrΓe[·], where Pr is the projection operator into the linear span of r, i.e

Pr[f ](a, x) := r(a, x)ᵀE[r(a, x)r(a, x)ᵀ]−1E[r(a, x)f(a, x)].

As before, we may equivalently write

E
[
r(a, x)

{
βe(a′, x′) + βr(a′, x′)ᵀξ∗ − r(a, x)ᵀξ∗

}]
= 0. (3.4)

This allows us to identify ξ∗ as

ξ∗ = E
[
r(a, x)

(
r(a, x)− βr(a′, x′)

)ᵀ]−1 E
[
βr(a, x)e(a′, x′)

]
.

8



Assuming e(a, x) is known, this suggests the following estimator for ξ∗:

ξ̂ = En
[
r(a, x)

(
r(a, x)− βr(a′, x′)

)ᵀ]−1 En
[
βr(a, x)e(a′, x′)

]
. (3.5)

In general, e(a, x) = γ−lnP (a|x) is a function of choice probabilities, which are unknown. We
first need to non-parametrically estimate them. Denote η(a, x) := P (a|x). Suppose that we have
access to a non-parametric estimator η̂ of η. This can be obtained in many ways, e.g through
series or kernel regression. We can then plug in this estimate to obtain e(a, x; η̂) := γ− ln η̂(a, x).
This in turn enables us to obtain ξ̂ as

ξ̂ = En
[
r(a, x)

(
r(a, x)− βr(a′, x′)

)ᵀ]−1 En
[
βr(a, x)e(a′, x′; η̂)

]
. (3.6)

Using the above, we obtain an estimate of g(·) as ĝ(a, x) = r(a, x)ᵀξ̂.
In the discrete setting, the estimation error from η̂ is not first order relevant for the estimation

of θ∗, as long as θ∗ is estimated using a pseudo-MLE. This was first noted in Aguirregabiria and
Mira (2002). In fact, even with continuous states, the estimation of ξ̂ is unaffected to a first order
by the estimation of η̂, even though the latter only converges to the true η at non-parametric
rates. This is because an orthogonality property holds for the estimation of ξ, in that

∂ηE
[
βr(a, x)e(a′, x′; η)

]
= 0, (3.7)

where ∂η· denotes the Fréchet derivative with respect to η. To show (3.7), let us first expand
the term E [βr(a, x)e(a′, x′; η)] as follows

E
[
βr(a, x)e(a′, x′; η)

]
= E

[
βr(a, x)E

[
e(a′, x′; η)

∣∣ a, x, x′]]
= E

[
βr(a, x)E

[
e(a′, x′; η)

∣∣x′]]
= E

[
βr(a, x)E

[
γ − ln η(a′, x′)

∣∣x′]] , (3.8)

where the second equality follows from the Markov property. Now, it turns out that

∂ηE
[
ln η(a′, x′)

∣∣x′] = 0.

Indeed, consider the expression M(η̃) := E [ ln η̃(a′, x′)|x′], evaluated at different candidate val-
ues η̃(·, ·). When evaluated at the true conditional choice probability, i.e when η̃(·, ·) = η(·, ·),
M(η̃) becomes the conditional entropy and attains its maximum. Consequently, in view of (3.8),
it follows that (3.7) holds. Thus, ξ̂ is a locally robust estimator for ξ.

Even with a locally robust estimator, the use of a non-parametric estimator may lead to
substantial finite sample bias. For this reason, we advocate a cross-fitting procedure (see Cher-
nozhukov et al., 2018). In our context, this entails the following: we randomly partition the
data into two folds. We estimate ξ̂ separately for each fold using η̂ estimated from the opposite
fold. The final estimate of ξ∗ is the weighted average of ξ̂ from both the folds.

Note that computation of ω̂ and ξ̂ only involve solving linear equations of dimension dim(φ)
and dim(r), respectively. This is computationally very cheap. Using ĥ(a, x) and ĝ(a, x), we can
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in turn estimate θ∗ in many different ways. For instance, we can use the pseudo-MLE estimator

θ̂ := arg max
θ

Q̂(θ) :=
n∑
i=1

T−1∑
t=1

log
exp

{
ĥ(ait, xit)θ + ĝ(ait, xit)

}
∑
a exp

{
ĥ(a, xit)θ + ĝ(a, xit)

} . (3.9)

It turns out the estimate from (3.9) is sub-optimal under continuous states. We discuss this in
greater detail in Section 3.2, where we suggest a locally robust version of (3.9).

3.1. Discrete states. Suppose that the underlying states and actions are discrete, and that
our algorithm uses basis functions comprised of the set of all discrete elements of x, a. Then the
resulting estimate of h(a, x) obtained from our algorithm is exactly the same as that obtained
from the standard CCP estimators, if both the choice and transition probabilities were estimated
using cell values. To see this, we note the following: First, the standard CCP estimators (see
e.g Aguirregabiria and Mira, 2010), estimate h(a, x) by solving the recursive equations

h̆(a, x) = z(a, x) + β
∑
x′

f̂X(x′|a, x)
∑
a′

P̂ (a′|x′)h̆(a′, x′), (3.10)

where f̂ , P̂ are estimates of f, P obtained as cell estimates. Second, by the results of Tsitsiklis
and Van Roy (1997), it can be shown that when the functional approximation saturates all the
states, the TD estimate from (3.3), denoted by ĥ(x, a) := φ(a, x)ᵀω̂ satisfies the equation

z(a, x) + βEn[ĥ(a′, x′)|a, x] = ĥ(a, x),

where En[ĥ(a′, x′)|a, x] denotes the conditional expectation of ĥ(a′, x′) given a and x under the
empirical distribution Pn (the conditional distribution exists because of the discrete number of
states). But for discrete data, En[ĥ(a′, x′)|a, x] is simply

En[ĥ(a′, x′)|a, x] =
∑
x′

f̂X(x′|a, x)
∑
a′

P̂ (a′|x′)ĥ(a′, x′),

and the value of ĥ(a, x) and h̆(a, x) coincide exactly. Thus, the two algorithms give identical
results (a similar property also holds for g(a, x)). Since our estimates ĥ(a, x) coincide with those
from the standard CCP estimators, the resulting estimate θ̂ is also exactly the same. As a result,
the final estimates of θ from both procedures also coincide exactly.

When the states are discrete, Aguirregabiria and Mira (2002) show that the estimation of
η is orthogonal to the estimation of θ∗. This holds true for our procedure as well since our
estimator is numerically equivalent to the one proposed by Aguirregabiria and Mira (2002). It
is important to note, however, that the estimation of the transition probabilities fX(x′|a, x) is
not orthogonal to the estimation of θ∗. This is not too much of an issue with discrete states
since any estimate, f̂X(x′|a, x), of fX(x′|a, x) converges at parametric rates, so

√
n consistent

estimation of θ is still possible. However, as we will see in Section 3.3, this creates issues once
we move to continuous states.

3.2. Theoretical Properties of TD estimators under continuous states. We now char-
acterize the formal properties of our TD fixed point estimates of h(·) and g(·). We shall only
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focus on the case of continuous states, since under discrete states, our prcedure gives exactly
the same output as previous methods.

We start by characterizing the estimation error of h(·). Let kφ denote the dimension of φ.
We shall take kφ → ∞ as n → ∞. We impose the following assumptions for the estimation of
h(a, x):

Assumption 1. (i) The basis vector φ(a, x) is linearly independent (i.e φ(a, x)ᵀω = 0 for all
(a, x) if and only if ω = 0). Additionally, the eigenvalues of E[φ(a, x)φ(a, x)ᵀ] are uniformly
bounded away from zero for all kφ.

(ii) The basis functions are uniformly bounded, i.e |φ(a, x)|∞ ≤M for some M <∞.
(iii) There exists C <∞ and α > 0 such that ‖h(a, x)− Pφ[h(a, x)]‖2 ≤ Ck

−α
φ .

(iv) The domain of (a, x) is a compact set, and there exists L <∞ such that |z(a, x)|∞ ≤ L.
(v) kφ →∞ and k2

φ/n→ 0 as n→∞.

Assumption 1(i) rules out multi-collinearity in the basis functions. This is easily satisfied.
Assumption 1(ii) ensures that the basis functions are bounded. This is again a mild requirement
and is easily satisfied if either the domain of (a, x) is compact, or the basis functions are chosen
appropriately (e.g a Fourier basis). Assumption 1(iii) is a standard condition on the rate of
approximation of h(a, x) using a basis approximation. The value of α is related to the smoothness
of h(·). Newey (1997) shows that for splines and power series, we can set α = r/d, where r is
the number of continuous derivatives of h(a, ·) and d is the dimension of x. Similar results can
also be derived for other approximating functions such as Fourier series, wavelets and Bernstein
polynomials. The smoothness properties of h(a, ·) are discussed in Appendix B, where we provide
some primitive conditions on z(a, x), fX(x′|a, x) that ensure existence of r continuous derivatives
of h(a, ·) for each a ∈ A. Assumption 1(iv) requires the function z(a, x) to be bounded. A
sufficient condition for this is that z(a, x) is continuous (since its domain is bounded).

Finally, Assumption 1(v) specifies the rate at which the dimension of the basis functions are
allowed to grow. The rate requirements are also mild, and are the same as those employed for
standard series estimation, even though our procedure is not the same as series estimation. For
the theoretical properties, the exact rate of kφ is not relevant up to a first order since we propose
estimators of θ∗ that are locally robust to estimation of h(·). But the choice of kφ could matter
in practice. For this reason we propose selecting kφ through a procedure akin to cross-validation.
The value of ω is estimated using a training sample and its performance evaluated on a hold-out
or test sample. However in contrast to standard cross-validation, the performance is measured
in terms of the empirical MSE of the TD error Etest[δ2(a, x; ĥ)] on the test dataset. The value
of kφ that is chosen is the one that achieves the lowest mean squared TD error.

We then have the following theorem on the estimation of h(a, x):

Theorem 1. Under Assumptions 1(i) to 1(v), the following hold:
(i) Both ω∗ and ω̂ exist, the latter with probability approaching one.
(ii) ‖h(a, x)− φ(a, x)ᵀω∗‖2 ≤ (1− β)−1 ‖h(a, x)− Pφh(a, x)‖2 ≤ C(1− β)−1k−αφ .
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(iii) There exists some C <∞ such that with probability approaching one,

|ω̂ − ω∗| ≤ C(1− β)−1

√
kφ
n
.

(iv) The L2 error for the difference between h(a, x) and φ(a, x)ᵀω̂ is bounded as

‖h(a, x)− φ(a, x)ᵀω̂‖2 = Op

(
kφ√
n

+ k−αφ

)
.

We prove Theorem 1 in the Appendix by adapting the results of Tsitsiklis and Van Roy
(1997). The first part of Theorem 1 assures that both population and empirical TD fixed points
exist. The second part of Theorem 1 implies the approximation bias from φ(a, x)ᵀω∗ is within
a (1 − β)−1 factor of that from Pφh(a, x). Note that the latter is the best one could do under
an L2 norm, so the theorem assures that we are only a constant away from attaining this. The
third part of Theorem 1 characterizes the rate of convergence of ω̂ to ω∗, and the final part of
Theorem 1 characterizes the rate of estimation of h(a, x) itself.

In a similar vein, we impose the following assumptions for the estimation of g(a, x). Let kr
denote the dimension of r(a, x).

Assumption 2. (i) The basis vector r(a, x) is linearly independent, and the eigenvalues of
E[r(a, x)r(a, x)ᵀ] are uniformly bounded away from zero for all kr.

(ii) |r(a, x)|∞ ≤M for some M <∞.
(iii) There exists C <∞ and α > 0 such that ‖g(a, x)− Pr[g(a, x)]‖2 ≤ Ck−αr .
(iv) The domain of (a, x) is a compact set, and |e(a, x)|∞ ≤ L <∞.
(v) kr →∞ and k2

r/n→ 0 as n→∞.
(vi) ξ̂ is estimated from a cross-fitting procedure described above. The conditional choice

probability function satisfies η(a, x) ≥ δ > 0, where δ is independent of a, x. Additionally,
|η(a, x)− η̂(a, x)|∞ = op(1) and ‖η(a, x)− η̂(a, x)‖22 = op(n−1/2).

Assumption 2 is a direct analogue of Assumption 1, except for the last part which provides
regularity conditions when η(·) is estimated. These conditions are typical for locally robust
estimates and only require the non-parametric function η(a, x) to be estimable at faster than
n−1/4 rates. This is easily verified for most non-parametric estimation methods such as kernel
or series regression. Under these assumptions, we have the following analogue of Theorem 1.

Theorem 2. Under Assumptions 2(i) to 2(vi), the following hold:
(i) Both ξ∗ and ξ̂ exist, the latter with probability approaching one.
(ii) ‖g(a, x)− r(a, x)ᵀξ∗‖2 ≤ (1− β)−1 ‖g(a, x)(a, x)− Prg(a, x)(a, x)‖2 ≤ C(1− β)−1k−αr .
(iii) There exists some C <∞ such that with probability approaching one,

∣∣∣ξ̂ − ξ∗∣∣∣ ≤ C(1− β)−1

√
kr
n
.

(iv) The L2 error for the difference between g(a, x) and r(a, x)ᵀξ̂ is bounded as∥∥∥g(a, x)− r(a, x)ᵀξ̂
∥∥∥

2
= Op

(
kr√
n

+ k−αr

)
.

12



Theorem 1 and Theorem 2 imply that we can estimate h(a, x) and g(a, x) at reasonably fast
rates. However we still need to discuss how this relates to consistent estimation of θ∗. We do
this below.

3.3. Continuous states and locally robust estimation. When the states are continuous,
estimation of h(a, x) and g(a, x) is inherently non-parametric. Unlike the case with discrete
states, the estimation error from the non-parametric functions does affect the estimation of θ∗

to a first order, when using the pseudo-MLE criterion. The reason for this is that h(a, x) and
g(a, x) are actually functions of two non-parametric terms: the choice probabilities η(a, x), and
the transition probabilities fX(x′|a, x). The TD estimator implicitly takes both into account
with a series approximation. Since the estimates for fX(x′|a, x) and θ∗ are not orthogonal under
a pseudo-MLE, this extends to the lack of orthogonality between the estimates for h(a, x), g(a, x)
and θ∗. Consequently, the pseduo-MLE estimator will converge at slower than parametric rates.

3.3.1. Construction of the locally robust estimator. We now describe the construction of a locally
robust version of the pseudo-MLE estimator. For the present analysis, let us suppose that h(x, a)
and g(x, a) are finite-dimensional, i.e h(x, a) ≡ φ(x, a)ᵀω∗ and g(x, a) ≡ r(x, a)ᵀξ∗. Denote
(ã, x̃) := (a, x, a′, x′), v := (ω, ξ), v∗ := (ω∗, ξ∗) and let

Q(a, x; θ,v) = ln πθ,v(a, x); πθ,v(a, x) := exp {(φ(a, x)ᵀω) θ + r(a, x)ᵀξ}∑
ă exp {(φ(ă, x)ᵀω) θ + r(ă, x)ᵀξ)} .

The true value θ∗ is then
θ∗ = argmax

θ
E [Q(a, x; θ,v∗)] .

Since the criterion function is convex, we can alternatively identify θ∗ using the moment function

E[m(a, x; θ∗,v∗)] = 0; m(a, x; θ,v) := ∂θQ(a, x; θ,v). (3.11)

The lack of orthogonality of the estimator based on (3.11) is evident by the fact ∂vE[m(a, x; θ,v∗)] 6=
0. Note that ω∗ and ξ∗ are in turn estimated using the moment functions

E[ϕh(ã, x̃, ω∗)] = 0, and E[ϕg(ã, x̃, ξ∗)] = 0, (3.12)

where, given (3.1) and (3.4),

ϕh(ã, x̃, ω) := φ(a, x)z(a, x) + φ(a, x)
(
βφ(a′, x′)− φ(a, x)

)ᵀ
ω, and

ϕg(ã, x̃, ξ) := βr(a, x)e(a′, x′; η̂) + r(a, x)
(
βr(a′, x′)− r(a, x)

)ᵀ
ξ.

We make use of (3.11) and (3.12) to construct a locally robust moment for θ∗. Following Newey
(1994), Ackerberg et al. (2014) and Chernozhukov et al. (2018), this is given by

E[ζ(ã, x̃; θ∗,v∗)] = 0, (3.13)

where

ζ(ã, x̃; θ,v) := m(a, x; θ,v)− E[∂ωm(a, x; θ,v)]E[∂ωϕh(ã, x̃, ω)]−1ϕh(ã, x̃, ω)

− E[∂ξm(a, x; θ,v)]E[∂ξϕg(ã, x̃, ξ)]−1ϕg(ã, x̃, ξ).
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Note that

E[∂ωϕh(ã, x̃, ω)] = E
[
φ(a, x)

(
βφ(a′, x′)− φ(a, x)

)ᵀ]
, and

E[∂ξϕg(ã, x̃, ξ)] = E
[
r(a, x)

(
βr(a′, x′)− r(a, x)

)ᵀ]
.

We can now construct a locally robust estimator for θ∗ based on (3.13). Following Cher-
nozhukov et al. (2018), we employ a cross-fitting procedure by randomly splitting the data into
two samples N1 and N2. We compute ω̂ and ξ̂ using one of the samples, say N2. Denote by
E(1)
n [·] the empirical expectation using only the observations in the first sample. We then obtain

θ̂ as the solution to the moment equation

E(1)
n

[
ζn(ã, x̃; θ, ω̂, ξ̂)

]
= 0, (3.14)

where

ζn(ã, x̃; θ,v) := m(a, x; θ,v)− E(1)
n [∂ωm(a, x; θ,v)]E(1)

n [∂ωϕh(ã, x̃, ω)]−1ϕh(ã, x̃, ω)

− E(1)
n [∂ξm(a, x; θ,v)]E(1)

n [∂ξϕg(ã, x̃, ξ)]−1ϕg(ã, x̃, ξ).

The use of cross-fitting or sample splitting is critical. If we had used the entire sample to
estimate all of θ∗, ω∗ and ξ∗, we would have En[ϕg(ã, x̃, ω̂)] = 0 for g ∈ {h, e, η}, which implies
En
[
ζn(ã, x̃, θ, ω̂, ξ̂)

]
= En

[
m(a, x, θ, ω̂, ξ̂)

]
. As noted by Chernozhukov et al. (2018), cross-fitting

gets rid of the ‘own observation bias’ that is the source of the degeneracy here.
We will refer to the solution θ̂ of (3.14) as the locally robust pseduo-MLE estimator of θ∗.

Note that we would need three way sample splits if we employ cross-fitting procedures for both
estimation of θ∗ and ξ∗. But the use of cross-fitting for ξ̂ is not as critical as that for θ̂, and can
be avoided if necessary.

Estimation of θ̂ using (3.14) involves non-convex optimization. Since this could cause difficul-
ties in practice, we recommend a two-step method for computation. We first obtain a preliminary
estimate θ̂1 by solving the empirical analogue of (3.11). This is a convex optimization problem,
and is usually very fast. Note that θ̂1 is consistent for θ under mild regularity conditions, even
though its not efficient. We can then use θ̂1 as the starting point for a Newton-Raphson or some
other gradient descent algorithm for finding the root of (3.14).

3.3.2. Non-parametric analysis. For the setup of finite-dimensional h(a, x) and g(a, x), it is
straightforward to show that the above procedure leads to

√
n rates of estimation of θ∗ (see e.g

Newey (1994)). In this paper, we are primarily interested in the case where these quantities are
infinite-dimensional. Still, treating the first step as parametric leads to an estimation strategy
that is also valid non-parametrically as long as we let the series terms grow to infinity. To
show this, we will need to derive the exact form of the adjustment terms in the non-parametric
case. To this end, we will make use of the form of the parametric adjustment terms in (3.14) to
conjecture the expression for the non-parametric correction term. We shall then verify that this
indeed leads to a locally robust estimator.

With the above in mind, consider the adjustment term

Âh := E(1)
n [∂ωm(a, x; θ,v)]E(1)

n [∂ωϕh(ã, x̃, ω)]−1ϕh(ã, x̃, ω)
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for h(a, x). Denote

m(a, x; θ, h, g) := ∂θQ(a, x; θ, h, g); Q(a, x; θ, h, g) := ln exp {h(a, x)θ + g(a, x)}∑
ă exp {h(ă, x)θ + g(ă, x))} .

Then Âh can be rewritten as

Âh = λ̂h(a, x; θ)
{
z(a, x) + βφ(a′, x′)ᵀω − φ(a, x)ᵀω

}
, (3.15)

where

λ̂h(a, x; θ) := φ(a, x)ᵀE(1)
n

[(
βφ(a′, x′)− φ(a, x)

)
φ(a, x)ᵀ

]−1 E(1)
n [φ(a, x)∂hm(a, x; θ, h, g)] ,

and ∂hm(·) denotes the Fréchet derivative of m(·) with respect to h(·). In Appendix B, we
provide a heuristic argument that suggests that the limit, Ah, of Âh as n, kφ →∞ is given by

Ah = λh(a, x; θ)
{
z(a, x) + βh(a′, x′)− h(a, x)

}
,

where λh(a, x; θ) is the fixed point of the ‘backward’ dynamic programming operator Γ†h,θ[·],
defined as5

Γ†h,θ[f ](a, x) := −∂hm(a, x; θ, h, g) + βE
[
f(a−′, x−′)|a, x

]
.

We conjecture Ah to be the non-parametric correction term for h(·). A similar analysis also
applies to the adjustment term for g(·), which we conjecture to be of the form

Ag = λg(a, x; θ)
{
e(a′, x′; η) + βg(a′, x′)− g(a, x)

}
,

where λg(a, x; θ) is the fixed point of the operator Γ†g,θ[·], defined as

Γ†g,θ[f ](a, x) := −∂gm(a, x; θ, h, g) + βE
[
f(a−′, x−′)|a, x

]
.

Taken together, we conjecture that the locally robust moment is given by

ζ(ã, x̃; θ, h, g) := m(a, x; θ, h, g)− λh(a, x; θ)
{
z(a, x) + βh(a′, x′)− h(a, x)

}
− λg(a, x; θ)

{
e(a′, x′; η) + βg(a′, x′)− g(a, x)

}
. (3.16)

The above analysis is heuristic. We now verify that the moment in (3.16) is indeed locally
robust. A necessary condition for this is that ∂hE[ζ(ã, x̃; θ, h, g)] = 0 and ∂gE[ζ(ã, x̃; θ, h, g)] = 0,
where the derivatives are Gâteaux derivatives with respect to h(·) and g(·) respectively (see
Chernozhukov et al. (2018)). To verify these, observe that for any square integrable γ,

∂τE[ζ(ã, x̃; θ, h+ τγ, g)] = E[∂hm(a, x; θ, h, g)γ(a, x)]− E[βλh(a, x; θ)γ(a′, x′)]

+ E[λh(a, x; θ)γ(a, x)]. (3.17)

Since λh(·) is the fixed point of Γ†h,θ[·], we can expand the third term in (3.17) as

E[λh(a, x; θ)γ(a, x)] = E
[{
−∂hm(a, x; θ, h, g) + βλh(a−′, x−′; θ)

}
γ(a, x)

]
= −E [∂hm(a, x; θ, h, g)γ(a, x)] + E[βλh(a, x; θ)γ(a′, x′)],

5In other words, λ∗h(ait, xit; θ) = −
∑∞

j=0 β
j∂hm(ai(t−j), xi(t−j); θ, h, g), i.e it is like a ‘backward’ value function.
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where the second equality uses the fact that E[·] is a stationary distribution. We thus con-
clude ∂τE[ζ(ã, x̃; θ, h + τγ, g)] = 0 for all γ, or ∂hE[ζ(ã, x̃; θ, h, g)] = 0, as required. In fact,
by similar arguments, we can also show the stronger statement that ∂hE[ζ(ã, x̃; θ, h, g)] = 0
and ∂gE[ζ(ã, x̃; θ, h, g)] = 0 in a Fréchet sense. Additionally, the Fréchet second derivatives
∂2
hE[ζ(ã, x̃; θ, h, g)], ∂2

gE[ζ(ã, x̃; θ, h, g)] also exist, and are uniformly bounded for bounded θ.
The locally robust moment (3.16) is infeasible since λg(·), λh(·), h(·) and g(·) are unknown.

However, in practice we can simply use the estimator from (3.14). Note that the moment
function from the latter can be rewritten as

ζn(ã, x̃; θ,v) = m(a, x; θ,v)− λ̂h(a, x; θ)
{
z(a, x) + βφ(a′, x′)ᵀω − φ(a, x)ᵀω

}
λ̂g(a, x; θ)

{
e(a′, x′; η̂) + βr(a′, x′)ᵀξ − r(a, x)ᵀξ

}
.

There is no loss of first order efficiency in replacing ζ(ã, x̃; θ, h, g) with ζn(ã, x̃; θ,v). This is
because, by a similar analysis as for Theorems 1, 2, it can be shown that

sup
θ

∥∥∥λ̂h(a, x; θ)− λh(a, x; θ)
∥∥∥

2
= Op

(
kφ√
n

+ k−α1
φ

)
= op(n−1/4), and

sup
θ

∥∥∥λ̂g(a, x; θ)− λg(a, x; θ)
∥∥∥

2
= Op

(
kr√
n

+ k−α2
r

)
= op(n−1/4),

for suitable (kr, kφ), where α1, α2 depend on the smoothness classes of ∂hm(a, ·; θ, h, g), ∂gm(a, ·; θ, h, g).
Note also that φ(a, x)ᵀω and r(a, x)ᵀξ are L2 consistent for h(a, x) and g(a, x), respectively, at
faster than n−1/4 rates. Following the analysis of Chernozhukov et al. (2018), these facts imply
that the estimator based on (3.13) has the same limiting distribution as the one based on (3.16).
In particular, it achieves parametric rates of convergence. We state the regularity conditions
and the theorem below (for the remainder of this section we allow θ∗ to be vector valued):

Assumption 3. (i) θ∗ ∈ Θ, a compact set, and E [ζ(ã, x̃; θ, h, g)] = 0 ⇐⇒ θ = θ∗.
(ii) ∂gm(a, x; θ, h, g) and ∂hm(a, x; θ, h, g) are uniformly bounded for all (a, x, θ, h, g).
(iii) There exists a neighborhood, N , of θ∗ such that uniformly over θ ∈ N and ‖ h̃ − h ‖,

‖ g̃ − g ‖ sufficiently small, ‖ ∂θζ(ã, x̃; θ, h̃, g̃) − ∂θζ(ã, x̃; θ∗, h̃, g̃) ‖≤ d(ã, x̃) ‖θ − θ∗‖, where
E[d(ã, x̃)] <∞. Furthermore, G := E [∂θζ(ã, x̃; θ∗, h, g)] is invertible.

(iv) n−1/2kφ + k
−min{α,α1}
φ = op(n−1/4) and n−1/2kr + k

−min{α,α2}
r = op(n−1/4).

Theorem 3. Suppose that Assumptions 1 - 3 hold. Then the estimator, θ̂ of θ∗, based on (3.13)
is
√
n consistent, and satisfies

√
n(θ̂ − θ∗) =⇒ N(0, V ),

where V =
(
GᵀΩ−1G

)−1, with Ω := E [ζ(ã, x̃; θ∗, h, g)ζ(ã, x̃; θ∗, h, g)ᵀ].

The proof of the above theorem follows by verifying the regularity conditions of Chernozkhov
et al. (2018, Theorem 16). Since these are more or less straightforward to verify given our
previous results, we omit the details.

For inference on θ̂, the covariance matrix V can be estimated as

V̂ =
(
ĜᵀΩ̂−1Ĝ

)−1
,
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where

Ĝ = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

∂ζn(ait, xit, ait+1, xit+1; θ̂, ω̂, ξ̂)
∂θᵀ

, and

Ω̂ = 1
n(T − 1)

n∑
i=1

T−1∑
t=1

ζn(ait, xit, ait+1, xit+1; θ̂, ω̂, ξ̂)ζn(ait, xit, ait+1, xit+1; θ̂, ω̂, ξ̂)ᵀ.

Chernozhukov et al. (2018) provide conditions under which V̂ is consistent for V ; these are
straightforward to verify in our context. Alternatively, one could employ the bootstrap, which
remains valid in this context.

4. Extensions

4.1. Stochastic Gradient descent. Computation of ω̂ and ξ̂ involves inverting a (k × k)-
dimensional matrix. Once k becomes very large, matrix inversion does start to become more
demanding. In such cases stochastic gradient descent is a computationally cheap alternative. In
particular, we can estimate ω∗ in (3.3) using stochastic gradient updates of the form

ω̂new ←− ω̂old + αω
(
zit + βφᵀit+1ω̂

old − φᵀitω̂
old
)
φit, (4.1)

where each observation (zit, φit, φit+1) is drawn at random from Pn i.e, with replacement from
the set of all the sample observations. Here αω is the learning rate for stochastic gradient
descent. In a similar vein we can estimate ξ∗ using gradient updates of the form

ξ̂new ←− ξ̂old + αξ
(
βeit+1(η̂) + βrᵀit+1ξ̂

old − rᵀitξ̂
old
)
rit, (4.2)

where αξ is the learning rate for ξ, and eit+1(η̂) := γ − ln η̂(ait+1, xit+1). Estimation of (ω∗, ξ∗)
using the gradient updates (4.1) and (4.2) is termed TD learning in the Reinforcement Learning
literature. Pseudo-code for our TD learning algorithm is provided in Algorithm 1.

We shall require the following assumption on the learning rates:

Assumption 4. The learning rates satisfy
∑
l α

(l)2
ω → 0,

∑
l α

(l)2
ξ → 0 and

∑
l α

(l)
ω →∞,

∑
l α

(l)
ξ →

∞ as the number of steps in the algorithm goes to infinity, where α(l)
ω , α

(l)
ξ denote the learning

rates after l steps/updates of the algorithm.

Assumption 4 is a standard condition on learning rates for stochastic gradient descent algo-
rithms. We can now prove the following theorem on convergence:

Theorem 4. Suppose that Assumptions 1, 2 and 4 hold. Then, with probability approaching
one, the sequence of updates ωl and ξl converge to ω̂, ξ̂ as l→∞.

The TD learning algorithm can also be parallelized by running multiple stochastic gradient
threads in parallel and using Hogwild!-style asynchronous updates (Niu et al., 2011). Each
thread runs parallel instances of the same code with a delayed time start, and independently
and asynchronously updates a global parameter that returns ω. This speeds up computation by
the order of magnitude of the number of parallel threads.
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Algorithm 1 TD learning algorithm for CCP estimation
Initialize all parameters to arbitrary values
Repeat:
Choose (xit, ait, xit+1, ait+1) at random, with replacement, from sample data

Calculate the values of (φit, zit, rit, φit+1, rit+1, eit+1(η̂))

ω̂ ←− ω̂ + αω
(
zit + βφᵀit+1ω̂ − φ

ᵀ
itω̂
)
φit

ξ̂ ←− ξ̂ + αξ
(
βeit+1(η̂) + βrᵀit+1ξ̂ − r

ᵀ
itξ̂
)
rit

Until: Convergence criteria for (ω̂, ξ̂) are reached

4.2. Recursive estimation. So far, we have required knowledge of some initial estimates of
the choice probabilities to obtain the values of e(a′, x′). This is so even as we do eliminate
entirely the need for any initial probability values when estimating h(.), as well as the need to
estimatefX . In this section we show how the estimate for η can also be dispensed with, at the
expense of a bit more computation. The key insight we exploit is the fact that at the true value
θ∗ of θ, we will have

η(a, x) = exp {h(a, x)θ∗ + g(a, x)}∑
a exp {h(a, x)θ∗ + g(a, x)} .

Thus, if we have a consistent estimator for θ∗, we can use this to obtain an estimate for η(a, x).
This suggests a recursive procedure for estimating η(·) and θ simultaneously.

Note that, even with this recursive procedure, the estimates ω̂ can be obtained directly from
(3.3). We do not require any estimate of η(a, x) for this. Let ĥ(a, x) denote the estimate of
h(a, x) that we obtained in the previous sections. We start the recursive procedure by initializing
ξ and θ to arbitrary values. Additionally, we also initialize η(a, x) by η̂(1)(a, x), where the latter
is some preliminary estimate of the choice probabilities. Let ξ̂(k) and θ̂(k) denote the parameter
estimates, at the k-th iteration of the procedure. Similarly, let η̂(k)(a, x) and ê(k)(a, x) denote
the estimates of η(·) and e(·) after k iterations of the procedure. These quantities are then
updated as follows: We first update η̂(·) as

η̂(k+1)(a, x) =
exp

{
ĥ(a, x)θ̂(k) + r(a, x)ᵀξ̂(k)

}
∑
ȧ exp

{
ĥ(ȧ, x)θ̂(k) + r(ȧ, x)ᵀξ̂(k)

} . (4.3)

This enables us to obtain a new estimate of e(a, x),

ê(k+1)(a, x) := γ − ln η̂(k+1)(a, x). (4.4)

Following this, ξ̂ can be updated as

ξ̂(k+1) = En
[
r(a, x)

(
r(a, x)− βr(a′, x′)

)ᵀ]−1 En
[
βr(a, x)ê(k+1)(a′, x′)

]
. (4.5)

Finally, θ̂ can be updated as

θ̂(k+1) = arg max
θ

n∑
i=1

T−1∑
t=1

log
exp

{
ĥ(ait, xit)θ + r(ait, xit)ᵀξ̂(k+1)

}
∑
a exp

{
ĥ(a, xit)θ + r(a, xit)ᵀξ̂(k+1)

} . (4.6)
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The above update does not employ the locally robust correction to obtain θ̂. This can be easily
rectified using (3.14); we refer to the previous section for the details. We iterate between steps
(4.3) - (4.6) until the parameters converge.

Our recursive procedure is very similar to, and influenced by, the NPL algorithm of Aguirre-
gabiria and Mira (2002). Using Monte Carlo simulations, the authors show that the recursive
procedure enjoys smaller finite sample bias and variance. This was subsequently proven using
higher order expansions by Kasahara and Shimotsu (2008). We similarly expect our recursive
procedure to have better finite sample properties.

4.3. Nonlinear utility functions. So far we have focused on the case where the utility function
is linear in parameters θ∗. This is the most common setup in practice as it simplifies computation
considerably. However, in some situations it may be useful to specify the observed utility
component to be nonlinear in θ∗. Denote this by z(a, x; θ∗). We can then estimate θ∗ as the
maximizer of the pseudo-likelihood criterion

Q(θ) =
n∑
i=1

T−1∑
t=1

log exp {h(ait, xit; θ) + g(ait, xit)}∑
a exp {h(a, xit; θ) + g(a, xit)}

,

where, for each θ, h(.; θ) and g(.) solve the following recursive expressions:

h(a, x; θ) = z(a, x; θ) + βE
[
h(a′, x′; θ)|a, x

]
, and

g(a, x) = βE
[
e(a′, x′) + g(a′, x′)|a, x

]
.

We can use our TD estimation procedure to obtain a functional approximation ĥ(a, x; θ) for
h(a, x; θ), conditional on each different value of θ. As argued earlier, this step can be computed
very fast. Even more appealingly, the term En [φ(a, x) (φ(a, x)− βφ(a′, x′))ᵀ] employed in the
TD estimate (3.3) does not feature z(a, x; θ), and therefore only has to be inverted once. As
long as Assumption 1 holds uniformly over all θ, we can also prove that ĥ(a, x; θ) is uniformly
consistent for h(a, x; θ) at the same rates as before i.e.

sup
θ∈Θ

∥∥∥h(a, x; θ)− ĥ(a, x; θ)
∥∥∥

2
= Op

(
kφ√
n

+ k−αφ

)
.

We can therefore plug in the values of ĥ(.; θ) and ĝ(·) to estimate θ∗ as

θ̂ = arg max
θ∈Θ

Q̂(θ); Q̂(θ) :=
n∑
i=1

T−1∑
t=1

log
exp

{
ĥ(ait, xit; θ) + ĝ(ait, xit)

}
∑
a exp

{
ĥ(a, xit; θ) + ĝ(a, xit)

} .
Computing θ̂ is now more involved. We recommend employing a derivative-free optimization
procedure such as Nelder-Mead.

As before, when the state space is discrete, the above estimator reduces to standard CCP
estimation using cell probabilities, as described in Aguirregabiria and Mira (2010). It is also
straightforward to make the objective function locally robust to estimation of ĝ(·) as well, fol-
lowing the construction in (3.3). However, due to the estimation of ĥ(·; θ), it is not known (to
us) if the resulting estimator achieves parametric rates of convergence under continuous states.
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5. Incorporating permanent unobserved heterogeneity

In this section, we show how we can model permanent unobserved heterogeneity by pairing
the techniques from Section 3 with the sequential Expectation-Maximization (EM) algorithm
(Arcidiacono and Jones, 2003). The use of the sequential EM algorithm in CCP estimation
under unobserved heterogeneity was first advocated by Arcidiacono and Miller (2011), and we
employ a similar approach.

Suppose that in addition to the observed state x, and the choice specific shock e, individuals
also base their choice decisions on a random state variable s which is known to the individual,
but unobserved to the econometrician. As is common in the literature, we assume a finite set
of unobserved states indexed by {1, 2, . . . , k, ...K}. The number of states is also assumed to
be known a priori. Let πk denote the population probability P (s = k). The value of s for an
individual is assumed to be permanent and not change with time. However, we do not place
any restrictions on the transition density fX(x′|a, x, s), which is allowed to change with s.

To simplify the exposition, we will only employ the basic version of the algorithm without
locally robustness corrections as in Section 3.3. It is straightforward to incorporate the correction
term into the algorithm, but it comes at the expense of higher computational times.

Suppose that the per-period utility is given by z(a, x, s)θ. For each k, define hk(a, x) and
gk(a, x) as the solutions to

hk(a, x) = z(a, x, k) + βE
[
hk(a′, x′)|a, x, s = k

]
,

gk(a, x) = βE
[
e(a′, x′) + gk(a′, x′)|a, x, s = k

]
.

To simplify notation, let hitk := hk(ait, xit) and gitk := gk(ait, xit). If these quantities were
known, one can estimate (θ, π) by maximizing the integrated pseudo-likelihood

Q(θ, π) =
N∑
i=1

log
[
K∑
k=1

πk

T−1∏
t=1

exp {hitkθ + gitk}∑
a exp {hk(a, xit)θ + gk(a, xit)}

]
. (5.1)

In reality, of course, hk(a, x), gk(a, x) would have to be estimated. To this end, we choose a set
of basis functions φ(a, x) and r(a, x) over the domain of (a, x), and for each k we approximately
parameterize

hk(a, x) :≈ φ(a, x)ᵀω∗k; gk(a, x) :≈ r(a, x)ᵀξ∗k.

As before, we have chosen to make h() uni-dimensional to simplify the notation. The extension
to multiple dimensions is straightforward as one simply treats each dimension separately.

Maximizing (5.1) is not equivalent to Full Information Maximum Likelihood (FIML). As in
Arcidiacono and Jones (2003), the identification and asymptotic properties of θ, π are in fact
determined by constructing moment conditions that correspond to the first order conditions
from maximizing Q(θ, π), augmented with additional moments identifying ω∗k, ξ∗k (see below).
Together, these moment conditions, which motivate the sequential EM algorithm, can in turn
be related to the identification properties of FIML. We refer the reader to Appendix B for the
details of this construction.
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Similar to Section 3, for each k = 1, . . . ,K, ω∗k is identified as (see Appendix B for details)

ω∗k = Ē
[
I(s = k)φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ]−1 Ē [I(s = k)φ(a, x)z(a, x, k)] , (5.2)

where Ē[·] differs from E[·] in also taking the expectation over the distribution of the unobserved
state s. In particular, observe that,

Ē [I(s = k)φ(a, x)z(a, x, k)] = E [P (s = k|a,x)φ(a, x)z(a, x, k)] ,

where
P (s = k|a,x) := Pr(s = k|a1, x1, . . . , aT , xT ).

In a similar vein, we also have

Ē
[
I(s = k)φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ] = E
[
P (s = k|a,x)φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ]
.

Denote by pik = P (s = k|ai,xi) the probability of being in state k conditional on the realized
set of all actions ai and observed states xi for individual i. Also, let ek(a, x) = γ− lnP (a|x, s =
k), zitk := z(ait, xit, k), φit := φ(ait, xit), eitk := ek(ait, xit), and rit := r(ait, xit). Then replacing
the expectation E[.] in the previously displayed equations with the sample expectation En[.], we
obtain the estimates

ω̂k =
[
n∑
i=1

T−1∑
t=1

pikφit (φit − βφit+1)ᵀ
]−1 n∑

i=1

T−1∑
t=1

pikφitzitk (5.3)

A similar expression also holds for updates to ξk:

ξ̂k =
[
n∑
i=1

T−1∑
t=1

pikrit (rit − βrit+1)ᵀ
]−1 n∑

i=1

T−1∑
t=1

βpikritėit+1k, (5.4)

where ėit+1k is the current estimate of eit+1k.
Estimation of ω∗ := (ω∗1, . . . , ω∗K), ξ∗ := (ξ∗1 , . . . , ξ∗K) and θ∗ using equations (5.1), (5.3) and

(5.4) requires knowledge of the unknown quantities πk and pik along with ėit+1k. Furthermore,
even if πk were known, maximizing the integrated likelihood function (5.1) is computationally
very expensive. The sequential EM algorithm of Arcidiacono and Jones (2003) solves both
issues and provides a computationally cheap alternative to maximizing (5.1). To describe the
procedure, let

litk(θ,ω, ξ) ≡ exp {(φᵀitωk)θ + (rᵀitξk)}∑
a exp {(φ(a, xit)ᵀωk)θ + r(a, xit)ᵀξk}

.

Denote by π̂k and p̂ik the estimates for πk and pik. The algorithm consists of two steps: the
M-step and the E-step. We first describe the M-step. Here, we update the estimates for ω∗, ξ∗

and θ∗ based on the current estimates for πk, pik and eit+1k. To this end, first note that we
can update ω̂ := (ω̂1, . . . , ω̂K) and ξ̂ := (ξ̂1, . . . , ξ̂K) using (5.3) and (5.4). From these we can
in-turn update θ̂ as

θ̂ = arg max
θ

[
n∑
i=1

T−1∑
t=1

∑
k

pik ln litk
(
θ, ω̂, ξ̂

)]
. (5.5)

Next, given θ̂, ω̂ and ξ̂, we update π̂k, p̂ik and ėit+1k for all i, k. This is the E-step of the EM
algorithm. This step consists of three parts. In the first part, we use the current θ̂, ω̂, ξ̂ and π̂k
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to update p̂ik for each i, k using Bayes’ rule:

p̂ik ←−
π̂k
∏T−1
t=1 litk(θ̂, ω̂, ξ̂)∑

k̃ π̂k̃
∏T−1
t=1 litk̃(θ̂, ω̂, ξ̂)

. (5.6)

In the second part, we update π̂k, for each k, as

π̂k ←−
1
N

N∑
i=1

p̂ik. (5.7)

Finally, we also update ėit+1k for all i, t, k as

ėit+1k ←− γ − ln lit+1k(θ̂, ω̂, ξ̂). (5.8)

The E and M steps are iterated until convergence. Any EM based algorithm can only be
guaranteed to find a local solution, so it is important in practice to initialize the above procedure
with multiple random values of θ,ω, ξ.

The computational requirements for the EM algorithm are higher due to the iteration between
the expectation and maximization steps. However the maximization step is still very fast as we
can estimate all the parameters ω and ξ through a low-dimensional matrix inversion, while
computing θ̂ just requires solving a convex optimization problem.

It is also possible to extend our methods to allow for Markovian unobserved heterogeneity, by
employing a variant of the classical Baum-Welch algorithm. The computational and statistical
details of such a procedure are however more involved and will be described elsewhere.

6. Estimation of dynamic discrete games

So far we have considered applications of our algorithm to single agent models, where we have
argued that there are substantial computational and statistical gains from using our procedure.
These gains are magnified when extended to estimation of dynamic discrete games.

Our setup is based on Aguirregabiria and Mira (2010). We assume a single Markov-Perfect-
Equilibrium setup where multiple players i = 1, 2, . . . , N play against each other in M different
markets. We observe the state of play for T time-periods, where both T and the number of
players N are assumed fixed while M →∞. Utility of the players in any time period is affected
by the actions of all the others, and a set of states x that are observed by all players. The
per period utility is denoted by zi(ai, a−i, x)ᵀθ∗ for each player i, for some finite dimensional
parameter θ∗, where ai denotes player i’s action and a−i denotes the actions of all other players .
Evolution of the states in the next period is determined by the transition probability fX(x′|a, x)
where a := (a1, . . . , aN ) denotes the actions of all the players. We denote by xtm the state at
market m in time period t, by atm the vector of actions by all players at time t in market m,
and by aitm the action of player i at time t in market m. We also let Pi(ai|xt) denote the choice
probability of player i taking action ai when the state is xt.

As in the single agent case, the parameters θ∗ can be obtained as solutions to the pseudo-
likelihood function:

Q(θ) =
N∑
i=1

M∑
m=1

T−1∑
t=1

log exp {hi(aitm, xtm)θ + gi(aitm, xtm)}∑
a exp {hi(a, xtm)θ + gi(a, xtm)} , (6.1)
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where hi(.) and gi(.) are defined very similarly to h(.) and g(.) in the single agent case, the
complication being that they are now player-specific, and the actions of other players need to
be partialled out:

hi(ai, x) =
∑
a−i

∏
j 6=i

Pj(aj |x)

[zi(ai, a−i, x) + β
∑
x′

fX(x′|ai, a−i, x)
∑
a′

Pi(a′|x′)h(a′, x′)
]

gi(ai, x) = β
∑
a−i

∏
j 6=i

Pj(aj |x)

[∑
x′

fX(x′|ai, a−i, x)
∑
a′

Pi(a′|x′)
{
e(a′, x′) + g(a′, x′)

}]
.

Converting the above to expectations gives us

hi(ai, x) = E[zi(ai, a−i, x)|ai, x] + βE
[
h(a′, x′)|ai, x

]
, (6.2)

gi(ai, x) = E
[
e(a′, x′) + βg(a′, x′)|ai, x

]
.

In contrast to (2.1) in the single agent case, the expectation now averages over the actions of
the other players as well.

Previous literature estimates θ∗ using a two-step procedure: In the first step, the conditional
choice probabilities Pi(ai|xt) are calculated non-parametrically. These, along with estimates of
fX(.) are then used to recursively solve for hi(.) and gi(.) using equation (6.2). This step requires
integrating over the actions of all the other players. Finally, given the estimated values of hi(.)
and gi(.), the parameter θ is estimated through either pseudo-likelihood (Aguirregabiria and
Mira, 2007) or minimum distance estimation (Pesendorfer and Schmidt-Dengler, 2008). Both
these approaches have been proposed for discrete states. For continuous states, Bajari et al.
(2007) have proposed an alternative method to solve (6.2) by forward Monte Carlo simulation.
Though computationally cheaper than discretization (which could give rise to a very high di-
mension of states), forward simulation is still cumbersome with many continuous states and
players.

By contrast, our algorithm is a straightforward extension of the ones we suggested in earlier
sections for single agent models. Let η̂i(ai, x) denote some non-parametric estimate of the choice
probabilities for player i. We then (approximately) parameterize hi(.) and gi(.) as

hi(ai, x) :≈ φ(ai, x)ᵀω∗i ; gi(ai, x) :≈ r(ai, x)ᵀξ∗i ,

where, as before, φ(ai, x) and r(ai, x) are comprised of a set of basis functions over the domain
of (ai, x). The dictionary φ(·, ·), r(·, ·) could potentially change with i, but for ease of notation
we will not make this explicit.

We now proceed to estimate the value weights ω∗i , ξ∗i player-by-player exactly as in Section 3:

ω̂i = En
[
φ(ai, x)

(
φ(ai, x)− βφ(a′i, x′)

)ᵀ]−1 En [φ(ai, x)zi(ai, a−i, x)] ,

ξ̂i = En
[
r(ai, x)

(
r(ai, x)− βr(a′i, x′)

)ᵀ]−1 En
[
βr(ai, x)e(a′i, x′; η̂i)

]
, (6.3)

where for any function f(·), we define

En[f(a, x,a′, x′)] := 1
M(T − 1)

M∑
m=1

T−1∑
t=1

f(atm, xtm,at+1m, xt+1m).
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Remarkably, the estimation strategy in (6.3) does not require partialling out the other players’
actions, leading to a tremendous reduction of computation. Indeed, the procedure automatically
takes expectations over the actions of the other players using the empirical distribution. To see
this in the discrete case, note that the cell average of zi(ai, a−i, x) over a−i given (ai, x) is
an unbiased estimator of the expectation

∑
a−i

∏
j 6=i Pj(aj |x)z(ai, a−i, x). This intuition also

goes through with continuous states since we use a functional approximation, which provides
an automatic regularization for calculating the above expectation ‘internally’ as long as the
dimension of φ(.) and r(.) is sufficiently small relative to the sample size.

Using the estimated weights, we compute ĥi(a, x) = φ(a, x)ᵀω̂i and ĝi(a, x) = φ(a, x)ᵀξ̂i.
These quantities can then be plugged into the pseudo-MLE (6.1) to obtain an estimate for
θ. Alternatively, we can construct a locally robust estimator for θ in analogy with that for
single-agent models. To describe this, we recast the pseudo-MLE criterion function in the form
Q(a, x; θ, {ωi}, {ξi}) =

∑
iQi(ai, x; θ, ωi, ξi), where

Qi(ai, x; θ, ωi, ξi) := log exp {(φ(ai, x)ᵀωi)θ + r(ai, x)ᵀξi}∑
a exp {(φ(a, x)ᵀωi)θ + r(a, x)ᵀξi}

.

Denote mi(ai, x; θ, ωi, ξi) := ∂θQi(ai, x; θ, ωi, ξi). Note that for each i, ω∗i and ξ∗i are estimated
using the moment functions

E[ϕ(i)
h (ãi, x̃, ω∗i )] = 0, and E[ϕ(i)

g (ãi, x̃, ξ∗i )] = 0, (6.4)

where (ãi, x̃) := (ai, x, a′i, x′), and in view of (6.3),

ϕ
(i)
h (ãi, x̃, ω) := φ(ai, x)z(ai, x) + φ(ai, x)

(
βφ(a′i, x′)− φ(ai, x)

)ᵀ
ω, and

ϕ(i)
g (ãi, x̃, ξ) := βr(ai, x)e(a′i, x′; η̂i) + r(ai, x)

(
βr(a′i, x′)− r(ai, x)

)ᵀ
ξ.

Thus the locally robust moment for θ is

E
[∑

i

ζ(i) (ãi, x̃; θ∗, ω∗i , ξ∗i )
]

= 0, (6.5)

where

ζ(i)(ãi, x̃; θ, ωi, ξi) := mi(ai, x; θ, ωi, ξi)− E[∂ωimi(ai, x; θ, ωi, ξi)]E[∂ωiϕ
(i)
h (ãi, x̃, ωi)]−1ϕ

(i)
h (ãi, x̃, ωi)

− E[∂ξi
mi(ãi, x̃; θ, ωi, ξi)]E[∂ξi

ϕ(i)
g (ãi, x̃, ξi)]−1ϕ(i)

g (ãi, x̃, ξi).

For computation, we employ cross-fitting as in the single-agent setting and randomly split the
markets into two samples N1 and N2. We compute {ω̂i}, {ξ̂i} using one of the samples, say N2.
Denote by E(1)

n [·] the empirical expectation defined earlier in this section, but constructed only
from observations in N1. The locally robust estimate θ̂ is the solution to the moment equation

E(1)
n

[∑
i

ζ(i)
n

(
ãi, x̃; θ, ω̂i, ξ̂i

)]
= 0, (6.6)

where

ζ(i)
n (ãi, x̃; θ, ωi, ξi) := mi(ai, x; θ, ωi, ξi)− E(1)

n [∂ωimi(ai, x; θ, ωi, ξi)]E(1)
n [∂ωiϕ

(i)
h (ãi, x̃, ωi)]−1ϕ

(i)
h (ãi, x̃, ωi)

− E(1)
n [∂ξi

mi(ai, x; θ, ωi, ξi)]E(1)
n [∂ξi

ϕ(i)
g (ãi, x̃, ξi)]−1ϕ(i)

g (ãi, x̃, ξi).
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Note that θ̂ can be equivalently computed player-by-player, via E(1)
n

[
ζ

(i)
n (ãi, x̃; θ, ω̂i, ξ̂i)

]
= 0, if

there were no common parameters θ across players, i.e if we could be partition θ ≡ (θ1, . . . , θN ).
The locally robust estimator (6.6) has the same form as (3.14), except for there being separate

correction terms for the estimates ω̂i, ξ̂i of each player i. Its theoretical properties are equivalent
to, and can be derived in the same manner, as that for single agent models. We therefore omit
these for brevity.

By the same reasoning as in Section 3.1, it possible to show that with discrete states, hi(.)
and gi(.) are numerically identical to the estimates obtained by plugging in cell estimates P̂j(·|x)
and f̂X(.) in (6.2). This implies the psuedo-likelihood with plug-in estimates for h(.) and g(.) is
not efficient even with discrete states, as discussed by Aguirregabiria and Mira (2007). However
the values of h(.) and g(.) can be plugged into other, more efficient objectives, such as our
locally robust estimator or the minimum distance estimator of Pesendorfer and Schmidt-Dengler
(2008). With continuous states, one would need to employ locally robust corrections even for
the minimum distance estimator to recover parametric rates of convergence for θ. To this end,
we can use the fact that the minimum distance estimator can be characterized by a moment
criterion. Combining this with the moments implied by (6.3) for ω and ξ, it is easy to see how
the construction of Section 3.3 can be extended to the minimum distance estimator.

One could also use a recursive version of our algorithm as in Section 4.2. This is equivalent
to full information MLE under some additional conditions (see Kasahara and Shimotsu, 2012).
Finally, it is also straightforward to incorporate the other extensions from Section 4 to the setup
of dynamic games.

7. Simulations

We run Monte Carlo Simulations to test our estimation method. We start with the simplest
version of our algorithm for DDCmodels described in Section 3, before moving on to the recursive
version of our algorithm from Section 4.2, and introducing permanent unobserved heterogeneity
as described in Section 5. Our simulations for the DDC models are based on a modified version
of the Rust (1987) engine replacement problem. We start by describing the setup in Section 7.1,
and provide the simulation results in Section 7.2.

In a second set of Monte Carlo simulations, we test our estimation method for dynamic
discrete games. Our simulations for these models are based on the dynamic firm entry game
used in Aguirregabiria and Mira (2007). We describe the setup of this game in Section 7.3,
before providing our simulation results for dynamic discrete games in Section 7.4.

7.1. Bus Engine Replacement Problem. Consider the following version of the Rust (1987)
bus engine replacement problem which is adapted from Arcidiacono and Miller (2011). Each
period t = 1, ..., T ;T < ∞, Harold Zurcher decides whether to replace the engine of a bus
(at = 0), or keep it (at = 1). Denote his action by j ∈ {0, 1}. Each bus is characterized by
a permanent type s ∈ {1, 2}, and the mileage accumulated since the last engine replacement
xt ∈ {1, 2, ...}. Harold Zurcher observes both s and xt. As in Section 3, we start by also treating
both s and xt as observed to the econometrician.
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Mileage increases by one unit if the engine is kept in period t and is set to zero if the engine is
replaced. The current period payoff for keeping the engine is given by θ0 +θ1xt+θ2s+e1t, where
θ∗ ≡ {θ0, θ1, θ2} are the structural parameters of interest, and ejt is a choice-specific transitory
shock that follows a Type 1 Extreme Value distribution. As in Arcidiacono and Miller (2011),
we normalize the current period payoff of replacing the engine to e0t.

When deciding whether to keep or replace the engine, Harold Zurcher solves a DDC problem
and sequentially maximizes the following discounted sum of payoffs:

E

[
T∑
t=1

βt {at(θ0 + θ1xt + θ2s) + ejt}
]
,

where β is a discount factor that we set to 0.9.
Define the ex-ante value functions in period t as the discounted sum of current and future

payoffs before the shock ejt is realized and before decision at is made, conditional on choosing
optimally in every period including t. Denote these ex-ante value functions by V (xt, s). Further
define the conditional value functions vj(x, s) as the current period payoff of choice j net of ejt:

vj(x, s) =

βV (0, s) j = 0

θ0 + θ1xt + θ2s+ βV (x+ 1, s) j = 1.

Denote by p0(x, s) the conditional probability of replacing the engine given x and s. Given
the distributional assumptions about the shocks, this will be given by

p0(x, s) = 1
1 + exp[v1(x, s)− v0(x, s)] .

To carry out the simulations, we recursively derive the value functions vj(x, s) for each pos-
sible combination of x, s and t. We then use these to compute the conditional replacement
probabilities for the same set of combinations of variables. We generate data for 1000 buses
and 2000 time periods. The mileage of each bus is first set to zero in t = 0. We then simulate
the choices at using the conditional replacement probabilities p0(x, s). Finally, we restrict the
generated data to 30 time periods between t = 1000 and t = 1030. This is to ensure that our
data is close to being drawn from a stationary model. Our final dataset consists of types s,
mileages xt and choices at for 1000 buses with 30 time period observations each.

7.2. Simulation Results - DDC Model . This section reports the simulation results for the
single-agent DDC model described above. We start by providing results for our basic algorithm,
before showing simulations using the recursive version of our algorithm where we avoid the initial
estimation of choice probabilities. Finally, we provide simulations for a setting with permanent
unobserved heterogeneity.

For our basic algorithm, we use the locally robust version of the estimator described in 3.3.
To highlight the gain in using the locally robust version of our estimator, we also generate
results for the version of our estimator which is suboptimal under continuous state variables
(see Section 3.1). We run 1000 simulations with 1000 buses and 30 time periods each. Each
round of the simulations proceeds by first generating a dataset as described in Section 7.1.
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To generate the locally robust estimator, we randomly split this dataset into two samples, N1

and N2. We then parameterize h(a, x) and g(a, x) using a polynomial in s, xt and at with
kφ = kr = 16 terms. 6The choice probabilities η are estimated using a logit model that is a
function of the state variables s and xt, where the same polynomial is used as before. Using
only observations from the first sample N1 and the estimated choice probabilities η̂, we then
estimate the ω parameters using equation 3.3, and the ξ parameters using equation 3.5. Using
the observations from the second sample N2, we finally obtain estimates for the θ∗ parameters
as the solution to the moment equations 3.14. Following the outlined cross-fitting procedure, we
repeat the estimation using the observations from the second sample N2 to obtain estimates for
ω and ξ, and the observations from the first sample N1 to obtain estimates for the θ∗ parameters.
Our final θ̂ is a weighted average of the θ∗ estimates from the two samples. In contrast to the
locally robust estimator, the non-locally robust version of our estimator uses the full sample to
estimate all parameters and obtains θ̂ using equation 3.9.

Panel A. in Table 1 shows the results. Column (1) reports the true parameters of the model.
Columns (2)− (4) report the results for the version of our estimator which is suboptimal under
continuous state variables. The results for our locally robust estimator are reported in columns
(5)− (7). Column (5) shows that our estimator produces parameter estimates which are closely
centered around the true values. The absolute bias after 1000 simulations is less than half of a
percent for all three parameters. These results are comparable to those found by Arcidiacono
and Miller (2011) in a similar version of the bus engine replacement problem. However, in
contrast to their CCP method, our estimator does not exploit a finite dependence property.
When comparing the results from our locally robust estimator to the results from the suboptimal
estimator in column (2), it can be seen that the absolute bias is smaller for all three parameter
estimates. However the variance of the locally robust estimator is higher which is due to the
sample splitting employed in the locally robust procedure. Overall, while the locally robust
estimator is supposed to work better than the non-robust version in theory, we find that there
is no important difference between the two versions of the algorithm in practice.

To generate simulation results for the recursive version of our algorithm, we follow the steps
outlined in Section 4.2. As before, we run 1000 simulations with 1000 buses and 30 time periods
each. We also provide results for both the non-locally robust and the locally robust estimator,
where the latter are generated by splitting the sample as outlined above. Panel B. in Table 1
shows the results. Columns (2) and (5) show that our estimator produces estimates that are
closely centered around the true values of the three structural parameters. When comparing
the locally robust estimator to the non-robust estimator, the absolute bias is smaller for θ0, but
higher for θ1 and θ2. As in the simulations for the basic algorithm, the variance is higher when
using the locally robust estimator.

In a final set of simulations, we introduce permanent unobserved heterogeneity into our setting
by assuming that the permanent bus type s ∈ {1, 2} is unknown to the researcher. To generate

6These include all terms of the third order polynomial plus pairwise interactions of x3
t with s and at, and three-wise

interactions of both x2
t and x3

t with sand at.
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Table 1. Simulation Results - DDC Model I

not locally robust locally robust

DGP TDL bias MSE TDL bias MSE
(1) (2) (3) (4) (5) (6) (7)

A. Basic Algorithm

θ0 (intercept) 2.0 1.9804 -0.0196 0.0077 1.9928 -0.0072 0.0101
(0.0859) (0.1005)

θ1 (mileage) -0.15 -0.1492 0.0008 1.2e-05 -0.1496 0.0004 2.5e-05
(0.0033) (0.0050)

θ2 (bus type) 1.0 1.0029 0.0029 0.0033 0.9997 -0.0003 0.0060
(0.0574) (0.0773)

B. Recursive Algorithm

θ0 (intercept) 2.0 1.9806 -0.0194 0.0077 1.9967 -0.0033 0.0148
(0.0858) (0.1218)

θ1 (mileage) -0.15 -0.1493 0.0007 1.2e-05 -0.1509 -0.0009 3.6e-05
(0.0033) (0.0059)

θ2 (bus type) 1.0 1.0037 0.0037 0.0033 1.0111 0.0111 0.0047
(0.0574) (0.0676)

Notes: The table reports results for 1000 simulations. Column (1) shows the true parameter values in the model.
Columns (2) and (5) report the mean and standard deviations for the estimated parameters. Columns (2)-(4)
are based on the estimation method without correction function, columns (5)-(7) report results for the locally
robust estimator. For both methods, the absolute bias and the mean squared error are reported in columns
(3)/(4) and (6)/(7), respectively.

results for these simulations, we follow the steps outlined in Section 5 where we pair our tech-
niques with a sequential EM algorithm (Arcidiacono and Jones, 2003). The results are shown
in Table 2. As before, our algorithm produces parameter estimates that are closely centered
around the true values. Compared to the results without permanent unobserved heterogeneity,
the standard deviation of our estimates is slightly higher due to the uncertainty around the bus
type s.

7.3. Firm Entry Game . Consider the following firm market entry game described in Aguir-
regabiria and Mira (2007). There are i = 1, ..., 5 firms (players), deciding whether to enter
(aitm = 1) or not enter (aitm = 0) in m = 1, ...,M different markets for t = 1, ..., T time periods.
Denote a firm’s action by j ∈ {1, 0}. The payoff of each firm i is affected by the decision of all the
other firms whether to enter, as well as firm i’s previous-period entry decision. Current period
profits when entering are given by Πitm = θRSln(Stm) + θRN ln(1 +

∑
j 6=i ajtm)− θFC,i− θEC(1−

ai(t−1)m) + εitm, where ln(Stm) ∈ {1, 2, 3, 4, 5} is a measure of consumer market size of market
m in period t with ln(Stm) following a first order Markov process, and εitm is a transitory shock
that follows a logistic distribution. The profit of not entering is normalized to zero, and the
discount factor β is set to 0.95 in this application. The parameters θ∗ ≡ {θRS , θRN,θFC,i, θEC}
are the structual parameters of interest. The state variables in this setting are given by the
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Table 2. Simulation Results - DDC Model II

DGP TDL bias MSE
(1) (2) (3) (4)

Unobserved Heterogeneity

θ0 (intercept) 2.0 1.9794 -0.0206 0.0158
(0.1239)

θ1 (mileage) -0.15 -0.1491 0.0009 1.5e-05
(0.0038)

θ2 (bus type) 1.0 0.9992 0.0008 0.0098
(0.0991)

Notes: The table reports results for 1000 simulations. Column (1) shows the true parameter values in the model.
Column (2) reports the mean and standard deviations for the estimated parameters. The absolute bias and mean
squared error are reported in columns (3) and (4). The results are based on the estimation method without
correction function.

current market demand variable Stm, as well as the vector of all firms’ previous entry decisions
a(t−1)m =

{
ai(t−1)m : i = 1, ..., 5

}
.

To carry out the simulations, we follow Aguirregabiria and Mira (2007) and choose specific
values for the structural parameters θ∗ (θRS = 1, θRN = 1, θFC,1 = 1.9, θFC,2 = 1.8, θFC,3 =
1.7, θFC,4 = 1.6, θFC,5 = 1.5, θEC = 1) and the transition probabilities ln(Stm),7 and solve for
the Markov-Perfect-Equilbrium of the game. This is done by finding the firms’ conditional value
functions νj(Stm, a(t−1)m) for each of the 25 × 5 = 160 possible combinations of the state vari-
ables through repeated iteration, and using these to derive the equilibrium choice probabilities
p(Stm, a(t−1)m). Based on the equilbrium probabilties, we compute the equilibrium distribtuion
of state variables.

We generate data for 1, 000 markets with T = 2 time periods. To do so, we start by drawing
a combination of state variables from the equilibrium distribution. Based on the state variables,
we then draw choices aitm for t=1 using the equilibrium choice probabilities. To generate data
for the second period, we first draw S(t+1)m using the transition probabilities for market size,
and then derive new choices a(t+1)m based on the period-(t + 1) state variables and the choice
probabilities.

7.4. Simulation Results - Dynamic Discrete Games . We run 1000 simulations with 1, 000
markets and T = 2 time periods. Each round of the simulations begins by generating new data
as described in Section 7.3. We then parameterize hi(ai, x) and gi(ai, x) using a polynomial in
Stm, a(t−1)m and aitm. The choice probabilities are estimated using individual logit models for
each firm with Stm and a(t−1)m as explanatory variables. We then estimate the parameters ωi
and ξi individually for each player using equation 6.3. Finally, we obtain estimates for the θ∗

parameters as the solutions to the pseudo-likelihood function 6.1.
The results are shown in Table 3.

7The matrix of transition probabilities for Stm is given by


0.8 0.2 0.0 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.0 0.2 0.6 0.2 0.0
0.0 0.0 0.2 0.6 0.2
0.0 0.0 0.0 0.2 0.8

 .
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Table 3. Simulation Results - Dynamic
Discrete Game

DGP TDL bias MSE
(1) (2) (3) (4)

θRS (market size) 1.0

θRN (number of entrants) 1.0

θFC,1 (fixed cost firm 1) 1.9

θFC,2 (fixed cost firm 2) 1.8

θFC,3 (fixed cost firm 3) 1.7

θFC,4 (fixed cost firm 4) 1.6

θFC,5 (fixed cost firm 5) 1.5

θEC (entry cost) 1.0
Notes: The table reports results for 1000 simulations. Column (1)
shows the true parameter values in the model. Column (2) reports
the mean and standard deviations for the estimated parameters. The
absolute bias and mean squared error are reported in columns (3)
and (4). The results are based on the estimation method without
correction function.

8. Conclusions

We propose a new estimator for DDC models which overcomes previous computational lim-
itations by combining traditional CCP estimation approaches with a TD method from the
Reinforcement Learning literature. In making use of simple matrix inversion techniques, our es-
timator is computationally very cheap and therefore fast. Unlike previous estimation methods, it
is able to handle large state spaces in settings where a finite dependence property does not hold.
This is of particular importance in settings with continuous state variables where discretization
often gives rise to a very high-dimensional state space, or for the estimation of dynamic discrete
games. At the same time, our estimator is as efficient as other approaches in simple versions of
the DDC problem. We prove the statistical properties of our estimator and show that it is con-
sistent and converges at parametric rates. Preliminary Monte Carlo simulations using a version
of the famous Rust (1987) engine replacement problem confirm these properties in practice.
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Appendix A. Proofs of main results

In what follows we shall drop the functional argument (a, x) when the context is clear and
denote f ′ ≡ f(a′, x′) for different functions f .

We start with some useful lemmas:

Lemma 1. There exists a unique fixed point to the operator PφΓz. If Assumption 1(i) holds,
this fixed point is given by φᵀω∗, where ω∗ is such that E [φ (z + βφ′ᵀω∗ − φᵀω∗)] = 0.

Proof. First off, we note that Γz, and therefore PφΓz, are both contraction maps with the
contraction factor β. This implies that that PφΓz has a unique fixed point. Clearly, this fixed
point must lie in the space Lφ. Let us denote this as φᵀω∗.

Now for any function f ∈ Lφ,

PφΓz[f ]− f = φᵀE[φφᵀ]−1E
[
φ
(
z + βf ′

)]
− φᵀE[φφᵀ]−1E[φf ]

= φᵀE[φφᵀ]−1E
[
φ
(
z + βf ′ − f

)]
.

Since φᵀω∗ is the fixed point, we must have

φᵀE[φφᵀ]−1E
[
φ
(
z + βφ′ᵀω∗ − φᵀω∗

)]
= 0.

But φ is linearly independent and E[φφᵀ]−1 is non-singular, by Assumption 1(i). Hence it must
be the case

E
[
φ
(
z + βφ′ᵀω∗ − φᵀω∗

)]
= 0.

This completes the proof the lemma. �

For the next Lemma, we shall use the following definition of a negative-definite matrix: a
square, possibly asymmetric, matrix A is said to be negative definite with the coefficient λ̄(A) if

sup
|w|=1

wᵀAw ≤ λ̄(A) < 0.

For a symmetric negative-definite matrix, we have that λ̄(A) = maxeig(A), where maxeig(·)
represents the maximal eigenvalue. We can similarly define a positive definite matrix with the
coefficient λ(A). If the latter is also symmetric, then λ(A) = mineig(A).

We note that under our definition, if A is negative definite, it is also invertible. This holds
even if the matrix is asymmetric, see e.g Johnson (1970).

Lemma 2. Under Assumption 1(i), the matrix A := E [φ (βφ′ − φ)ᵀ] is negative definite with
λ̄(A) ≤ −(1− β)λ(E[φφᵀ]), and is therefore invertible.

Proof. The idea for this proof is taken from Tsitsiklis and van Roy (1997). Recall the definition
of φᵀω∗ as the fixed point to PφΓz[·] from Lemma 1. We shall now show that

(ω − ω∗)ᵀA(ω − ω∗) ≤ −(1− β)λ(E[φφᵀ]) |ω − ω∗|2 ∀ ω ∈ Rk.
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Observe that

A(ω − ω∗) = E
[
φ
(
z + βφ′ᵀω − φᵀω

)]
− E

[
φ
(
z + βφ′ᵀω∗ − φᵀω∗

)]
= E

[
φ
(
z + βφ′ᵀω − φᵀω

)]
,

since the second expression in the first equation is 0. Now,

E
[
φ
(
z + βφ′ᵀω − φᵀω

)]
= E

[
φ(a, x)

(
z(a, x) + βE

[
φ(a′, x′)ᵀω|a, x

]
− φ(a, x)ᵀω

)]
= E [φ (Γz[φᵀω]− φᵀω)]

= E [φ (PφΓz[φᵀω]− φᵀω)] ,

where the last equality holds since E [φ(I − Pφ)[f ]] = 0 for all f . We thus have

(ω − ω∗)ᵀA(ω − ω∗) = E [(ωᵀφ− ω∗ᵀφ) (PφΓz[φᵀω]− φᵀω)]

= E [(ωᵀφ− ω∗ᵀφ) (PφΓz[φᵀω]− φᵀω∗)]− ‖φᵀω − φᵀω∗‖22 .

Since PφΓz[·] is a contraction mapping with contraction factor β, it follows

‖PφΓz[φᵀω]− φᵀω∗‖22 = ‖PφΓz[φᵀω]− PφΓz [φᵀω∗]‖22 ≤ β ‖φ
ᵀω − φᵀω∗‖22 .

In view of the above,

(ω − ω∗)ᵀA(ω − ω∗) ≤ −(1− β) ‖φᵀω − φᵀω∗‖22
= −(1− β)(ω − ω∗)ᵀE[φφᵀ](ω − ω∗)

≤ −(1− β)λ(E[φφᵀ]) |ω − ω∗|2 .

This completes the proof of the lemma. �

Lemma 3. Suppose that Assumption 1(i) holds. Then,

‖h− φᵀω∗‖2 ≤ (1− β)−1 ‖h− Pφ[h]‖2 .

Proof. Recall that h(·, ·) is the unique fixed point of Γz, and similarly, φᵀω∗ is the unique fixed
point of PφΓz. The operator Γz is a contraction mapping with contraction factor β. Furthermore,
the projection operator Pφ is linear, and ‖Pφ[f ]‖2 ≤ ‖f‖2 for any function f . Thus

‖h− φᵀω∗‖2 ≤ ‖h− Pφ[h]‖2 + ‖Pφ[h]− PφΓz[φᵀω∗]‖2
≤ ‖h− Pφ[h]‖2 + ‖h− Γz[φᵀω∗]‖2
= ‖h− Pφ[h]‖2 + ‖Γz[h]− Γz[φᵀω∗]‖2
≤ ‖h− Pφ[h]‖2 + β ‖h− φᵀω∗‖2 .

Rearranging the above expression proves the desired claim. �

For the proofs of Theorems 1-2, we shall work within a more general setting than in the
main text, by letting the distribution of (ait, xit) be time-varying. Let Pt denote the population
distribution of (a, x) at time t. Also, let P denote the probability distribution of the process
{(a1, x1), . . . , (aT , xT )}. Note that P ≡ P1×· · ·×PT . We will denote E[·] as the expectation over
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P . Furthermore, we shall use the op(·) and Op(·) notations to denote convergence in probability,
and bounded in probability, respectively, under the probability distribution P .

We also need to extend the definitions of P and E[·] appropriately: Let P denote the relative
frequency of occurrence of (a, x, a′, x′) in the data as n→∞. Let E[·] denote the corresponding
expectation over P. Note that P is different from P since the latter provides the distribution of
(a, x, a, x′) after dropping the time index. However, the two are related since for any function f ,
we can write E[f(a, x, a′, x′)] = (T −1)−1∑T−1

t=1 E[f(ait, xit, ait+1, xit+1)] (we could alternatively
use this as the definition of E[·] itself). These updated definitions of P and E[·] are applicable
wherever these notations are used in the main text.

Note that due to the Markov process assumption, the conditional distribution P (at+1, xt+1|at, xt)
is always independent of t (indeed, one could always consider t as also a part of x). Hence,
P(a′, x′|a, x) ≡ P (at+1, xt+1|at, xt) and E[f(a′, x′)|a, x] ≡ E[f(at+1, xt+1)|at, xt] for all t. Also
note that time stationarity of (ait, xit), if it holds, implies Pt ≡ P and Et[·] ≡ E[·] for all t.

A.1. Proof of Theorem 1. That ω∗ exists follows from Lemma 1. To prove that ω̂ exists,
it suffices to show that Â := En [φ (βφ′ − φ)ᵀ] is invertible with probability approaching 1.
Recall that by our notation above, Â = (n(T − 1))−1∑

i

∑T−1
t=1 φit(βφit+1 − φit)ᵀ, while A =

(T − 1)−1∑T−1
t=1 E[φit(βφit+1 − φit)ᵀ. We can thus write

∣∣∣Â−A∣∣∣ ≤ (T − 1)−1∑T−1
t=1

∣∣∣Ât −At∣∣∣,
where Ât := n−1∑

i φit(βφit+1 − φit)ᵀ and At := E[φit(βφit+1 − φit)ᵀ]. Now, by Assumption
1(ii), |φ(a, x)|∞ ≤M independent of kφ. We then have

E
∣∣∣Ât −At∣∣∣2 = E

∣∣∣∣∣ 1n∑
i

φit (βφit+1 − φit)ᵀ − E [φit (βφit+1 − φit)ᵀ]
∣∣∣∣∣
2

≤ 1
n

∑
i

E |φit (βφit+1 − φit)ᵀ|2 ≤
k2
φM

4

n
.

This proves
∣∣∣Ât −At∣∣∣ = Op(kφ/

√
n). But T is fixed, which implies that

∣∣∣Â−A∣∣∣ = Op(kφ/
√
n)

as well. We thus obtain λ̄(Â) ≤ λ̄(A)+
∣∣∣Â−A∣∣∣ ≤ λ̄(A)+op(1). Since λ̄(A) < 0, this proves that

λ̄(Â) < 0 with probability approaching 1, and subsequently, that Â is invertible. This completes
the proof of the first claim.

The second claim follows directly from Lemma 3 and Assumption 1(iii).
For the third claim, let us define b = E[φz] and b̂ = En[φz]. We then have Aω∗ = b and

Âω̂ = b̂. We can combine the two equations to get

Â(ω̂ − ω∗) = (b̂− b) + (A− Â)ω∗.

The above implies

(ω̂ − ω∗)ᵀ(−Â)(ω̂ − ω∗) = (ω̂ − ω∗)ᵀ(b− b̂) + (ω̂ − ω∗)ᵀ(Â−A)ω∗. (A.1)

Now, earlier in the proof we have showed that
∣∣∣Â−A∣∣∣ = Op(kφ/

√
n). Hence it follows λ(−Â) ≥

λ(−A) + op(1). We thus have

(ω̂ − ω∗)ᵀ(−Â)(ω̂ − ω∗) ≥ c(1− β)λ(E[φφᵀ]) |ω̂ − ω∗|2 , (A.2)
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with probability approaching 1, for any constant c ∈ (0, 1). In view of (A.1) and (A.2),

|ω̂ − ω∗| ≤ 1
c(1− β)λ(E[φφᵀ])

(∣∣∣b̂− b∣∣∣+ ∣∣∣Âω∗ −Aω∗∣∣∣) ,
with probability approaching 1.

It thus remains to bound
∣∣∣b̂− b∣∣∣ and ∣∣∣Âω∗ −Aω∗∣∣∣. By similar arguments as before, we can

define b̂t = n−1∑
i φitzit and bt = E[φitzit] to obtain

E
∣∣∣b̂t − bt∣∣∣2 = E

∣∣∣∣∣ 1n∑
i

{φitzit − E [φitzit]}
∣∣∣∣∣
2

≤ 1
n
E |φitzit|2 .

This proves

E
∣∣∣b̂− b∣∣∣2 ≤ 1

T − 1

T−1∑
t=1

E
∣∣∣b̂t − bt∣∣∣2 ≤ 1

n
E
[
|φz|2

]
≤ kφL

2M2

n
= Op(kφ/n).

In a similar vein,

E
∣∣∣Âω∗ −Aω∗∣∣∣2 = E

∣∣∣∣∣ 1
n(T − 1)

T−1∑
t=1

∑
i

{φit (βφit+1 − φit)ᵀ ω∗ − E [φit (βφit+1 − φit)ᵀ ω∗]}
∣∣∣∣∣
2

= Op (kφ/n) ,

as long as
E
[
|φ (βφ− φ)ᵀ ω∗|2

]
= O(kφ).

But the latter is true under Assumptions 1(ii)-(iv) since

E
[
|φ (βφᵀω∗ − φᵀω∗)|2

]
≤ kφM2(2 + 2β2)E

[
|φᵀω∗|2

]
and

E
[
|φᵀω∗|2

]1/2
≤ ‖φᵀω∗ − h‖2 + ‖h‖2 ≤ O(k−αφ ) + (1− β)−1L <∞,

where the second inequality uses the facts ‖φᵀω∗ − h‖2 = O(k−αφ ) (as shown in the second claim
of this theorem), and |h(·, ·)|∞ ≤ (1− β)−1|z(·, ·)|∞ < (1− β)−1L (which can be easily verified
using (2.1) and Assumption 1(iv)). Combining the above, we thus conclude there exists C <∞
such that

|ω̂ − ω∗| ≤ C

√
kφ
n
,

with probability approaching one. This completes the proof of the third claim.
Finally, to prove the last claim, observe that

‖φᵀω̂ − h‖22 ≤ 2 ‖φᵀω̂ − φᵀω∗‖22 + 2 ‖φᵀω∗ − h‖22
= 2(ω̂ − ω∗)ᵀE[φφᵀ](ω̂ − ω∗)1/2 + 2 ‖φᵀω∗ − h‖22

≤ λ̄(E[φφᵀ])Op
(
kφ
n

)
+Op(k−αφ ),

where the second inequality follows from the second and third claims of this Theorem. But

λ̄(E[φφᵀ]) ≤ ‖φ‖22 ≤M
2kφ,

by Assumption 1(iv). Combining the above proves the last claim.
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A.2. Proof of Theorem 2. We note that the proofs of the first two claims follows from analo-
gous arguments as used in the proof of Theorem 1. We thus only need consider the third claim
of the theorem. The fourth claim is a straightforward consequence of this.

Recall that we use a cross-fitting procedure for estimating ξ∗. Let n1, n2 denote the sample
sizes in the two folds. Also let η̂1, ξ̂1 and η̂2, ξ̂2 denote the estimates of η and ξ∗ from the two
folds. We shall show that |ξ̂1 − ξ| = Op(

√
kr/n). By a symmetric argument, we will also have

|ξ̂2− ξ| = Op(
√
kr/n), from which we can conclude |ξ̂− ξ| = Op(

√
kr/n). To this end, let Ar :=

E[rrᵀ], br := E[r(a, x)e(a′, x′)], Â(1)
r := E(1)

n [rrᵀ] and b̂(1)
r := E(1)

n [r(a, x)e(a′, x′; η̂2)], where E(1)
n [·]

denotes the empirical expectation using only the observations from the first block. We shall also
employ the notation ψ(a, x, a′, x′; η) := r(a, x)e(a′, x′; η) and ψit(η) := r(ait, xit)e(ait+1, xit+1; η).

Based on the above definitions, we have Â(1)
r ξ̂1 = b̂

(1)
r , and Arξ

∗ = br. Comparing with
the proof of Theorem 1, we find that the only difference is in the treatment of |b̂(1)

r − br|. As
in that proof, define b̂(1)

rt := n−1∑
i ψit(η̂2) and brt := E[ψit(η)]. We then have |b̂(1)

r − br| =
(T − 1)−1∑T−1

t=1 |b̂
(1)
rt − brt|. Since T is finite, it suffices to bound |b̂(1)

rt − brt| for some arbitrary
t. Now, by similar arguments as in the proof of Theorem 1, we have

1
n1

n1∑
i=1
{ψit(η)− E [ψit(η)]} = Op

(√
kr/n

)
.

Hence the claim follows once we show

b̂
(1)
rt − brt = 1

n1

n1∑
i=1
{ψit(η)− E [ψit(η)]}+ op

(√
kr/n

)
. (A.3)

We now prove (A.3). Let N2 denote the set of all observations in the second fold. We have

b̂
(1)
rt − brt −

1
n1

n1∑
i=1
{ψit(η)− E [ψit(η)]}

= 1
n1

n1∑
i=1
{(ψit(η̂2)− ψit(η))− (E [ψit(η̂2)|N2]− E [ψit(η)])}+ {E [ψit(η̂2)|N2]− E [ψit(η)]}

:= R1nt +R2nt.

First consider the term R1nt. Define

δit := (ψit(η̂2)− ψit(η))− (E [ψit(η̂2)|N2]− E [ψit(η)]) .

Clearly, E[δit|N2] = 0. We then have

E
[
|R1nt|2

∣∣∣N2
]

= 1
n1
E
[
|δit|2

∣∣∣N2
]

= 1
n1
E
[
|ψit(η̂2)− ψit(η)|2

∣∣∣N2
]
. (A.4)

Now for any (a, x, a′, x′), we can note from the definition of ψ(·) that with probability approach-
ing 1, ∣∣ψ(a, x, a′, x′; η̂2)− ψ(a, x, a′, x′; η)

∣∣ ≤ |r(a, x)| {| ln η̂2 − ln η|+ |η̂2 − η|}

≤M
√
kr {| ln η̂2 − ln η|+ |η̂2 − η|}

≤M
√
kr(2δ−1 + 1)|η̂2 − η|, (A.5)

37



where the second inequality follows from Assumption 2(iii), and the third inequality follows from
Assumption 2(v).8 Thus in view of (A.4) and (A.5), there exists C <∞ such that

E
[
|R1nt|2

∣∣∣N2
]
≤ Ckr

n1
E
[
|η̂2(ait+1, xit+1)− η(ait+1, xit+1)|2

∣∣∣N2
]

≤ CkrT

n1
‖η̂2 − η‖22 = op(kr/n),

where the last equality follows by Assumption 2(v). This proves

|R1nt| = op(
√
kr/n). (A.6)

Next consider the term R2nt. We note that E[ψit(η)] is twice Fréchet differentiable. In the
main text we have shown that ∂ηE[ψit(η)] = 0 (c.f equation (3.7)). Furthermore, following some
straightforward algebra it is possible to show |∂2

ηE[ψit(η)]| ≤ C1
√
kr, for some C1 <∞, as long

as η is bounded away from 0 (as assured by Assumption 2(v)). Hence

E
[
|R2nt|2

∣∣∣N2
]
≤ C1

√
krE

[
|η̂2(ait+1, xit+1)− η(ait+1, xit+1)|2

∣∣∣N2
]

≤ C1T
√
kr ‖η̂2 − η‖22 = op(kr/n). (A.7)

Together, (A.6) and (A.7) imply (A.3), which concludes the proof of the theorem.

A.3. Proof of Theorem 4. Let ωl denote the lth update of ω. From Algorithm 1, we observe
that the gradient updates are of the form

ωl+1 = ωl + α(l)
ω (zitφit − φit(φit − βφit+1)ᵀωl) .

By standard results on stochastic approximation algorithms (see, e.g, Benveniste et al. (2012),
Theorem 17), the above sequence of updates converges to a fixed point ω̂ satisfying

En[zφ− φ(φ− βφ′)ᵀω̂] = 0

as long as (1) En[zφ] is finite, (2) An := En[φ(φ−βφ′)ᵀ] is negative definite, and (3) the learning
rate α(k)

ω satisfies the requirements specified Assumption 3. The first condition is obviously
satisfied under Assumption 1(iii). The second condition, that An is negative definite, has already
been shown in the context of the proof of Theorem 1. Hence, with probability approaching 1,
all the three conditions are satisfied and the sequence ωk converges to ω̂. A similar analysis also
applies to gradient descent updates of ξ.

8In particular, we have used the fact η̂2 > δ + op(1) which follows from η > δ and |η̂2 − η| = op(1).
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Appendix B. Supplemental results

B.1. Primitive conditions for Assumptions 1,2. In the main text, we introduced Assump-
tions 1,2 for deriving the properties of Temporal-difference estimators for continuous states.
Among other conditions, we required h(a, x) and g(a, x) to be well approximated by a series
expansion at a k−α rate. Newey (1997) shows that for splines and power series, we can set
α = r/d, where r is the number of continuous derivatives of h(a, ·), g(a, ·), and d is the dimen-
sion of x. In determining the derivatives, we may assume without loss of generality that x is
continuous; as otherwise we can always condition on the discrete elements of x by including the
relevant indicator and interaction terms in the approximation spaces Lφ,Lr (note however that
support of a is always assumed to be discrete in the setting of this paper). The following then
provides primitive conditions on z(a, x), e(a, x), fX(x′|a, x) to ensure existence of r continuous
derivatives of h(a, x), g(a, x) for each a ∈ A:

Assumption S. For each a ∈ A, the functions z(a, x), e(a, x), fX(x′|a, x) are uniformly bounded
and r times continuously differentiable. Furthermore, supa,x

∫
|∂kxfX(x′|a, x)|dx′ < ∞ for k =

1, . . . , r.

We shall now demonstrate that Assumption S implies h(a, x) is uniformly bounded and con-
tinuously differentiable when r ≥ 1. The extension to higher order derivatives, and to the
function g(a, x), follows by similar arguments.

We start by showing that h(a, x) is uniformly bounded. Recall that h(a, x) is the fixed point
of the dynamic programming operator Γz[·]. DefineM0 to be any positive real number such that
|z(a, x)|∞ < βM0 (such a number exists by Assumption S). Now for any f such that |f |∞ < M0,
we have

|Γz[f ]|∞ ≤ |z(a, x)|∞ + (1− β)M0 < M0.

In other words, Γz[·] maps the space S0 ≡ {f : |f |∞ ≤M0} onto itself. Hence by the properties
of contraction mappings, the fixed point of Γz[·] must lie in S0, i.e |h(a, x)|∞ ≤M0.

We now show that h(a, x) is continuously differentiable in x for all a. Let L1, L2 be positive
real numbers such that |∂xz(a, x)|∞ ≤ L1 and supa,x

∫
|∂xfX(x′|a, x)| dx′ ≤ L2 for all a ∈ A (the

existence of these quantities is assured by Assumptions S). Now, for any f ∈ S0,

|∂xΓz[f ](a, x)|∞ ≤ |∂xz(a, x)|∞ + (1− β) sup
a,x

∣∣∣∣∫ f(a′, x′)P (a′|x′)∂xfX(x′|a, x)da′dx′
∣∣∣∣

≤ L1 + (1− β)M0L2 := M1.

Defining S1 ≡ {f : |∂xf |∞ ≤ M1}, we have thus shown Γz[S0] ⊆ S1. Since we also have
Γz[S0] ⊆ S0, it follows Γz[S0 ∩ S1] ⊆ S0 ∩ S1. Hence h(a, x) ∈ S0 ∩ S1.

B.2. Heuristic derivation of non-parametric adjustment terms. Section 3.3.2 in the
main text provides the expression for the locally robust moment (3.13). We obtained this
expression by using the form of the parametric adjustment terms in (3.14) to conjecture the
expression for the non-parametric correction term. This section provides the heuristic analysis
underlying this conjecture.
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We start by considering the parametric adjustment term for h(a, x):

Âh := E(1)
n [∂ωm(a, x; θ,v)]E(1)

n [∂ωϕh(ã, x̃, ω)]−1ϕh(ã, x̃, ω).

Denote

m(a, x; θ, h, g) := ∂θQ(a, x; θ, h, g); Q(a, x; θ, h, g) := ln exp {h(a, x)θ + g(a, x)}∑
ă exp {h(ă, x)θ + g(ă, x))} .

As noted in the main text, Âh can be rewritten as

Âh = λ̂h(a, x; θ)
{
z(a, x) + βφ(a′, x′)ᵀω − φ(a, x)ᵀω

}
,

where

λ̂h(a, x; θ) := φ(a, x)ᵀE(1)
n

[(
βφ(a′, x′)− φ(a, x)

)
φ(a, x)ᵀ

]−1 E(1)
n [φ(a, x)∂hm(a, x; θ, h, g)] ,

and ∂hm(·) denotes the Fréchet derivative of m(·) with respect to h(·). We now provide a
heuristic derivation for the limit, Ah, of Âh as n, kφ →∞.

To this end, let us keep the dimension kφ fixed for now and define

ϑ̂ := E(1)
n

[(
βφ(a′, x′)− φ(a, x)

)
φ(a, x)ᵀ

]−1 E(1)
n [φ(a, x)∂hm(a, x; θ, h, g)] .

Note that λ̂h(a, x; θ) = φ(a, x)ᵀϑ̂. Now, in the limit as n→∞, we can expect ϑ̂− ϑ→ 0, where

ϑ := E
[(
βφ(a′, x′)− φ(a, x)

)
φ(a, x)ᵀ

]−1 E [φ(a, x)∂hm(a, x; θ, h, g)] .

Since E[·] is a stationary distribution, E [βφ(a′, x′)φ(a, x)ᵀ] = E [βφ(a, x)φ(a−′, x−′)ᵀ], where
(a−′, x−′) denotes the one-step backward quantities corresponding to (a, x). In view of this, a
bit of rearrangement of the previous display equation gives us

E
[
φ(a, x)

{
−∂hm(a, x; θ, h, g) + βφ(a−′, x−′)ᵀϑ− φ(a, x)ᵀϑ

}]
= 0. (B.1)

Define λ∗h(a, x; θ) := φ(a, x)ᵀϑ, noting also that this is the limit of λ̂h(a, x) as n → ∞. Given
(B.1), we then have

E
[
φ(a, x)

{
−∂hm(a, x; θ, h, g) + βλ∗h(a−′, x−′)− λ∗h(a, x)

}]
= 0.

The above equation shares a high degree of similarity with (3.1). Indeed, backtracking the
analysis leading to (3.1), we see that λ∗h(a, x; θ) can be interpreted as the fixed point of the
projected ‘backward’ dynamic programming operator PφΓ†h,θ[·], where

Γ†h,θ[f ](a, x) := −∂hm(a, x; θ, h, g) + βE
[
f(a−′, x−′)|a, x

]
.

While we have supposed the dimension of φ(·) to be fixed so far, as kφ → ∞, we can expect
λ∗h(a, x; θ) → λh(a, x; θ), where the latter is the fixed point of Γ†h,θ[·] itself. From the above
discussion, we thus conjecture that the limit of Âh is given by

Ah = λh(a, x; θ)
{
z(a, x) + βh(a′, x′)− h(a, x)

}
,

where we have also replaced φ(a, x)ᵀω in (3.15) with its limit h(a, x). This is our conjecture for
the adjustment term corresponding to h(·).
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A similar analysis also applies to the adjustment term for g(·), which we conjectured to be of
the form

Ag = λg(a, x; θ)
{
e(a′, x′; η) + βg(a′, x′)− g(a, x)

}
,

where λg(a, x; θ) is the fixed point of the operator Γ†g,θ[·], defined as

Γ†g,θ[f ](a, x) := −∂gm(a, x; θ, h, g) + βE
[
f(a−′, x−′)|a, x

]
.

B.3. Unobserved heterogeneity and sequential EM. Arcidiacono and Jones (2003) de-
scribe a class of two step estimation procedures for which the sequential EM algorithm may
be applied. Here, we verify that Temporal-difference estimation with permanent unobserved
heterogeneity does indeed into fall into such a class of procedures, and the algorithm described
in Section 5 is therefore an instance of sequential EM.

First, let us describe the identification of ω∗, ξ∗. Let Γ(k)
z [·] denote the dynamic programming

operator
Γ(k)
z [f ](a, x) := z(a, x, k) + βE[f(a′, x′)|a, x, s = k].

Clearly, hk(a, x) is the unique fixed point of Γ(k)
z [·]. We define our approximation φ(a, x)ᵀω∗k to

hk(a, x) as the fixed point of the projected dynamic programming operator P (k)
φ Γ(k)

z [·], where
P

(k)
φ is the projection operator into the conditional linear span of Lφ given s = k, i.e

P
(k)
φ [f ](a, x) := φ(a, x)ᵀE[φ(a, x)φ(a, x)ᵀ|s = k]−1E[φ(a, x)f(a, x)|s = k].

By a similar argument as in Lemma 1 in the Appendix A, the fixed point of P (k)
φ Γ(k)

z [·] satisfies

E
[
φ(a, x)

{
z(a, x, k) + βφ(a′, x′)ᵀω∗k − φ(a, x)ᵀω∗k

}∣∣ s = k
]

= 0,

or equivalently, assuming P (s = k) 6= 0, that

E
[
I(s = k)φ(a, x)

{
z(a, x, k) + βφ(a′, x′)ᵀω∗k − φ(a, x)ᵀω∗k

}]
= 0.

The above enables us to identify ω∗k as

ω∗k = E
[
I(s = k)φ(a, x)

(
φ(a, x)− βφ(a′, x′)

)ᵀ]−1 E [I(s = k)φ(a, x)z(a, x, k)] . (B.2)

By similar arguments as in Lemma 2 in Appendix A, E [I(s = k)φ(a, x) (φ(a, x)− βφ(a′, x′))ᵀ] is
indeed non-singular as long as β < 1 and E[φ(a, x)φ(a, x)ᵀ| s = k] is non-singular. Equation (B.2)
was described as (5.2) in the main text. The identification of ξ∗k follows by similar arguments.

Let us now suppose that hk(x, a) and gk(x, a) are truly finite-dimensional, i.e hk(x, a) ≡
φ(x, a)ᵀω∗k and gk(x, a) ≡ r(x, a)ᵀξ∗k. Denote

lk(a, x; θ,ω, ξ) ≡ exp {(φ(a, x)ᵀωk)θ + r(a, x)ᵀξk)}∑
a exp {(φ(a, x)ᵀωk)θ + r(a, x)ᵀξk}

,

P (s = k|ai,xi, θ,ω, ξ) = π∗k
∏T−1
t=1 lk(ait, xit; θ,ω, ξ)∑

k̃ π
∗
k̃

∏T−1
t=1 lk̃(ait, xit; θ,ω, ξ)

,

and

Qk(ai,xi; θ,ω, ξ) =
T−1∑
t=1

ln lk(ait, xit; θ,ω, ξ).
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At the population level, we may suppose that (θ∗, π∗) is the unique solutions to the FIML
problem

(θ∗, π∗) = arg max
θ,π

Ē
[
ln
{
πsi ·

T−1∏
t=1

lk(ait, xit, si; θ,ω∗, ξ∗) ·
T−1∏
t=1

fX(xit+1|ait, xit, s) · fx1(xi1|si)
}]

,

(B.3)
where Ē[·] denotes the expectation over the population distribution of (ai,xi, si) and fx1(xi1|s)
is the probability density of the intial state xi1 given s. Taking the First Order Condition (FOC)
of (B.3) with respect to θ gives

0 = Ē
[
∂θ ln

T−1∏
t=1

lk(ait, xit, si; θ∗,ω∗, ξ∗)
]

= E
[∑
k

P (s = k|a,x, θ∗,ω∗, ξ∗)∂θQk(a,x; θ∗,ω∗, ξ∗)
]
. (B.4)

In a similar vein, taking the FOC with respect to πk gives

E [P (s = k|a,x, θ∗,ω∗, ξ∗)− π∗k] = 0 ∀k. (B.5)

These moment conditions have to be augmented by the identification conditions for ω∗k, ξ∗k which,
in view of (B.2), are given by

E
[
P (s = k|a,x, θ∗,ω∗, ξ∗)φ(a, x)

{
zk(a, x) + βφ(a′, x′)ᵀω∗k − φ(a, x)ᵀω∗k

}]
= 0 ∀k,

E
[
P (s = K|a,x, θ∗,ω∗, ξ∗)r(a, x)

{
βeK(a′, x′) + βr(a′, x′)ᵀξ∗k − r(a, x)ᵀξ∗k

}]
= 0 ∀k.

Combining the above with the definitional requirement ek(a, x) := γ − ln lk(a, x; θ∗,ω∗, ξ∗), we
thus see that (θ∗,ω∗, ξ∗, π∗) can be identified as the solution to the population moment condition:

E(a,x)



∑
k P (s = k|a,x, θ∗,ω∗, ξ∗)∂θQ(a,x; θ∗,ω∗, ξ∗)

P (s = 1|a,x, θ∗,ω∗, ξ∗)φ(a, x) {z1(a, x) + βφ(a′, x′)ᵀω∗1 − φ(a, x)ᵀω∗1}
...

P (s = K|a,x, θ∗,ω∗, ξ∗)φ(a, x) {zK(a, x) + βφ(a′, x′)ᵀω∗K − φ(a, x)ᵀω∗K}
P (s = 1|a,x, θ∗,ω∗, ξ∗)r(a, x) {βe1(a′, x′) + βr(a′, x′)ᵀξ∗1 − r(a, x)ᵀξ∗1}

...
P (s = K|a,x, θ∗,ω∗, ξ∗)r(a, x) {βeK(a′, x′) + βr(a′, x′)ᵀξ∗K − r(a, x)ᵀξ∗K}

P (s = 1|a,x, θ∗,ω∗, ξ∗)− π∗1
...

P (s = K|a,x, θ∗,ω∗, ξ∗)− π∗K
e1(ā, x̄)− γ + ln l1(ā, x̄; θ∗,ω∗, ξ∗) ∀ (ā, x̄)

...
eK(ā, x̄)− γ + ln lK(ā, x̄; θ∗,ω∗, ξ∗) ∀ (ā, x̄)



= 0.

(B.6)

The moment conditions (B.4), (B.5) for (θ, π) are equivalent to the first order conditions obtained
from maximizing the pseudo-likelihood (5.1) in the main text. Also, even when hk(x, a) and
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gk(x, a) are not finite dimensional, the above holds as long as we let the dimensions kφ, kr of
φ(a, x), r(a, x) grow to infinity.

The moment equation (B.6) fits into the class of models considered by Arcidiacono and Jones
(2003); see, e.g their equation (11). Hence, we can follow Arcidiacono and Jones (2003) in
applying the sequential EM algorithm to this model. Let (θ, ω̂, ξ̂, π̂) denote the solution to
the sample analogue of (B.6) after replacing E[·] with its empirical counterpart En[·]. It is
easy to verify that (θ, ω̂, ξ̂, π̂) also constitute a fixed point of the sequential EM algorithm.
Unfortunately, as with all sequential EM algorithms, this analysis does not tell us whether the
algorithm converges, or if it has the increasing likelihood property. Studying the convergence
properties of sequential EM is an important avenue for future research.
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