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A Serendipitous & Irresistible Research Opportunity

Can CDR-based wealth prediction methods
(e.g., Blumenstock et al., 2015) be harnessed

Cash for CDR-based impact evaluation?

February 2016 to September 2016

Benchmark: Conventional Regression
Discontinuity (RD) evaluation of impact on

World Food food consumption using survey data

Y
2 Y £ Programme

wfp.org

How closely can we replicate this estimated
impact with a CDR-based evaluation that uses
predicted food consumption outcomes?




WFP’s 2016 (Unconditional) Cash Transfer

February 2016 to September 2016

* In wake of 2014-15 drought, WFP launches emergency cash
transfer (EMOP) targeting the hardest hit rural areas
Goal: 700,000 beneficiaries (140,000 households)
~S$50/HH/month for 3 months

* Mon Cash distribution rolls out in 2016
New Digicel SIM cards distributed as needed

* Three tiered targeting

rural areas hit by drought

potential beneficiaries:
scorecard survey

beneficiaries:
score>cutoff




Research Design & Preview of Results

Estimated RD impacts:
I food security, diet diversity, food consumption

Food Security Outcomes, J cereal share of calories Impact Evaluation:
Running Variable - ' F\’e_grelssmn .
Discontinuity Design
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Anonymize Error
phone
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predicted outcomes to detect
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Generation: DFA
outcomes Concept

e Even best model has little/no
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rural areas hit by drought

D a ta potential beneficiaries:

scorecard su rvey

WFP-led Scorecard beneficiaries:
Sampling frame: 2" targeting tier score>cutoff
Normalized score: 3" targeting tier
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Outcomes

* Food Security: WFP Indices

* Food Consumption Score (FCS)
Number of days in past week specific food groups .

consumed

Aggregated, weighted by nutritional value

 Diet Diversity Score (DDS)

Number of groups consumed over the past week 00003 -

* Coping Strategies Index (CSI)

Number of days in past week a certain strategy

used, weighted by severity

* Food Consumption
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Conventional RD Results: EMOP worked
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Encouraging CDR-based predictions

* Blumenstock et al. 2015 use one year of
CDRs to predict HH wealth and construct a
high-resolution poverty map

* Decuyper et al. 2016 aggregate CDRs and
national WFP food security survey to areas 3 % ; ] ;
w/population 10,000-50,000

Actual wealth (Composite Index)
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mobile phone variables

Figure 2. Quadratic combination of CDR variables against expenses on food. Correlation
coefficient: 0.89.




Merged Survey & CDR data:
Tower Locations of Survey Respondents

Ground survey Phone survey Scorecard survey




Extracting Features from CDRs

* Define Feature Automata (DFA) extracts features to predict outcomes
* The full Digicel network used to extract ‘alter’ features in this DFA

* To synchronize features with consumption outcomes, we run the DFA over
4 different (pre-survey) time-windows

* We use Bandicoot (94 features) as alternative

Feature type
W Local network structure (ego) Time Ground | Phone
Call activity (ego)
Global network structure window SeEY] SR
Call activity (alter)

Movement (alter) One-year 6,447
International communications (alter)

SMS activity (alter)

Correlation of Features

Movement (ega) 30-days 950 550 6,447
International communications (ego)
SISMS activity (ego) 15-days 921 537 6,220

5-days 878 526 6,109




Predictive Model: “No feature-level predictive power

Predicted outcome: Food Consumption
Ground survey
One-year window 15-day window

Individually, our features have -
very little predictive power in
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Predictive Model: Lasso doesn’t do much better

Feature selection using a 5-fold cross validation lasso model

Slight improvement when features extracted from longer

window (R-sq 0.015)

Similarly poor prediction with alternate models
Ridge and elastic nets

Random forests
XGBoost

Core problem: CDR features lack signal
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Food Consumption (HTG)
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CDR-based Impact Evaluation:
RD with predicted food consumption

Obviously, with ~“no predictive power, we can’t
replicate the conventional RD impact estimate
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Post-mortum: What went wrong?

1. Known sources of noise
CDR-related: Sharing phones or multiple phones per HH (e.g., new SIMs from EMOP)
Hurricane Matthew (2 months prior to ground survey; ~70% of sample affected)
Sample restrictions to avoid these known sources do not improve R-sq.

2. Limited correlation of CDRs and food consumption
Predicting stocks (e.g., assets, wealth) easier than flows?
Do our CDR-based features predict anything?
Do transfers impact network activity?
Probably. Not really. Yes.

3. Effective programmatic targeting narrows range of HH wealth
Intentional focus on poor rural HHs limits variability of outcomes and CDRs?
This is our primary suspect — still working on an empirical test.



2. Limited correlation of CDRs and food consumption

Food consumption (HGT) -One week
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Can our CDR features predict
more stable outcomes?
Wealth index?
Livestock?
...top-up recharges?



Cross-validated R-Square

30-day window: Ground survey
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38,657 phone numbers

higher level of usage and mobility

* 1 week pre/post first EMOP transfer
apparent convergence to new

* Clear spike in network activity with

°N

Do EMOP transfers impact network activity at all?
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2. Effective programmatic targeting

—————— GDP per Capita (World Bank) = $1800 PPP

rural areas hit by drought

Average Expenditure in Sample = $1026 PPP
potential beneficiaries:

''''''' - $1.90/day Poverty Line (World Bank) = $640 PPP
scorecard survey

Poverty headcount rate in our
sample is ¥2x national rate

beneficiaries:
score>cutoff

2500 7500

5000
Per Capita Yearly Expenditure (PPP)

Explicit and effective targeting implied too narrow a
range of outcomes and CDRs for CDR-based features
0 2000 40000 60000 0000 100000 120000 to differentiate between HHs

mobile phone variables

Figure 2. Quadratic combination of CDR variables against expenses on food. Correlation
coefficient: 0.89.



2. Effective programmatic targeting Source: Finscope Report (2019)
* FinScope (USAID) 2018 data as a N ACCESS FRONTIERS

Financially i0ooot

means of testing this suspicion Included

Formally served

Own basic phone - 423 008

* Nationally representative (N=4,269) @ P ™ Ounsmart phone- 85 G2

4145165

— Borrowing informally - 261 868

g — Saving informally - 619 709

* Detailed in-person survey
* “Half are included in our CDR data

o Informally
o Total market served onl : ;
Follow up survey with expanded P — 798000 - Fenitmoney oty -

informed consent underway

* Will allow us to test predictive power R
of CDR-based features across .
nationally-representative sample % 2831174

Excluded (non-poor) * Graduating the ‘informally served’
into ‘formal sector’

* How much predictive power do we el L Ownbasicphons- 1793 4
lose as we narrowly focus on the poor? -

* 0.9 million get income from farming
== 0.9 million get income from own business
* 0.3 million informally employed

Ultra-poor
(less than $30 per month)

694 571

L— Saving at home - 180 570

35




Final Thoughts

Can CDR-based wealth prediction methods be harnessed
for CDR-based impact evaluation?

* Not in this context, which seemed ideal in some ways

CaSh * If targeting undermines this test, then perhaps there is
fundamental tension lurking between these methods

February 2016 to September 2016

* Impact evaluation hinges on good counterfactuals

* Sharp focus on treated and comparable counterfactual units
helps identification but hurts CDR-based prediction

s

orild Food
rogramme

* Better suited for interventions with coarser units of E(impact)?
* Investments in irrigation or transportation infrastructure
* Changes in local institutions or incentives
* Local economy spillovers
* Lingering (untested) limitations on temporal resolution of CDR-
based prediction?



