Risky Business Cycles

Susanto Basu - Boston College Ryan Chahrour - Boston College Giacomo Candian - HEC Montréal Rosen Valchev - Boston College

January 5, 2021 - ASSA Annual Meeting

Motivation

Financial economists tell us that excess returns are predictable.

Discount-rate variation is the central organizing question of current asset-pricing research.

John Cochrane - 2011 Presidential Address to American Fin. Assoc.

This fact is not part of most theories of macroeconomic fluctuations.

Cycles driven by risk promising, but most models imply

- precautionary increase in savings/investment
- precautionary labor supply increase
- very hard to get comovement between Y, C, I, N (not-to-mention asset prices)

This paper

- 1. Empirical patterns associated with changes in expected returns
 - Strong comovement of Y, C, I and labor
 - Shifts towards part-time/flexible-contract workers
 - Small changes in safe interest rates
- 2. Provide theory of these patterns
 - ullet Core idea: if safe stores are less productive, then fear o recession
 - Between markets: labor relationships more risky than capital investment
 - Within markets: long-term labor relationships more risky than part-time/contract work

Literature

- Time-varying Risk-Premia: Campbell and Shiller (1988), Fama and French (1989), Cochrane (2011), Martin (2017), ...
- Risk and labor market frictions: Petrosky-Naudau et. al. (2015), Flavilikus and Lin (2016), Leduc and Liu (2016), Hall (2017), Schaal (2017), Swanson (2019), Cacciatore and Ravenna (2020), Kehoe et al. (2020), ...
- Uncertainty and RBC: Bachmann and Bayer (2013), Bloom et. al. (2014), Gilchrist et al. (2014), Di Tella and Hall (2020), ...
- Uncertainty in models with nominal frictions: Ilut and Schneider (2014), Christiano et al. (2014), Fernandez-Villaverde,
 Guerron-Quintana, Kuester, and Rubio-Ramirez (2015), Basu and Bundick (2017), ...
- Max-share empirical strategy: Uhlig (2003), Angeletos, Collard and Dellas (2020)

Outline

- 1. Empirical Patterns
- 2. Theory: Real model with Two Labor Types
- 3. Quantification and Inspecting the Mechanism

Risk Premia and Business Cycles

in the Data

Strategy

In aggregate data...

- VAR using standard macro series and equity/bond returns
- Identify shock which drives bulk of excess returns
- Look at comovements with real variables, labor markets, etc.

Data

Sample Period: 1985Q1 - 2018Q4

Core series: Y_t

- Real per-capita output
- Real per-capita consumption
- Real per-capita investment
- Real per-capita hours
- Real stock return (incl. dividends)
- Real bond return
- Dividend-price ratio

Auxiliary Series: S_t

- Employment (part-time vs full-time)
- Others

Empirical Approach

Statistical Model:

$$Y_t = B(L)Y_{t-1} + \underbrace{A\epsilon_t}_{\mu_t}$$
 (Core)

$$S_t = \Gamma(L)Y_t + v_t \tag{Aux}$$

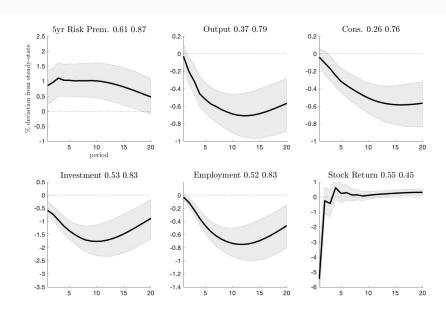
Risk premium definition:

$$rp_{t,t+j} \equiv [r_{t+1}^s + r_{t+2}^s + \dots + r_{t+j}^s] - [r_{t+1}^b + r_{t+2}^b + \dots + r_{t+j}^b]$$

Using expectation implied by VAR:

$$E_t[rp_{t,t+j}] = (e_5 - e_6)(B + B^2 + ... + B^j)(I - BL)^{-1}A\epsilon_t$$

Identification


$$E_t[rp_{t,t+j}] = (e_5 - e_6)(B + B^2 + ... + B^j)(I - BL)^{-1}A\epsilon_t$$

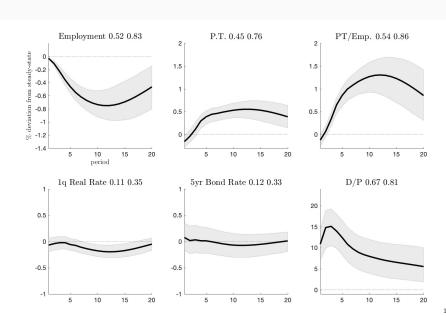
Pick A so that first shock explains most of $E_t[rp_{t,t+j}]$. (Uhlig, 2003) Choices:

- Horizon $j \rightarrow$ choose j = 20, for predictability at longer horizons
- ullet Frequency band o choose unconditional variance, robust to
 - business-cycle frequency (ACD, 2020)
 - one-period innovation

Not imposing any prior on structural interpretation of the shock.

Results I - Response to a RP shock

Results II - Driver of Covariances

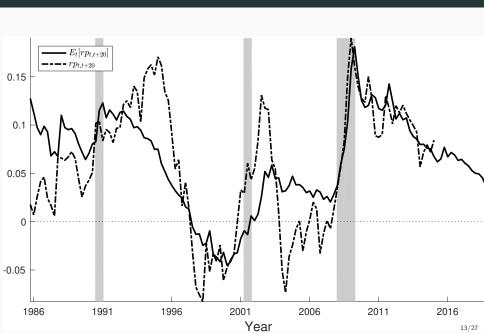

"Percent-explained" covariance:

$$1 - cov(Y_t|\epsilon_1)/cov(Y_t)$$

	Output	Cons.	Investment	Employment	Stock Return
Output	0.79				
Cons.	0.79	0.76			
Investment	0.87	0.92	0.83		
Employment	0.92	0.96	0.90	0.83	
Stock Return	1.31	1.02	1.40	0.98	0.45

Fraction of Covariance Explained

Result III - Response to a RP shock



Comparison to "Main business cycle shock"

ACD (2020) identify shock that explains BC variance of e.g. GDP

- ullet Shock time series strongly correlated $ightarrow \sim 70\%$
- Same qualitative patterns
- Accounts for less of stock return covariances

Result IV - Time-series of RP

Theory

Model

Aggregate "RBC" model with

- 1. Epstein-Zin preferences
- 2. Capital adjustment costs
- 3. Variable capacity utilization
- 4. Labor market search
 - Two types of labor relationships: temporary and long-term

Household

$$V_t \equiv \max_{C_t, X_{t+1}, B_{t+1}} \left[(1 - \beta) C_t^{1 - 1/\psi} + \beta (\mathbb{E}_t V_{t+1}^{1 - \gamma_t})^{\frac{1 - 1/\psi}{1 - \gamma_t}} \right]^{\frac{1}{1 - 1/\psi}}$$

subject to

$$C_t + P_t^E X_{t+1} + \frac{1}{R_t^E} B_{t+1} + G_t \le W_{1,t} N_{1,t} + W_{2,t} N_{2,t} + (D_t^E + P_t^E) X_t + B_t$$

Notes:

- Hold risk-free bonds (B_t) and equity (X_t) .
- Labor supply exogenous: searchers given by

$$\begin{split} S_{1,t} &= 1 - (1 - \rho_1) N_{1,t-1} - (1 - \rho_2) N_{2,t-1} \\ S_{2,t} &= 1 - N_{1,t} - (1 - \rho_2) N_{2,t-1} \end{split}$$

Successful searchers become productive within-period.

Firms

$$V_t^E(i) = \max \mathbb{E}_t \sum_{s=0}^{\infty} M_{t+s} D_{t+s}$$

subject to

$$\begin{split} D_t &= Y_t - W_{1,t} N_{1,t} - W_{2,t} N_{2,t} - I_t - \gamma_{1,t} v_{1,t} - \gamma_{2,2} v_{2,t} \\ Y_t &= \left[K_t u_t \right]^{\alpha} \left[Z_t N_t \right]^{1-\alpha} \\ K_{t+1} &= \left(1 - \delta(u_t) - \frac{\phi_K}{2} \left(\frac{I_t(i)}{K_t} - \delta \right)^2 \right) K_t + I_t \\ N_t &= N_{1,t}^{1-\Omega} N_{2,t}^{\Omega} \\ N_{1,t} &= (1 - \rho_1) N_{1,t-1} + Q_{1,t}^m v_{1,t} \\ N_{2,t} &= (1 - \rho_2) N_{2,t-1} + Q_{2,t}^m v_{2,t} \end{split}$$

Labor Market

- \bullet Matching probs, P_t^m and $Q_t^m,$ determined by CD matching function
- N1: (nearly) fixed real wage.
- N2: Nash-bargained wage.
- Vacancy posting conditions defines value of a worker

$$\mathbb{J}_{i,t} = \mathit{MPL}_{i,t} - W_{i,t} + \mathbb{E}_t \left\{ M_{t+1} (1 - \rho_i) \mathbb{J}_{i,t+1} \right\}$$

Exogenous Processes

1. Technology:

$$\ln Z_t = \ln Z_{t-1} + \sigma_z \epsilon_t^z$$

2. Risk aversion:

$$\ln(\gamma_t/\gamma) = \rho_{1,\gamma} \ln(\gamma_{t-1}/\gamma) + \rho_{2,\gamma} \ln(\gamma_{t-2}/\gamma) + \sigma_{\gamma} \epsilon_t^{\gamma}$$

3. Cointegration of $\{\gamma_{1,t}, \gamma_{2,t}, W_{1,t}\}$: E.g.

$$W_{1,t+1} = W_{1,t}^{\omega} Z_t^{1-\omega}$$

Barro and King (1984) problem

Worried about future? \Rightarrow desire to (i) save more (ii) consume less

- (i) implies that investment rises
- (ii) if labor supply endogenous, hours increase

 $\hookrightarrow \mathsf{I},\mathsf{C},\mathsf{N} \text{ cannot move together!}$

How our model works

Risk aversion rises \Rightarrow (i) save more in <u>safer assets</u> (ii) consume less

- (i) premium for N_1 rises most \Rightarrow "savings" shifts away from N_1
- (ii) if N_1 and cap. util. fall enough, then $Y \Downarrow$ causes both $C \Downarrow, I \Downarrow$

 \hookrightarrow I,C,N *can* move together!

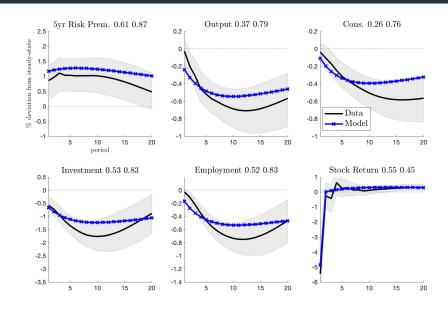
Quantifying the Mechanism

Impulse Response Matching

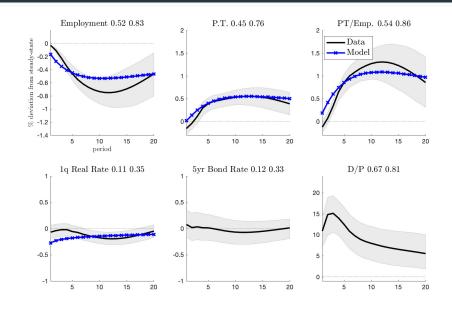
- Solve model using 3rd-order perturbation
- ullet Target first six impulse responses in Y_t
- Additional steady-state targets

Description	Value
Equity risk premium	0.064
Share of part-time	0.180
Agg. separation rate	0.100
PT sep./FT sep.	8.000
PT earn./FT earn.	0.500
Vancancy Rate	0.035
LR unemployment	0.060
Std. HP $log(Emp/Pop)$	0.011
Std. log(vacan.)	0.264

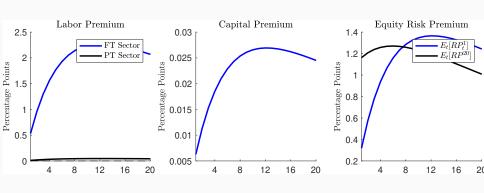
Look at implication for non-targeted variables


Calibrated parameters

Name	Description	Value	
β	Discount rate	0.994	
ψ	Intertemporal elasticity of substitution	1.500	
α	Capital share	0.300	
δ	Cap decpreciation rate	0.025	
δ_2	Cap. util. cost $ imes$ 100	0.030	
Ē	Steady-state G/Y	0.200	
d	Corporate bond duration	0.975	
	Labor Markets		
ρ_1	Separation Rate - FT	0.044	
$ ho_2$	Separation Rate - PT	0.354	
η_1	HH's bargaining power - FT	0.500	
η_2	HH's bargaining power - PT	0.200	
	Exogenous Processes		
σ_z	Std. dev. of tech shock	0.006	
$ ho_{1,\gamma}$	AR(1) risk av. shock	1.802	
$ ho_{2,\gamma}$	AR(2) risk av. shock	-0.806	


Estimated Parameters

Name	Description	Point Est.	Std Err.
γ_{ss}	Steady-state risk aversion	102.072	1.403
ϕ_k	Capital Adj. Cost	11.444	0.294
ν	Leverage Ratio	0.739	0.005
	Labor Markets		
γ_1	Vacancy posting cost - FT	3.000	0.101
γ_2	Vacancy posting cost - PT	1.050	0.027
b_1	Value if no perm posit.	1.153	0.003
b_2	Value if unemployed	0.526	0.005
Ω	Labor contrib. of PT	0.124	0.001
ϵ^1	Matching elasticity - FT	0.161	0.002
ϵ^2	Matching elasticity - PT	0.789	0.007
χ^1	Matching technology - FT	0.440	0.003
χ^2	Matching technology - PT	1.322	0.020
ω	Gradual wage adj.	0.987	0.000
	Risk Aversion Process		
σ_{γ}	Std. dev. of risk av. shock	0.050	0.001


Estimation Results I

Estimation Results II

Impulse Responses: Risk Premia

Conclusions

- 1. Risk-premia changes strongly associated with macroeconomic flucs.
- 2. Theory where causality flows from premia \Rightarrow macro fluctuations
- 3. Captures many qualitative features of the cycle
- 4. Quantitatively promising