Duration structure of unemployment hazards and the trend unemployment rate

Hie Joo Ahn

Federal Reserve Board

1/3/2021

The views expressed here are those of the author and do not necessarily represent the views of others in the Federal Reserve System.

Develop a new method to estimate the trend unemployment rate taking into account the time-varying duration profile of unemployment hazards

 characterized by three time-varying factors—level, slope and curvature → Duration structure of unemployment hazards

Duration-structure trend unemployment rate (DS-TUR)

- The unemployment rate composed of the trend components of time-varying parameters constituting the duration structure of unemployment hazards and the trend inflows to unemployment
- The identification of trend unemployment rate is achieved not only from the trends in labor-force flows but also from the low-frequency changes in the distribution of unemployment duration.

Develop a new method to estimate the trend unemployment rate taking into account the time-varying duration profile of unemployment hazards

 characterized by three time-varying factors—level, slope and curvature → Duration structure of unemployment hazards

Duration-structure trend unemployment rate (DS-TUR)

- The unemployment rate composed of the trend components of time-varying parameters constituting the duration structure of unemployment hazards and the trend inflows to unemployment
- The identification of trend unemployment rate is achieved not only from the trends in labor-force flows but also from the low-frequency changes in the distribution of unemployment duration.

Develop a new method to estimate the trend unemployment rate taking into account the time-varying duration profile of unemployment hazards

 characterized by three time-varying factors—level, slope and curvature → Duration structure of unemployment hazards

Duration-structure trend unemployment rate (DS-TUR)

- The unemployment rate composed of the trend components of time-varying parameters constituting the duration structure of unemployment hazards and the trend inflows to unemployment
- The identification of trend unemployment rate is achieved not only from the trends in labor-force flows but also from the low-frequency changes in the distribution of unemployment duration.

1. The DS-TUR exhibits a secular decline between 1980 and 2000, a slow uptrend during the 2000s, and a decline between 2011 and 2019.

• The slow uptrend during the 2000s reflects the secular rise in long-term unemployment.

2. Without mismatch or the extension of UI benefits considered, the *DS-TUR* exhibits a rise and fall during 2007-2011.

3. The short-term component has trended down since 1980, while the long-term component shows an uptrend between 2000-2011 \rightarrow falling frictional unemployment, rising structural unemployment.

4. The short-term unemployment-rate gap has a strong Phillips correlation with the PCE inflation.

Model: Duration structure of unemployment hazards

Laguerre function is used to model the nonlinear duration profile of unemployment continuation probabilities.

Model: Duration structure of unemployment hazards

1. Term structure of interest rates

$$f(\tau) = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}' \begin{bmatrix} 1 \\ e^{\tau/\lambda} \\ (\tau/\lambda)e^{\tau/\lambda} \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}' \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}$$

2. Duration structure of unemployment hazards

$$\begin{aligned} x_t(\tau) &= \underbrace{\beta_{0t}}_{Level} + \underbrace{\beta_{1t} e^{-(12-\tau)/\lambda_t}}_{Slope} + \underbrace{\beta_{2t}((12-\tau)/\lambda_t) e^{-(12-\tau)/\lambda_t}}_{Curvature}, \text{ for } \tau < 12 \\ &= \underbrace{\beta_{0t}}_{Level} + \underbrace{\beta_{1t}}_{Slope}, \text{ for } \tau \ge 12 \end{aligned}$$

Assumption: an individual's unemployment exit-probability does not change once unemployed longer than one year (Kroft, Lange, and Notowidigdo, 2013).

 U_t^1 = number of people newly unemployed in month t (S.A.)

 $U_t^{2.3} =$ number of people unemployed for 2-3 months

 $U_t^{4.6} = 4-6$ months

 $U_t^{7.12} = 7-12 \text{ months}$

 $U_t^{13.+} = more than 1 year$

 $y_t = (U_t^1, U_t^{2.3}, U_t^{4.6}, U_t^{7.12}, U_t^{13.+})'$ for t = 1976:M1 - 2019:M12

Dynamic accounting identity: Ahn and Hamilton (2020)

$$U^1 = w.$$

$$p(au) = \exp[-\exp(x(au))]$$
 for $au = 1, 2, 3, ...,$

probability to stay unemployed next month of those unemployed for au month

$$P(k) = p(1)p(2)\dots p(k),$$

probability to stay unemployed for k consecutive months

$$U^{2.3} = [wP(1) + wP(2)], \quad U^{4.6} = \sum_{k=3}^{5} [wP(k)]$$
$$U^{7.12} = \sum_{k=6}^{11} [wP(k)], \quad U^{13.+} = \sum_{k=12}^{47} [wP(k)]$$

We have five unknown parameters, w, β_0 , β_1 , β_2 , and λ , which allows us to fit the five data points, U^1 , $U^{2.3}$, $U^{4.6}$, $U^{7.12}$, $U^{13.+}$, exactly.

State Space Model: Measurement equation

$$U_t^1 = w_t + r_t^1$$

$$U_t^{2.3} = [w_{t-1}P_t(1) + w_{t-2}P_t(2)] + r_t^{2.3}$$

$$U_t^{4.6} = \sum_{k=3}^5 [w_{t-k}P_t(k)] + r_t^{4.6}$$

$$U_t^{7.12} = \sum_{k=6}^{11} [w_{t-k}P_t(k)] + r_t^{7.12}$$

$$U_t^{13.+} = \sum_{k=12}^{47} [w_{t-k}P_t(k)] + r_t^{13.+}$$

$$P_t(j) = p_{t-j+1}(1)p_{t-j+2}(2)\dots p_t(j).$$

$$r_t \sim N(0, R)$$

$$\underbrace{R_1^2 \quad 0 \quad 0 \quad 0}_{0 \quad R_{2.3}^2 \quad 0 \quad 0 \quad 0}_{0 \quad 0 \quad R_{4.6}^2 \quad 0 \quad 0}_{0 \quad 0 \quad 0 \quad R_{7.12}^2 \quad 0}_{0 \quad 0 \quad 0 \quad 0 \quad R_{13+1}^2}$$

•

Assume driving variables evolve smoothly over time

- w_t = w_{t-1} + ε^w_t
 λ_t = λ_{H,t-1} + ε^λ_t
 β_{0t} = β_{0,t-1} + ε^{β₀}_t
- $\beta_{1t} = \beta_{1,t-1} + \epsilon_t^{\beta_1}$
- $\beta_{2t} = \beta_{2,t-1} + \epsilon_t^{\beta_2}$

Let ξ_t be the vector $(w_t, \lambda_t, \beta_{0t}, \beta_{1t}, \beta_{2t})'$ and $\varepsilon_t = (\varepsilon_t^w, \varepsilon_t^\lambda, \varepsilon_t^{\beta_0}, \varepsilon_t^{\beta_1}, \varepsilon_t^{\beta_2})'$.

State Space Model

Nonlinear state space model \rightarrow Extended Kalman filter

Estimates: level, slope and curvature

Figure: Estimates of level, slope and curvature with the value of $\lambda_t = 1.94$

Estimates: factor loadings, inflows, and λ

Monthly unemployment-continuation probabilities

Figure: The model-implied monthly unemployment continuation probabilities by duration of unemployment

Definition of DS-TUR The unemployment rate consisted only of the trend components of $(\hat{w}_{t|T}, \hat{\beta}_{0,t|T}, \hat{\beta}_{1,t|T}, \hat{\beta}_{2,t|T})'$ and the level of $\hat{\lambda}_{t|T}$.

- Extract the trend components of the four parameters, and feed the trends back into the accounting identity model to recover the trend unemployment
- ② Divide the trend unemployment by the trend labor force

$$DS-TUR_{t} = 100 \times \frac{\mathbf{1}' h(\hat{\psi}_{t|T}, \hat{\psi}_{t-1|T}, ..., \hat{\psi}_{t-47|T}, \hat{\lambda}_{t|T}, \hat{\lambda}_{t-1|T}, ..., \hat{\lambda}_{t-47|T})}{\hat{\psi}_{t|T}^{LF}}$$

where

 $\begin{aligned} \hat{\psi}_{t|T} &= [\hat{\psi}_{t|T}^{w}, \hat{\psi}_{t|T}^{\beta 0}, \hat{\psi}_{t|T}^{\beta 1}, \hat{\psi}_{t|T}^{\beta 2}]' \\ \mathbf{1}: \text{ a } (5 \times 1) \text{ vector of ones} \\ h(\cdot): \text{ the measurement equations without measurement errors.} \end{aligned}$

Estimate the standard model for trend-cycle decomposition (specified in a quarterly frequency) with a Bayesian method (Chan et al.(2019))

Assume that $\hat{w}_{q|T}$ follows an I(2) process. The trend component ψ_q^w has a time-varying growth rate, μ_q^w :

$$\hat{w}_{q|T} = \underbrace{\psi^w_q}_{trend} + \underbrace{c^w_q}_{cycle}$$

Trend
$$\psi_{q}^{w} = \mu_{q}^{w} + \psi_{q-1}^{w}$$

 $\mu_{q}^{w} = \mu_{q-1}^{w} + \epsilon_{\psi q}^{w}, \quad \epsilon_{\psi q}^{w} \sim N(0, (\sigma_{\psi}^{w})^{2})$
 $\Rightarrow \bigtriangleup \psi_{q}^{w} = \bigtriangleup \psi_{q-1}^{w} + \epsilon_{\psi q}^{w}.$

 $\begin{array}{ll} \mathsf{Cycle} & c_q^w = \phi_1^w c_{q-1}^w + \phi_2^w c_{q-2}^w + \epsilon_{cq}^w, \quad \epsilon_{cq}^w \sim \mathit{N}(0, (\sigma_c^w)^2) \end{array} \\ \text{The same model is used to estimate the trends of other parameters.} \end{array}$

Trend estimates

DS-TUR (1980-2019)

The low-frequency variation in the distribution of unemployment duration is used to identify the trend unemployment rate.

• The persistent effects of structural changes in the labor markets (e.g., mismatch and extended UI benefits) are captured by the long-term trend unemployment.

Duration components of DS-TUR

Decline in short-term U. since 1980s \rightarrow decreased frictional unemployment Increase in long-term U. during 2000s \rightarrow increased structural unemployment

Consider a simple Phillips curve model

$$\pi_q = c_0 + \frac{c_1}{g} a p_q + c_2 \pi_{q-1} + c_3 \pi_{q-2} + c_4 \pi_q^e + c_5 \pi_{q-1}^e + e_q$$

where π_q^e denotes the average 1-year-ahead inflation expectations from the Michigan survey in quarter q.

Alternatively, also replace gap_q with gap_q^j for j = 1, 2.3, 4.6, 7.+, where

$$gap_q^j = ru_q^j - \mathsf{DS-TUR}_q^j$$

Key results

- The short-term unemployment rate gap has a strong Phillips correlation with PCE inflation, while the Phillips correlation with the aggregate gap is small.
- Replacing the unemployment-rate gaps with the unemployment rates by the duration, none of the Phillips correlation coefficients are statistically significant.

Table: Estimation results (2000:Q1-2019:Q4)

	gap _q	gap_q^1	$gap_q^{2.3}$	$gap_q^{1.3}$	$gap_q^{1.6}$	$gap_q^{7.+}$	gap _q ^{CBO}
<i>c</i> ₀	-0.30	-0.22	-0.31	-0.28	-0.25	-0.28	-0.33
S.E.	(0.33)	(0.32)	(0.32)	(0.31)	(0.32)	(0.33)	(0.33)
Gap	-0.070*	-1.32**	-0.60**	-0.46**	-0.24**	-0.071	-0.071*
S.E.	(0.037)	(0.46)	(0.20)	(0.15)	(0.088)	(0.059)	(0.037)
π_{q-1}	0.99**	0.92**	0.90**	0.89**	0.91**	1.026**	0.98**
1 S.E.	(0.11)	(0.11)	(0.11)	(0.11)	(0.11)	(0.10)	(0.11)
π_{q-2}	-0.37**	-0.29**	-0.32**	-0.31**	-0.33**	-0.38**	-0.37**
S.E.	(0.090)	(0.091)	(0.089)	(0.088)	(0.089)	(0.092)	(0.091)
π_a^e	0.63**	0.54**	0.61**	0.58**	0.60**	0.64**	0.64**
S.E.	(0.12)	(0.12)	(0.12)	(0.12)	(0.12)	(0.12)	(0.12)
π_{q-1}^e	-0.28**	-0.23*	-0.23**	-0.22**	-0.25**	-0.31**	-0.27**
S.E.	(0.14)	(0.14)	(0.14)	(0.13)	(0.13)	(0.14)	(0.14)
Adj. R ²	0.77	0.78	0.78	0.79	0.78	0.77	0.77

Table: Estimation results (2000:Q1-2019:Q4)

	ru _q	ru_q^1	$ru_q^{2.3}$	$ru_q^{1.3}$	$ru_q^{1.6}$	$ru_q^{7.+}$
<i>c</i> ₀	-0.087	-0.24	0.075	0.058	0.056	-0.25
S.E.	(0.34)	(0.51)	(0.38)	(0.43)	(0.30)	(0.33)
UR	-0.048	0.0042	-0.26	-0.10	-0.086	-0.076
S.E.	(0.030)	(0.23)	(0.20)	(0.16)	(0.063)	(0.050)
π_{q-1}	1.00**	1.049**	0.99**	1.021**	1.00**	1.010**
S.E.	(0.11)	(0.19)	(0.11)	(0.11)	(0.11)	(0.10)
π_{q-2}	-0.36**	-0.37**	-0.34**	-0.35**	-0.35**	-0.38**
S.E.	(0.090)	(0.094)	(0.092)	(0.093)	(0.092)	(0.091)
π_q^e	0.64**	0.62**	0.63**	0.62**	0.63**	0.65**
S.E.	(0.12)	(0.12)	(0.12)	(0.12)	(0.12)	(0.12)
π_{q-1}^e	-0.29**	-0.34**	-0.29**	-0.32**	-0.31**	-0.29**
S.E.	(0.14)	(0.14)	(0.14)	(0.14)	(0.14)	(0.14)
Adj. R ²	0.76	0.76	0.77	0.76	0.76	0.77

Conclusion

This paper

- Introduces the duration structure of unemployment hazards
- 2 develops a novel method to estimate the trend unemployment rate

Main takeaways:

- The identification of trend unemployment rate is achieved not only from the trends in labor-force flows but also from the low-frequency changes in the distribution of unemployment duration.
- Secular decline in short-term trend unemployment rate → decline in frictional unemployment rate; Secular rise in long-term trend unemployment rate → rise in structural unemployment rate.
- The short-term unemployment-rate gap has a strong Phillips correlation with PCE inflation.