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signals: two exogenous events - the March 11, 2011 Tohoku earthquake and tsunami and the July 20, 2015 
New Yorker article “The Really Big One”; a hazard planning change – the 2013 release of new official 
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hazard zone installed by Oregon’s Tsunami Blue Line project. For the first analysis, results suggest that a 
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after the Tohoku event, with a return to baseline levels within 2.5 years. For the second analysis, I find 
evidence that the 2013 hazard planning change was capitalized into home values in only the most vulnerable 
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1 Introduction 

Severe but low frequency events pose a unique challenge for hazard planning. The connection between risk 

perception about catastrophic events and preparedness action is still much disputed (Wachinger et al., 

2013). The risk of a catastrophic natural disaster must be salient to the people it will impact to translate into 

personal preparedness. If the risk is either not salient to individuals or does not translate into behavior 

change, it may fall on policymakers to correct the market failure to internalize risk and increase resilience. 

The Pacific Northwest of the United States (U.S.) is facing such a challenge. There is a 7 to 15 

percent chance for a major earthquake (up to 9.2 in magnitude) to occur in the next 50 years along the 

Cascadia Subduction Zone (CSZ) (OSSPAC, 2013). In Oregon, preparedness for such a large seismic event 

is low. A recent study estimated that economic losses could be more than $30 billion – almost one-fifth of 

Oregon’s gross state product – and fatalities due to the combined earthquake and tsunami could be more 

than ten thousand (OSSPAC, 2013). Coastal communities in the tsunami zone are especially vulnerable 

since they will experience the strongest earthquake motions due to their proximity to the fault, will be 

subject to multiple tsunami inundations, and will account for the majority of expected fatalities (OSSPAC, 

2013; Schulz, 2015b). 

Individual Oregonians can increase their resilience by retrofitting their homes, purchasing 

earthquake and flood insurance, or moving away from high-risk areas such as the tsunami inundation zone. 

Whether individuals will take action to prepare themselves depends in part on their beliefs about the risk of 

a Cascadia earthquake and tsunami occurring in their lifetimes. If Oregonians’ subjective risk perceptions 

underestimate the objective probability of a Cascadia event – if the risk is not salient – then they will likely 

underprepare themselves. This gap between subjective risk perceptions and objective risk is plausible given 

that Oregon has not experienced a major earthquake and tsunami in recent history – the last CSZ earthquake 

and tsunami occurred in 1700 – and has low resilience compared to countries, like Japan and Chile, that 

regularly experience earthquakes (OSSPAC, 2013). The lack of recent earthquakes has led Oregon to also 

be less prepared and more vulnerable than its neighboring states of California and Washington (Totten, 

2019). This motivates an important question about tsunami risk perceptions: Can new information about 

the risk of a Cascadia earthquake and tsunami change people’s risk perceptions and narrow the gap between 

subjective and objective risk? Here, I investigate whether a risk discount is present in coastal Oregon 

housing markets following exogenous information shocks about tsunami risk. I study the housing market’s 

response to three sets of risk signals: 1) two exogenous events – the March 11, 2011 Tohoku (Japan) 

earthquake and tsunami and the July 20, 2015 New Yorker article “The Really Big One”; 2) a hazard 

planning change – the release of new official tsunami evacuation maps in 2013 by the Oregon Department 

of Geology and Mineral Industries (DOGAMI); and 3) visual cues of tsunami risk – the Tsunami Blue Line 
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project, which has installed signage denoting the upper limit of the tsunami inundation zone in communities 

along the coast since 2016. 

Using a dataset of residential property transactions for the Oregon coast (Zillow, 2020), I estimate 

the treatment effects of these tsunami risk signals in a series of hedonic difference-in-differences (DID) and 

triple differences (DDD) frameworks. First, I use information from the northern Oregon coast housing 

market to estimate the impact of two exogenous events that represent “pure” or “distant” information shocks 

in that there is no actual disaster event or that the disaster event is distant and there is little associated local 

damage. An increased volume of Google searches suggest that these events were salient to Oregonians and 

may be a mechanism by which individuals update perceptions of risk related to the potential for a major 

Cascadia event. I test how these information shocks capitalize into home values in the three northernmost 

coastal counties in Oregon (Clatsop, Tillamook, and Lincoln). I differentiate risk using a regulatory tsunami 

hazard line as the treatment boundary since the entire coastline is likely to face similar impacts from an 

earthquake. Results suggest that a property inside the regulatory tsunami inundation zone sells for 7-9% 

less than a property outside of the zone after the Tohoku event. This result is robust to a number of 

alternative specifications, including the Oaxaca-Blinder estimator, four post-matching estimators, and an 

event study specification. I find that the effect is short-lived as property prices inside the inundation zone 

quickly return to baseline levels within 2.5 years of the Tohoku event. 

I then use housing information from the entire Oregon coast to estimate the impact of the 2013 

update of official tsunami inundation and evacuation maps based on a new series of modeled inundation 

maps for five CSZ scenarios (S, M, L, XL, XXL) (DOGAMI, n.d.-a). The largest of this series – the XXL 

scenario – became the inundation line for official tsunami evacuation brochures and signage, supplanting 

the original and more conservative inundation line that was established in 1995 through Senate Bill 379. 

This hazard planning change represents a tsunami risk signal – and a “pure” information shock – about 

houses that were not in the original 1995 SB 379 evacuation zone but found themselves inside one of the 

new 2013 inundation zones. I find the estimates are not statistically significant for the XXL, XL, L or M 

tsunami inundation zones. The DID and Oaxaca-Blinder estimators for the smallest inundation zone (SM) 

suggest that homes that were not in the original tsunami inundation zone but are now in the most vulnerable 

inundation zone sell for 17-31% less after the map update. This risk discount does not have a statistically 

significant decay effect.  

Lastly, the Tsunami Blue Line project has installed thermoplastic blue line signs on the 2013 XXL 

tsunami inundation line on roads in several coastal communities since its launch in 2016 (Office of 

Emergency Management, 2016). The blue lines are visual cues of tsunami risk and their installation 

represents a tsunami risk signal and a “pure” information shock to properties near those blue lines. To 

determine whether this project resulted in a risk discount for homes near the blue lines and inside the 
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tsunami evacuation zone, I estimate the effect of the blue lines on property prices, with properties 

differentiated by proximity to the blue lines and – for a DDD approach – by the XXL tsunami inundation 

zone. Results from my preferred standard two-way fixed effects (TWFE) DID model suggest there is an 

8.0% risk discount for properties that are within 1000’ of a blue line. The DDD results for this model are 

not statistically significant, suggesting homebuyers attend to the visual cue but not the risk signal given by 

the tsunami inundation zone. However, since the blue lines were installed at different times, there is 

variation in treatment timing. Several recent studies have pointed out problems with interpreting the results 

of the standard TWFE DID regression when the treatment effect is heterogeneous over time (Borusyak & 

Jaravel, 2017; de Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 2018; Sun & Abraham, 2020). 

To explore this further I first assess the robustness of the TWFE estimator to heterogeneous treatment 

effects using the measure proposed by de Chaisemartin and D’Haultfœuille (2020) and then I estimate two 

new estimators that are valid in the presence of treatment effect heterogeneity (Callaway & Sant’Anna, 

2020; de Chaisemartin & D’Haultfœuille, 2020). Using de Chaisemartin's and D’Haultfœuille's (2020) 

approach, I find a large, negative, but not statistically significant effect. The data for this analysis is too 

sparse to be able to estimate most of Callaway's and Sant’Anna's (2020) group-time average treatment 

effects. Treatment effect heterogeneity could be a problem for this analysis, however, this dataset is 

composed of small, rural communities so I do not have the power to precisely estimate treatment effects 

that account for treatment effect heterogeneity. 

This work contributes to the hedonic literature on hazard risk and the impacts of information on 

subjective risk perceptions. This paper is one of few studies that attempts to measure the effects of “pure” 

or “distant” information shocks in that either there is no actual disaster event, as in the case of the 2015 

New Yorker article, 2013 evacuation map change, and the Tsunami Blue Line project, or that the disaster 

event is distant and there is little associated local damage, as in the case of the 2011 Tohoku earthquake 

and tsunami (Atreya & Ferreira, 2015; Brookshire et al., 1985; Gibson & Mullins, 2020; Gu et al., 2018; 

Hallstrom & Smith, 2005; Nakanishi, 2017; Parton & Dundas, 2020). To my knowledge, this paper is also 

the first to investigate the tsunami risk discount in property values disentangled from the earthquake risk 

discount. Previous studies have explored either the combined earthquake and tsunami risk or the earthquake 

risk alone (Beron et al., 1997; Brookshire et al., 1985; Gu et al., 2018; Nakanishi, 2017; Naoi et al., 2009). 

This study’s results also contribute to the literature on risk salience (Kask & Maani, 1992; Nakanishi, 2017) 

and the link between risk perception and preparedness action (Wachinger et al., 2013). 

My results have important risk communication and policy implications for the Pacific Northwest. 

Research shows that Oregon is chronically under-prepared for a Cascadia earthquake and tsunami 

(OSSPAC, 2013). Policymakers and emergency managers will need to communicate risk more effectively 

to increase risk salience and induce individual decision-makers to take appropriate preparedness actions. 
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Some recent policy changes have even done the opposite. House Bill 3309, passed and signed in June 2019 

with nearly unanimous bipartisan support in both the Oregon House and Senate, overturns a nearly 25-year-

old law prohibiting new schools, hospitals, jails, police stations, and fire stations from being built in the 

tsunami inundation zone (Oregonian, 2019). Efforts such as this run counter to Oregon’s dual policy 

challenge of increasing risk salience and preparedness actions. The potential risk discounts identified here 

suggest that at least three types of tsunami risk signals – exogenous events, hazard planning changes, and 

visual cues – may be salient to coastal residents. These results suggest that “pure” or “distant” information 

shocks can shift homebuyers’ subjective risk perceptions to better match the objective risks of the Cascadia 

event. Thus, according to these findings, policies and other “pure” information shocks may be able to 

successfully communicate the risk of a Cascadia event and induce individuals to take preparedness actions. 

And given Oregon’s current and chronic under-preparedness for a Cascadia event, additional policies – or 

risk signals – are needed to mitigate hazard risk. 

This paper proceeds as follows. Section 2 reviews the hedonic literature on risk and hazards, along 

with empirical strategies to investigate price differentials across hazard zones and the persistence of risk 

premium changes. Section 3 describes the study areas and their policy and news backgrounds. Section 4 

describes the data collected and some key data limitations. Section 5 defines my empirical approach and 

discusses identification strategies for all three analyses. Section 6 presents results for all three analyses. 

Section 7 concludes by providing a summary of my current findings, potential next steps to identify these 

risk signals, and implications for resilience planning and policy.  

2 Hazards and housing markets: previous research 

The property attribute of interest in this paper is subjective tsunami risk and I use hedonic frameworks to 

test whether three different types of tsunami risk signals capitalize into coastal Oregon property values. 

Rosen's (1974) seminal paper was the first to show that regressing observed product prices on their 

attributes can reveal buyers’ marginal willingness-to-pay (MWTP) for individual attributes of a 

differentiated product.2 Modern hedonic property models typically rely on the foundational assumptions 

that the total supply of housing is fixed and implicit marginal prices represent market equilibria (Hanley et 

                                                            
2 Kuminoff and Pope (2014) point out that the parameters estimated by panel models such as difference-in-differences are not 
necessarily theoretically equivalent to the parameters (MWTP) identified by the reduced-form (first-stage) hedonic model. Rosen’s 
model considers market equilibrium, not the equilibrating process that would follow an exogenous change in product attributes. If 
we are willing to make the assumption that the gradient of the price function is constant over the duration of the study period, then 
we can interpret the panel model coefficients as MWTP values (Kuminoff & Pope, 2014). This is a strong assumption for study 
periods that span potentially large changes in house and neighborhood attributes – such as the eight-year duration of the first 
analysis (2009-2017). Therefore, I interpret the coefficient estimates from my hedonic approach as capitalization effects, not 
MWTP, because they describe how the change in the attribute of interest was capitalized into housing prices over time. 
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al., 2007). Since Rosen (1974), many studies have used this method to estimate capitalization of risk factors 

in housing prices. 

Previous literature has used hazard events or regulatory hazard delineation to identify the impact 

of risk on housing prices. In one of the first studies of its kind, Brookshire et al. (1985) found significant 

discounting of housing prices in zones with high earthquake risk in California following the passing of an 

earthquake risk disclosure law in 1974. The majority of hedonic earthquake risk studies have examined the 

impacts of specific earthquake events (Beron et al., 1997; Gu et al., 2018; Naoi et al., 2009). Other hedonic 

studies that investigate earthquake risk impacts without the occurrence of a local seismic event have 

nonetheless focused on locations like California and Japan where earthquakes have occurred in recent 

memory (Brookshire et al., 1985; Nakanishi, 2017). Hedonic models have also been used to measure risk 

premiums for natural hazards like floods (Atreya et al., 2013; Kousky, 2010), hurricanes (Bakkensen et al., 

2019; Bin & Landry, 2013; Gibson & Mullins, 2020; Hallstrom & Smith, 2005), wildfires (McCoy & 

Walsh, 2018), and coastal storm surge (Dundas, 2017; Qiu & Gopalakrishnan, 2018), as well as man-made 

sources of risk like proximity to fuel pipelines (Hansen et al., 2006) and hazardous waste sites (McCluskey 

& Rausser, 2001). 

 Recently, difference-in-differences (DID) approaches have been used to show that disaster events 

can increase house price differentials across hazard zones (Atreya et al., 2013; Bakkensen et al., 2019; Bin 

& Landry, 2013; Gibson & Mullins, 2020; McCoy & Walsh, 2018; Nakanishi, 2017; Naoi et al., 2009). 

The quasi-experimental DID approach uses a recent disaster as an exogenous information change to 

separate properties into a treatment group that experiences the disaster event and a control group that does 

not. The idea behind this approach is that the disaster event provides new information that causes a change 

in the level of subjective risk that may capitalize into house prices. Temporal variation in the attribute of 

interest is used to difference out time-invariant omitted variables that would otherwise confound 

identification. The DID approach allows us to isolate contemporaneous effects, such as macroeconomic 

shocks or housing supply changes, and measure only the effect attributable to the exogenous risk signal. 

Triple differences (DDD) has also been used to recover amenity and disamenity effects on property prices 

(Bakkensen et al., 2019; Muehlenbachs et al., 2015; Qiu & Gopalakrishnan, 2018). In the hazard risk 

literature, the DDD approach has typically exploited an additional treatment (control) group that is more 

(less) sensitive to the treatment, i.e., the DDD estimator compares the DID estimator for observations 

considered to be more sensitive to the treatment to the DID estimator for observations that are less sensitive 

to the treatment.  

Information available to housing market participants can change due to a catastrophic event, media 

coverage, or new laws (Bakkensen et al., 2019; Bin & Landry, 2013; Brookshire et al., 1985; Gibson & 

Mullins, 2020; Hallstrom & Smith, 2005; Kask & Maani, 1992; Kousky, 2010; McCluskey & Rausser, 
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2001; McCoy & Walsh, 2018; Parton & Dundas, 2020; Qiu & Gopalakrishnan, 2018). Kask and Maani 

(1992) were the first to show that consumers’ subjective probabilities may under or overestimate objective 

probabilities, biasing hedonic prices under conditions of uncertainty. Under the uncertainty of a hazardous 

event occurring, hedonic prices are based on consumers’ subjective probability which they define as a 

function of the objective probability, the consumer’s expenditures on self-protection (e.g., insurance) and 

information level (an exogenous variable). The effect of increased information on behavior depends on the 

gap between objective risk and the consumer’s initial subjective risk, e.g., above-average objective risk and 

a lower initial subjective probability will lead to increasing subjective probability and hedonic price as 

information increases (Kask & Maani, 1992).  

New information can lead individuals to update their subjective perceptions of risk and, in turn, 

risk premiums may be identified in a hedonic model. However, few studies have attempted to measure the 

effects of a “pure” information shock – when there is no actual disaster event – on property prices (Atreya 

& Ferreira, 2015; Brookshire et al., 1985; Gibson & Mullins, 2020; Nakanishi, 2017; Parton & Dundas, 

2020). For example, Gibson and Mullins (2020) use DID to look at housing market responses to two “pure” 

flood risk signals in New York – the passing of the Biggert-Waters Flood Insurance Reform Act (which 

increased flood insurance premiums) and new floodplain maps produced by the Federal Emergency 

Management Agency (FEMA) – as well as housing market responses to an actual disaster event – Hurricane 

Sandy. The release of the new floodplain maps, which had not been updated in 30 years, was accompanied 

by prominent press coverage and presented New Yorkers with three decades worth of updated information 

about climate change in a single event. Hurricane Sandy and the Biggert-Waters Act, similarly, acted as 

exogenous information shocks about flood risk. Gibson and Mullins (2020) find that all three flood risk 

signals decreased the sales prices of impacted properties by 3% to 11% (depending on the risk signal).  

Furthermore, salience of risk may capitalize into property prices only temporarily after a disaster 

event. Other studies have found that the change in risk premium due to a disaster event may disappear 

rapidly over the course of a couple of years if additional disaster events do not occur (Atreya et al., 2013; 

Bin & Landry, 2013; Hansen et al., 2006; Kousky, 2010; McCluskey & Rausser, 2001; McCoy & Walsh, 

2018). Leveraging multiple storm events in North Carolina, Bin and Landry (2013) find risk premiums 

between 6.0% and 20.2% following major flooding events for properties inside the 100-year flood zone. 

This risk premium decreases over time without new flood events and disappears 5-6 years after the last 

recorded event. This decay of risk premium suggests that people’s risk perceptions change with the 

prevalence of disaster events. Without new information, individuals’ subjective probabilities will diminish. 

Hansen et al. (2006) investigate the effects of distance from a fuel pipeline on property prices in Bellingham, 

WA before and after a major pipeline accident in 1999. They find a large risk discount following the 

accident and that, for a given distance from the pipeline, the effect of the explosion decays over time. 
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Hansen et al. (2006) point out three reasons why the effect of an event on subjective risk perceptions may 

decrease over time. First, the informational effect of the event will diminish as new people move into the 

area. Second, individuals who were exposed to the event may experience decay of their active recall of the 

event. Their passive recall of the event may be intact, such that they can recall the event if prompted, but 

for the event to have an effect on property prices, homebuyers must be thinking about the risk when making 

purchasing decisions. Lastly, in addition to providing information, a disaster event focuses attention on the 

hazard risk and can cause the subjective risk to increase beyond the level of objective risk. However, as 

media coverage decreases and people’s attention turns to more recent events, this attention-focusing effect 

of the event will diminish over time. 

A related explanation for the observed decay in risk premium is availability bias – wherein 

individuals’ subjective probability of an event occurring depends on how recent or memorable that event 

was (Atreya et al., 2013; Bin & Landry, 2013; Gallagher, 2014; Kousky, 2010; McCoy & Walsh, 2018). 

Availability bias implies that a decision maker’s subjective risk perception depends on the availability of 

information and/or recall of events related to the hazard in question. The low frequency of disaster events 

suggests that individuals without recent experience with natural hazards have limited information and 

ability to recall similar events. Thus, availability bias would suggest that these individuals have low 

subjective risk perceptions. For example, Gallagher (2014) uses an event study framework to estimate the 

effect of large regional floods on insurance uptake rates and finds strong evidence of an immediate increase 

in the fraction of homeowners with flood insurance policies in communities hit by the flood. The insurance 

uptake rate steadily declines until, after nine years, the effect of the flood is no longer statistically 

distinguishable in uptake rates. Gallagher (2014) also finds that this insurance uptake spike-and-decay 

pattern repeats if a community is hit by another flood, suggesting that the occurrence of new flood events 

is relatively important in forming flood risk beliefs. Without new information, individuals’ subjective 

probabilities will diminish.   

However, even when the natural hazard risk is salient, it may not translate into behavior. In their 

review of prior research on natural hazard risk perception and behavior, Wachinger et al. (2013) find that 

the link between risk perception and preparedness action can be weak even when individuals understand 

the risk. Wachinger et al. (2013) also find that the main factors responsible for determining risk perception 

are direct experience of a natural hazard, trust in scientific experts and authorities, and confidence in 

protective measures. Secondary but significant factors include media coverage, a form of indirect 

experience, and home ownership, which stimulates concern when the homeowner perceives a vulnerability 

or has personal experience. They note that the indirect experience provided by mass media influences risk 

perception but only when the respondents lack direct experience.  
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3 Study area and background 

Oregon is a geologic mirror image of northern Japan, where the March 11, 2011 magnitude 9.0 Tohoku 

earthquake caused widespread damage. The resulting tsunami surges also caused millions of dollars of 

damages to parts of the Oregon coast (Jung, 2011). The majority of damage in Oregon was concentrated in 

the port of Brookings where the waves destroyed docks, resulting in $7 million in damage (Tobias, 2012). 

Longer-term effects of the tsunami included multiple cleanup efforts as debris from Japan slowly made its 

way to Oregon shores.  

Oregon is due to experience a major subduction zone earthquake of a similar magnitude to the 

Tohoku event. The probability of a Cascadia Subduction Zone (CSZ) earthquake occurring in the next 50 

years is 7-15% for a great earthquake between 8.7 and 9.2 magnitude and approximately 37% for a very 

large earthquake between 8.0 and 8.6 magnitude (OSSPAC, 2013). Unlike Japan, Oregon’s resilience to a 

magnitude 9.0 Cascadia earthquake is low. Coastal communities in the tsunami zone are especially 

vulnerable since they will experience the strongest earthquake motions due to their proximity to the fault 

and will then be subject to multiple tsunami inundations for up to 24 hours after the earthquake (OSSPAC, 

2013). Residents who live within the tsunami inundation zone may be displaced instantly. It may take 3 to 

6 months to restore electricity, 1 to 3 years to restore drinking water, and up to 3 years to restore healthcare 

facilities on the coast (OSSPAC, 2013). 

In their 2013 report, the Oregon Seismic Safety Policy Advisory Commission (OSSPAC) (2013) 

separated Oregon into four impact zones based on the expected pattern of damage for a 9.0 Cascadia 

earthquake and tsunami scenario (Figure 1). They predict that damage will be the most extreme in the 

tsunami (inundation) zone and heavy throughout the coastal zone. The coastal zone, which encompasses 

most of the coastal county population centers, is expected to experience severe damages from shaking, 

liquefaction, and landslides. Throughout the coastal zone, single-family homes and other wood frame 

structures will shift off foundations if unsecured. In some areas of the coast, even well-built wooden 

structures may be heavily damaged and in need of replacement. However, in the tsunami (inundation) zone, 

the damage will be nearly complete. The tsunami will not only further damage buildings, roads, and utilities 

but it will also “obliterate nearly all wood frame buildings” (OSSPAC, 2013, p. 49). This difference in 

outcomes of residential buildings inside versus outside the tsunami inundation zone suggests that there is a 

distinct difference between earthquake and tsunami risk for coastal residents. Similarly, the tsunami zone 

will also experience a higher proportion of fatalities. Approximately 4% of permanent residents in the seven 

coastal counties live in the tsunami inundation zone (as defined by the 1995 SB 379 regulatory tsunami 

line) (Wood, 2007). However, half of the fatalities of a 9.0 magnitude Cascadia event are expected to be 

due to the tsunami (OSSPAC, 2013).  
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Even though the entire coastline would experience similar impacts from an earthquake, coastal 

homes outside of the tsunami inundation zone may survive the Cascadia earthquake but those inside of the 

zone will likely not. In this paper, I differentiate risk using the tsunami inundation lines from maps produced 

by the Oregon Department of Geology and Mineral Industries (DOGAMI) as the treatment boundaries. 

Senate Bill 379 established the original tsunami inundation zone in Oregon in 1995. This line, also known 

as “SB 379,” represents the best estimate of tsunami inundation from a typical or most likely Cascadia 

earthquake in 1995 (DOGAMI, n.d.-b). The 1995 SB 379 line was the regulatory tsunami inundation line 

for Oregon until 2019 and limited the construction of certain critical and essential facilities inside the 

inundation line (DOGAMI, n.d.-b). House Bill 3309 overturned the regulatory power of the SB 379 line in 

2019. Official tsunami evacuation brochures and signage used the SB 379 line until 2013 when DOGAMI 

released a new series of tsunami inundation maps for a Cascadia earthquake. The 2013 tsunami inundation 

map series TIM Plate 1 was derived using systematic, Oregon-coast-wide models of tsunami inundation for 

five scenarios – XXL, XL, L, M, and SM – that represent the full range of severity of past and expected 

tsunamis (DOGAMI, n.d.-a). The largest scenario of this series – the XXL scenario – became the one used 

by DOGAMI to represent the “maximum local source” inundation level in their official tsunami evacuation 

maps and signage (DOGAMI, n.d.-a). Thus, the XXL scenario has represented the tsunami evacuation line 

 
Figure 1. Impact zones for the magnitude 9.0 Cascadia earthquake scenario. Damage will be extreme in the Tsunami zone, 
heavy in the Coastal zone, moderate in the Valley zone, and light in the Eastern zone. From Figure 1.5 of the “Oregon Resilience 
Plan” (OSSPAC, 2013). 
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for the public at large since 2013. The release of the evacuation maps in 2013 also confronted homeowners 

who were outside of the 1995 SB 379 evacuation zone but inside the 2013 XXL evacuation zone with new 

and up-to-date information about tsunami risk. Thus, this change in hazard planning also acts as a “pure” 

information shock about those houses. 

The July 20, 2015 New Yorker article “The Really Big One” by Kathryn Schulz (2015a) brought 

national media attention to the predicted Cascadia event and to Oregon’s low level of resilience and 

preparation for it. This article went viral in the summer of 2015 (Fletcher & Lovejoy, 2018; Lacitis, 2015; 

Marum, 2016). It also prompted preparedness actions such as the selling out of emergency preparedness 

kits (Lacitis, 2015; Lovejoy, 2018), earned its author a Pulitzer (Marum, 2016), and motivated a book 

addressing risk perception, preparedness, and communication (Fletcher & Lovejoy, 2018). In a chapter of 

this book, Crowe (2018) compares media coverage of the CSZ before and after Schulz’ article. She finds 

that before Schulz’ article the 3 largest spikes in U.S. newspaper coverage occurred after the 2001 Nisqually 

 
Figure 2. Google searches between 1/1/04 and 1/1/18 in Oregon as measured by search interest relative to the highest point 
on the chart for the given region and time range. (a) For terms “Oregon earthquake”, “Cascadia subduction zone”, and 
“Earthquake prediction”. (b) For terms “Oregon earthquake” and “Oregon tsunami”. The term “Oregon tsunami” is omitted 
from (a) due to an order of magnitude spike in search intensity for “Oregon tsunami” during the Tohoku event relative to the 
other three terms over the time range.  
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earthquake in WA, the 2004 Indian ocean earthquake and tsunami, and the 2011 Tohoku earthquake and 

tsunami (Crowe, 2018). The Tohoku earthquake and tsunami had the most media coverage to date that 

connects the CSZ to another natural disaster. Within 3 months of “The Really Big One”, 33 unique 

newspaper articles were published that referenced both Schulz’ article and the CSZ. Journalists reported on 

increased individual actions following the article, e.g., spikes in earthquake survival kit sales and home 

earthquake retrofitting, and group actions including public forums, events, and roundtables on earthquake 

preparedness. Essentially, “The Really Big One” both communicated the risk of the Cascadia earthquake 

and tsunami and spurred the public to prepare for it (Lovejoy, 2018).  

Google search intensity spikes are also in line with Crowe's (2018) findings of spikes in media 

coverage following Schulz’ 2015 New Yorker article and the 2011 Tohoku earthquake and tsunami. Figure 

2(a) graphs the Google searches in Oregon for the terms “Oregon earthquake”, “Cascadia subduction zone”, 

and “Earthquake prediction” between 2004 and 2017. Search popularity is measured as a percentage of 

search interest relative to the highest point on the chart for Oregon web users (searches originating from 

Oregon addresses) between 2004 and 2017 (Google Trends, n.d.). The number of searches peaked in July 

2015 reflecting the viral popularity of the New Yorker article. The Tohoku earthquake and tsunami in 

March 2011 represents the second highest peak in searches and was 75% as popular as the New Yorker 

article. However, the search intensity for “Oregon earthquake” at its peak after the 2015 New Yorker article 

is only 40% of the search intensity for “Oregon tsunami” at its peak during the 2011 Tohoku event (see 

Figure 2(b)).  

Combined, the increase in internet searches for information on an Oregon earthquake/tsunami and 

media coverage on the CSZ immediately after these two events suggests that they acted as information 

shocks to Oregon residents. The Tohoku 2011 earthquake and tsunami could have increased Oregonians’ 

information levels about the Cascadia event due to its similarity to the predicted Cascadia event and the 

fact that its impacts were felt on the Oregon coast. The 2015 New Yorker article also likely impacted 

Oregonians’ information levels and risk perceptions about the Cascadia event through its viral status and 

detailed explanation and illustration of the objective risk. 

Oregon has implemented several policies designed to make the public more aware of and prepared 

for the Cascadia earthquake and tsunami. The Tsunami Blue Line project launched in February 2016 and 

provided communities along the Oregon coast with funds and materials to install thermoplastic blue lines 

and signs marking the entrance to the tsunami evacuation zone (Office of Emergency Management, 2016). 

The blue lines and “Leaving Tsunami Zone” signs were installed on the 2013 XXL tsunami inundation and 

evacuation line at various times since 2016 through the present day. Most blue lines are approximately 12” 

wide and have “Leaving Tsunami Zone” signs next to them, as seen in Figure 3(a), though some only have 

the “Leaving Tsunami Zone” sign without an accompanying blue line, as seen in Figure 3(b). Thus, the 
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blue lines present distinct visual markers of entry/exit into the tsunami inundation and evacuation zone. The 

coastal communities that had blue lines installed were Bay City, Cannon Beach, Coos Bay, Florence, Gold 

Beach, Lincoln City, Manzanita/Nehalem, Newport, Reedsport, Seaside, and Yachats as well as some 

unincorporated areas of Lincoln County. Each of these communities managed the installation of their own 

blue lines except for unincorporated communities whose blue lines were installed by their county’s public 

works department. The blue lines and signs were installed on roads generally as close as possible to the 

2013 XXL tsunami line (S. Absher & A. Rizzo, personal communication, December 3, 2021). 

The siting of the blue lines within each community was driven primarily by evacuation concerns. 

For example, the city of Seaside’s Emergency Preparedness Committee identified the best locations for 

pedestrians to be able to see and follow five established evacuation routes (City of Seaside, 2019). They 

concluded that thermoplastic road markers should be placed at evacuation decision points, e.g., if a road is 

intersected by another street they decided to place a marker directing evacuees toward safety. In their 

Tsunami Evacuation Facilities Improvement Plan (TEFIP) the city of Waldport (Lincoln County) proposed 

locations for additional blue lines and tsunami signage, suggesting that blue lines could be used to indicate 

arrival at higher ground along major evacuation routes and that routes should be prioritized for signage 

 
Figure 3. Tsunami blue line signage in (a) Newport, OR (courtesy of Mike Eastman) and (b) Seaside, OR (courtesy of Anne 
McBride). 
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based on traffic and need (City of Waldport, 2019). The TEFIP of the city of Netarts (Tillamook County) 

recommended that blue lines be placed in heavily trafficked areas that would present highly visible locations 

and in areas where additional clarity is needed about the direction of high ground during an evacuation 

(Tillamook County, 2019). Sarah Absher, the director of Tillamook County Department of Community 

Development, noted that topography, road conditions, and the presence of existing signage also informed 

where tsunami signage was located (S. Absher & A. Rizzo, personal communication, December 3, 2021).3 

Some local governments (e.g., Tillamook County) also held community meetings to elicit feedback and 

input about tsunami wayfinding efforts.4 In addition to a statewide press release (Office of Emergency 

Management, 2016) and flyers announcing the new blue lines, several community news agencies also 

reported on their local blue lines following installation (Fontaine, 2016; Kustura, 2016; Sheeler, 2018). 

The first analysis in this paper focuses on the three northernmost counties of Clatsop, Tillamook, 

and Lincoln because the North Oregon coast is expected to experience the most concentrated tsunami 

exposure (OSSPAC, 2013).5 Since the Tohoku earthquake/tsunami and New Yorker article are both “pure” 

or “distant” information shocks, I chose to focus on the region of Oregon that is likely to be the most 

sensitive to such shocks. The northern coast counties have the highest percentages of tsunami-prone land 

that is zoned as urban (Wood, 2007). While 95% of the land in Oregon’s tsunami inundation zone is 

classified as undeveloped, 48% of Clatsop County’s tsunami zone, 34% of Lincoln County’s tsunami zone, 

and 21% of Tillamook County’s tsunami zone are zoned as urban (Wood, 2007). The northern coast cities 

contain the highest number of public venues and dependent-population facilities like schools and hospitals 

in the tsunami inundation zone. These cities also have the highest percentages of their employees in the 

tsunami inundation zone (Wood, 2007). In 2018, the population of these counties was: 39,200 in Clatsop, 

26,395 in Tillamook, and 48,210 in Lincoln (Secretary of State, n.d.-b). All three of these counties are rural  

                                                            
3 For example, a blue line may be effective in locations where heading inland leads evacuees to higher elevations so the blue line 
exists to let evacuees know how far they have to go to be outside of the tsunami inundation zone. However, in communities like 
Rockaway Beach or Cape Meares (Tillamook County) the topography is such that running inland does not necessarily result in 
moving to higher elevations so evacuation routes need to zigzag people through streets and neighborhoods to keep them out of low-
lying areas. In these cases blue lines are less effective than signage that points evacuees in which direction to go next. Another 
factor in deciding where to install blue lines was the condition of the road and the likelihood that the road would be maintained. In 
cases where existing road conditions were poor or road maintenance was infrequent, communities installed signs rather than blue 
lines. Local governments also had to follow existing AASHTO (American Association of State Highway and Transportation 
Officials) road signage guidelines so that tsunami signs were not in conflict with existing signage (S. Absher & A. Rizzo, personal 
communication, December 3, 2021). 
4 These community meetings were attended by a variety of stakeholders including community residents, second home owners, 
realtors, business owners, short term rental management companies, utility districts, and local emergency management personnel 
like the fire district chief and the county sheriff (S. Absher & A. Rizzo, personal communication, December 3, 2021). 
5 So as to measure only the “pure” information effect due to the Tohoku earthquake and tsunami and not the effect of damages 
from the tsunami, Curry County (the southernmost county in Oregon) was intentionally excluded from the potential study area 
because the port of Bookings experienced much higher damage than any other coastal community in Oregon. With this limitation, 
the costs to the Oregon coast are then primarily the indirect cleanup costs of debris from Japan and not direct infrastructure damage. 
According to local newspapers, the majority of damage occurred in southern Oregon and northern California (Jung, 2011; Tobias, 
2012). 
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with the largest city – Newport, the county seat of Lincoln County – having a population of 10,125 in 2018 

(Secretary of State, n.d.-a). Population and housing are concentrated primarily in the small incorporated 

and unincorporated coastal towns of these counties. Clatsop County has five incorporated towns, Tillamook 

County has seven, and Lincoln County has six. As of 2007, approximately 36% of residents in the tsunami 

inundation zone lived in rural, unincorporated areas of the seven coastal counties, primarily in the 

unincorporated towns of the three northern counties (Wood, 2007).  

 
Figure 4. GIS data for three county study area (green hatching) and the seven coastal counties (black border). Coastal counties 
from north to south (unlabeled): Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos, and Curry. The study area for the first 
analysis (solid green) is defined to be within 1 mile of the tsunami inundation zone given by the 1995 SB 379 line. 
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Oregon’s Office of Economic Analysis (OEA) groups the three counties together as a regional 

economy. It is reasonable to consider these counties as a single housing market given their separation from 

Oregon’s population centers in the Willamette Valley, their connection via HWY 101, and their similar 

economies and industries. These three counties span approximately 150 miles in the north-south direction. 

While it is unlikely that someone would commute over three hours from Yachats (the southernmost town) 

to Astoria (the northernmost town) for work, it is plausible that people would commute half that distance. 

Figure 4 shows a map of the three northern counties (green hatching) and the boundaries of the seven coastal 

counties (black). The map also illustrates the clustering of and connections between population centers on 

the coast, the lack of population along the Oregon Coast Range, and the separation from the urban centers 

in the adjacent Willamette Valley counties. 

The second and third analyses have more narrowly defined sample spaces that contain a limited 

number of treated observations, necessitating an expansion to include housing data from all seven coastal 

counties. For example, I have tsunami blue line data for only eleven coastal communities and some of these 

communities (e.g., Cannon Beach) received as few as three blue lines. These blue lines were installed at 

times between 2016 and 2019, which results in a short post-installation time range and therefore few 

property sales after installation for the DID model in the third analysis. This extension assumes that the 

entire Oregon Coast can be treated as a single housing market, as in Dundas and Lewis (2020). Under this 

assumption, the three northern coast counties comprise a sub-market of this larger housing market.  

4 Data 

Multiple data sources including property sales data, tsunami inundation maps, Census block group data, 

and other GIS data are used for these analyses. Property sales data was aggregated from tax assessor records 

in Zillow’s ZTRAX database and spans residential, agricultural, and commercial sales from 1995 through 

2018 (Zillow, 2020). These data were cleaned to remove all non-residential transactions and transactions 

missing key structural variables (age, etc.). In each year, transactions with prices in the bottom one percent 

were removed because they may reflect non-arms-length transfers, e.g., intra-family transfers. Transactions 

in the top one percent in each year were also removed. Houses that sold more than five times between 2009 

and 2018 were dropped because of potential unobservables driving their frequent resale. Potential multi-

family dwellings – properties with more than eight bedrooms or six bathrooms – were dropped from the 

sample. Finally, transactions that took place less than one year since the previous sale were removed since 

they often reflected either the same transaction recorded at multiple points through the sale process or a 

house purchased to be flipped and re-sold. The Zillow ZTRAX data does not have reliable second home 
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indicators, however, so identifying second home ownership is not possible at this time.6 Following this 

cleaning, the remaining transactions contain only arms-length, single-family residential sales that reflect 

the valuations of potential homeowners. Some of the key structural covariates from the Zillow data include 

the effective age of the house (2018 – remodel year), indoor square footage, total acreage, number of 

bedrooms, number of bathrooms, and whether the house has a garage.  

Neighborhood and location amenity data are collected from several state and federal sources. The 

majority of the data comes from the Emergency Preparedness Data Collection, the public version of a 

dataset compiled by Oregon’s Preparedness Framework Implementation Team (Prep-FIT) for the Oregon 

Incident Response Information System (OR-IRIS). This dataset is a collection of existing and purpose-built 

GIS datasets combined to help understand the setting of a potential emergency response incident 

(Preparedness Framework Implementation Team (Prep-FIT), n.d.). Sources of the OR-IRIS data include 

state agencies such as the Oregon Department of Transportation (ODOT) and federal agencies such as 

USGS. This data includes location information for airports, fire stations, hospitals, wastewater treatment 

plants, beach access points, highways and roads, railroads, rivers and other waterbodies, the ocean 

shoreline, and cities. Distance to the nearest central business district is measured as the distance to the center 

of the nearest town (incorporated or unincorporated). Coastal towns are small and likely have only one 

central business district. Distances to the nearest hospital, law enforcement station, fire station, and 

wastewater treatment plant were included since proximity to one of these facilities may serve as a proxy 

for a “safety” amenity.  

Location information on state and federal protected areas (public lands) primarily came from the 

USGS Protected Areas Database of the United States (PAD-US). Federal public lands were trimmed to 

include conservation areas, national forests, national historic sites, national monuments, national parks, 

national recreation areas, national wildlife refuges, wilderness areas, and recreation or resource 

management areas. State public lands were trimmed to include only state forests, state parks, and wildlife 

management areas. Elevation data was collected in 10m-by-10m pixels from the Oregon Department of 

Geology and Mineral Industries (DOGAMI). GIS software was used to calculate the elevation of each 

property and the distance from each property to the nearest location amenity.7 For oceanfront properties, 

                                                            
6 Second homes and vacation rentals constitute a large share of housing in the northern counties due to the dominance of the tourism 
sector on the Oregon coast. According to the 2019 Clatsop County Housing Strategies Report (Appendix A, 2019) the estimated 
vacancy rate of ownership housing is very high, especially in beachside communities. They also find that in several beachside 
communities short-term rentals have outpaced the addition of new units; an estimated 58% of new houses built in the county since 
2010 are used as short-term rentals (Clatsop County Housing Strategies Report, Appendix A, 2019). Second homeowners who do 
not live on the Oregon coast and directly face the risk of a Cascadia tsunami may have different risk perceptions and preferences 
than permanent residents of the Oregon coast. Accounting for second home ownership is therefore important for accurately 
estimating residents’ risk perceptions.  
7 All distances are Euclidian. Euclidian distances may underestimate true distances in these rural counties. Also, Euclidian and 
travel distances may capture different amenities. For example, I would expect that as travel distance to the nearest beach access 
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additional data on shoreline armoring and armoring eligibility is included. Shoreline armoring is a private 

option to protect oceanfront properties from erosion and storm surges by installing hardened shoreline 

protection structures.8 Armoring eligibility and the existence of shoreline protective structures represent 

safety amenities for oceanfront properties. Oceanfront parcels were identified using the Oregon Department 

of Land Conservation & Development’s inventory of oceanfront parcels and their armoring eligibility.  

Several studies have used changes in the number of insurance policies following a disaster event 

as a measure of changing subjective perceptions about the expectation of a future disaster (Atreya et al., 

2013; Gallagher, 2014). This study omits insurance information primarily due to a lack of parcel-level 

earthquake and flood insurance data.9 Finer-scale fixed effects, however, should be able to capture some of 

the unobservable heterogeneity due in part to earthquake insurance uptake differences between 

neighborhoods. 2010 Census information was collected at the Census block group level to be used for these 

neighborhood-level spatial fixed effects. Block groups generally contain between 600 and 3,000 people. 

The block group is the smallest geographical unit above the block level that is uniquely identified and 

therefore represents the smallest neighborhood unit data available.  

Earthquake insurance, however, only covers damage from strong shaking but not water damage 

from a tsunami (OSSPAC, 2018). Tsunami damage is typically covered by flood insurance (OSSPAC, 

2018). FEMA’s National Flood Insurance Program (NFIP) requires the purchase of flood insurance for 

mortgages in the 100-year floodplain – also known as Special Flood Hazard Areas (SFHA) – that are 

managed by federally regulated lenders. Mortgage lenders must also inform homebuyers if the property is 

located in an SFHA. On the Oregon coast, the SFHA floodplain line is similar but not identical to the 

tsunami inundation lines (OSSPAC, 2018). For example, for the first analysis, only 3% of properties outside 

the SB 379 tsunami inundation zone are inside a SFHA; however, 36% of properties inside the SB 379 

inundation zone are also inside a SFHA (Table 1). These homes in both the tsunami inundation zone and 

in the SFHA likely have flood insurance. Therefore, even without fine-scale flood insurance policy data, it 

may be possible to use presence in a SFHA to roughly proxy for flood insurance ownership inside the 

tsunami inundation zone. This SFHA indicator will underestimate the amount of flood insurance policies 

                                                            
point increases, property values decrease since beach access is an amenity. However, Euclidian distance to a beach access point 
may primarily capture the visual disamenity of congestion at popular beach access points. 
8 Oregon’s Statewide Planning Goal 18 designates which parcels are eligible to install shoreline armoring (Department of Land 
Conservation & Development, n.d., p. 18). To limit shoreline armoring and resulting beach erosion and loss of beach access Goal 
18 limits shoreline armoring to parcels where development existed prior to 1977. 
9 Most homeowner insurance policies in Oregon do not cover earthquake damage though many homeowners insurance providers 
offer standalone earthquake coverage and earthquake insurance is widely available through the state of Oregon (Division of 
Financial Regulation, n.d.). As of 2017 approximately 14.8% of Oregonians with residential homeowners insurance also have 
earthquake insurance (Cheng, 2018). This is comparable to other Pacific Coast states with high earthquake risks, e.g., Washington’s 
uptake rate of 11.3% and California’s uptake rate of 15.1%. Earthquake insurance data is only available at the county level and the 
variation in insurance uptake between the coastal counties is too low for the county-level information to be useful. 
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because, while most homes inside the SFHA have flood insurance, some homes outside the SFHA may also 

have flood insurance but will not be picked up by the SFHA indicator. 

For the first analysis, the sample space of transactions was limited to those properties within 1 mile 

of the original tsunami inundation zone (SB 379). This removes non-coastal properties on the eastern side 

of the county from the sample. Non-coastal properties likely have different amenity sets than coastal 

properties so their removal from the sample better controls for omitted neighborhood and location 

amenities. A distance of 1 mile from the SB 379 line captures all of the towns in the three counties and does 

not extend into large rural or forest parcels on the eastern sides of the counties.10 The temporal extent of 

the first analysis is 2009 to 2017 so that each event – the 2011 earthquake and the 2015 article – is bracketed 

by two years of property sales data before and after the event. The Zillow data spans the years 2009 to 2017 

and contains 15,627 transactions.11 

The tsunami inundation zones that define the treatment group in the first analysis include the 1995 

SB 379 line and the largest of the 2013 TIM scenarios (XXL). Table 1 compares the descriptive statistics 

of houses inside and outside the 1995 SB 379 tsunami inundation zone to illustrate differences between the 

treatment and control groups for the sample used in the first analysis. Approximately 27% of the 

transactions between 2009 and 2017 were inside the SB 379 inundation zone. The houses inside and outside 

the SB 379 zone are similar in terms of effective age, total acreage, number of bedrooms and bathrooms, 

and whether they have a fireplace or external structures (e.g., garage, patio, fencing). Houses inside the 

inundation zone on average sell for $16,000 more which likely reflects the shorter distances to likely 

amenities such as the ocean, rivers, public lands, and schools and the greater distances to likely disamenities 

such as highways. Houses outside of the inundation zone have larger indoor square footage and total acreage 

which may be due to the higher density of houses inside the inundation zone. Approximately 99% of the 

houses inside the SB 379 inundation zone are also in the 2013 XXL scenario inundation zone. The XXL 

scenario of the 2013 TIM series was in use for official tsunami evacuation maps during the 2015 New 

Yorker article. Approximately 49% of the transactions between 2009 and 2017 were in this inundation 

zone.12 The change in tsunami inundation and evacuation maps between the two events of interest presents 

a model specification problem that is addressed in section 5.1. See Appendix A.2 for figure comparisons of 

the 2013 TIM and 1995 SB 379 tsunami inundation scenarios for the city of Tillamook. 

                                                            
10 Distance to the SB 379 tsunami inundation zone was chosen instead of distance to the shoreline only because the ocean shoreline 
data does not extend into the Columbia River on the northern boundary of the three-county area and the SB 379 data does extend 
into the Columbia. 
11 Table A1 in Appendix A.3 presents summary statistics for the sample used in the first analysis, i.e., for 2009-2017 property sales 
that occur within 1 mile of the 1995 SB 379 line in the three northern counties. 
12 See Table A1 in Appendix A.3. 
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Table 1. Variable Definitions and Descriptive Statistics, by SB 379, First Analysis Sample, 2009-2017 
 Outside SB 379 zone Inside SB 379 zone  
 

Mean Std dev Mean Std dev 
Std diff in 
means 

      
Event      
Sold after 2011 Tohoku EQ 
(tohoku=1) 

0.81 (0.39) 0.81 (0.39) - 

Sold after 2015 article (article=1) 0.33 (0.47) 0.32 (0.47) - 
Treatment      
Inside 1995 SB 379 tsunami zone 
(sb379=1) 

0 (0) 1 (0) - 

Inside 2013 XXL tsunami zone 
(xxl2013=1) 

0.31 (0.46) 0.99 (0.09) - 

Inside 2013 XL tsunami zone 
(xl2013=1) 

0.28 (0.45) 0.99 (0.10) - 

Inside 2013 L tsunami zone (l2013=1) 0.12 (0.33) 0.96 (0.20) - 
Inside 2013 M tsunami zone 
(m2013=1) 

0.04 (0.20) 0.82 (0.38) - 

Inside 2013 SM tsunami zone 
(sm2013=1) 

0.01 (0.09) 0.47 (0.50) - 

Structural      
Sale price (2019 constant dollars) 306,745.77 (163,480.12) 323,071.60 (186,908.93) -0.09 

Bedrooms 2.89 (0.92) 2.68 (0.93) 0.23 

Bathrooms 2.06 (0.78) 1.90 (0.75) 0.22 

Indoor square footage 1,744.24 (715.21) 1,505.16 (645.45) 0.35 

Total acreage (equal to indoor area if 
apartment) 

0.42 (2.13) 0.33 (2.28) 0.04 

Effective age of property (2018 - 
remodel year) 

35.97 (25.54) 36.43 (24.46) -0.02 

Heating (=1) 0.95 (0.22) 0.91 (0.29) 0.17 

Fireplace (=1) 0.66 (0.47) 0.61 (0.49) 0.09 

Garage (=1) 0.77 (0.42) 0.69 (0.46) 0.18 

Carport (=1) 0.04 (0.20) 0.03 (0.18) 0.04 

Deck (=1) 0.11 (0.31) 0.16 (0.36) -0.14 

Patio (=1) 0.17 (0.38) 0.20 (0.40) -0.07 

Fencing (=1) 0.14 (0.35) 0.18 (0.38) -0.10 

Goal 18 eligible (=1) 0.02 (0.13) 0.10 (0.30) -0.35 

Has shoreline armoring (=1) 0.00 (0.05) 0.04 (0.20) -0.28 

Location      
Special Flood Hazard Area (SFHA) 
(=1) 

0.03 (0.16) 0.36 (0.48) -0.94 

Elevation (ft) 97.42 (70.54) 20.95 (11.02) 1.51 

Slope (angular degrees of slope) 2.72 (4.82) 1.74 (2.38) 0.26 
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Table 1. Variable Definitions and Descriptive Statistics, by SB 379, First Analysis Sample, 2009-2017 
 Outside SB 379 zone Inside SB 379 zone  
 

Mean Std dev Mean Std dev 
Std diff in 
means 

      
Distance to nearest beach access point 
(ft) 

4,348.03 (6,943.63) 2,075.03 (4,633.56) 0.39 

Distance to ocean shoreline (ft) 16,402.69 (23,311.22) 5,926.15 (13,706.17) 0.55 

Oceanfront (=1) 0.03 (0.16) 0.11 (0.32) -0.35 

Distance to nearest water body (lake, 
pond, bay) (ft) 

6,977.92 (7,673.00) 6,437.03 (9,694.99) 0.06 

Distance to nearest river (ft) 8,155.13 (8,038.36) 4,987.01 (7,363.52) 0.41 

Distance to nearest state park or public 
land (ft) 

25,889.50 (26,449.02) 21,853.60 (24,369.87) 0.16 

Distance to nearest national park or 
public land (ft) 

17,547.64 (16,187.60) 20,618.42 (18,961.51) -0.17 

Distance to nearest highway or 
interstate (ft) 

2,735.67 (4,070.97) 4,346.39 (6,942.60) -0.28 

Distance to nearest major road (ft) 3,173.23 (5,045.23) 5,383.81 (8,321.11) -0.32 

Distance to nearest railroad (ft) 68,837.11 (60,557.73) 83,561.70 (51,105.73) -0.26 

Distance to nearest airport (ft) 32,312.90 (19,089.39) 26,215.34 (19,586.41) 0.32 

Distance to nearest k-12 school (ft) 14,668.42 (15,629.87) 12,327.99 (10,823.89) 0.17 

Distance to nearest central business 
district (city) (ft) 

11,027.20 (10,671.49) 9,171.75 (8,882.89) 0.19 

Distance to nearest wastewater 
treatment plant (ft) 

15,651.49 (11,137.14) 11,604.52 (9,447.23) 0.39 

Distance to nearest fire station (ft) 5,992.65 (4,597.47) 6,141.79 (5,116.56) -0.03 

Distance to nearest law enforcement 
station (ft) 

30,593.44 (35,657.69) 34,384.59 (44,793.06) -0.09 

Distance to nearest hospital (ft) 45,555.14 (42,443.18) 54,716.99 (45,225.25) -0.21 

      
Observations 11,467  4,160   
      

The last column of Table 1 presents the standardized difference in means for the structural and 

location covariates. Several key explanatory variables such as elevation (1.51) and distance to the ocean 

shoreline (0.55) have large absolute standardized differences (in parentheses). Some researchers have 

suggested that an absolute standardized difference of 0.25 or more indicates that covariates are imbalanced 

between groups (Stuart, 2010). This suggests that the treated and control groups are considerably 

imbalanced and that covariate balancing, e.g., matching or weighting, may be useful or necessary for 

identification. 

For the second analysis, the sample space of transactions is limited to those properties that were 

outside of the original 1995 SB 379 tsunami evacuation zone. The 2013 update of tsunami inundation and 

evacuation maps represents an exogenous risk signal to houses that were outside of the original 1995 SB 



22 
 

379 inundation zone but with the hazard planning change found themselves inside one of the new 2013 

inundation zones. As such, each of the five 2013 tsunami inundation zones is used as the treatment boundary 

for a separate sample where the sample is restricted to a narrow band of properties within 1 mile of the 

treatment boundary given by the XXL, XL, L, M, or SM inundation line. Table 2 compares the samples of 

the resulting five different sample spaces and lists the number of transactions inside and outside the given 

inundation zone for each sample. This table illustrates the data limitations of this analysis even after 

extending the sample space to all seven coastal counties, as can be seen by the small number of treated 

observations (81) available for the SM inundation line treatment boundary sample. The time range for this 

analysis is from 2011 to 2015 so that the 2013 evacuation map change is bracketed by two years of property 

sales data before and after the event.13  

The third analysis restricts the sample space to a small neighborhood of properties around newly 

installed blue lines and the 2013 XXL inundation line. The preferred model restricts treated observations 

to be within 1000’ of the blue line and control observations to be within 2500’. The temporal extent of the 

sample is 2014 and 2018 so that each blue line has at most two years of property sales before and after its 

installation since the blue lines were installed at different times between 2016 and 2019.14 Table A4 in 

Appendix A.3 compares the descriptive statistics of houses inside and outside the blue line neighborhood 

given by a 1000’ radius to illustrate differences between the treatment and control groups for the sample 

                                                            
13 Table A2 in Appendix A.3 presents summary statistics for the sample used in Model 1 of the second analysis, i.e., for 2011-2015 
property sales that are outside the 1995 SB 379 line and are within 1 mile of the 2013 XXL line in the seven coastal counties. This 
is the largest sample space in the second analysis and encompasses the other four sample spaces. Table A3 in Appendix A.3 
compares the descriptive statistics of houses inside and outside the 2013 SM tsunami inundation zone to illustrate differences 
between the treatment and control groups for the sample used in Model 5. This is the smallest sample space and has the largest 
standardized differences in means. Descriptive statistics for the remaining samples used in this analysis are not presented here but 
are available upon request. 
14 For blue lines installed in 2018 less than one year of property sales is available post-installation. For blue lines installed in 2019, 
there are no post-installation property sales. This is due to a lack of updates to ZTRAX housing transactions after 2018 for most 
Oregon counties (as of June 2021). 

 
Table 2. Second Analysis Samples, 2011-2015 

Sample Model 
Total 
observations 

Outside inundation 
zone 

Inside inundation 
zone 

     
Within 1 mile of the XXL 
inundation zone 

1 8,010 5,855 2,155 

Within 1 mile of the XL inundation 
zone 

2 7,790 5,829 1,961 

Within 1 mile of the L inundation 
zone 

3 6,593 5,698 895 

Within 1 mile of the M inundation 
zone 

4 5,842 5,527 315 

Within 1 mile of the SM inundation 
zone 

5 5,429 5,348 81 
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used in the preferred model. This table shows that the standardized differences in means for this sample 

space are small in comparison to the sample spaces of the first and second analyses. This suggests that the 

narrow sample space definition successfully restricts neighborhoods to be more homogenous and thus may 

help deal with time-invariant and time-varying unobservables that may be correlated with either proximity 

to the blue lines or the 2013 XXL line. 

A database of blue line locations and installation dates does not exist at the state or county levels. 

Thus, information about when and where the blue lines were installed was gathered by contacting individual 

city and county emergency managers, public works departments, and planning departments along the 

Oregon coast. Emails and phone conversations were used to compile a list of approximate blue line 

locations and installation times. Some locations were given as being in the vicinity of street intersections 

or nearby landmarks so I approximate the location of the blue line based on the location of the 2013 XXL 

tsunami inundation line and this firsthand information. Timing information was provided as the month and 

year of installation. However, sometimes no timing information other than the year of installation was 

available. This ambiguity of installation dates further reduces the post-installation time range for the DID 

and DDD models. Timing and location information is currently incomplete for several towns that are known 

to have blue lines installed, usually due to multiple blue line installation periods or uncertainty about 

whether some blue lines were installed. Due to the potential non-randomness of this missing data, these 

towns were not included in the dataset analyzed in this paper. 

5 Methodology 

5.1 First analysis: 2011 Tohoku earthquake and tsunami and 2015 New Yorker article 

In the first analysis, I use two exogenous information shocks to distinguish between the effect of coastal 

amenities and the increased subjective risk of tsunami inundation. I use a difference-in-differences (DID) 

model to difference out time-invariant omitted variables and contemporaneous effects such as 

macroeconomic shocks. There is a complication with defining the treatment group (inside the tsunami 

inundation zone) and control group (outside of the inundation zone) because the DOGAMI tsunami 

inundation maps changed in 2013 from the SB 379 line to the new TIM Plate 1 series. This motivates three 

model specifications. For the first specification (Model I), I consider only the Tohoku earthquake event and 

the 1995 SB 379 tsunami line as the boundary between the treatment and control groups. The time range 

for this specification is from 2009 to 2013 (before the DOGAMI tsunami inundation maps change). The 

model specification is: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑠𝑠𝑠𝑠379𝑖𝑖 + 𝛽𝛽3𝑡𝑡𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 +  𝛿𝛿1𝑠𝑠𝑠𝑠379𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡  

+𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  , (1) 
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where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the sale price (in constant 2019 dollars) of house 𝑖𝑖 with structural and location 

characteristics 𝑿𝑿 in Census block group 𝑐𝑐 at time 𝑡𝑡. The log transformation of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 was chosen as the 

dependent variable in all models because taking the log of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 narrows its range and can make estimates 

less sensitive to extreme values. The treatment variable 𝑠𝑠𝑠𝑠379𝑖𝑖 indicates whether the house is in the tsunami 

inundation zone given by the 1995 SB 379 scenario. The event variable 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 indicates that the sale 

happened after 3/11/2011 (the post-Tohoku period).15 The parameter of interest is 𝛿𝛿1, the marginal effect 

of the Tohoku 2011 earthquake and tsunami on property values inside the tsunami inundation zone given 

by the 1995 SB 379 scenario. The structural characteristics in 𝑿𝑿𝒊𝒊𝒊𝒊 include quadratic terms for the non-binary 

variables to better account for their expected diminishing effect on property prices (e.g., Atreya et al., 2013; 

Bin & Landry, 2013). I also follow previous hedonic studies and take log transformations of the distance 

variables (originally in feet) in 𝑿𝑿𝒊𝒊𝒊𝒊 to abstract from unit issues (Atreya et al., 2013; Bin & Landry, 2013). 

The temporal fixed effects 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑡𝑡 were included to capture any seasonal (90-day) heterogeneity or 

shocks that affect all property sales. The Census block group spatial fixed effects 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 are interacted 

with the annual fixed effects 𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟𝑡𝑡 in 𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 to capture how these neighborhoods are changing 

over time. These spatial-temporal fixed effects soak up annual changes at the neighborhood level such as 

storm surges and allow neighborhoods to flexibly differ in their recoveries from the subprime mortgage 

crisis and Great Recession.16 

Model II considers the New Yorker event and the largest scenario (XXL) of the new 2013 tsunami 

zones as the boundary between treatment and control groups. The time range for this specification is 2013 

– 2017. While the SB 379 is most comparable to the M and L scenarios by area, the XXL scenario was 

chosen as the treatment for Model II because it is the most extreme scenario. I expect that households 

willing to pay a risk premium to avoid tsunami inundation will likely choose to locate outside the entire 

region of potential tsunami inundation. The XXL scenario is also the scenario used by DOGAMI to create 

their tsunami evacuation maps, making it the most salient scenario for the public at large. The model 

specification for Model II is: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 + 𝛽𝛽3𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑡𝑡 +  𝛿𝛿1𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 

+ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖    (2)  

                                                            
15 The 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 event variable is defined as between 3/11/2011 and 7/20/2015 (the post-Tohoku period and pre-New Yorker article 
period). Since the time range for Model I is from 2009 to 2013, the 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 variable equals 1 for all sales during this time that 
occur after the Tohoku earthquake and tsunami on 3/11/2011. The 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 variable definition is discussed further in the Model 
III specification section. 
16 The appropriate scale at which Great Recession recovery is capitalized may be at shorter time scales, i.e., at the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐 ∗
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑡𝑡 scale. This fixed effect is tested as a robustness check.  
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The treatment variable 𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 indicates whether the house is in the tsunami inundation zone given by 

the 2013 XXL scenario. The event variable 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑡𝑡 indicates the sale happened after 7/20/2015 (the post-

New Yorker article period). The parameter of interest is 𝛿𝛿1, the marginal effect of the 2015 New Yorker 

article on property values inside the tsunami inundation zone given by the 2013 XXL scenario. 

(a)  

(b)  

Figure 5. Housing price trends inside and outside of the treatment inundation line – SB 379 or 2013 XXL – for the three 
counties. Plot of residual (log) sale prices net of structural attributes, location covariates, and fixed effects aggregated by month 
with local polynomial trend lines. (a) For Model I’s time range. (b) For Model II’s time range. 
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Model III incorporates the New Yorker article event into Model I and keeps the 1995 SB 379 

tsunami line as the treatment boundary. Since the 2013 tsunami inundation maps are only two years old and 

the 1995 map had been in circulation for 20 years by the New Yorker article’s publication, there could be 

a lag in the public’s knowledge and acceptance of the new tsunami boundaries. This specification assumes 

an information lag and that homebuyers place more importance on the long-standing SB 379 line when 

choosing where to locate. The time range for this specification is 2009 to 2017. The DID model 

specification for Model III is: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑠𝑠𝑠𝑠379𝑖𝑖 + 𝛽𝛽3𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 + 𝛽𝛽4𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑡𝑡 +  𝛿𝛿1𝑠𝑠𝑠𝑠379𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡  

+𝛿𝛿2𝑠𝑠𝑠𝑠379𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 +  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖   (3)  

The implicit assumption in the definition of the 𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑢𝑢𝑡𝑡 variable here is that the impact of the 2011 Tohoku 

earthquake/tsunami on property values decreases over time and disappears by the New Yorker article in 

2015. This assumption follows previous findings that risk premiums decay over time and may disappear if 

additional disaster events do not occur (Atreya et al., 2013; Bin & Landry, 2013; Hansen et al., 2006; 

Kousky, 2010; McCluskey & Rausser, 2001; McCoy & Walsh, 2018). The parameters of interest are 𝛿𝛿1 

and 𝛿𝛿2, the marginal effects of the 2011 earthquake/tsunami and 2015 article on property values inside the 

tsunami inundation zone given by the 1995 SB 379 scenario. 

Consistent estimation of these treatment effects requires the parallel trends assumption. The parallel 

trends assumption requires that absent the two information shocks, the difference in unobserved property 

price drivers between properties inside the tsunami inundation zone and outside the tsunami inundation 

zone would have remained constant. I assess the validity of this assumption in Figure 5, which plots residual 

housing prices inside and outside of the treatment inundation line – SB 379 or 2013 XXL, depending on 

the model – for the three northern counties. To account for observable differences across houses, I first 

regress log sale prices on structural attributes, location covariates, and fixed effects for quarter and Census 

block group by year. I then aggregate the residuals to the group (treated or control) and month level and 

plot these residuals over time using local polynomial regressions. Figure 5(a) plots the housing price trends 

inside and outside of the 1995 SB 379 tsunami inundation zone for Model I’s time range – March 2011 to 

March 2013. Adjusted prices of the treated group before the 2011 Tohoku earthquake and tsunami exhibit 

a similar trend as those of the control group. Following the 2011 Tohoku event, residual prices for the 

treated group initially drop but then recover to nearly pre-treatment levels by 2013.17 Figure 5(b) plots the 

                                                            
17 Following the 2011 Tohoku event, residual prices for the control group initially increase but then recover to nearly pre-treatment 
levels by 2013. This unexpected increase in control group residual prices could be suggestive of a substitution effect between 
groups in coastal communities. For example, if residents prioritize remaining in or near their coastal community over moving to 
another – potentially distant – community, then the information shock of the 2011 Tohoku event may decrease demand for parcels 
inside the tsunami inundation zone (treatment group) and increase demand for parcels outside the zone (control group). 
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housing price trends inside and outside of the 2013 XXL tsunami inundation zone for Model II’s time range 

– July 2013 to July 2017. Before the 2015 New Yorker article, the treated group exhibits a similar trend as 

the control group. However, residual prices for the treated group appear to increase following the 2015 

article event, a counterintuitive result. 

Following the estimation of the DID regressions, I test whether the resulting risk discounts decay 

over time. However, the literature on how to measure these decay effects is not standardized and a variety 

of methods exist that attempt to measure the decay effect. I use a method similar to the one used by Bin and 

Landry (2013). This method uses only data after the event and regresses log sale prices on the treatment 

variable, a count of months between the event and the month of sale (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡), and the interaction 

between the two. For example, the specification for the SB 379 tsunami inundation zone is: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑠𝑠𝑠𝑠379𝑖𝑖 + 𝛽𝛽3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡 + 𝛽𝛽4𝑠𝑠𝑠𝑠379𝑖𝑖 ∗ 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) 

+ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  (4) 

Different specifications are used for 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) transformation including linear, log, square root, and 

ratio specifications, i.e., 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 ,  ln(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) ,  �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 ,  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡−1
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡

. The parameter of 

interest is 𝛽𝛽4, the coefficient on the interaction between the 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡) transformation and the 

treatment variable. A positive and statistically significant coefficient suggests that the risk premium is 

decaying over time (Bin & Landry, 2013). 

An important identification concern is the covariate imbalance found for several key explanatory 

variables. Estimating average treatment effects using ordinary linear regression methods becomes more 

challenging when there is considerable imbalance in covariates between the treatment and control groups. 

Matching and weighting methods were developed to estimate average treatment effects under weaker 

assumptions by avoiding distributional and functional form assumptions (Imbens, 2004). Matching 

methods can also be used to preprocess data to improve causal inference (Ho et al., 2007).  Methods that 

combine matching (to preprocess the data) and regressions are more robust against misspecification of the 

regression function than regressions alone (Imbens, 2004).  

To improve covariate balance and potentially increase robustness against model misspecification I 

pre-process the data using four matching methods – nearest neighbor propensity score matching (PSM), 

nearest neighbor Mahalanobis (NNM) distance matching, coarsened exact matching (CEM), and entropy 

balancing (EB) as robustness checks. Although they are popular matching methods, both PSM and NNM 

are also members of a class of methods known as “Equal Percent Bias Reducing” (EPBR), which have been 

shown to not guarantee imbalance reduction for any given data set and to rely on a set of strict and 

unverifiable assumptions about the data generating process (Iacus et al., 2011, 2012). Iacus et al. (2011) 

introduce a new class of matching methods that have many attractive properties and require fewer 
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assumptions. In one of these methods, CEM, each variable is coarsened so that similar values are grouped 

into a stratum and assigned the same value. Then, an exact matching algorithm is applied to the coarsened 

data so that control units within each stratum are weighted to equal the number of treated units in that 

stratum. Strata without at least one treated and one control unit are discarded. The remaining units with 

their original uncoarsened variable values form the matched data set. Entropy balancing is a weighting 

method (Hainmueller, 2012) that, like CEM, specifies constraints on covariate balance before the 

preprocessing adjustment. Entropy balancing is designed to improve balance on all covariate moments by 

directly incorporating covariate balance into the weight function applied to the data. This method directly 

adjusts the unit weights of the control group to match the moments of the treatment group while also keeping 

the control weights as close as possible to the base weights. Unlike CEM, entropy balancing does not 

discard treated units.  

While there are various guidelines for selecting variables for matching, there is a consensus that 

only those covariates anticipated to influence both treatment and the outcome variable should be included 

(Brown & Atal, 2019; Caliendo & Kopeinig, 2008). The explanatory variables that likely influence 

treatment (tsunami inundation zone) assignment are elevation and distance to the ocean. I also match on 

the event(s) of interest to distinguish potential matches between pre and post event.18 To further anchor the 

matched observations in time, I match on the year the property was sold (Muehlenbachs et al., 2015). For 

the PSM and NNM matching methods, I use a k-nearest neighbor matching (k=1) algorithm with 

replacement. Matching with replacement is recommended when there are few comparable control 

observations, as here (Caliendo & Kopeinig, 2008). For the CEM method, I use the default Sturges binning 

algorithm to coarsen the data. The EB method does not discard units, unlike the other three methods, and 

instead generates weights to be used in the DID regressions.19 

As another robustness check, I also run a Oaxaca-Blinder regression (Blinder, 1973; Oaxaca, 1973). 

The Oaxaca-Blinder regression decomposes the difference in average outcomes into a component that is 

explained by group differences in the predictors and a part that remains unexplained by these differences. 

This second component is called the unexplained component and can be interpreted as the average treatment 

effect on the treated (ATET), much like the DID estimator (Fortin et al., 2010; Słoczyński, 2015). In the 

Oaxaca-Blinder regression weights are used to generate exact covariate balance between treated and control 

groups (Kline, 2011). The Oaxaca-Blinder estimator is “doubly robust” in that it is consistent if either the 

model for the potential outcomes or the model for the propensity score is correct (Kline, 2011). The Oaxaca-

Blinder estimator is also easily implemented in unbalanced designs with few treated units and many controls 

(Kline, 2011) and has been used previously in a coastal hedonic setting (Dundas, 2017). Practically, I 

                                                            
18 NNM allows for exact matching the event variable. 
19 The other three matching methods can also generate weights to be used in the DID regressions. 
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compute the two-fold decomposition using the coefficients from a pooled model over both groups (treated 

and control) as the reference coefficients (Jann, 2008). The treated group is those houses inside the given 

inundation zone after the event, i.e., the treated group is represented by the DID interaction term. Thus, the 

Oaxaca-Blinder estimator can be computed for Models I and II but not for Model III since Model III 

contains two events and therefore two treated groups. 

The event study design extends the standard DID by replacing the single “post event” indicator 

with binary lead and lag variables that indicate whether the given observation occurred a given number of 

quarters away from the event of interest. Thus, as an alternative to the DID specification, I specify event 

study designs for the models with only one event of interest. Lastly, I perform four sets of falsification tests. 

In the first and second sets of tests I shift the date of the 2011 Tohoku earthquake/tsunami in Models I and 

III to one year before the true event and to one year after the true event, respectively, as in Atreya and 

Ferreira (2015). In the third and fourth sets of tests, I follow Bakkensen et al. (2019) and randomize 

treatment exposure in both the spatial (randomly assign sales to either the control or treatment group in all 

three models) and temporal (randomly assign sales to either pre- or post-event in Models I and II) 

dimensions. 

5.2 Second analysis: 2013 change in tsunami evacuation maps 

The second analysis uses residential housing sales data before and after the 2013 tsunami inundation and 

evacuation map change to measure its impact on coastal Oregon property values. Since there are five 2013 

inundation zones in the TIM Plate 1 map series, I need to specify five different models to capture all relevant 

event and treatment combinations. Model 1 uses the XXL line as the treatment boundary, Model 2 uses the 

XL line, Model 3 uses the L line, Model 4 uses the M line, and Model 5 uses the SM line. The sample is 

comprised of properties outside of the 1995 SB 379 evacuation zone and restricted to a narrow 1-mile band 

of properties around the treatment boundary given by the XXL, XL, L, M, or SM inundation line, depending 

on the model. Thus, the control group consists of properties that are not in either (1995 or 2013) evacuation 

zone and the treatment group consists of properties that were not in the 1995 SB 379 evacuation zone but 

following the map change are in the XXL, XL, L, M, or SM inundation zone. The DID specification is: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 + 𝛽𝛽3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 +  𝛿𝛿1𝑡𝑡𝑡𝑡𝑡𝑡2013𝑖𝑖 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 

+ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖   ,  (5)  

where the treatment variable 𝑡𝑡𝑡𝑡𝑡𝑡2013𝑖𝑖 indicates whether the house is in the tsunami inundation and 

evacuation zone given by one of the five 2013 inundation zones. The event variable 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑡𝑡 indicates 

that the sale happened after the 2013 map change (10/2/2013 and later).20 The time range for this 

                                                            
20 DOGAMI released updated tsunami inundation maps by county throughout 2013. An October 2nd, 2013 news release by 
DOGAMI states that inundation maps had been released for the entire coast, suggesting that this date could be considered as the 
date of completion for the map change (DOGAMI, 2013). 
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specification is 2011 to 2015 so that the 2013 evacuation map change is bracketed by two years of property 

sales data before and after the event. The parameter of interest is 𝛿𝛿1, the marginal effect of the 2013 map 

change on property values outside of the original 1995 SB 379 inundation zone and inside a new 2013 

inundation zone. This analysis uses the same temporal and spatial-temporal fixed effects as the first 

analysis.21 The structural characteristics in 𝑿𝑿𝒊𝒊𝒊𝒊 now also contain the distance from the property to the 2013 

XXL tsunami inundation zone (for properties that are inside that zone). This variable is a proxy for distance 

to safety with safety represented as being outside of the entire region of potential tsunami inundation.  

I assess the validity of the parallel trends assumption as in the first analysis. Figure A3 in Appendix 

A.4 plots residual housing prices inside and outside of the treatment inundation line – XXL, XL, L, M, or 

SM – for the seven coastal counties. The takeaway from these plots is that before the 2013 map change 

only Model 1 (XXL line) and Model 5 (SM line) have treated and control groups that exhibit parallel pre-

trends. However, counterintuitively, in Model 1 the residual prices for the treated group appear to increase 

following the 2013 map change. In fact, Model 5 is the only model where the residual prices for the treated 

group appear to drop following the 2013 map change, as expected.  

As a robustness check, I estimate a pooled model with all five 2013 tsunami inundation zones as 

treatments in a single model. This model uses the sample space of Model 1 (XXL line) because it 

encompasses the samples of the other four models. Similar to the first analysis, I also run Oaxaca-Blinder 

regressions, specify event study designs, and perform the four sets of falsification tests for all five models. 

Lastly, I test whether the risk discounts from the DID regressions decay over time using the method of Bin 

and Landry (2013). 

5.3 Third analysis: Tsunami Blue Line project 

The third analysis measures the impact of the Tsunami Blue Line project on coastal Oregon property values 

using residential housing sales data before and after the installation of the blue lines. Starting in 2016 the 

Tsunami Blue Line project installed thermoplastic blue line signs on the 2013 XXL tsunami inundation and 

evacuation line. Properties are differentiated by proximity to blue lines and by whether they are inside the 

2013 XXL tsunami inundation and evacuation zone. The sample is restricted to a circular neighborhood of 

properties around the blue lines, signifying that those properties are adjacent to a blue line. Circular 

neighborhoods are the result of defining proximity to a blue line using a single distance, i.e., a distance 

radius will trace out a circular neighborhood or buffer around that blue line. This also restricts the sample 

to small neighborhoods around the 2013 XXL line. In practice I use two different types of distances to 

                                                            
21 Covariate imbalance is an identification concern for several models in this analysis, e.g., Model 5 has large standardized 
differences in means for several key explanatory variables (see Table A3 in Appendix A.3). Models 1 and 2 have less covariate 
imbalance than Models 3 through 5. However, the number of observations for Models 3, 4, and 5 (see Table 2) is too small for the 
matching methods to be able to produce useful matched samples. Thus, I forego matching or weighting for the models in this 
analysis. 
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define the circular treatment and control buffers: Euclidian distances, which measure the straight-line 

distance between each blue line and transaction, and road network distances, which measure the shortest 

path between each blue line and transaction along the road network. Figure 6 shows a taxlot map with 

example treatment and control groups around a blue line (small red squares) in Manzanita, OR. The 

treatment group is given by those property sales (small gray circles) inside the neighborhood around the 

blue line (red circular buffer). The corresponding control group is those property sales outside of the blue 

line neighborhood (red circular buffer) but inside a slightly larger neighborhood surrounding it (green 

circular buffer). The 2013 XXL inundation and evacuation line (thick blue line) separates houses that are 

more sensitive to the blue line treatment – houses inside the inundation zone – from those that are less 

sensitive to the treatment. One identification issue is how to deal with overlapping neighborhoods for blue 

lines that are in close proximity to each other. For example, Figure 6 shows that the control group (green 

circular buffer) encompasses a blue line in its lower left. This impacts how I define the treatment indicator.  

Two new binary indicators are needed for the DID and DDD models: treatment and event. The 

treatment variable indicates whether the house is in the neighborhood around the blue line, which is 

complicated by the potential for multiple blue line neighborhoods to overlap a transaction.22 The event 

variable indicates that the sale happened after the blue line was installed, which is also complicated by the 

problem of “which blue line?” To generate these indicators and deal with the overlap issue I focus on the 

timing of treatment instead of on spatial controls. The key idea is that “earliest supersedes nearest.” If a 

transaction lies within a given buffer distance of two different blue lines and one of the blue lines is installed 

before the transaction and the other is installed after the transaction, I use the first installed blue line as the 

reference point, not the nearest blue line. In case there is a tie for earliest – multiple blue lines were installed 

at the same time – then the nearest blue line is chosen. To create the “treatment” variable, I consider all 

possible cases of buffer overlap. The key question is how should we treat transactions that fall in one blue 

line’s “treatment” buffer and another blue line’s “control” buffer? There are nine total cases that can occur 

when a treatment buffer and control buffer overlap for a transaction. Appendix A.4 illustrates all nine cases 

and explains how treatment and event status were defined. Essentially, if multiple blue lines fall within a 

given radius (buffer distance) of the transaction in question, one blue line is chosen as the appropriate 

reference point. Then, the values of the treatment and event indicators are determined by whether the 

transaction is within the given radius of that blue line and whether the sale occurred after the blue line was 

installed, respectively. 

                                                            
22 Since the siting of the blue lines within each community was driven primarily by evacuation concerns, treatment assignment – 
whether a house is inside the neighborhood around the blue line – is not completely random. The explanatory variables that likely 
influence evacuation routes and therefore treatment assignment are elevation, distance to the ocean, distance to the nearest highway 
or interstate, and distance to the nearest major road. After conditioning on these covariates, treatment assignment is plausibly 
conditionally independent of potential outcomes. 
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I test a variety of neighborhood sizes around the blue lines, i.e., the radii for the treatment and 

control buffers. I run 100 models by varying the treatment buffer radius between 500’ and 3000’ and the 

control buffer radius between 1000’ and 8000’.23 Each model is defined by the treatment buffer size and 

control buffer size combination that determines its sample space. Models 1 through 50 use Euclidian 

distances to define the treatment and control buffers and Models 51 through 100 use road network distances. 

I hypothesize that this effect will probably be highly localized so smaller buffer sizes are more likely to 

show a treatment effect. The DID specification for all 100 models is:  

                                                            
23 I test 100 models to determine the likely spatial extent of this effect. However, I do not believe that there are 100 possible valid 
models for this analysis. Thus, while I do apply multiple hypothesis testing corrections, I do not apply them to all 100 models. 
Section 6.3 elaborates on the 100 models tested and the hypothesis testing corrections performed. 

 
Figure 6. Taxlot map with example treatment and control groups around a blue line (small red squares) in Manzanita, OR. 
The treatment group (red circular buffer labeled “Treatment: Adjacent to blue line”) and control group (green circular buffer 
outside of the red circular buffer labeled “Control: Not adjacent to blue line”) represent whether property sales (small gray 
circles) are adjacent to the blue line or not, respectively. The 2013 XXL inundation and evacuation line (thick blue line) separates 
houses that are more sensitive to the treatment (yellow area labeled “Treatment: Inside XXL line”) from those that are less 
sensitive to the treatment (green area labeled “Control: Outside XXL line”). 
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𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 + 𝛽𝛽3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  + 𝛿𝛿1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 

+ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  , (6) 

where the treatment variable 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 indicates whether the house is in the neighborhood around the blue 

line. The event variable 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 indicates that the sale happened after the blue line was installed. 

Since the blue lines were installed at different times between 2016 and 2019, the timing of the event variable 

is different between blue lines. The parameter of interest is 𝛿𝛿1, the marginal effect of proximity to the blue 

lines on property values.  

The DDD specification adds the variable 𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖, which indicates whether the house is inside 

the 2013 XXL inundation zone: 

𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊′ 𝛽𝛽1 + 𝛽𝛽2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 + 𝛽𝛽3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 + 𝛿𝛿1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 

+𝛿𝛿2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖 ∗ 𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 + 𝛿𝛿3𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛿𝛿4𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ∗ 𝑥𝑥𝑥𝑥𝑥𝑥2013𝑖𝑖 

+ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖   (7) 

The parameter of interest is 𝛿𝛿4, the marginal effect of proximity to the blue lines on property values for 

properties inside the 2013 XXL tsunami inundation and evacuation zone. 

This analysis faces an identification challenge: variation in treatment timing. Specifically, this is a 

staggered adoption design: units are treated at different times and once units are treated, they remain treated 

in the following periods. The canonical DID setup has two time periods and two groups: no units are treated 

in the first period and then some units become treated in the second period (the treated group) while other 

units remain untreated (the control group). This model is often estimated with the standard two-way fixed 

effects (TWFE) regression, as in equation (6). Several recent studies have found that under treatment effect 

heterogeneity the TWFE estimator recovers a weighted average of some underlying treatment effect 

parameters (Borusyak & Jaravel, 2017; de Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 2018; 

Sun & Abraham, 2020).24 The problem is that some of these weights can be negative, suggesting that the 

TWFE estimator can be opposite in sign from the true average treatment effects. Furthermore, these weights 

are sensitive to the size of each group, the timing of treatment, and the total number of time periods 

(Callaway & Sant’Anna, 2020). Sun and Abraham (2020) show that the standard event study estimator 

suffers from a similar problem – it is contaminated by treatment effects from other periods. Some of these 

studies have proposed measures to assess these weights and how robust the TWFE estimator is to 

heterogeneous treatment effects (de Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 2018; Sun & 

                                                            
24 Baker et al. (2021) use simulations to show that DID estimates are unbiased in settings where there is a single treatment period, 
i.e., the canonical 2x2 DID setup, even when there are dynamic treatment effects. Due to this result, I did not use the new DID 
estimators that are valid in the presence of treatment effect heterogeneity in the first and second analyses.  
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Abraham, 2020). I calculate the measure proposed by de Chaisemartin and D’Haultfœuille (2020) to assess 

the robustness of the TWFE estimator to heterogeneous treatment effects. 

de Chaisemartin and D’Haultfœuille (2020) also propose a new DID estimator that estimates the 

treatment effect in the groups that switch treatment, at the time when they switch. This estimator is valid in 

staggered adoption designs and when the treatment effect is heterogeneous over time. Callaway and 

Sant’Anna (2020) develop another framework for DID setups with multiple time periods and variation in 

treatment timing that is valid in the presence of treatment effect heterogeneity. Their framework is based 

on estimating group-time average treatment effects, which are the average treatment effect for group 𝑔𝑔 at 

time 𝑡𝑡 where a “group” is defined by the time when units are first treated. The group-time average treatment 

effects can be averaged into an aggregate measure: the “average effect of participating in the treatment 

experienced by all units that ever participated in the treatment” whose interpretation is like the average 

treatment effect on the treated (ATET) in the TWFE DID setup. I estimate both of these new estimators 

(Callaway & Sant’Anna, 2020; de Chaisemartin & D’Haultfœuille, 2020). 

Table 3. Difference-in-differences selected results for the first analysis, full data 
 Model I Model II Model III 
Variables Coefficient/SE Coefficient/SE Coefficient/SE 
    
Event    
Sold after 2011 Tohoku EQ (tohoku=1) .0858**  .0631 
 (.0426)  (.0390) 
Sold after 2015 article (article=1)  .0136 .0026 
  (.0236) (.0200) 
Treatment    
Inside 1995 SB 379 tsunami zone (sb379=1) .0620*  .0671** 
 (.0333)  (.0308) 
Inside 2013 XXL tsunami zone (xxl2013=1)  -.0073  
  (.0222)  
Diff-in-Diff    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.0889**  -.0675** 
 (.0415)  (.0340) 
2013 XXL zone (xxl2013) x sold after 2015 article (article)  .0064  
  (.02397)  
SB 379 zone (sb379) x sold after 2015 article (article)   .0269 
   (.02441) 
Location    
Elevation (ft) 5.7e-04*** 2.6e-04** 4.6e-04*** 
 (1.7e-04) (1.3e-04) (9.8e-05) 
Log distance to ocean shoreline -.0835*** -.0746*** -.0786*** 
 (.0115) (.0059) (.0055) 
Elevation (ft) x Log distance to ocean shoreline x on 
oceanfront (=1) 

3.9e-04*** 2.7e-04*** 3.2e-04*** 

 (7.7e-05) (7.4e-05) (5.3e-05) 
Observations 5890 9160 15627 
Adj. R-squared 0.376 0.441 0.411 
* p<0.10, ** p<0.05, *** p<0.01 
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6 Results 

6.1 First analysis: 2011 Tohoku earthquake and tsunami and 2015 New Yorker article 

Table 3 reports selected estimation results of the key coefficients for Models I through III in the first 

analysis.25 The difference-in-differences (DID) coefficients are statistically significant (at the 5% 

significance level) for the 2011 Tohoku earthquake and tsunami in both Models I and III. The DID estimator 

for the 2015 New Yorker article is not statistically significant in either Model II or III. According to the 

coefficient estimate from Model I, a property inside the SB 379 tsunami inundation zone has a risk discount 

of 8.9% following the Tohoku event. The coefficient estimate from Model III implies a slightly smaller risk 

discount of 6.8%. Taken together, these results imply that a property inside the tsunami inundation zone 

sells for 7% to 9% less than a property outside of the zone after the Tohoku event.  

The Tohoku event is statistically significant in Model I (at the 5% significance level). Properties 

sold after the Tohoku earthquake/tsunami sold for 8.6% more according to Model I. The New Yorker article 

event is not statistically significant in either Model II or III. The coefficients on these event variables capture 

the temporal effect for properties both inside and outside the tsunami inundation zone. This result indicates 

that the average real value for all properties increased over time by approximately 8.6% between the Tohoku 

                                                            
25 Table A9 of Appendix A.7 reports the full estimation results with all coefficients. 

 

Figure 7. Decay effects of tsunami risk over time after the Tohoku earthquake and tsunami. Plot of coefficients from equation 
(4) as in Bin and Landry (2013). 
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earthquake and the New Yorker article but did not appreciably increase after the New Yorker article. The 

coefficients on the SB 379 tsunami inundation zone treatment variable in Models I and III implies that 

houses inside the SB 379 zone have a price premium of 6.2 to 6.7% (at the 10% significance level). This 

suggests that the SB 379 zone treatment variable may be capturing the value of unobserved coastal 

amenities. The coefficient on 𝑥𝑥𝑥𝑥𝑥𝑥2013 is not statistically significant. 

As expected, house prices increase with elevation and with proximity to the ocean. These results 

are statistically significant (at the 1% or 5% level) and signify the importance of coastal view amenities. I 

interact these two variables for oceanfront homes in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ln (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑥𝑥 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to create a 

proxy for ocean view. This proxy appears to have a positive and statistically significant effect (at the 1% 

level) on property prices in all models. For oceanfront homes, as elevation increases and (log) distance to 

the ocean shoreline increases (implying increasing beach width), sales prices increase. While this 

interaction term has the expected sign, it does not fully capture the view amenity for oceanfront homes.26  

Following the finding of a statistically significant risk discount for the 2011 Tohoku earthquake 

and tsunami, I test whether this risk discount decays over time. I find that three out of the four 

transformations of the 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) variable in equation (4) had a positive and statistically significant 

interaction with treatment, which is suggestive of a decay effect (at the 5% or 10% significance level).27 

Figure 7 plots the significant results as in Bin and Landry (2013) using the coefficients on the treatment 

variable and on the interaction term between treatment and the 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) transformation. This figure 

suggests that the risk premium decays between 10 months and 30 months after the Tohoku event. Thus, the 

                                                            
26 Further attempts to disentangle coastal amenities from tsunami risk involve using GIS viewshed tools and fine-scale digital 
surface models of the ocean shoreline to calculate the view amenity for oceanfront homes. See section 7 for further details. 
27 These results are not presented here but are available upon request. 

Table 4. Oaxaca-Blinder results for the first analysis, full data 
 Model I Model II 
 Coefficient/SE Coefficient/ SE 
Overall Differential   
Treated group 12.457*** 12.537*** 
 (.0239) (.0118) 
Control group 12.451*** 12.492*** 
 (.0086) (.0074) 
Difference .0063 .0449*** 
 (.0254) (.0139) 
Decomposition   
Explained .0952** .0385* 
 (.0386) (.0231) 
Unexplained -.0889** .0064 
 (.0391) (.0231) 
   
Observations 5890 9160 
* p<0.10, ** p<0.05, *** p<0.01 
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overall result for this analysis suggests that a property inside the SB 379 tsunami inundation zone sells for 

7-9% less than a property outside of the zone after the Tohoku event but property prices inside the 

inundation zone quickly return to baseline levels within 2.5 years of the Tohoku event. 

Table 4 reports the results from the Oaxaca-Blinder decompositions. Recall that, like the DID 

estimator, the unexplained component of the decomposition can be interpreted as the average treatment 

effect on the treated (ATET) (Fortin et al., 2010; Słoczyński, 2015). Thus, the Oaxaca-Blinder estimator 

suggests that there is an 8.9% risk discount for properties inside of the SB 379 inundation zone after the 

Tohoku event (at the 5% significance level). The Oaxaca-Blinder estimator for the article event is not 

statistically significant for Model II. 

Table 5 presents results from the event study regression for Models I and II. The lead variables 

represent quarters prior to the event of interest and the lag variables represent quarters after the event, e.g., 

the 𝑙𝑙𝑙𝑙𝑙𝑙1 variable represents the first quarter after the event. As is standard, the first lead is omitted as a 

baseline. The first quarter lag is statistically significant but subsequent lag variables are not. This suggests 

there is a risk discount of 14.0% one quarter after the Tohoku earthquake and tsunami but that this effect 

decays rapidly after the first quarter. This event study estimator is slightly larger in magnitude than the full 

data OLS results and decays more rapidly. However, the key outcome is that the risk discounts are in the 

same direction and relative magnitude. This short-lived response supports the idea that the Tohoku event 

acted as a pure/distant information shock that does not persist. For Model II, the statistically significant 

results for the post-event lag variables are conflicting. The variable for the quarter during which the event 

Table 5. Event study results for the first analysis, full data 
 Model I  Model II  
 Coefficient SE Coefficient SE 
lead8 -.0581 (.1246) -.0357 (.0537) 
lead7 .0244 (.0663) -.0325 (.0574) 
lead6 .1344** (.0622) -.0113 (.0440) 
lead5 .0899 (.0630) -.0269 (.0404) 
lead4 .0142 (.0599) .0079 (.0381) 
lead3 .0634 (.0602) .0237 (.0399) 
lead2 .0824 (.0603) -.0006 (.0361) 
lag0 .0609 (.0707) .0603* (.0318) 
lag1 -.1399** (.0682) .0534 (.0364) 
lag2 -.0212 (.0606) -.0671* (.0386) 
lag3 -.0675 (.0659) .0127 (.0353) 
lag4 .0284 (.0632) .0008 (.0354) 
lag5 -.0372 (.0551) .0007 (.0381) 
lag6 .0267 (.0577) -.0657 (.0429) 
lag7 -.0056 (.0625) -.0570 (.0395) 
lag8 .0890 (.1266) -.0134 (.0667) 
     
Observations 5890  9160  
Adj. R-squared 0.375  0.441  
* p<0.10, ** p<0.05, *** p<0.01 
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of interest occurs (𝑙𝑙𝑙𝑙𝑙𝑙0) is positive and two quarters later the second lag variable is negative. Thus, the 

event study results are inconclusive about the direction of the risk discount, which is complementary to the 

full data OLS results that suggest a null result for Model II. 

Appendix A.6 presents the covariate balance results for the PSM, NNM, CEM and EB 

matching/weighting methods. The two matching methods (PSM and NNM) that improved covariate 

balance for the key variables that likely influence treatment also dropped approximately 90% of the control 

observations and the matching method (CEM) that does not drop most of the control observations also does 

not appreciably improve covariate balance. EB, a pure weighting method, improved covariate balance for 

the key matching variables but effectively “dropped” many control observations by assigning very small 

weights to them. Due to these concerns the matched samples are not used to replace the original unmatched 

data. Instead, I run the three primary models using the matched data from all four matching methods and 

report these results in comparison to the full, unmatched data results. 

Table 6 reports selected estimation results of the key coefficients for Models I through III using the 

matched data. After PSM, the DID estimators are still statistically significant (at the 5% significance level)  

Table 6. Difference-in-differences selected results, matched data 
 Model I Model II Model III 
Matching method and Diff-in-Diff estimators Coefficient/SE Coefficient/SE Coefficient/SE 
Nearest neighbor propensity score (PSM)    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.1224**  -.1056** 
 (.0530)  (.0426) 
2013 XXL zone (xxl2013) x sold after 2015 article (article)  -.0389  
  (.0301)  
SB 379 zone (sb379) x sold after 2015 article (article)   .0459 
   (.0297) 
Nearest neighbor Mahalanobis (NNM)    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.1236**  -.0165 
 (.0524)  (.0415) 
2013 XXL zone (xxl2013) x sold after 2015 article (article)  -.0251  
  (.0279)  
SB 379 zone (sb379) x sold after 2015 article (article)   6.7e-04 
   (.0293) 
Coarsened exact matching (CEM)    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.0649  -.0923* 
 (.0576)  (.0508) 
2013 XXL zone (xxl2013) x sold after 2015 article (article)  -.0480  
  (.0427)  
SB 379 zone (sb379) x sold after 2015 article (article)   .0371 
   (.0355) 
Entropy balancing (EB)    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.0685  -.0393 
 (.0509)  (.0410) 
2013 XXL zone (xxl2013) x sold after 2015 article (article)  -.0173  
  (.0315)  
SB 379 zone (sb379) x sold after 2015 article (article)   -.0086 
   (.0291) 
* p<0.10, ** p<0.05, *** p<0.01 
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for the 2011 Tohoku earthquake and tsunami in both Models I and III. The coefficient estimates suggest 

that a property inside the SB 379 tsunami inundation zone has a risk discount of 10-12% following the 

Tohoku event. After NNM, the DID estimator for the Tohoku event is suggestive of a 12% risk discount 

(a)  

(b)  

Figure 8. Average treatment effect on the treated estimates with 95% confidence intervals for the first analysis’ models. The 
full data estimator is on the left. The next four points represent the estimators after the data was processed with the four matching 
methods (PSM, NNM, CEM, and EB). OB represents the Oaxaca-Blinder estimator. The final six estimators represent the full 
data estimator under different sample space assumptions. (a) For Model I. (b) For Model II. 
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(at the 5% significance level) for Model I but is no longer statistically significant for Model III. After CEM, 

the DID estimator for the Tohoku event is suggestive of a 9% risk discount (at the 10% significance level) 

for Model III but is no longer statistically significant for Model I. After EB, the DID estimators are no 

longer statistically significant for either Model I or III. The DID estimator for the 2015 New Yorker article 

is not statistically significant in either Model II or III for any of the four methods. One issue with matching 

is that there are few good controls with respect to the two key matching variables – elevation and distance 

to the ocean – since assignment to the tsunami inundation zone is highly dependent on both variables. Thus, 

all four matching/weighting methods assign high weights to few observations and low weights to many 

observations, effectively “dropping” many control observations. This increases standard errors and 

confidence intervals for the resulting post-matching DID coefficients. However, the post-matching 

estimators all have similar magnitudes to the full data OLS results and the Oaxaca-Blinder results. Since 

the post-matching results are consistent with the full data results, albeit with larger standard errors, matching 

may not be important in this context. 

The results of the four sets of falsification tests are presented in Table A10 of Appendix A.7. In all 

four tests the DID estimates for Model I are smaller in magnitude compared to the main full data estimate 

of 9% and are not statistically significant. The DID estimates for Model III and the 2011 Tohoku event are 

also smaller in magnitude than the main estimate of 7% and are not statistically significant in all tests (the 

fourth test does not apply to Model III). The 2015 New Yorker article event is still not statistically 

significant in either Model II or III in all four tests. These falsification tests lend additional support to a 

causal interpretation of the estimated risk discounts.  

Figure 8 summarizes the results for the first analysis. It plots the average treatment effect on the 

treated (ATET) estimates with 95% confidence intervals for Models I and II.28 For each model, the full data 

estimator is on the left. The next four points represent the estimators after the data was processed with the 

four matching methods (PSM, NNM, CEM, and EB). “OB” represents the Oaxaca-Blinder estimator. The 

final six estimators represent the full data estimator under different sample space assumptions. The sample 

space is changed from within 1 mile of the tsunami inundation line to ½ mile and also to 2 miles to compare 

the effects of decreasing and increasing the sample area, respectively. Similarly, I decrease the time range 

from 2 years around the event of interest to 1 year around the event. Finally, I try extending the sample 

space to the entire seven counties. Figure 8(a) plots the ATETs for Model I. The takeaway from this plot is 

that the full data result is robust to the matching estimators, the Oaxaca-Blinder estimator, and to varying 

the sample space: all of the ATETs for the 2011 Tohoku earthquake and tsunami have the expected negative 

                                                            
28 See Figures A4(a) and A4(b) in Appendix A.7 for plots of the ATETs for Model III’s Tohoku event and New Yorker article 
event, respectively. These results generally corroborate the results in Figures 8(a) and 8(b). For the Tohoku event, all of the ATETs 
are negative and most (except the post-NNM estimator) are similar in magnitude to the full data estimate. For the New Yorker 
article event, most of the ATETs including the full data estimate are not statistically significant. 
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sign and approximately same magnitude as the coefficient from the full data results. Figure 8(b) plots the 

ATETs for Model II and shows that the full data’s null result is robust to the matching estimators, the 

Oaxaca-Blinder estimator, and to varying the sample space: the ATETs for the 2015 New Yorker article 

are not statistically significant for any of the presented models. 

6.2 Second analysis: 2013 change in tsunami evacuation maps 

For the second analysis, the DID coefficients for the XXL, XL, L or M tsunami inundation zones are not 

statistically significant (Models 1-4). The DID coefficient for the smallest inundation zone is negative, 

large, and statistically significant at the 5% level, implying that a property inside the 2013 SM tsunami 

inundation zone has a risk discount of 31.3% following the 2013 map change. These results are summarized 

in Figure 9, which plots the full data DID estimators with 95% confidence intervals for Models 1 through 

5.29 I also test whether the risk discount for the SM tsunami inundation zone decays over time and find that 

none of the four transformations of the 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) variable in equation (4) had a statistically 

significant interaction with treatment. This suggests that the risk discount does not have a statistically 

significant decay effect. 

The combined model with all five 2013 tsunami inundation zones supports the main DID results: 

the only statistically significant DID coefficient is that of the smallest inundation zone.30 This model implies 

                                                            
29 Table A11 of Appendix A.7 reports the full estimation results with all coefficients. 
30 Table A12 of Appendix A.7 reports the combined model results. 

 
Figure 9. Average treatment effect on the treated estimates with 95% confidence intervals for Models 1 through 5 of the 
second analysis. 
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that a property inside the 2013 SM inundation zone has a risk discount of 23.9% following the 2013 map 

change (at the 10% significance level). A robustness check with the Oaxaca-Blinder decomposition is not 

statistically significant for the XXL, XL, L or M tsunami inundation zones (Models 1-4).31 However, the 

Oaxaca-Blinder estimator is marginally significant for Model 5 and suggestive of a 17.2% risk discount for 

properties inside the 2013 SM tsunami inundation zone following the 2013 map change (p-value = 0.1047). 

I ran event study regressions for Model 5, the only model that had significant full data results, but there 

were too few treated observations in some quarters to precisely estimate treatment effects in an event study 

framework.32 The results of the four sets of falsification tests are presented in Table A14 of Appendix A.7. 

In all four tests the DID estimates for Model 5, the primary model of interest, are smaller in magnitude 

compared to the main estimate of 31.3% and are not statistically significant.33 This result supports the causal 

interpretation of the risk discount found in Model 5. Combined, the OLS and Oaxaca-Blinder results suggest 

that properties inside the SM inundation zone sold for 17-31% less after the 2013 map change. 

6.3 Third analysis: Tsunami Blue Line project 

The first step in this analysis required testing neighborhood sizes around the blue lines by running 100 

models that vary the treatment buffer and control buffer radii. Figure 10 summarizes the results of these 

tests. It plots the average treatment effect on the treated (ATET) estimates for the DID models with 95% 

confidence intervals for Models 1 through 100 where each model is defined by the treatment buffer size 

and control buffer size combination that determines its sample space. The 95% confidence intervals – and 

the p-values used for hypothesis testing – were generated using subcluster wild bootstrapping, an extension 

of the wild cluster bootstrap. Each municipality that installed blue lines was given a set of blue lines from 

the state and chose themselves where to install these blue lines, meaning that the treatment assignment 

mechanism is clustered by municipality. This suggests using cluster-robust standard errors. However, there 

are only 8 to 15 municipalities (this varies by model), which is less than the recommended 40 to 50 clusters 

(Angrist & Pischke, 2009). With too few clusters, the cluster-robust variance matrix estimate will be 

downward-biased, leading to over-rejection of the null hypothesis (Cameron & Miller, 2015). 

Bootstrapping diagnostics suggested that subcluster wild bootstrapping – clustering on both municipality 

and year – performed better than ordinary wild cluster bootstrapping on municipality alone. Furthermore, 

whereas the ordinary wild cluster bootstrap fails when cluster sizes vary, as is the case here, the subcluster 

                                                            
31 Table A13 of Appendix A.7 reports the Oaxaca-Blinder results. 
32 These results are not presented here but are available upon request. 
33 There are two unexpected and statistically significant results of the falsification tests. First, the DID estimates for Models 1 and 
2 are marginally statistically significant in the first test (shifting the date of the 2013 map change to one year before the true event, 
i.e., October 2012). Since some counties received updated tsunami maps in early 2013 these two models may be picking up the 
treatment effect due to these early-adopting counties. Second, the DID estimates for Model 3 are statistically significant but positive 
in the third test (randomly assigning sales to either the control or treatment group). This result is counterintuitive and likely an 
artifact of the randomization. 
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wild bootstrapping method has been shown to perform well when the number of clusters is small and when 

cluster sizes vary (MacKinnon & Webb, 2018). 

Models 1 through 50 (Figures A5(a) and A5(b) in Appendix A.7) use Euclidian distances and 

Models 51 through 100 (Figures 10(a) and 10(b)) use road network distances to define the treatment and 

control buffers. The models that use road network distances tend to have treatment effects that agree more 

with each other within a given treatment buffer compared to the models that use Euclidian distances, which 

possibly suggests that the road network distance models are more consistently picking up the effect of 

proximity to a blue line. This makes intuitive sense since the blue lines are placed on roads that homeowners 

drive on regularly to and from their properties. So, using the road network to measure distances between 

properties and blue lines likely aligns better with how homeowners are perceiving these distances. 

Therefore, I focus on the results road network models (Figures 10(a) and 10(b)). 

Figure 10(a) shows the estimates for the 500’, 1000’, and 1500’ treatment buffers defined using 

road network distances. The first nine model estimates in this figure are for the 500’ treatment buffer with 

the control buffer expanding from 1000’ to 5000’. The next nine estimates are for the 1000’ treatment buffer 

with the control buffer expanding from 1500’ to 5500’. The last nine estimates are for the 1500’ treatment 

buffer with the control buffer expanding from 2000’ to 6000’. Figure 10(a) suggests that the 500’ treatment 

buffer is too small – there are not enough observations to identify the treatment effect. The 1000’ treatment 

buffer models all have negative effects, with several treatment effects having statistical significance. The 

1500’ treatment buffer does not have any significant treatment effects. In fact, the treatment effect appears 

to go to zero. Figure 10(b) shows the estimates for the 2000’, 2500’, and 3000’ treatment buffers. Combined, 

these two figures suggest that when the treatment buffer is 1500’ or larger the treatment effect goes to zero. 

The most significant results tend to be for smaller treatment buffers, specifically the 1000’ treatment buffer, 

and these results are more significant for smaller control buffers, which is when the sets of treatment and 

control buffer observations are the most comparable or balanced. As hypothesized, the treatment effect of 

the blue lines is extremely localized. Thus, I narrow the spatial extent choice to the 1000’ treatment buffer.  

Within this treatment buffer, I am simultaneously testing nine control buffers (Models 60 through 

68) so I have to account for this multiple hypothesis testing.34 I use the Simes correction to generate q-

values (adjusted p-values) for these nine models because it has several desirable features: it is not as 

conservative as the traditional Bonferroni correction, it is a step-up method, and it allows for non-negative 

correlation between the p-values (Newson, 2010). Step-up methods start with a single-step method (like the 

Bonferroni correction) but then improve upon single-step methods by possibly rejecting further hypotheses 

in subsequent steps (Romano et al., 2010). The q-value generated by the Simes procedure for Models 62 

                                                            
34 I could apply multiple hypothesis testing procedures to a larger subset of models but, as expected, the adjusted p-values are very 
high. 
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and 63 is 0.089.35 This is the minimum proportion of false positive results (the false discovery rate) when 

the test is significant, i.e., 8.9% of significant results will result in a false positive.  

                                                            
35 The full set of q-values is not reported here but is available upon request. 

(a)  

(b)  
Figure 10. Average treatment effect on the treated estimates with 95% confidence intervals for Models 51 through 100 of the 
third analysis. Road network distances define the treatment and control buffers. For each ATET, the model number is followed 
by the size of the treatment buffer (ft) and the size of the control buffer (ft), e.g., Model 51 has a 500’ treatment buffer and 1000’ 
control buffer. (a) For Models 51-77. (b) For Models 78-100. Note: confidence intervals that are out of bounds are suppressed, 
e.g., for Model 60.  
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Following these tests, I choose one model to continue the analysis with: Model 62.36 It has a 1000’ 

treatment buffer and a 2500’ control buffer. Table 7 reports selected DID and DDD estimation results of 

the key coefficients for Model 62.37 The DID estimator suggests that there is an 8.0% risk discount for 

properties that are within 1000’ of a blue line (at the 5% significance level, uncorrected). The DDD 

estimator is not statistically significant, however. These results suggest homebuyers attend to the visual 

cues but do not differentiate the signal according to the classification of tsunami inundation risk. The 

treatment and event variables are not statistically significant in either the DID or DDD model. The 

sensitivity variable for the 2013 XXL tsunami inundation zone is statistically significant (at the 10% level) 

in the DDD model, suggesting that houses inside the 2013 XXL inundation zone sell for 14.6% more than 

houses outside of it. This variable may be capturing the value of unobserved coastal amenities. In both the 

DID and DDD models house prices increase with proximity to the ocean (at the 1% significance level). 

                                                            
36 Once this model is selected, subsequent p-values are generated using the subcluster wild bootstrapping procedure and are not 
corrected for multiple testing procedures. 
37 Table A15 of Appendix A.7 reports the full estimation results with all coefficients. 

Table 7. Difference-in-differences and triple differences results for the third analysis, Model 62 
 DID DDD 
 

Coefficient 
p-
value Coefficient p-value 

     
Treatment     
Blue line treatment buffer (treatment362=1) .0218 .4658 .0398 .2532 
Event     
Sold after first blue line installed (event362=1) .0185 .8296 .1012 .7396 
Sensitivity     
Inside 2013 XXL tsunami zone (xxl2013=1)   .1365* .0800 
Diff-in-Diff     
Blue line treatment buffer (treatment362) x sold after first blue 
line installed (event362) 

-.0834** .0254 -.0832 .4731 

Blue line treatment buffer (treatment362) x 2013 XXL zone 
(xxl2013) 

  -.0623 .3290 

2013 XXL zone (xxl2013) x sold after first blue line installed 
(event362) 

  -.2488 .1507 

Triple Difference     
Blue line treatment buffer x 2013 XXL zone x sold after first 
blue line installed 

  -.0117 .9404 

Location     
Elevation (ft) 5.9e-04 .2038 .0011 .1197 
Elevation (ft) x Log distance to ocean shoreline x on oceanfront 
(=1) 

2.9e-04 .2527 2.8e-04 .2660 

Log distance to ocean shoreline -.0799*** .0081 -.0747*** .0088 
     
Observations 1334  1334  
Adj. R-squared 0.491  0.496  
* p<0.10, ** p<0.05, *** p<0.01 
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However, elevation and the ocean view proxy 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ln (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑥𝑥 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are no longer 

statistically significant in either the DID or DDD model. 

Next, I calculate the measure proposed by de Chaisemartin and D’Haultfœuille (2020) to assess the 

robustness of the TWFE estimator to heterogeneous treatment effects. This robustness measure is the ratio 

of the TWFE estimator to the standard deviation of the weights attached to the TWFE regression (de 

Chaisemartin & D’Haultfœuille, 2020). If this ratio is very large, the TWFE estimator and the ATET can 

only be of opposite signs under a very large and implausible amount of treatment effect heterogeneity. 

However, if many weights are negative, and if the robustness measure is not very large (close to 0), the 

TWFE estimator and the ATET can be of opposite signs even under a small and plausible amount of 

treatment effect heterogeneity. The calculated robustness measure (0.0103) for Model 62 suggests that 

treatment effect heterogeneity could be a serious concern for the validity of the TWFE estimator. 

Following this result, I estimate two new estimators that are valid in the presence of treatment effect 

heterogeneity. I first compute new DID estimator by de Chaisemartin and D’Haultfœuille (2020) that 

estimates the treatment effect in the groups that switch treatment, at the time when they switch. I find a 

large, negative but not statistically significant effect (𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀 = −0. 392, 𝑆𝑆𝑆𝑆 = 0. 664). I then run a new 

estimator developed by Callaway and Sant’Anna (2020) whose interpretation is similar to the ATET in the 

TWFE DID setup. However, the data for Model 62 is too sparse to be able to estimate most of their group-

time average treatment effects. Out of seven groups, I can calculate group average treatment effects for 

only two groups and, while negative, these group average treatment effects are not statistically significant. 

There are also too many missing group average treatment effects to calculate an overall treatment effect 

that could be compared to the TWFE DID estimator. The treatment effects generated by these new methods 

have the same sign as TWFE but the magnitudes and significance are likely impacted by the small sample 

in this rural location. 

7 Discussion and Conclusion 

The Pacific Northwest is facing a severe but low frequency threat: the Cascadia Subduction Zone (CSZ) 

earthquake and tsunami. In Oregon, resilience to such a large seismic event is low and coastal communities 

in the tsunami inundation zone are especially vulnerable. They will account for the majority of expected 

fatalities and those who survive will be instantly displaced (OSSPAC, 2013; Schulz, 2015b). Whether 

individual Oregonians will take action to prepare themselves for a CSZ event depends on how salient the 

risk is. Since Oregon has not experienced a Cascadia earthquake and tsunami in recent history, Oregonians’ 

subjective risk perceptions may underestimate the objective probability of a Cascadia event. This study 

asks whether new information about the risk of a Cascadia earthquake and tsunami can narrow the gap 

between subjective and objective risk.  



47 
 

The results for the first analysis on exogenous events suggest that a property inside the SB 379 

tsunami inundation zone sells for 7-9% less than a property outside of the zone after the 2011 Tohoku 

earthquake and tsunami. However, this risk discount is short-lived and properties inside the SB 379 

inundation zone return to baseline levels within 2.5 years of the Tohoku event. The DID estimator for the 

2015 New Yorker article is not statistically significant in either Model II or III. The 2011 Tohoku 

earthquake and tsunami treatment effect is robust to the Oaxaca-Blinder estimator, matching estimators, 

and an event study specification. This decay of the Tohoku event risk discount has several potential 

explanations. For example, the informational effect of the Tohoku event will diminish when new people 

move into the area and the attention-focusing effect of the event will diminish as media coverage decreases. 

A related explanation is availability bias. Under this explanation, an individual’s subjective risk perception 

depends on the availability of information about and/or recall of events related to a predicted Cascadia 

event. The low frequency of such events suggests that, before an event like the 2011 Tohoku earthquake 

and tsunami, individual Oregonians would have low subjective risk perceptions about the risk of a Cascadia 

event occurring in their lifetimes. Thus, the 2011 Tohoku earthquake and tsunami would have acted as a 

source of new information, increasing subjective risk perceptions. However, this effect diminishes over 

time as recall of the Tohoku event declines. The risk discount due to the Tohoku event is also shorter-lived 

than risk discounts found in other studies that used local disaster events – such as floods or hurricanes – as 

information shocks (Atreya et al., 2013; Bin & Landry, 2013; Hansen et al., 2006; Kousky, 2010; 

McCluskey & Rausser, 2001; McCoy & Walsh, 2018). These results suggests that a “distant” information 

shock can shift homebuyers’ subjective risk perceptions to better match the objective risks of the Cascadia 

event. However, these distant information shocks may not be as persistent as local information shocks. 

For the second analysis on regulatory map changes, the DID estimators are statistically significant 

for the 2013 SM tsunami inundation zone but not for the M, L, XL, or XXL zones. The coefficient estimate 

from Model 5 implies that a property inside the SM inundation zone has a risk discount of 31.3% following 

the 2013 map change. This risk discount does not have a statistically significant decay effect. The SM 

inundation zone result is robust to the Oaxaca-Blinder estimator, which suggests a more conservative risk 

discount of 17.2%. These results suggest that only properties in the most vulnerable inundation zone see a 

risk discount following the 2013 map update. These are homes that were not in the original 1995 tsunami 

inundation zone but are in the smallest 2013 inundation zone and therefore all of the new inundation zones, 

making them the most vulnerable to a Cascadia event tsunami. This result also suggests that a “pure” 

information shock can shift homebuyers’ subjective risk perceptions to better match the objective risks of 

the Cascadia event. 

DID results from the third analysis on local visual risk cues using a 1000’ treatment buffer and a 

2500’ control buffer suggest an 8.0% risk discount for properties that are within 1000’ of a blue line. This 
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result could be invalidated by the presence of treatment effect heterogeneity, a potential concern for this 

analysis. However, the sample composed of small, rural communities limits my ability to verify the results 

from the TWFE regression with the newly developed estimators that account for treatment effect 

heterogeneity. When I run these new estimators, they are suggestive of a negative effect of proximity to a 

blue line but, again, are not able to be estimated precisely. The DDD results from the third analysis are not 

statistically significant, suggesting that people are not sensitive to whether they are inside the tsunami 

inundation zone. Homeowners may not perceive a difference in risk if they’re immediately across the 

inundation zone, e.g., they may think the water will reach their property even if they are outside of the 

inundation zone since the zone is a modeled result and cannot be perfectly predictive. This result suggests 

that people may attend to the visual cue given by the blue lines but not to the actual hazard delineation 

given by the tsunami inundation zone. The third analysis has several next steps that are in progress. First, I 

need to include recently acquired housing transactions for the years 2019 and 2020. This may help with 

some of the data limitations in this analysis and may even make it possible to calculate the de Chaisemartin 

and D’Haultfœuille (2020) and Callaway and Sant’Anna (2020) estimators. Second, since pre-tests based 

on the group-time average treatment effects of Callaway and Sant’Anna (2020) are valid even if there is 

variation in treatment timing, if additional data makes it possible to calculate this estimator then another 

possible step for this analysis is to use this estimator to test for parallel pre-trends. 

Many of the limitations of these three analyses are due to limited observations or covariates. In the 

first analysis, the positive coefficients on the SB 379 tsunami inundation zone treatment variable suggest 

that it is capturing the value of unobserved coastal amenities. One promising attempt to disentangle coastal 

amenities from tsunami risk involves using GIS viewshed tools and fine-scale digital surface models of the 

ocean shoreline to calculate the view amenity for oceanfront homes (Bin et al., 2008; Dundas, 2017). There 

may also be unobservable factors that influence the price trend for oceanfront properties. More data may 

be needed to fully account for the unobserved coastal amenities driving location choice and potentially 

confounding results. Similarly, for the second analysis, an ocean view covariate for oceanfront homes may 

help this analysis better disentangle coastal amenities from tsunami risk. There are two potential concerns 

with second analysis’ primary SM inundation zone result. First, for there are only 81 property transactions 

that fall into the treatment group, i.e., were not in the SB 379 zone but are in the 2013 SM zone, for Model 

5. My inability to pick up a statistically significant decay effect for the SM zone risk discount may also be 

due to the small number of treated transactions. Another concern is the substantial covariate imbalance for 

this sample (see Table A3 of Appendix A.3). However, the small sample size for this model precluded using 

any of the four matching methods to preprocess the data as a robustness check. 

The potential risk discounts identified in this paper indicate that at least three types of tsunami risk 

signals – exogenous events, hazard planning changes, and visual cues – may be salient to coastal residents. 
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These results suggest that exogenous tsunami risk signals may shift homebuyers’ subjective risk perceptions 

to better match the objective risks of the Cascadia event, meaning that a salient risk signal may be able to 

successfully induce individuals to take preparedness actions. And given that Oregon is currently and 

chronically under-prepared for a Cascadia earthquake and tsunami, policymakers and emergency managers 

face the dual policy challenge of increasing risk salience and preparedness action. This paper’s findings 

suggest that Oregon policymakers may be able to use risk signals to induce individuals to pay attention to 

and prepare more for a Cascadia event. These “pure” risk signals – or policies – would act as a source of 

new information, increasing Oregonians’ subjective risk perceptions. However, the effect of these signals 

on risk perceptions would likely disappear over time, as found in the first analysis, and may disappear more 

rapidly than the effects of local disaster events. Thus, regular (e.g., annual) risk signals may be necessary 

to prompt individuals to continue adjusting their subjective risk perceptions. For example, existing annual 

events like the Great Oregon ShakeOut earthquake drill that occurs each October could be publicized more 

widely and intensively before they happen (Office of Emergency Management, 2019b). And existing home 

preparedness programs such as 2 Weeks Ready could be regularly promoted with bursts of media coverage 

on local and social media (Office of Emergency Management, 2019a). Programs like the Tsunami Blue 

Line Project that implement visual cues of risk may also be effective at adjusting risk perceptions. These 

visual cues act as a regular risk reminder every time people pass by them. However, the drawback of these 

types of policies is that they have highly localized effects and that, while individuals may attend to the 

visual cue, they may not attend to the actual hazard, as found in the third analysis. 

However, even if these risk signals are able to decrease the gap between subjective risk perceptions 

and the objective risk of a Cascadia event, they may not necessarily lead to increased individual 

preparedness actions. Wachinger et al. (2013) offer possible explanation for a weak relationship between 

risk perception and preparedness action even when individuals understand the risk, i.e., when the risk is 

salient. First, residents of an area facing natural hazard risk may choose to accept the risk if their perceived 

benefits outweigh the potential impacts, e.g., in this study, distance to the coast serves as both a proxy for 

coastal amenities and increased risk to homeowners. The second reason is due to the effect of trust in 

government and/or structural measures. Individuals are less likely to prepare themselves when they trust 

these measures to protect them than when they have little trust in the government authority or the 

effectiveness of existing measures. Essentially, they transfer responsibility for action to someone else, e.g., 

state or local government. Third, there may be confusion or ignorance about the appropriate preparedness 

action to take or individuals may have little capacity or few resources to help themselves. These are all 

factors that Oregon policymakers and emergency managers may want to consider when developing policies 

and other risk signals to deal with the dual policy challenge of increasing risk salience and preparedness 

action for a Cascadia earthquake and tsunami.  
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A. Online Appendix 

A.1 Expected utility model modified from Hallstrom and Smith (2005) 

Using the expected utility framework, a person’s willingness to pay for a risk reduction captures the value 

of risk reduction (conditional on their previous actions to reduce risk) (Hanley et al., 2007). A simple, two 

outcome expected utility model, modified from Hallstrom and Smith (2005), demonstrates this in the case 

of an earthquake and tsunami risk. Assume a person’s utility is given by the expected value of their utility 

of wealth (income). Indirect utility 𝑉𝑉(. ) is defined over annual income minus any hazard insurance (𝑚𝑚) and 

the vector of housing attributes. This vector is decomposed into ℎ, the housing and site attributes that are 

not related to the coastal amenities or risks, and 𝑟𝑟, the site attribute that relates to both the 

earthquake/tsunami risk and coastal amenities (such as distance to the shoreline). The household’s 

subjective probability for an earthquake and tsunami at a given location (measured by distance 𝑟𝑟), with a 

specific information set (𝐼𝐼), and state-contingent utility 𝑈𝑈𝑇𝑇(. ) is given by 𝑝𝑝(𝑟𝑟, 𝐼𝐼). Their subjective 

probability of no earthquake and tsunami is (1 − 𝑝𝑝(𝑟𝑟, 𝐼𝐼)). Information, 𝐼𝐼, can change due to preparedness 

programs, media coverage, or the occurrence of earthquakes or tsunamis. In this two-outcome scenario, a 

homeowner’s expected utility is given by  

𝐸𝐸(𝑉𝑉) = 𝑝𝑝(𝑟𝑟, 𝐼𝐼)𝑈𝑈𝑇𝑇�𝑟𝑟, ℎ,𝑚𝑚 − 𝑅𝑅�𝑟𝑟, ℎ, 𝑖𝑖0,𝑝𝑝(𝑟𝑟, 𝐼𝐼)� − 𝐿𝐿(𝑟𝑟, ℎ, 𝑖𝑖0)� 

+�1 − 𝑝𝑝(𝑟𝑟, 𝐼𝐼)�𝑈𝑈𝑁𝑁𝑁𝑁 �𝑟𝑟, ℎ,𝑚𝑚 − 𝑅𝑅�𝑟𝑟, ℎ, 𝑖𝑖0,𝑝𝑝(𝑟𝑟, 𝐼𝐼)�� , (𝐴𝐴. 1) 

where 𝑅𝑅(. ) is the annual hedonic price function, 𝑖𝑖0 is the insurance rate per dollar of coverage, and 𝐿𝐿 is the 

monetary loss due to the earthquake and tsunami, net of any insurance coverage. The state where the 

earthquake and tsunami occurs is labeled (𝑇𝑇) and the state where no earthquake occurs is (𝑁𝑁𝑁𝑁). Individuals 

maximize their expected utility by selecting a house with attributes ℎ and 𝑟𝑟 conditional on their income 

(𝑚𝑚), information (𝐼𝐼), insurance rates (𝑖𝑖0), and the exogenous price function for these site attributes (𝑅𝑅(. )). 

Assuming that this hedonic price function is the outcome of housing market equilibrium, we can 

differentiate it with respect to an attribute of choice to find the implicit marginal price (marginal 

capitalization effect) for that attribute. However, Hallstrom and Smith (2005) showed that it is difficult to 

disentangle and interpret estimates for the marginal effect of 𝑟𝑟 (𝑅𝑅𝑟𝑟 = 𝜕𝜕𝑅𝑅
𝜕𝜕𝑟𝑟

) because distance (𝑟𝑟) serves as a 

proxy for both coastal amenities and risks of tsunami damage. They then show that observing the response 

of housing prices to an exogenous information shock (𝑅𝑅𝐼𝐼 = 𝜕𝜕𝑅𝑅
𝜕𝜕𝐼𝐼

), instead, has the potential to reduce 

confounding multiple influences on the marginal effect. Intuitively, a change in information changes the 

individual’s perceived probability of an earthquake/tsunami 𝑝𝑝(𝑟𝑟, 𝐼𝐼). This probability change (𝑝𝑝𝐼𝐼) is 

converted into a monetary tradeoff via the implicit price function. So, with an exogenous information shock 
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(𝜕𝜕𝐼𝐼), the marginal price from the hedonic isolates the ex ante marginal capitalization effect of the 

information-induced change in subjective risk 

 𝑅𝑅𝐼𝐼 =
𝜕𝜕𝑅𝑅
𝜕𝜕𝐼𝐼

=
𝑝𝑝𝐼𝐼(𝑈𝑈𝑇𝑇 − 𝑈𝑈𝑁𝑁𝑁𝑁)

𝑝𝑝𝑈𝑈𝑇𝑇𝑇𝑇 + (1 − 𝑝𝑝)𝑈𝑈𝑁𝑁𝑁𝑁𝑁𝑁
,                                                             (𝐴𝐴. 2) 

where 𝑈𝑈𝑇𝑇−𝑈𝑈𝑁𝑁𝑁𝑁
𝑝𝑝𝑈𝑈𝑇𝑇𝑇𝑇+(1−𝑝𝑝)𝑈𝑈𝑁𝑁𝑁𝑁𝑁𝑁

 is the “incremental option price” for a unit risk reduction in the hazard (T) and 𝑝𝑝𝐼𝐼 

is the change in the perceived probability of an earthquake and tsunami due to the information shock 𝐼𝐼.38 

Under my hypothesis that the tsunami risk signals – or information shocks – impacted Oregonians’ risk 

perceptions about the Cascadia earthquake and tsunami, the sign of the ex ante marginal capitalization 

effect (𝑅𝑅𝐼𝐼) is expected to be negative for all information shocks. I expect that each information shock (𝐼𝐼) 

increased individual’s perceived probability of an earthquake/tsunami 𝑝𝑝(𝑟𝑟, 𝐼𝐼). The change in perceived risk 

(𝑝𝑝𝐼𝐼) should then decrease the hedonic price function (𝑅𝑅�𝑟𝑟, ℎ, 𝑖𝑖0,𝑝𝑝(𝑟𝑟, 𝐼𝐼)�). 

A.2 Tsunami inundation zone scenario comparison 

Figure A1(a) presents the five 2013 tsunami inundation scenarios for the town of Tillamook, the Tillamook 

County seat of 4,935 people (Secretary of State, n.d.-a). The five scenarios are known as the SM, M, L, XL, 

and XXL tsunami inundation scenarios. Figure A1(b) compares the SM and XXL 2013 scenarios (blue) to 

the 1995 SB 379 (orange) scenario for Tillamook. The differences between the two map series reflect the 

differences in scientific information and modeling effort between 1995 and 2013. Figure A2 maps the 

Census block groups for this same area in Tillamook to illustrate the approximate scale of a Census block 

group for this sample. 

 

  

                                                            
38 Note that what I am calling the “incremental option price,” i.e., the maximum payment that an individual would make under 
uncertainty to reduce the probability of the earthquake and tsunami state, is the term that converts the change in probability into 
monetary terms. Also note that calling this term “incremental option price” is no longer technically correct since we are not able to 
interpret the marginal effects of the hedonic price function as MWTP. For conciseness, I keep its original label here. 
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(a)  (b)  

Figure A1. City of Tillamook, Tillamook County. (a) Tsunami inundation zones given by the five 2013 tsunami scenarios: SM, M, L, XL, XXL. (b) Comparison of tsunami 
inundation zones between the 1995 SB 379 line (orange) and the SM and XXL 2013 scenarios (blue). 
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A.3 Summary statistics 

Table A1. Variable Definitions and Descriptive Statistics, First Analysis Sample, 2009-2017 
Variables Mean Std Dev Min Max 
     
Event     
Sold after 2011 Tohoku EQ (tohoku=1) 0.81 (0.39) 0 1 
Sold after 2015 article (article=1) 0.33 (0.47) 0 1 
Treatment     
Inside 1995 SB 379 tsunami zone (sb379=1) 0.27 (0.44) 0 1 
Inside 2013 XXL tsunami zone (xxl2013=1) 0.49 (0.50) 0 1 
Inside 2013 XL tsunami zone (xl2013=1) 0.47 (0.50) 0 1 
Inside 2013 L tsunami zone (l2013=1) 0.34 (0.48) 0 1 
Inside 2013 M tsunami zone (m2013=1) 0.25 (0.43) 0 1 
Inside 2013 SM tsunami zone (sm2013=1) 0.13 (0.34) 0 1 
Structural     
Sale price (2019 constant dollars) 311,091.80 (170,179.49) 31,393 1,003,509 
Bedrooms 2.83 (0.93) 1 8 
Bathrooms 2.02 (0.77) .5 6 

 
Figure A2. Approximate scale of Census block groups in the city of Tillamook (red). 
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Table A1. Variable Definitions and Descriptive Statistics, First Analysis Sample, 2009-2017 
Variables Mean Std Dev Min Max 
     
Indoor square footage 1,680.60 (705.27) 208 7,265 
Total acreage (equal to indoor area if apartment) 0.40 (2.17) .0057 115 
Effective age of property (2018 - remodel year) 36.09 (25.25) 0 137 
Heating (=1) 0.94 (0.24) 0 1 
Fireplace (=1) 0.65 (0.48) 0 1 
Garage (=1) 0.75 (0.43) 0 1 
Carport (=1) 0.04 (0.19) 0 1 
Deck (=1) 0.12 (0.33) 0 1 
Patio (=1) 0.18 (0.38) 0 1 
Fencing (=1) 0.15 (0.36) 0 1 
Goal 18 eligible (=1) 0.04 (0.19) 0 1 
Has shoreline armoring (=1) 0.01 (0.11) 0 1 
Location     
Special Flood Hazard Area (SFHA) (=1) 0.12 (0.32) 0 1 
Elevation (ft) 77.06 (69.47) 0 685 
Slope (angular degrees of slope) 2.46 (4.33) 0 32 
Distance to nearest beach access point (ft) 3,742.94 (6,488.61) 0 58,260 
Distance to ocean shoreline (ft) 13,613.77 (21,683.77) 0 171,886 
Oceanfront (=1) 0.05 (0.22) 0 1 
Distance to nearest water body (lake, pond, bay) (ft) 6,833.93 (8,262.88) 0 54,308 
Distance to nearest river (ft) 7,311.76 (7,987.83) 0 42,105 
Distance to nearest state park or public land (ft) 24,815.12 (25,972.40) 0 97,127 
Distance to nearest national park or public land (ft) 18,365.10 (17,023.94) 0 74,910 
Distance to nearest highway or interstate (ft) 3,164.46 (5,049.39) 0 36,871 
Distance to nearest major road (ft) 3,761.70 (6,169.40) 0 36,909 
Distance to nearest railroad (ft) 72,756.88 (58,552.91) 21 174,281 
Distance to nearest airport (ft) 30,689.69 (19,410.33) 163 83,958 
Distance to nearest k-12 school (ft) 14,045.38 (14,543.35) 102 70,987 
Distance to nearest central business district (city) (ft) 10,533.27 (10,258.51) 0 71,539 
Distance to nearest wastewater treatment plant (ft) 14,574.16 (10,861.35) 44 78,773 
Distance to nearest fire station (ft) 6,032.35 (4,741.50) .85 33,221 
Distance to nearest law enforcement station (ft) 31,602.66 (38,338.10) 108 160,319 
Distance to nearest hospital (ft) 47,994.08 (43,389.19) 229 167,748 
     

 

 

Table A2. Variable Definitions and Descriptive Statistics, Second Analysis Sample, Model 1, 2011-
2015 
Variables Mean Std Dev Min Max 
     
Event     
Sold after 2013 map change (after 10/2/13) (newmaps=1) 0.59 (0.49) 0 1 
Treatment     
Inside 2013 XXL tsunami zone (xxl2013=1) 0.27 (0.44) 0 1 
Inside 2013 XL tsunami zone (xl2013=1) 0.24 (0.43) 0 1 
Inside 2013 L tsunami zone (l2013=1) 0.11 (0.31) 0 1 
Inside 2013 M tsunami zone (m2013=1) 0.04 (0.19) 0 1 
Inside 2013 SM tsunami zone (sm2013=1) 0.01 (0.10) 0 1 
Structural     
Sale price (2019 constant dollars) 296,220.40 (163,439.01) 31,540 1,003,509 
Bedrooms 2.87 (0.89) 1 8 
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Table A2. Variable Definitions and Descriptive Statistics, Second Analysis Sample, Model 1, 2011-
2015 
Variables Mean Std Dev Min Max 
     
Bathrooms 2.01 (0.74) .5 6 
Indoor square footage 1,658.07 (714.75) 96 6,577 
Total acreage (equal to indoor area if apartment) 0.51 (1.95) .0023 112 
Effective age of property (2018 - remodel year) 35.98 (24.94) 0 137 
Heating (=1) 0.77 (0.42) 0 1 
Fireplace (=1) 0.57 (0.49) 0 1 
Garage (=1) 0.71 (0.45) 0 1 
Carport (=1) 0.03 (0.18) 0 1 
Deck (=1) 0.09 (0.29) 0 1 
Patio (=1) 0.18 (0.38) 0 1 
Fencing (=1) 0.12 (0.33) 0 1 
Goal 18 eligible (=1) 0.02 (0.13) 0 1 
Has shoreline armoring (=1) 0.00 (0.05) 0 1 
Location     
Special Flood Hazard Area (SFHA) (=1) 0.03 (0.17) 0 1 
Elevation (ft) 99.83 (82.15) 0 1,146 
Slope (angular degrees of slope) 1.85 (4.26) 0 32 
Distance to nearest beach access point (ft) 5,065.92 (8,094.82) 0 74,110 
Distance to ocean shoreline (ft) 16,628.09 (20,257.40) 0 137,602 
Oceanfront (=1) 0.03 (0.16) 0 1 
Distance to nearest water body (lake, pond, bay) (ft) 6,878.71 (7,469.41) 0 60,075 
Distance to nearest river (ft) 7,264.15 (7,481.09) 0 42,105 
Distance to nearest state park or public land (ft) 23,041.32 (25,780.63) 0 116,124 
Distance to nearest national park or public land (ft) 14,391.50 (14,826.84) 0 74,910 
Distance to nearest highway or interstate (ft) 3,468.93 (5,347.09) 0 63,013 
Distance to nearest major road (ft) 2,805.27 (4,675.05) 0 36,683 
Distance to nearest railroad (ft) 85,412.48 (106,850.86) 0 394,958 
Distance to nearest airport (ft) 29,597.25 (20,233.50) 474 121,345 
Distance to nearest k-12 school (ft) 13,697.00 (15,220.24) 152 99,992 
Distance to nearest central business district (city) (ft) 10,798.03 (11,022.24) 0 99,593 
Distance to nearest wastewater treatment plant (ft) 16,868.88 (21,145.99) 220 166,371 
Distance to nearest fire station (ft) 6,385.07 (5,420.26) 3.4 62,965 
Distance to nearest law enforcement station (ft) 25,640.00 (32,459.64) 157 160,319 
Distance to nearest hospital (ft) 47,723.01 (48,161.14) 229 176,429 
     

 

 

Table A3. Variable Definitions and Descriptive Statistics, by SM2013, Second Analysis Sample, 
Model 5, 2011-2015 
 Outside SM2013 inundation 

zone 
Inside SM2013 inundation 
zone 

 

 
Mean Std Dev Mean Std Dev 

Standardized diff. 
in means 

      
Event      
Sold after 2013 map change 
(after 10/2/13) (newmaps=1) 

0.59 (0.49) 0.53 (0.50) - 

Treatment      
Inside 2013 XXL tsunami 
zone (xxl2013=1) 

0.00 (0.00) 1.00 (0.00) - 
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Table A3. Variable Definitions and Descriptive Statistics, by SM2013, Second Analysis Sample, 
Model 5, 2011-2015 
 Outside SM2013 inundation 

zone 
Inside SM2013 inundation 
zone 

 

 
Mean Std Dev Mean Std Dev 

Standardized diff. 
in means 

      
Inside 2013 XL tsunami zone 
(xl2013=1) 

0.00 (0.00) 1.00 (0.00) - 

Inside 2013 L tsunami zone 
(l2013=1) 

0.00 (0.00) 1.00 (0.00) - 

Inside 2013 M tsunami zone 
(m2013=1) 

0.00 (0.00) 1.00 (0.00) - 

Inside 2013 SM tsunami 
zone (sm2013=1) 

0.00 (0.00) 1.00 (0.00) - 

Structural      
Sale price (2019 constant 
dollars) 

295,066.23 (159,063.84) 231,780.57 (148,962.81) 0.41 

Bedrooms 2.90 (0.88) 2.60 (0.96) 0.32 

Bathrooms 2.01 (0.75) 1.63 (0.75) 0.51 

Indoor square footage 1,675.28 (718.92) 1,400.46 (557.99) 0.43 

Total acreage (equal to 
indoor area if apartment) 

0.45 (1.40) 1.36 (5.21) -0.24 

Effective age of property 
(2018 - remodel year) 

37.04 (25.55) 40.62 (25.24) -0.14 

Heating (=1) 0.77 (0.42) 0.81 (0.39) -0.10 

Fireplace (=1) 0.58 (0.49) 0.57 (0.50) 0.02 

Garage (=1) 0.72 (0.45) 0.74 (0.44) -0.05 

Carport (=1) 0.04 (0.19) 0.01 (0.11) 0.16 

Deck (=1) 0.09 (0.28) 0.16 (0.37) -0.22 

Patio (=1) 0.17 (0.38) 0.20 (0.40) -0.07 

Fencing (=1) 0.10 (0.31) 0.15 (0.36) -0.13 

Goal 18 eligible (=1) 0.01 (0.10) 0.06 (0.24) -0.27 

Has shoreline armoring (=1) 0.00 (0.02) 0.02 (0.16) -0.22 

Location      
Special Flood Hazard Area 
(SFHA) (=1) 

0.01 (0.12) 0.33 (0.47) -0.92 

Elevation (ft) 121.66 (86.13) 16.40 (11.41) 1.71 

Slope (angular degrees of 
slope) 

2.04 (4.72) 1.71 (2.68) 0.08 

Distance to nearest beach 
access point (ft) 

5,224.44 (8,615.61) 5,212.64 (8,302.32) 0.00 

Distance to ocean shoreline 
(ft) 

18,437.87 (21,378.82) 24,432.62 (25,851.42) -0.25 

Oceanfront (=1) 0.02 (0.14) 0.14 (0.34) -0.44 
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Table A3. Variable Definitions and Descriptive Statistics, by SM2013, Second Analysis Sample, 
Model 5, 2011-2015 
 Outside SM2013 inundation 

zone 
Inside SM2013 inundation 
zone 

 

 
Mean Std Dev Mean Std Dev 

Standardized diff. 
in means 

      
Distance to nearest water 
body (lake, pond, bay) (ft) 

6,525.36 (6,387.23) 6,934.80 (7,488.63) -0.06 

Distance to nearest river (ft) 7,041.95 (7,623.14) 2,397.07 (4,759.82) 0.73 

Distance to nearest state park 
or public land (ft) 

21,838.01 (24,637.87) 28,713.47 (42,249.45) -0.20 

Distance to nearest national 
park or public land (ft) 

12,909.37 (11,189.78) 21,961.15 (20,433.28) -0.55 

Distance to nearest highway 
or interstate (ft) 

3,062.55 (4,486.45) 2,618.67 (3,738.27) 0.11 

Distance to nearest major 
road (ft) 

2,388.29 (4,137.68) 4,412.83 (4,579.18) -0.46 

Distance to nearest railroad 
(ft) 

84,464.79 (110,408.42) 91,671.84 (130,852.13) -0.06 

Distance to nearest airport 
(ft) 

29,363.18 (20,422.74) 29,765.47 (22,999.55) -0.02 

Distance to nearest k-12 
school (ft) 

12,305.84 (15,174.39) 13,800.28 (17,319.14) -0.09 

Distance to nearest central 
business district (city) (ft) 

10,406.69 (11,050.82) 12,797.71 (16,355.74) -0.17 

Distance to nearest 
wastewater treatment plant 
(ft) 

15,253.71 (16,461.63) 41,222.65 (57,833.19) -0.61 

Distance to nearest fire 
station (ft) 

6,106.20 (5,134.15) 6,992.28 (7,554.86) -0.14 

Distance to nearest law 
enforcement station (ft) 

23,176.83 (30,892.87) 19,219.65 (25,149.62) 0.14 

Distance to nearest hospital 
(ft) 

44,383.06 (48,983.38) 32,092.84 (30,190.89) 0.30 

      
Observations 5348  81   
      

 

 

Table A4. Variable Definitions and Descriptive Statistics, by treatment, Third Analysis Sample, Model 
62, 2014-2019 
 Outside blue line 

neighborhood (>1000’) 
Inside blue line neighborhood 
(≤1000’) 

 

 
Mean Std Dev Mean Std Dev 

Standardized 
diff. in means 

      
Event      
Sold after blue line was 
installed (installation=1) 

0.15 (0.35) 0.12 (0.33) - 

Structural      
Sale price (2019 constant 
dollars) 

314,429.10 (162,377.00) 309,337.13 (152,322.52) 0.03 
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Table A4. Variable Definitions and Descriptive Statistics, by treatment, Third Analysis Sample, Model 
62, 2014-2019 
 Outside blue line 

neighborhood (>1000’) 
Inside blue line neighborhood 
(≤1000’) 

 

 
Mean Std Dev Mean Std Dev 

Standardized 
diff. in means 

      
Bedrooms 2.80 (1.00) 2.73 (0.97) 0.07 

Bathrooms 1.97 (0.80) 2.04 (0.83) -0.09 

Indoor square footage 1,430.40 (740.11) 1,516.89 (684.84) -0.12 

Total acreage (equal to 
indoor area if apartment) 

0.16 (0.28) 0.13 (0.12) 0.10 

Effective age of property 
(2018 - remodel year) 

42.96 (30.13) 44.09 (29.18) -0.04 

Heating (=1) 0.78 (0.42) 0.84 (0.37) -0.15 

Fireplace (=1) 0.60 (0.49) 0.65 (0.48) -0.10 

Garage (=1) 0.61 (0.49) 0.62 (0.49) -0.01 

Carport (=1) 0.05 (0.21) 0.03 (0.17) 0.08 

Deck (=1) 0.06 (0.24) 0.08 (0.27) -0.07 

Patio (=1) 0.07 (0.25) 0.05 (0.21) 0.09 

Fencing (=1) 0.13 (0.34) 0.11 (0.31) 0.09 

Goal 18 eligible (=1) 0.04 (0.19) 0.04 (0.19) 0.00 

Has shoreline armoring 
(=1) 

0.00 (0.07) 0.01 (0.12) -0.09 

Location      
Special Flood Hazard 
Area (SFHA) (=1) 

0.08 (0.27) 0.02 (0.15) 0.25 

Elevation (ft) 78.54 (54.42) 72.78 (39.94) 0.12 

Slope (angular degrees of 
slope) 

1.26 (3.22) 1.17 (3.52) 0.03 

Distance to nearest beach 
access point (ft) 

1,753.50 (1,200.59) 1,567.82 (967.45) 0.17 

Distance to ocean 
shoreline (ft) 

7,004.29 (11,446.24) 5,277.00 (9,535.52) 0.16 

Oceanfront (=1) 0.05 (0.21) 0.04 (0.20) 0.01 

Distance to nearest water 
body (lake, pond, bay) (ft) 

8,136.05 (10,203.83) 7,562.50 (8,366.73) 0.06 

Distance to nearest river 
(ft) 

8,247.52 (7,645.72) 9,927.78 (7,845.34) -0.22 

Distance to nearest state 
park or public land (ft) 

39,778.11 (34,629.56) 45,823.91 (35,030.73) -0.17 

Distance to nearest 
national park or public 
land (ft) 

9,977.76 (6,980.00) 11,159.64 (6,648.46) -0.17 

Distance to nearest 2,164.05 (2,831.09) 2,212.84 (2,349.62) -0.02 
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Table A4. Variable Definitions and Descriptive Statistics, by treatment, Third Analysis Sample, Model 
62, 2014-2019 
 Outside blue line 

neighborhood (>1000’) 
Inside blue line neighborhood 
(≤1000’) 

 

 
Mean Std Dev Mean Std Dev 

Standardized 
diff. in means 

      
highway or interstate (ft) 
Distance to nearest major 
road (ft) 

983.77 (1,240.99) 1,076.13 (1,232.81) -0.07 

Distance to nearest 
railroad (ft) 

102,717.54 (73,404.78) 116,566.90 (79,155.34) -0.18 

Distance to nearest airport 
(ft) 

36,613.15 (18,433.78) 38,472.42 (18,765.22) -0.10 

Distance to nearest k-12 
school (ft) 

7,071.64 (7,165.77) 6,593.33 (6,142.44) 0.07 

Distance to nearest central 
business district (city) (ft) 

8,889.72 (6,145.68) 8,469.24 (5,351.54) 0.07 

Distance to nearest 
wastewater treatment 
plant (ft) 

15,418.32 (21,860.83) 20,407.66 (28,665.84) -0.20 

Distance to nearest fire 
station (ft) 

4,308.63 (3,070.37) 4,416.41 (3,412.12) -0.03 

Distance to nearest law 
enforcement station (ft) 

22,679.32 (39,096.02) 18,610.70 (33,196.20) 0.11 

Distance to nearest 
hospital (ft) 

35,715.25 (50,321.69) 29,175.45 (45,741.74) 0.14 

      
Observations 822  512   
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A.4 Price trends plots for the second analysis 

(a)  

(b)  
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(c)  

(d)  
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(e)  
Figure A3. Housing price trends inside and outside of the treatment inundation line – XXL, Xl, L, M, or SM – for the seven 
coastal counties and the second analysis. Plot of residual (log) sale prices net of structural attributes, location covariates, and 
fixed effects aggregated by month with local polynomial trend lines. The time range is 2 years before and after the 2013 map 
change. Figures (a)-(e) present plots for Models 1-5. 

 

A.5 Tsunami blue line overlap cases 

Two binary indicators are needed for the DID and DDD regressions: treatment and event. Treatment defines 

whether the transaction is adjacent to a blue line, e.g., inside that blue line’s neighborhood (treatment buffer) 

versus not inside the blue line’s neighborhood (control buffer). Event defines whether the transaction occurs 

after the blue line was installed. This means that each transaction can fall into one of four categories: 

treatment post-installation, treatment pre-installation, control post-installation, and control pre-installation.  

For the following explanations we will use the two diagrams below. In both diagrams the small 

circular buffer (2000’) determines the treatment buffer and the large circular buffer (4000’) determines the 

control buffer. So, the “2017” blue line (blue square) falls in the treatment buffer and the “2018” blue line 

falls in the control buffer. The transaction (black point labeled “2016”) falls in both a treatment buffer of 

one blue line and a control buffer of another blue line. The diagram on the left is a more intuitive way of 

representing what’s happening. The transaction falls in both the treatment and control buffers of the blue 

lines but the buffers are centered on the blue lines. This is equivalent to the diagram on the right but not 

technically accurate. The diagram on the right is an accurate portrayal of how this is coded in Stata, i.e., the 

transaction has distance buffers around it that hold blue lines. For the sake of building intuition, I will use 

the diagram on the left to visualize the following overlap cases. 
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The central idea of treatment and event assignment is that “earliest supersedes nearest.” If a 

transaction lies within a given buffer distance of two different blue lines and one of the blue lines is installed 

before the transaction and the other is installed after the transaction, I use the first-installed blue line as the 

reference point, not the nearest blue line. In case there is a tie for earliest because multiple blue lines were 

installed at the same time, then the nearest blue line is chosen. Then, I determine whether the transaction 

occurred before or after this reference blue line was installed. This is used to create the “event” variable(s). 

To create “treatment” variable(s), I tried to consider all possible cases of buffer overlap. The key question 

is how should we treat transactions that fall in one blue line’s “treatment” buffer (e.g., 2000’ buffer) and 

another blue line’s “control” buffer (e.g., 4000’ buffer)? Which blue line should be chosen as the 

appropriate reference point? There are nine total cases that can occur when a treatment buffer and control 

buffer overlap for a transaction. I look at 11 cases below but cases 1 and 2 are identical as are cases 3 and 

4. 

When the transaction occurs between the “treated” and “control” blue line installation dates, timing 

matters. In this case, “earliest supersedes nearest” and the first-installed blue line is the reference point. 

Cases 5, 6, 8, and 10 apply to this situation. When the transaction occurs before (after) both the “treated” 

and “control” blue lines are installed, timing “doesn’t matter” because the transaction is going to be labeled 

pre-installation (post-installation) regardless of which blue line is chosen as the reference point. In this case, 

distance determines whether the transaction is labeled as a treated or control, i.e., the “earliest supersedes 

nearest” principle is not applied in these cases because timing “doesn’t matter.” For example, if the 

transaction is in both the treated and control buffer and occurs pre-installation of both blue lines, the 

transaction is labeled as treated pre-installation, because the distance to the “treated” blue line is smaller 

and because it would be labeled pre-installation regardless. The remaining cases apply to this situation. 

 

2018 2017 

2016 

4000’ 
2000’ 

2018 
2017 

2016 

4000’ 

2000’ 
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Case 1: Treated pre-installation and control pre-installation: the 

transaction is in the treated buffer before the blue line’s installation and 

in the control buffer before the blue line’s installation. Timing “doesn’t 

matter” here because the transaction occurs before both the “treated” 

and “control” blue lines are installed. Since timing doesn’t matter, 

distance determines whether it’s treated or control. In this case, since 

it’s in both, it’s treated. So, the transaction should be used as treated 

pre-installation. 

 

Case 2: Treated pre-installation and control pre-installation. The 

transaction should be used as treated pre-installation as in case 1. 

 

 

Case 3: Treated post-installation and control post-installation. Timing 

“doesn’t matter” here because the transaction occurs after both the 

“treated” and “control” blue lines are installed. Since timing doesn’t 

matter, distance determines whether it’s treated or control. In this case, 

since it’s in both, it’s treated. So, the transaction should be used as 

treated post-installation. 

 

Case 4: Treated post-installation and control post-installation. The 

transaction should be used as treated pre-installation as in case 3. 
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Case 5: Treated post-installation and control pre-installation. Now 

timing matters because the transaction occurs between the installation 

of the blue line whose control group it’s in and the blue line whose 

treatment group it’s in. “Earliest supersedes nearest” means that it’s 

the blue line that’s installed first that the event and treatment decision 

should be based on. So, since the transaction is post-installation of the 

treatment blue line, it should be used as treated post-installation. 

 

Case 6: Treated pre-installation and control post-installation. Timing 

matters because the transaction occurs between the installation of the 

blue line whose control group it’s in and the blue line whose treatment 

group it’s in. “Earliest supersedes nearest” means that it’s the blue line 

that’s installed first that the event and treatment decision should be 

based on. So, since the transaction is post-installation of the control 

blue line, it should be used as control post-installation. 

 

Case 7: Treated pre-installation and control is at installation (the 

transaction date and installation date of the blue line defining the 

control buffer is the same). When the transaction date is at the same 

time as the blue line installation date this is considered to be “pre-

installation” because the blue line hasn’t been in place long enough to 

affect the sale price of the property being sold at the same time. So, 

this is technically a “control pre-installation” situation. Thus, this is like case 2 and the transaction should 

be used as treated pre-installation. 

 

Case 8: Treated post-installation and control is at installation (the 

transaction date and installation date of the blue line defining the 

control buffer is the same). For the same reasons as in case 7, this is 

technically a “control pre-installation” situation. Thus, this is like case 

5 and the transaction should be used as treated post-installation. 
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Case 9: Control pre-installation and treated is at installation (the 

transaction date and installation date of the blue line defining the 

treatment buffer is the same). For the same reasons as in case 7, this is 

technically a “treatment pre-installation” situation. Thus, this is like 

case 1 and the transaction should be used as treated pre-installation. 

 

Case 10: Control post-installation and treated is at installation (the 

transaction date and installation date of the blue line defining the 

treatment buffer is the same). For the same reasons as in case 7, this is 

technically a “treatment pre-installation” situation. Thus, this is like 

case 6 and the transaction should be used as control post-installation. 

 

Case 11: Treated and control are at installation (the transaction date 

and installation dates of both blue lines are all the same). For the same 

reasons as in case 7, this is technically a “treatment pre-installation” 

and “control pre-installation” situation. Thus, this is like case 1 and the 

transaction should be used as a treated pre-installation. 

 

A.6 Matching results for the first analysis 

Tables A5, A6, A7, and A8 report the covariate balance results for the PSM, NNM, CEM and EB 

matching/weighting methods, respectively. The standardized difference in means for the variables used in 

each procedure is measured for all the primary models before matching/weighting (raw) and after 

matching/weighting (matched/weighted). The PSM method (Table A5) improved covariate balance for the 

key variables that likely influence treatment – elevation and distance to the ocean – in all models. However, 

the absolute standardized difference in means for the elevation variable in Model III did not decrease to 

below 0.25, the aforementioned rule of thumb indicating covariate balance (Stuart, 2010). Furthermore, 

approximately 87-92% of the control observations are dropped after matching, depending on the model. An 

additional drawback of propensity score matching was the inability to exactly match on event timing. The 

NNM method (Table A6) also improved covariate balance for the key matching variables but still did not 

achieve covariate balance according to the rule of thumb for the elevation variable in Models I and III. 
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Unlike PSM, NNM was able to exactly match on the events of interest. Similar to PSM, however, NNM 

dropped approximately 89-93% of the control observations. The CEM method (Table A7) did not 

appreciably improve covariate balance.39 The absolute standardized difference in means for elevation and 

distance to the ocean did not decrease to below the rule of thumb. However, the CEM method does not drop 

90% of control observations, unlike the PSM and NNM methods. The EB method (Table A8) improved 

covariate balance for the key matching variables but did not achieve covariate balance according to the rule 

of thumb for the elevation variable in Models I and III.40 Unlike the other three methods, however, the EB 

method is purely a weighting method and, as such, does not drop observations. However, an inspection of 

the weights generated by EB shows that many observations are assigned very small weights, suggesting 

that this method also effectively “drops” many control observations. In summary, the two matching 

methods (PSM and NNM) that improved covariate balance for the key variables that likely influence 

treatment also dropped approximately 90% of the control observations and the matching method (CEM) 

that does not drop most of the control observations also does not appreciably improve covariate balance.  

 

Table A5. Propensity score matching standardized differences for the first analysis 
 Model I  Model II Model III 
Variables Raw Matched Raw Matched Raw Matched 
       
Sold after 2011 Tohoku EQ (tohoku=1) 0.0463 -0.0038   0.0136 0.1306 
Sold after 2015 article (article=1)   -0.0097 0.0041 -0.0032 -0.0067 
Elevation (ft) -1.5211 -0.1239 -1.7165 -0.1151 -1.5148 -0.2765 
Log distance to ocean shoreline -0.6606 0.0708 -0.7227 0.1190 -0.6743 0.1865 
Sale year of the property 0.0368 0.0280 -0.0055 0.1225 0.0017 0.1181 
       
Observations 5,890 1,932 9,160 4,996 15,627 5,088 
Treatment 1,589 1,589 4,471 4,384 4,160 4,160 
Control 4,301 343 4,689 612 11,467 928 
       

 

Table A6. Nearest neighbor Mahalanobis matching standardized differences for the first analysis 
 Model I  Model II Model III 
Variables Raw Matched Raw Matched Raw Matched 
       
Elevation (ft) -1.5211 -0.3381 -1.7209 -0.0966 -1.5148 -0.3211 
Log distance to ocean shoreline -0.6606 -0.0218 -0.7361 -0.0315 -0.6743 -0.0205 
Sale year of the property 0.0368 -0.0042 -0.0037 -0.0078 0.0017 0.0007 
       
Observations 5,890 1,902 9,160 4,983 15,627 4,980 
Treatment 1,589 1,589 4,471 4,471 4,160 4,160 
Control 4,301 313 4,689 512 11,467 820 

                                                            
39 Table A7 reports unweighted standardized differences. Future iterations of this paper will report weighted standardized 
differences since CEM is a weighting method and therefore drops few observations. 
40 Table A8 reports unweighted standardized differences. Future iterations of this paper will report weighted standardized 
differences since EB is a weighting method and therefore drops few observations. 
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Table A6. Nearest neighbor Mahalanobis matching standardized differences for the first analysis 
 Model I  Model II Model III 
Variables Raw Matched Raw Matched Raw Matched 
       
       

Exact matching on event (tohoku and/or article). 
 

Table A7. Coarsened exact matching standardized differences for the first analysis 
 Model I  Model II Model III 
Variables Raw Matched Raw Matched Raw Matched 
       
Sold after 2011 Tohoku EQ (tohoku=1) -0.0463 -0.0738   -0.0136 0.0105 
Sold after 2015 article (article=1)   0.0079 -0.0567 0.0032 -0.0211 
Elevation (ft) 1.5211 1.2699 1.7209 1.1031 1.5148 1.2832 
Log distance to ocean shoreline 0.6606 0.4441 0.7361 0.5445 0.6743 0.3887 
Sale year of the property -0.0368 -0.0640 0.0037 -0.0421 -0.0017 0.0081 
       
Observations 5,890 3,447 9,160 5,771 15,627 9,202 
Treatment 1,589 1,540 4,471 4,188 4,160 3,987 
Control 4,301 1,907 4,689 1,583 11,467 5,215 
       

 

Table A8. Entropy balancing standardized differences for the first analysis 
 Model I  Model II Model III 
Variables Raw Weighted Raw Weighted Raw Weighted 
       
Sold after 2011 Tohoku EQ (tohoku=1) 0.0463 -0.0013   0.0136 -0.0006 
Sold after 2015 article (article=1)   -0.0079 -0.0005 -0.0032 -0.0028 
Elevation (ft) -1.5211 -0.2852 -1.7209 -0.1697 -1.5148 -0.2699 
Log distance to ocean shoreline -0.6606 0.0042 -0.7361 -0.0021 -0.6743 0.0006 
Sale year of the property 0.0368 -0.0005 -0.0037 0.0001 0.0017 -0.0005 
       

 

A.7 Regression results and figures 

Table A9. Difference-in-differences results for the first analysis, full data 
 Model I Model II Model III 
Variables Coefficient/SE Coefficient/SE Coefficient/SE 
    
Event    
Sold after 2011 Tohoku EQ (tohoku=1) .0858**  .0631 
 (.0426)  (.0390) 
Sold after 2015 article (article=1)  .0136 .0026 
  (.0236) (.0200) 
Treatment    
Inside 1995 SB 379 tsunami zone (sb379=1) .0620*  .0671** 
 (.0333)  (.0308) 
Inside 2013 XXL tsunami zone (xxl2013=1)  -.0073  
  (.0222)  
Diff-in-Diff    
SB 379 zone (sb379) x sold after 2011 Tohoku EQ (tohoku) -.0889**  -.0675** 
 (.0415)  (.0340) 
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Table A9. Difference-in-differences results for the first analysis, full data 
 Model I Model II Model III 
Variables Coefficient/SE Coefficient/SE Coefficient/SE 
    
2013 XXL zone (xxl2013) x sold after 2015 article (article)  .0064  
  (.0240)  
SB 379 zone (sb379) x sold after 2015 article (article)   .0269 
   (.0244) 
Structural    
Bedrooms .1115*** .0323 .0592*** 
 (.0337) (.0233) (.0191) 
Bedrooms squared -.0189*** -.0083** -.0117*** 
 (.0051) (.0035) (.0029) 
Bathrooms .1278*** .1688*** .1576*** 
 (.0403) (.0344) (.0253) 
Bathrooms squared -.0094 -.0184** -.0165*** 
 (.0082) (.0075) (.0054) 
Indoor square footage 3.7e-04*** 5.0e-04*** 4.5e-04*** 
 (4.5e-05) (3.3e-05) (2.7e-05) 
Indoor square footage squared -4.0e-08*** -5.5e-08*** -4.9e-08*** 
 (9.5e-09) (7.1e-09) (5.7e-09) 
Total acreage (equal to indoor area if apartment) .0160* .0409*** .0274*** 
 (.0095) (.0068) (.0048) 
Total acreage squared -2.5e-05 -4.4e-04*** -1.4e-04*** 
 (8.8e-05) (9.9e-05) (5.3e-05) 
Effective age of property (2018 - remodel year) .0121*** .0105*** .0113*** 
 (.0012) (9.1e-04) (7.1e-04) 
Effective age of property squared -1.4e-04*** -1.3e-04*** -1.3e-04*** 
 (1.2e-05) (8.8e-06) (6.9e-06) 
Heating (=1) .1378*** .2823*** .2391*** 
 (.0374) (.0255) (.0208) 
Fireplace (=1) .1208*** .0877*** .1009*** 
 (.0171) (.0120) (.0097) 
Garage (=1) .0923*** .0510*** .0651*** 
 (.0186) (.0132) (.0105) 
Goal 18 eligible (=1) .0860 .0847** .0788** 
 (.0576) (.0400) (.0326) 
Location    
Special Flood Hazard Area (SFHA) (=1) -.0448 -.0377* -.0397** 
 (.0275) (.0193) (.0159) 
Elevation (ft) 5.7e-04*** 2.6e-04** 4.6e-04*** 
 (1.7e-04) (1.3e-04) (9.8e-05) 
Log distance to nearest beach access point -.0239** -.0280*** -.0269*** 
 (.0093) (.0057) (.0050) 
Log distance to ocean shoreline -.0835*** -.0746*** -.0786*** 
 (.0115) (.0059) (.0055) 
Elevation (ft) x Log distance to ocean shoreline x on 
oceanfront (=1) 

3.9e-04*** 2.7e-04*** 3.2e-04*** 

 (7.7e-05) (7.4e-05) (5.3e-05) 
Log distance to nearest river -.0191*** -.0211*** -.0214*** 
 (.0056) (.0039) (.0032) 
Log distance to nearest national park or public land -.0374*** -.0336*** -.0344*** 
 (.0098) (.0057) (.0050) 
Log distance to nearest highway or interstate .0233*** .0137** .0160*** 
 (.0077) (.0054) (.0044) 
Log distance to nearest railroad -.0185 -.0403*** -.0269*** 
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Table A9. Difference-in-differences results for the first analysis, full data 
 Model I Model II Model III 
Variables Coefficient/SE Coefficient/SE Coefficient/SE 
    
 (.0167) (.0117) (.0100) 
Log distance to nearest airport .0434* .0213 .03066** 
 (.0223) (.0160) (.0128) 
Log distance to nearest k-12 school .0264* .0305*** .0244*** 
 (.0149) (.0104) (.0084) 
Log distance to nearest wastewater treatment plant -.0230 -.0286*** -.0255*** 
 (.0145) (.0107) (.0085) 
Log distance to nearest hospital .0409 .0681*** .0587*** 
 (.0260) (.0177) (.0144) 
    
Observations 5890 9160 15627 
Adj. R-squared 0.376 0.441 0.411 
* p<0.10, ** p<0.05, *** p<0.01    

 

Table A10. DID falsification test results for the first analysis, full data 
 Model I Model II Model III 
 Coefficient/SE Coefficient/SE Coefficient/SE 
    
Test #1    
SB 379 zone (sb379) x sold after 3/11/10 (falsetohoku) -.0547  -.0507 
 (.0463)  (.0431) 
SB 379 zone (sb379) x sold after 2015 article (article)   .0169 
   (.0237) 
Test #2    
SB 379 zone (sb379) x sold after 3/11/12 (falsetohoku) -.0153  -.0092 
 (.0442)  (.0299) 
SB 379 zone (sb379) x sold after 2015 article (article)   .0142 
   (.0252) 
Test #3    
Placebo treatment group (randomtreat) x sold after 2011 
Tohoku EQ (tohoku) 

.0199  .0211 

 (.0270)  (.0216) 
Placebo treatment group (randomtreat) x sold after 2015 
article (article) 

 -.0134 5.1e-04 

  (.0196) (.0169) 
Test #4    
SB 379 zone (sb379) x placebo event status (randomevent) -.0154   
 (.0306)   
2013 XXL zone (xxl2013) x placebo event status 
(randomevent) 

 .0044  

  (.0193)  
* p<0.10, ** p<0.05, *** p<0.01    
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(a)  

(b)  

 
Figure A4. Average treatment effect on the treated estimates with 95% confidence intervals for the first analysis’ models. 
The full data estimator is on the left. The next four points represent the estimators after the data was processed with the four 
matching methods (PSM, NNM, CEM, and EB). OB represents the Oaxaca-Blinder estimator. The final six estimators represent 
the full data estimator under different sample space assumptions. (a) For Model III’s Tohoku event estimator. (b) For Model 
III’s article event estimator. 
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Table A11. Difference-in-differences results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
Variables Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
Event      
Sold after 2013 map 
change (after 10/2/13) 
(newmaps=1) 

.0084 .0023 -.0226 -.0175 -.0090 

 (.0360) (.0365) (.0394) (.0420) (.0438) 
Treatment      
Inside 2013 XXL tsunami 
zone (xxl2013=1) 

-.0305     

 (.0271)     
Inside 2013 XL tsunami 
zone (xl2013=1) 

 -.0093    

  (.0291)    
Inside 2013 L tsunami 
zone (l2013=1) 

  -5.9e-04   

   (.0433)   
Inside 2013 M tsunami 
zone (m2013=1) 

   .06539  

    (.07219)  
Inside 2013 SM tsunami 
zone (sm2013=1) 

    .2441* 

     (.1256) 
Diff-in-Diff      
2013 XXL zone 
(xxl2013) x sold after 
2013 map change 
(newmaps) 

.0209     

 (.0313)     
2013 XL zone (xl2013) x 
sold after 2013 map 
change (newmaps) 

 .0205    

  (.0331)    
2013 L zone (l2013) x 
sold after 2013 map 
change (newmaps) 

  .0717   

   (.0468)   
2013 M zone (m2013) x 
sold after 2013 map 
change (newmaps) 

   -.0265  

    (.0768)  
2013 SM zone (sm2013) 
x sold after 2013 map 
change (newmaps) 

    -.3133** 

     (.1488) 
Structural      
Bedrooms .0613** .0584** .0591** .0741** .0732** 
 (.0247) (.0250) (.0264) (.0291) (.0296) 
Bedrooms squared -.0097*** -.0091*** -.0096*** -.0117*** -.0115*** 
 (.0035) (.0035) (.0037) (.0042) (.0042) 
Bathrooms .2796*** .2717*** .2634*** .2723*** .2489*** 
 (.0363) (.0369) (.0400) (.0430) (.0425) 
Bathrooms squared -.0349*** -.0331*** -.0308*** -.0324*** -.0274*** 
 (.0077) (.0078) (.0084) (.0090) (.0086) 
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Table A11. Difference-in-differences results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
Variables Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
Indoor square footage 2.8e-04*** 2.9e-04*** 3.0e-04*** 3.2e-04*** 3.3e-04*** 
 (3.6e-05) (3.6e-05) (3.9e-05) (4.2e-05) (4.4e-05) 
Indoor square footage 
squared 

-1.9e-08** -2.1e-08*** -2.3e-08*** -2.5e-08*** -2.9e-08*** 

 (7.3e-09) (7.4e-09) (7.9e-09) (8.3e-09) (8.8e-09) 
Total acreage (equal to 
indoor area if apartment) 

.0357*** .0395*** .0376*** .0345*** .0698*** 

 (.0080) (.0081) (.0098) (.0101) (.0115) 
Total acreage squared -2.8e-04*** -3.1e-04*** -2.8e-04*** -2.3e-04*** -.0016*** 
 (8.0e-05) (7.8e-05) (8.4e-05) (8.8e-05) (4.9e-04) 
Effective age of property 
(2018 - remodel year) 

.0099*** .0100*** .0098*** .0105*** .0106*** 

 (.0010) (.0010) (.0011) (.0012) (.0013) 
Effective age of property 
squared 

-1.2e-04*** -1.2e-04*** -1.2e-04*** -1.3e-04*** -1.3e-04*** 

 (9.6e-06) (9.7e-06) (1.1e-05) (1.1e-05) (1.2e-05) 
Heating (=1) .1955*** .2146*** .2096*** .2345*** .2365*** 
 (.0321) (.0321) (.0343) (.0384) (.0390) 
Fireplace (=1) .1003*** .0952*** .0926*** .0712*** .07640*** 
 (.0143) (.0144) (.0155) (.0163) (.0168) 
Garage (=1) .0854*** .0785*** .0643*** .0697*** .0663*** 
 (.0150) (.0152) (.0165) (.0177) (.0185) 
Carport (=1) -.0693** -.0740** -.0924*** -.0804** -.0840** 
 (.0300) (.0304) (.0348) (.0377) (.0380) 
Deck (=1) -.0095 -.0117 -.0025 -.0046 .0043 
 (.0217) (.0219) (.0244) (.0261) (.0268) 
Patio (=1) .0218 .0186 .0210 .0155 .0295 
 (.0159) (.0162) (.0177) (.0190) (.0194) 
Fencing (=1) .0147 .0167 .0215 .0130 .0086 
 (.0193) (.0196) (.0212) (.0233) (.0239) 
Goal 18 eligible (=1) .0909 .0905 .1475** .1190 .0870 
 (.0644) (.0653) (.0723) (.0822) (.0885) 
Has shoreline armoring 
(=1) 

.3308*** .3817*** .2773*** .2849** .3365** 

 (.0849) (.0842) (.0960) (.1357) (.1463) 
Location      
Distance (ft) to 2013 
XXL line if inside zone 
(=0 if outside of zone) 

4.2e-05** 2.0e-05 1.1e-05 -2.4e-05 -1.6e-04* 

 (1.9e-05) (2.0e-05) (2.5e-05) (4.3e-05) (8.7e-05) 
Special Flood Hazard 
Area (SFHA) (=1) 

-.0156 -.0130 -.0539 -.0241 .0320 

 (.0397) (.0406) (.0456) (.0575) (.0582) 
Elevation (ft) 6.5e-04*** 6.7e-04*** 6.9e-04*** 6.4e-04*** 5.8e-04*** 
 (1.1e-04) (1.1e-04) (1.1e-04) (1.2e-04) (1.2e-04) 
Elevation (ft) x Log 
distance to ocean 
shoreline x on oceanfront 
(=1) 

-.0031 -.0018 -.0019 4.5e-04 .0012 

 (.0027) (.0027) (.0028) (.0030) (.0031) 
Slope (angular degrees of 
slope) 

-.0150* -.0130 -.0235*** -.0165* -.0040 
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Table A11. Difference-in-differences results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
Variables Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
 (.0080) (.0080) (.0090) (.0098) (.0110) 
Log distance to nearest 
beach access point 

-.1084*** -.10587*** -.0909*** -.1003*** -.1231*** 

 (.0140) (.0141) (.0162) (.0176) (.0161) 
Log distance to ocean 
shoreline 

2.0e-04*** 2.0e-04*** 2.1e-04*** 2.1e-04*** 1.9e-04*** 

 (7.0e-05) (7.1e-05) (6.8e-05) (6.2e-05) (6.2e-05) 
Log distance to nearest 
water body (lake, pond, 
bay) 

-.0028 -.0050 8.8e-04 -3.6e-04 .0069 

 (.0066) (.0066) (.0084) (.0100) (.0122) 
Log distance to nearest 
river 

-.0352*** -.0340*** -.0323*** -.0282*** -.0240** 

 (.0056) (.0057) (.0069) (.0083) (.0095) 
Log distance to nearest 
state park or public land 

.0029 .0045 3.7e-05 .0098 .0207* 

 (.0067) (.0068) (.0072) (.0099) (.0114) 
Log distance to nearest 
national park or public 
land 

-.0093 -.0063 -.0060 -.0132 -.0161* 

 (.0073) (.0077) (.0085) (.0089) (.0089) 
Log distance to nearest 
highway or interstate 

.0247*** .0237*** .0307*** .0308*** .0289*** 

 (.0060) (.0061) (.0069) (.0077) (.0083) 
Log distance to nearest 
major road 

-4.2 e-04 5.4e-04 .0059 .0064 .0074 

 (.0043) (.0043) (.0048) (.0053) (.0057) 
Log distance to nearest 
railroad 

-.0082 -.0043 -.0107 -.0126 -.0146 

 (.0143) (.0144) (.0142) (.0158) (.0194) 
Log distance to nearest 
airport 

.0410* .0390* .0444* .0174 -.0057 

 (.0214) (.0218) (.0237) (.0260) (.0280) 
Log distance to nearest k-
12 school 

.0042 .0055 .0094 .0262* .0253* 

 (.0121) (.0122) (.0131) (.0140) (.0147) 
Log distance to nearest 
central business district 
(city) 

.0186* .0159 .0157 .0132 .0084 

 (.0109) (.0110) (.0121) (.0129) (.0137) 
Log distance to nearest 
wastewater treatment 
plant 

-.0187 -.0242* -.0304* -.0458*** -.0600*** 

 (.0136) (.0137) (.0159) (.0172) (.0184) 
Log distance to nearest 
fire station 

-1.4e-04 .0025 .0060 3.9e-04 .0049 

 (.0106) (.0108) (.0126) (.0146) (.0151) 
Log distance to nearest 
law enforcement station 

.0138 .0118 .0083 .0138 .0116 

 (.0141) (.0144) (.0156) (.0168) (.0175) 
Log distance to nearest 
hospital 

-.0175 -.0214 -.0106 -.0220 -.0397 
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Table A11. Difference-in-differences results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
Variables Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
 (.0183) (.0186) (.0209) (.0234) (.0249) 
      
Observations 8010 7790 6593 5842 5429 
Adj. R-squared 0.422 0.420 0.424 0.423 0.427 
* p<0.10, ** p<0.05, *** p<0.01 

 

Table A12. Difference-in-differences results for the second analysis, combined model, full data 
 Coefficient SE 
   
Event   
Sold after 2013 map change (after 10/2/13) (newmaps=1) .0077 (.0360) 
Treatment   
Inside 2013 XXL tsunami zone (xxl2013=1) -.0491 (.0541) 
Inside 2013 XL tsunami zone (xl2013=1) .0284 (.0582) 
Inside 2013 L tsunami zone (l2013=1) -.0047 (.0495) 
Inside 2013 M tsunami zone (m2013=1) .0144 (.0738) 
Inside 2013 SM tsunami zone (sm2013=1) .0562 (.0964) 
Diff-in-Diff   
2013 XXL zone (xxl2013) x sold after 2013 map change (newmaps) -.0477 (.0728) 
2013 XL zone (xl2013) x sold after 2013 map change (newmaps) .0559 (.0778) 
2013 L zone (l2013) x sold after 2013 map change (newmaps) .0903 (.0575) 
2013 M zone (m2013) x sold after 2013 map change (newmaps) -.0556 (.0890) 
2013 SM zone (sm2013) x sold after 2013 map change (newmaps) -.2393* (.1343) 
Structural   
Bedrooms .0617** (.0246) 
Bedrooms squared -.0097*** (.0035) 
Bathrooms .2796*** (.0363) 
Bathrooms squared -.0349*** (.0077) 
Indoor square footage 2.8e-04*** (3.6e-05) 
Indoor square footage squared -1.9e-08** (7.3e-09) 
Total acreage (equal to indoor area if apartment) .0365*** (.0081) 
Total acreage squared -2.8e-04*** (8.0e-05) 
Effective age of property (2018 - remodel year) .0098*** (.0010) 
Effective age of property squared -1.2e-04*** (9.6e-06) 
Heating (=1) .1949*** (.0321) 
Fireplace (=1) .1009*** (.0143) 
Garage (=1) .0871*** (.0149) 
Carport (=1) -.0699** (.0302) 
Deck (=1) -.0098 (.0218) 
Patio (=1) .0220 (.0159) 
Fencing (=1) .0153 (.0193) 
Goal 18 eligible (=1) .0910 (.0638) 
Has shoreline armoring (=1) .3085*** (.0838) 
Location   
Distance (ft) to 2013 XXL line if inside zone (=0 if outside of zone) 2.7e-05 (2.1e-05) 
Special Flood Hazard Area (SFHA) (=1) -.0134 (.0393) 
Elevation (ft) 6.6e-04*** (1.1e-04) 
Slope (angular degrees of slope) -.0028 (.0026) 
Log distance to nearest beach access point -.0135* (.0080) 
Log distance to ocean shoreline -.1096*** (.0140) 
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Table A12. Difference-in-differences results for the second analysis, combined model, full data 
 Coefficient SE 
   
Elevation (ft) x Log distance to ocean shoreline x on oceanfront (=1) 2.0e-04*** (7.0e-05) 
Log distance to nearest water body (lake, pond, bay) -.0029 (.0067) 
Log distance to nearest river -.0348*** (.0056) 
Log distance to nearest state park or public land .0032 (.0067) 
Log distance to nearest national park or public land -.0091 (.0073) 
Log distance to nearest highway or interstate .0238*** (.0060) 
Log distance to nearest major road -1.0e-04 (.0043) 
Log distance to nearest railroad -.0067 (.0144) 
Log distance to nearest airport .0408* (.0214) 
Log distance to nearest k-12 school .0028 (.0121) 
Log distance to nearest central business district (city) .0168 (.0110) 
Log distance to nearest wastewater treatment plant -.0197 (.0136) 
Log distance to nearest fire station .0018 (.0106) 
Log distance to nearest law enforcement station .0134 (.0141) 
Log distance to nearest hospital -.0175 (.0183) 
   
Observations 8010  
Adj. R-squared 0.423  
* p<0.10, ** p<0.05, *** p<0.01 

 

Table A13. Oaxaca-Blinder results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
 Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
Overall Differential      
Treated group 12.470*** 12.484*** 12.514*** 12.374*** 12.219*** 
 (.0178) (.0188) (.0276) (.0509) (.0985) 
Control group 12.431*** 12.435*** 12.437*** 12.439*** 12.437*** 
 (.0073) (.0073) (.0076) (.0079) (.0081) 
Difference .0390** .0500** .0771*** -.0650 -.2184** 
 (.0193) (.0202) (.0287) (.0515) (.0988) 
Decomposition      
Explained .0094 .0149 .0233 -.0247 -.0466 
 (.0242) (.0255) (.0360) (.0590) (.1103) 
Unexplained .0296 .0350 .0539 -.0403 -.1718 
 (.0249) (.0261) (.0357) (.0597) (.1047) 
      
Observations 8010 7790 6593 5842 5429 
* p<0.10, ** p<0.05, *** p<0.01 

 

Table A14. DID falsification test results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
 Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
Test #1      
2013 XXL zone 
(xxl2013) x sold after 
10/2/12 (falsenewmaps) 

-.0667*     

 (.0364)     
2013 XL zone (xl2013) x  -.0728*    
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Table A14. DID falsification test results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
 Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
sold after 10/2/12 
(falsenewmaps) 
  (.0393)    
2013 L zone (l2013) x 
sold after 10/2/12 
(falsenewmaps) 

  -.0151   

   (.0555)   
2013 M zone (m2013) x 
sold after 10/2/12 
(falsenewmaps) 

   -.0909  

    (.0809)  
2013 SM zone (sm2013) 
x sold after 10/2/12 
(falsenewmaps) 

    -.0871 

     (.1569) 
Test #2      
2013 XXL zone 
(xxl2013) x sold after 
10/2/14 (falsenewmaps) 

.0288     

 (.0304)     
2013 XL zone (xl2013) x 
sold after 10/2/14 
(falsenewmaps) 

 .0370    

  (.0313)    
2013 L zone (l2013) x 
sold after 10/2/14 
(falsenewmaps) 

  .0889**   

   (.0432)   
2013 M zone (m2013) x 
sold after 10/2/14 
(falsenewmaps) 

   .0627  

    (.0766)  
2013 SM zone (sm2013) 
x sold after 10/2/14 
(falsenewmaps) 

    -.1252 

     (.1559) 
Test #3      
Placebo treatment group 
(randomtreat) x sold after 
2013 map change 
(newmaps) 

-.0197 .0197 .0132 .0419 .0052 

 (.0229) (.0230) (.0253) (.0269) (.0281) 
Test #4      
2013 XXL zone 
(xxl2013) x placebo event 
status (randomevent) 

.0248     

 (.0251)     
2013 XL zone (xl2013) x 
placebo event status 
(randomevent) 

 .0300    

  (.0266)    
2013 L zone (l2013) x   -.0025   
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Table A14. DID falsification test results for the second analysis, full data 
 Model 1 Model 2 Model 3 Model 4 Model 5 
 Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE Coefficient/SE 
      
placebo event status 
(randomevent) 
   (.0361)   
2013 M zone (m2013) x 
placebo event status 
(randomevent) 

   .0118  

    (.0647)  
2013 SM zone (sm2013) 
x placebo event status 
(randomevent) 

    .1576 

     (.1298) 
* p<0.10, ** p<0.05, *** p<0.01 
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(b)  
Figure A5. Average treatment effect on the treated estimates with 95% confidence intervals for Models 1 through 50 of the 
third analysis. Euclidian distances define the treatment and control buffers. For each ATET, the model number is followed by 
the size of the treatment buffer (ft) and the size of the control buffer (ft), e.g., Model 1 has a 500’ treatment buffer and 1000’ 
control buffer. (a) For Models 1-27. (b) For Models 28-50. Note: confidence intervals that are out of bounds are suppressed, 
e.g., for Model 1. 

 

Table A15. Difference-in-differences and triple differences results for the third analysis, Model 62 
 DID DDD 

Variables Coefficient 
p-
value Coefficient p-value 

     
Treatment     
Blue line treatment buffer (treatment362=1) .0218 .4658 .0398 .2532 
Event     
Sold after first blue line installed (event362=1) .0185 .8296 .1012 .7396 
Sensitivity     
Inside 2013 XXL tsunami zone (xxl2013=1)   .1365* .0800 
Diff-in-Diff     
Blue line treatment buffer (treatment362) x sold after first blue 
line installed (event362) 

-.0834** .0254 -.0832 .4731 

Blue line treatment buffer (treatment362) x 2013 XXL zone 
(xxl2013) 

  -.0623 .3290 

2013 XXL zone (xxl2013) x sold after first blue line installed 
(event362) 

  -.2488 .1507 

Triple Difference     
Blue line treatment buffer x 2013 XXL zone x sold after first 
blue line installed 

  -.0117 .9404 

Structural     
Bedrooms .0910 .5609 .0807 .5772 
Bedrooms squared -.0188 .3282 -.0173 .3037 
Bathrooms .1256* .0669 .1241** .0437 
Bathrooms squared -.0055 .7158 -.0045 .7533 
Indoor square footage 4.4e-04** .0168 4.4e-04** .0166 
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Table A15. Difference-in-differences and triple differences results for the third analysis, Model 62 
 DID DDD 

Variables Coefficient 
p-
value Coefficient p-value 

     
Indoor square footage squared -4.9e-08* .0860 -5.1e-08* .0681 
Total acreage (equal to indoor area if apartment) .0694 .7723 .1003 .6456 
Total acreage squared -.0104 .8428 -.0177 .7119 
Effective age of property (2018 - remodel year) -.0014 .6007 -.0019 .4708 
Effective age of property squared 3.7e-06 .8702 7.7e-06 .7322 
Heating (=1) .2779** .0113 .2892*** .0052 
Fireplace (=1) .0430 .3703 .0400 .4183 
Garage (=1) .0015 .9529 -.0011 .9603 
Carport (=1) -.0079 .8670 .0114 .8168 
Deck (=1) .0912 .1661 .0955 .1109 
Patio (=1) .0685 .4963 .0693 .4762 
Fencing (=1) .1049 .1486 .1041 .1461 
Goal 18 eligible (=1) -.0935 .4246 -.0892 .4680 
Has shoreline armoring (=1) .1540 .6131 .1998 .5912 
Location     
Special Flood Hazard Area (SFHA) (=1) -.0085 .8749 -.0266 .6057 
Elevation (ft) 5.9e-04 .2038 .0011 .1197 
Elevation (ft) x Log distance to ocean shoreline x on oceanfront 
(=1) 

2.9e-04 .2527 2.8e-04 .2660 

Slope (angular degrees of slope) .0094 .4007 .0111 .3059 
Log distance to nearest beach access point -.0442 .1185 -.0429 .1068 
Log distance to ocean shoreline -.0799*** .0081 -.0747*** .0088 
Log distance to nearest water body (lake, pond, bay) -.0173 .4784 -.0159 .5071 
Log distance to nearest river .0167 .5020 .0201 .4495 
Log distance to nearest state park or public land .0356 .5106 .0443 .4588 
Log distance to nearest national park or public land -.0827 .1895 -.0799 .1892 
Log distance to nearest highway or interstate .0097 .7689 .0100 .7564 
Log distance to nearest major road -.0053 .6612 -.0064 .5865 
Log distance to nearest railroad -.1263 .1703 -.1240 .1558 
Log distance to nearest airport .0924 .5340 .0794 .5770 
Log distance to nearest k-12 school .0684 .4801 .0696 .4798 
Log distance to nearest central business district (city) .0134 .8239 .0085 .8788 
Log distance to nearest wastewater treatment plant .0393 .3820 .0425 .3642 
Log distance to nearest fire station .0216 .6341 .0220 .6354 
Log distance to nearest law enforcement station -.0104 .8095 -.0132 .7876 
Log distance to nearest hospital -.0150 .6977 -.0145 .67 
     
Observations 1334  1334  
Adj. R-squared 0.491  0.496  
* p<0.10, ** p<0.05, *** p<0.01 
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