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ABSTRACT 

Given the rising focus on workplace diversity and labor productivity in today’s economy, we open 

the black box process of corporate innovation production by examining the most important input 

into the firm R&D process, namely the individual employees tasked with creating new inventions. 

Using information on over two million inventors employed at U.S. public firms, we examine how 

individual inventors’ inherited traits (cultural values and gender) and acquired career experiences 

affect their desire to collaborate with others in a corporate R&D setting and how shared cultural 

values affects innovative output. We first provide novel evidence that, even amongst groups of 

comparably experienced inventors working in the same office, inventors who share similar cultural 

values are 20% more likely to work together on new research projects. Second, using exogenous 

shocks to inventor team composition arising from premature co-inventor deaths, we find that more 

culturally homogenous teams produce a higher quantity of patents that are more likely to exploit 

existing technologies and become moderately successful inventions. In contrast, more culturally 

diverse teams produce a higher share of risky, more exploratory patents that have a greater chance 

of becoming high impact innovations. Our results have key implications for promoting different 

types of innovation in corporate workplaces and the likely effectiveness of diversity hiring policies. 
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 I. INTRODUCTION  

Given the key role of technological innovation in driving the real economy (Stiglitz & 

Greenwald, 2015; Schumpeter, 1942), the rising importance of teamwork in spurring new 

inventions has become one of the defining features of the modern knowledge economy (Jones, 

2009; Jaravel, Petkova & Bell, 2018; Lucas & Moll, 2014).1 Concurrent with this phenomenon, 

there has been a conscious effort on the part of government regulators,2 private corporations3 and 

institutional investors4 to implement policies that increase workplace diversity across several 

dimensions (for example cultural heritage and gender identity). In this paper, we investigate what 

the intersection of these two key trends, namely increased inventor teamwork and workplace 

diversity, means for inventor team formation and team-level labor productivity (and thus, by 

extension, firm innovation and economy-wide technological development). In particular, we 

examine what factors drive the collaboration decisions of inventors and how inventor team diversity 

influences team innovation output. 

Despite the clear importance of these questions for both firms and policymakers, there is 

considerable disagreement in the literature on the relationship between workplace diversity and 

technological innovation. With respect to team formation, there is evidence of ‘homophily’, namely 

the tendency of individuals to prefer to work with others who share similar personal or social 

characteristics, in other business-related contexts (e.g. Gompers, Mukharlyamov & Xuan, 2016 

(venture capitalists); Ishii & Xuan, 2014 (directors and executives); Gompers, Huang & Wang, 

 
1 The rise in the number and size of inventor teams has been attributed to a number of factors, including the benefits 
of co-specialization and knowledge sharing (Lucas & Moll, 2014) as well as a means for successive generations of 
individual inventors to more efficiently reduce their “knowledge burden” (Jones, 2009). 
2 Prohibitions on discriminatory employment practices are almost universal worldwide (e.g. United Nations Convention 
No. 111 – Discrimination (Employment and Occupation; Title VII of U.S. Civil Rights Act 1964). Furthermore, some 
regulations require firms to take affirmative actions in order to ensure that equal employment opportunity is provided 
to all current and prospective employees (e.g. see U.S. Presidential Executive Order 11246 covering federal 
contractors. For an example of its enforcement, see U.S. Department of Labor vs. Oracle America Inc., 2017). In 
addition, some jurisdictions have enacted explicit diversity quota rules (e.g. Norway’s Public Limited Liability 
Companies Act (1997) and California’s SB 826 (2018) impose minimum female Board representation requirements). 
3 For example, approximately half of S&P 500 companies have established a dedicated Chief Diversity Officer (CDO) 
position or equivalent, with many of these appointments occurring over the last 3 years (Russell Reynolds Associates, 
2019). In addition, many large public corporations provide annual reports that outline their diversity policies as well 
as publish statistics on a firm’s diversity performance (e.g. Alphabet (Google), Amazon, Apple, Facebook, Microsoft). 
4 For example, two of the world’s largest asset managers, Blackrock and State Street Global Advisors, have recently 
implemented proxy voting guidelines stating that they will vote against a firm’s nominating/governance committee 
members if the firm does not have at least one or two women on its Board of Directors. Similarly, one of the world’s 
largest proxy advisory firms, Glass Lewis, amended its voting guidelines in 2018 to factor Board diversity explicitly 
into its voting recommendations. 
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2017 (firm founding teams)). However, no prior study to the best of our knowledge has 

systematically evaluated the relative importance of inherited characteristics like cultural values vis-

à-vis acquired career experiences in explaining the collaboration decisions of employee inventors 

in a more structured corporate R&D environment (see generally Herkenhoff, Lise, Menzio & 

Phillips, 2018). With respect to diversity and performance, there is much conflicting empirical 

evidence on whether: 

a) Corporate Board diversity has a positive or negative impact on firm economic output (e.g. 

An, Chen, Wu & Zhang, 2020; Griffin, Li & Xu, 2020; Bernile, Bhagwat & Yonker, 2018, 

and Delis, Gaganis, Hasan & Pasiouras, 2017 c.f. Matsa & Miller, 2013; Ahern & Dittmar, 

2012; Anderson, Reeb, Upadhyay & Zhao, 2011, and Adams & Ferreira, 2009); 

b) Investor diversity enhances or impedes investment performance (e.g. Gompers et al., 2016 

c.f. Cohen, Frazzini & Malloy, 2008; Hedge & Tumlinson, 2014); and 

c) Employee diversity promotes or hinders firm innovation (e.g. Schubert & Tavassoli, 2020 

and Ostergaard, Timmermans & Kristinsson, 2011 c.f. Doran, Gelber & Isen, 2016; Horwitz 

& Horwitz, 2007). 

These strikingly divergent views likely stem from the formidable measurement and endogeneity 

issues encountered when studying the relationship between diversity and economic performance. 

First, measurement problems arise, for example, in the definition of the focal ‘team’5 and the 

associated ‘team output’6 as well as data limitations on the large-scale compilation of individual 

team member characteristics. This has led much of the prior literature to either rely on relatively 

small and somewhat subjective survey-based datasets with limited external validity7 or focus on 

more coarse, publicly available firm-level data that only provides biographical details for a select 

group of company executives and Board members. Second, formidable endogeneity issues arise 

from challenges in identifying a valid counterfactual control group and difficulties in disentangling 

causal treatment effects from selection effects due to the endogenous matching of firms and 

employees and unobserved moderating factors at the industry-, regional-, firm- and/or CEO-level. 
 

 
5 For instance, when studying firm-level innovation outcomes, it is unclear whether firm management diversity, Board 
diversity and/or entire firm-wide diversity should be the appropriate unit of ‘team-level’ analysis. 
6 For example, when studying the impact of Board diversity on corporate innovation, how much responsibility should 
the Board receive for each patent developed by the firm? 
7 See, for example, Schubert & Tavassoli (2020) (2004-2012 biennial survey of approximately 500 Swedish firms that 
are concentrated in ‘low-tech’ manufacturing/service sectors) and Ostergaard et al. (2011) (uses a single 2006 survey 
of approximately 1,600 Danish firms that the authors acknowledge “does not identify the persons who interact with 
each other or who are involved in the specific innovation process”). 
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In contrast to the conflicting prior literature that has focused primarily on analyzing highly 

endogenous firm-level relationships, we focus our analysis on understanding the formation and 

productivity of distinct inventor teams within the same firm at the same point in time (and even at 

the same corporate division at the same geographic location in certain specifications). There are 

several advantages to our unique corporate R&D setting. First, this setting provides us with a 

natural comparison sample of counterfactual inventors because we only compare inventor teams 

that work at the same firm (thus having similar access to physical firm resources, financing etc.) at 

the same time (thus facing a similar technological and competitive landscape) at the same location 

(thus controlling for local economic and labor market conditions) (Bernstein, McQuade & 

Townsend, 2019). As a result, our study can more cleanly isolate the relative importance of 

inherited traits (for example, cultural values) vis-à-vis acquired career experiences in driving 

inventor team formation and productivity. Second, we can use the detailed USPTO patent data to 

objectively identify the key contributors to a specific new patentable technology as well as trace 

the career history of millions of individual employee inventors and inventor teams. Finally, our 

focus on the most critical element of the corporate R&D process, namely the inventors who are 

ultimately responsible for creating novel technologies, allows us to identify some of underlying 

drivers of productivity in internal labor markets and thus corporate innovation (beyond the 

traditional CEO-, firm- and industry-level factors studied in the prior literature). 

Our baseline sample consists of all teams of two or more inventors formed between 1981 and 

2011 at U.S. publicly listed firms. Based on a sample of 1.2 million first-time collaborations 

between pairs of U.S. based inventors, we provide novel evidence that inherited affinity-based traits 

such as shared cultural values and shared gender play a critical role in observed inventor team 

formation. For example, two similarly experienced inventors currently working at the same firm in 

the same corporate office are 16%–20% more likely to collaborate with one another if they share 

similar cultural values. Similarly, female inventors are 14%–16% more likely to choose to 

collaborate with other female inventors in the same corporate office, all else being equal. These 

affinity-based preferences are robust across several within-firm specifications and are at least as 

important as a potential collaborator’s prior technical experience in explaining the observed 

collaboration decisions of employee inventors. 

Given this large-scale evidence documenting the strong preferences of firm R&D employees to 

collaborate with others that possess similar personal characteristics (for example, cultural values), 
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we next examine the important question of whether these familiarity biases in co-inventor network 

formation enhance or impede team-level innovation productivity. In order to disentangle the 

selection effect from the treatment effect of inventor team diversity on team performance, we utilize 

a quasi-natural experiment involving premature co-inventor deaths that provides an exogenous 

source of variation in the cultural composition of inventor teams. Interestingly, we find that the 

impact of a co-inventor’s death on the surviving team depends in large part on the revised 

composition of the remaining team members’ cultural backgrounds. In particular, for treated teams 

that experience a decrease in team cultural diversity, these teams significantly increase their overall 

patent production by shifting their focus to the incremental exploitation of existing technologies, 

thus producing a relatively higher quantity of moderately successful inventions. In contrast, treated 

teams that become more culturally diverse because of their co-inventor’s death subsequently tend 

to produce a higher share of risky, more exploratory patents that have a relatively greater chance 

of becoming high impact innovations. This dichotomy is consistent with the conjecture that while 

diversity in inherited traits can impede information sharing and the integration of disparate 

viewpoints (van Knippenberg & Schippers, 2007; Jehn, Northcraft & Neale, 1999; Williams & 

O’Reilly, 1998), a successful combination of differing perspectives amongst inventors can have a 

positive impact on the pursuit of technological innovation, particularly more high-risk, high-reward 

type inventions (Schubert & Tavassoli, 2020; Eesley, Hsu & Roberts, 2014; Fleming, 2001).   

In further robustness tests, we reach similar conclusions using a heterogeneous treatment effects 

specification using only the treated teams subsample, where we compare the output of treated teams 

that suffer the same co-inventor death (and thus the same loss of co-inventor human capital) but 

experience differential impacts on teams’ cultural value diversity. This combined evidence 

confirms that inventor diversity has both positive and negative consequences for innovation 

production with the net overall effect depending on the type of innovation pursued. 

The findings of this paper contribute to several strands of the literature. First, there has been a 

growing body of literature documenting the importance of co-inventor networks for individual 

productivity (e.g. Jaravel et al., 2018; Azoulay, Graff Zivin & Wang, 2010) and the essential role 

of teams in innovation-related tasks (e.g. Alexander & Knippenberg, 2014; Jones, 2009; Agrawal, 

Kapur & McHale, 2008; De Dreu, 2006). We extend this prior work by studying how these co-

inventor networks form in the first place and how team composition can directly influence the type 

of innovation produced. For example, we are, to the best of our knowledge, the first paper to study 
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the relative importance of inherited affinity-based traits and professional career experiences in 

driving intra-firm inventor team formation and its consequent impact on team productivity. 

 Second, our paper augments the extensive literature that examines the relationship between 

various CEO-, firm-, investor- and industry-level characteristics and firm-level innovation (e.g. 

Custodio, Ferreira & Matos, 2019; Hirshleifer, Low & Teoh, 2012; Islam & Zein, 2020; Fitzgerald, 

2020; Seru, 2014; Fang, Tian & Tice, 2014; He & Tian, 2013; Aghion, van Reenen & Zingales, 

2013; Aghion, Bloom, Blundell, Griffith & Howitt, 2005). While these firm characteristics are 

significant drivers of corporate investment policy and firm innovative activity, the breadth and 

depth of our dataset allows us to probe one level deeper into the corporate R&D process by 

identifying the individuals directly involved in creating a new technological innovation (Bernstein 

et al., 2019). This in turn allows us to develop precise measures of team-specific homogeneity in 

terms of both inherited traits and acquired experiences. Our focus on individual inventors 

collaborating within a firm (which is an economically important yet relatively unexplored setting 

within the innovation networks literature) allows us to better understand the determinants of the 

collaboration choices of R&D employees and make cleaner inferences about the relationship 

between inventor team composition and innovation, beyond the existing factors identified at the 

firm level. 

Third, our paper has important policy implications for both firms and government regulators 

with respect to workplace diversity and labor productivity. For instance, our evidence on inventor 

team formation suggests that merely increasing the hiring of workers from more diverse 

backgrounds into the firm is unlikely to be sufficient in realizing any benefits of workplace 

diversity. In particular, firms may need to enact proactive policies that incentivize existing 

employees to form a more diverse set of R&D collaborations, otherwise the strong homophily 

biases that we document may result in the oversupply of relatively homogenous teams. 

Furthermore, our empirical evidence suggests that there are important economic trade-offs (from 

an innovation productivity perspective) in the pursuit of greater workplace diversity. While we 

show that more diverse teams appear to have a greater ability to produce more high impact 

innovations, it is important to acknowledge that more diverse teams are also relatively more likely 

to engage in failed research pursuits that negatively impact firm productivity. As such, our results 

suggest that each firm will have a different optimal mix of diverse and homogenous inventor teams 

to produce the desired combination of exploratory and exploitative innovations. 
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We organize the remainder of the paper as follows. Section II presents the data and construction 

of the variables used in the empirical analysis. Section III analyzes the determinants of inventor 

team formation within an individual firm. Section IV explores the impact of shared culture and 

other characteristics on an inventor team’s innovation output. Section V discusses the key 

conclusions of our study.  
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II. DATA AND VARIABLES 

2.1 Sample overview 

Our analysis utilizes a combination of extensive patent-based data and large-scale information 

on individual inventors’ careers and inherited characteristics. 

Given utility patents are one of the most common measures of innovation used in the prior 

literature (e.g. Fitzgerald, Balsmeier, Fleming & Manso, 2019; Atanassov & Liu, 2018; Hall & 

Lerner, 2010), we first collect information on U.S. patenting from three main sources: the United 

States Patent & Trademark Office (USPTO), PatentsView and the Berkeley-Fung Patent Database. 

The PatentsView database contains detailed disambiguated USPTO patent data from 1976 to 2018 

and includes a patent’s application and grant year, technology class, inventor names and locations, 

patent assignee names and locations (where the patent assignee is usually the firm or subsidiary at 

which the research is conducted) and the number of citations by and to a patent. Then, by using the 

Berkeley-Fung Patent Database (which extends the existing patent–Compustat assignee bridge, 

which spans 1976 to 2006, in the NBER Patent Database through to 2016) in conjunction with 

PatentsView company assignee ID numbers and our own database extensions,8 we are able to 

identify all patents that are assigned to U.S. publicly listed firms between 1976 and 2018. 

With respect to the patent-related data on individual inventors, we base our analysis on the 

PatentsView disambiguated inventor database. These files use information from the USPTO to 

assign each inventor a unique time-invariant ID to track each individual inventor’s patent output 

and geographic location from 1976 onwards. The PatentsView inventor database encompasses over 

3.8 million inventors working on over 6.2 million patents between 1976 and 2018. Following the 

prior literature, we define an inventor’s employer or place of employment as the firm that is the 

assignee on the patent. As such, we designate an inventor that files a patent with Firm X in 2005 

and another patent with Firm Y in 2006 as an employee of Firm X in 2005 and an employee of 

Firm Y in 2006. In the event that more than a year elapses between patent filings by the same 

inventor, we follow the prior literature and assume that an inventor changes employers at the 

midpoint between the two patent application years (see e.g. Song, Almeida & Wu, 2003; Baghai, 

 
8 Through a combination of algorithms designed to identify similar corporate names as well as manual data checks on 
firms’ time-varying lists of subsidiaries in SEC filings, we augment these existing patent assignee databases by linking 
patents granted in more recent decades to Compustat firms (enabling greater coverage of U.S. public firms post-2006). 
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Silva & Ye, 2019; Li & Wang, 2020).9 However, we also impose the requirement that an inventor 

must have patented at the focal employer at least once in the surrounding three-year period in order 

to be classified as an “active inventor” working at that firm. For example, if an inventor files a 

patent with Firm A in 2000 and another patent with Firm B in 2010 then we assume that this 

inventor is an employee of Firm A up to and including 2003 and is an employee of Firm B from 

2007 onwards. 

Our main sample covers the period from 1981 to 2011 in order to ensure that we have at least 

5 years of inventor activity both before 1981 and after 2011. We focus exclusively on U.S. based 

inventors working at U.S. publicly listed firms because these publicly held firms are likely to have 

a sufficiently large pool of individual inventors and distinct inventor teams to facilitate the large-

scale within-firm analysis that is the basis of our empirical identification strategy. 

2.2 Identification of inventor teams at individual firms 

Using augmented PatentsView inventor ID codes (which track all of patents developed by an 

individual inventor across time)10 and ‘big data’ processing techniques, we identify all “teams” of 

2+ inventors that ever collaborate on a patent and assign each of these teams a unique identifier. 

This process yields over 165 million distinct ‘teams’ that co-invent at least one patent during our 

sample period. This unique team identifier allows us to observe the patenting output, citation 

performance and technological specialization of each ‘team’ formed since 1976. 

We then use this resulting combination of patent, inventor and team identifiers, along with 

patent assignee names, to identify all of the individual inventors and inventor teams working at 

each U.S. publicly listed employer at a given time and location. This enables us to understand the 

factors that influence the initial collaboration decisions of inventors currently employed at the same 

firm and to compare the innovative output of employee teams with differing levels of cultural value 

diversity and inventor experience. 

 
9 For example, if an inventor files a patent with Firm X in 2005 and then files their next patent with Firm Y in 2010, 
we assume that the inventor is an employee of Firm X up to and including 2007 and is an employee of Firm Y from 
2008 onwards. 
10 Similar to the process described above for patent assignees, we initially use name- and location-based algorithms to 
identify potential duplicate inventor ID codes (i.e. an individual inventor is erroneously assigned multiple separate 
inventor IDs) and potential ‘over-aggregating’ inventor ID codes (i.e. the patent output of two or more distinct inventors 
is erroneously assigned to only one inventor ID). We then use manual data verification using LexisNexis Public 
Records and professional networking websites (such as LinkedIn and Relationship Science), as well as USPTO and 
general Google searches, to investigate potential inventor ID misclassifications and to augment the PatentsView 
inventor database where clear misclassifications are identified. 
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2.3 Variable construction 

In this section, we describe the independent and dependent variables used in our analysis. Please 

refer to Appendix A for further details on the construction of each of these variables. 

2.3.1 Innovation output 

We employ several patent-based measures at both the individual inventor and inventor team-

level to assess innovation productivity. Our first measure, Total patents, represents the number of 

patents filed (and subsequently granted) in a given year (Gao & Zhang, 2017). Our second measure, 

Average forward cites per patent, estimates the quality or impact of a patent by counting the number 

of citations that it receives. Scaled forward citations equals the number of citations that a patent 

receives divided by the average number of citations made to patents applied for in the same year 

and Cooperative Patent Classification (CPC) technology sub-class.11 We scale the raw citation 

count to account for potential variation in citation rates over time and across technologies 

(Bernstein, 2015) as well as to address truncation bias that results in patents granted towards the 

end of the sample having less time to accumulate citations (Hall, Jaffe & Trajtenberg, 2005). We 

then form the inventor team-year level measure by calculating the average scaled forward citations 

across all of the team’s patents applied for in that year. 

In addition to measures of patent quality based on future citations, we also assess patent quality 

utilizing the Kogan, Papanikolaou, Seru & Stoffman (2017) measure of the market value of patents 

(based on the stock price reaction to the announcement of new patent grants). We then aggregate 

these patent-level market values to create the average market value of patents created by an inventor 

team (Average market value of patents). 

Beyond measures of the number and average quality of patents, we also seek to understand the 

type of innovation undertaken by inventor teams. According to March (1991), innovation search 

strategy can be characterized as the trade-off between ‘exploitative’ innovation (i.e. the exploitation 

of known technologies and/or existing capabilities) and ‘exploratory’ innovation (i.e. the search for 

technologies and approaches that are distant from pre-existing knowledge sources). As such, we 

use two different measures to capture an inventor team’s relative focus on exploitative innovation. 

 
11 The CPC is a patent classification system jointly developed by the USPTO and European Patent Office (EPO). There 
are approximately 640 4-digit CPC technology sub-classes that group patents together based on the similarity of their 
subject matter. It replaced the United States Patent Classification (USPC) system (with approximately 450 analogous 
3-digit primary technology classes) in January 2013. 
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First, we calculate Average backward cites per patent based on the number of citations that a patent 

makes to relevant prior art (using the same year and technology class scaling adjustment as for 

forward citations described above). As outlined in Balsmeier, Fleming & Manso (2017) and 

Lanjouw & Schankerman (2004), patents with more backward citations correlates to patenting in 

relatively more crowded, better known and more mature technology areas (consistent with a greater 

focus on exploitative innovation). Second, we compute Average claims per patent based on the 

number of claims made by a patent (using the same year and technology class scaling adjustment 

as for forward citations described above). As discussed in Balsmeier et al. (2017), a higher number 

of claims on a patent should correlate with a higher amount of effort exerted in delineating the 

extent of subject matter protection sought by a patent, where such efforts should increase as the 

pressures for immediate and quantifiable results rises (consistent with a greater focus on 

exploitative innovation). 

Finally, we consider where each of a team’s patents fall in the patent citation distribution. In 

particular, given that more high-risk, high-reward explorative innovation is more likely to fall in 

the tail ends of the patent citation distribution (Balsmeier et al., 2017), we examine whether the 

patents developed by a particular team are “high impact innovations.” We define “high impact 

innovations” as those patents that receive citations within the top 5% of patents in the same 

application year and CPC technology sub-class (Top 5% cited patent) or within the highest decile 

of patents in the same application year and CPC technology sub-class (Top 10% cited patent). 

2.3.2 Inherited characteristics of individual inventors 

We construct measures of inventors’ inherited cultural characteristics in the following way. 

First, we identify the country of origin of inventors using their surnames following the methodology 

of Liu (2016) as described in Appendix B. This approach of using an individual’s surname to 

identify their cultural background has been relied upon extensively in a wide variety of business 

disciplines.12 Using the methodology in Liu (2016), we can link surnames to their countries of 

origin for close to 90% of the U.S. inventors in the patent database. While surnames have been 

frequently used to identify countries of origin, we acknowledge that this procedure may not yield 

 
12 While the use of names to classify populations into different ethnic groups has been around since the early 1900s 
(Rossiter, 1909), most recent efforts have been concentrated in the public health and population genetics literature 
(Mateos, 2007). Several recent studies in the accounting and finance literature have used surnames to identify the 
cultural background of inventors (Kerr & Lincoln, 2010), venture capitalists (Hegde & Tumlinson. 2014; Gompers et 
al. 2016), and company executives (Liu, 2016; Pan, Siegel & Wang, 2017; Brochet, Miller, Naranjo & Yu, 2019). 
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exact matches in all cases. For instance, individuals may assume more Anglo-Saxon surnames upon 

entry into the United States or women may take on their husbands’ last names. However, such 

classification errors for a relatively small proportion of our entire sample of over two million 

inventors is, if anything, more likely to make our shared culture measures noisier and thus create a 

bias against finding any significant results. 

Second, to measure the inherited cultural characteristics of inventors from a given country of 

origin, we use the cultural framework of Hofstede (1980) that classifies national culture into six 

dimensions: uncertainty avoidance, individualism, power distance, masculinity, long-term 

orientation, and indulgence. The first cultural dimension is the uncertainty avoidance index (UAI), 

which measures the extent to which people feel threatened by uncertainty and ambiguity and try to 

avoid these situations. This index is related to the concept of risk aversion and has been used as a 

measure of risk culture by prior studies (e.g., Pan, Siegel & Wang, 2017). The second cultural 

dimension is the individualism index (IDV), which measures the degree to which individuals are 

integrated into groups. The third cultural dimension is the masculinity index (MAS), which 

measures the degree to which masculine values such as competition and assertiveness dominate 

over feminine values such as cooperation and human relationships. The fourth cultural dimension 

is the power distance index (PDI), which measures the extent to which the less powerful members 

of organizations and institutions accept and expect that power is distributed unequally. The fifth 

cultural dimension is the long-term orientation index (LTO), which is related to the fostering of 

virtues oriented towards future rewards, in particular perseverance and thrift. The sixth cultural 

dimension is the indulgence index (IVR), which measures the extent to which people try to control 

their desires and impulses. 

For robustness, we use two other measures to identity inherited cultural characteristics. The 

first measure is based on the cultural framework of Schwartz (1992) that classifies national culture 

into seven dimensions: harmony, embeddedness, hierarchy, mastery, affective autonomy, 

intellectual autonomy, and egalitarianism. The second measure is based on trust beliefs, calculated 

as the average response in each country of origin to the following question in the World Value 

Survey from 1982 to 2008: “Generally speaking, would you say that most people can be trusted or 

that you need to be very careful in dealing with people?”13 This measure has been used by prior 

 
13 Responses to the question are coded as one if “most people can be trusted” is selected and coded as zero if “you can 
never be too careful when dealing with others” is selected. 
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studies (e.g., Guiso, Sapienza & Zingales, 2006; Ahern, Daminelli & Fracassi, 2012) as a key 

dimension of national culture.  

With respect to identifying the gender of inventors (male or female), we use the methodology 

and data developed by the Office of the Chief Economist at the USPTO, as reported in Toole, 

Myers, Breschi, Ferrucci, Lissoni, Miguelez, Sterzi & Tarasconi (2019). Toole et al. (2019) develop 

a 14-step methodology that utilizes the (primarily first) name of the inventor and various 

international name–gender dictionaries to attribute the gender of over 93% of inventors listed on 

granted U.S. patents from 1976 to 2016. 

2.3.3 Acquired experiences of individual inventors 

Using the patenting history of each individual inventor, we are able to develop several measures 

of the professional experience acquired by an inventor over the course of their career. First, we 

catalogue an individual’s experience to date at both their current employer and across their entire 

inventor career. We calculate years of inventor experience as the number of years between the 

application date of the first (subsequently granted) patent that an inventor ever applies for and the 

current analysis year. Relatedly, we compute the tenure of the inventor at the focal firm as the 

number of years between the application date of the first (subsequently granted) patent that an 

inventor applies for whilst working at the focal employer and the current year.  

Second, we seek to gauge how accomplished or successful an individual inventor has been 

relative to their peers in their inventor career to date, with the expectation that more similarly 

accomplished inventors are more likely to collaborate with each other. As such, we compute 

average forward cites to date per patent (defined as the mean of the scaled forward citations 

received across all of the inventor’s patents to date) and the binary variable Top 10% inventor 

(which equals one for inventors whose total number of patents developed to date place them in the 

top decile of all inventors).  

Third, we measure the type of innovative activity undertaken by inventors on the basis that 

inventors with similar technical expertise are more likely to work with one another. To this end, 

we compute average backward citations per patent (defined as the mean of the scaled backward 

citations received across all of the inventor’s patents to date) and technology class experience 

(defined as a count of the number of distinct CPC sub-classes in which an inventor patents). 
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Appendix A provides a description of the other inventor-level characteristics presented in our 

empirical analysis. 

2.3.4 Pairwise and team co-inventor characteristics 

In order to undertake our empirical tests, we utilize the inherited traits and the acquired 

characteristics of individual inventors described above and transform them into pairwise inventor 

variables (for our inventor team formation, i.e. collaborator selection, tests) and team-level inventor 

variables (for the effect of cultural diversity on team performance, i.e. treatment effects, tests). 

To measure the similarity in cultural values between a pair of inventors, we first calculate the 

Euclidean distance between two inventors’ cultural values based on Hofstede’s framework and then 

multiply this value by -1 using the following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 

= −1 × [(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2

+ (𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2

+ (𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2]
1
2 

We transform this measure so that its values are bounded between zero and one, where higher 

values indicate higher similarity of cultural values between inventor 1 and inventor 2. 

To measure culture similarity within a team of N inventors, we use the following formula: 

𝑅𝑅&𝐷𝐷 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −1 × � 1
𝑁𝑁 − 1

�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2
𝑁𝑁

𝑖𝑖=1
 

where the distance between each inventor’s culture and the inventor’s team culture is calculated as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= [(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2

+ (𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2

+ (𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟 𝑖𝑖 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2]
1
2 

This measure is transformed so that its values are bounded between zero and one, where higher 

values indicate higher cultural similarity or less cultural diversity amongst the R&D team members. 

To capture the role of shared gender in inventor team formation, we define the binary variable 

Both female as equal to one if both inventors in the inventor pair are female and zero otherwise. To 



14 
 

measure Team gender diversity within a team of N inventors, we use the Blau (1977) Index of 

Gender Diversity, computed as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 = 2 × �1 − �(𝑝𝑝𝑠𝑠)2
𝑆𝑆

𝑠𝑠=1
� 

where 𝑠𝑠 = male or female and 𝑝𝑝𝑠𝑠 is the proportion of inventors in the team that are male or female 

respectively. As such, the value of this measure is bounded between zero and one with higher values 

indicating greater diversity or difference in genders within the inventor team. 

To account for the role of co-inventor ‘proximity’ in increasing the ease of team formation, we 

develop several measures to capture the overlap between inventors in terms of geographic location 

and accumulated technical expertise. We calculate co-inventor geographic distance as the natural 

logarithm of one plus the geodetic distance (in miles) between the two inventors’ then current 

locations. We also follow Jaffe (1989) and calculate the cosine similarity measure co-inventor 

technological proximity as the degree of overlap in technology classes between patents developed 

by each inventor in the focal analysis pair up to and including year t – 1. 

To incorporate how prior inventor experience and prior patenting success may affect the choice 

of future R&D collaborators and inventor productivity, we transform the individual acquired 

experience variables described in Section 2.3.3 into the following additional pairwise inventor 

characteristics. Initially, we compute the continuous variables co-inventor difference in average 

forward cites to date per patent, co-inventor difference in average backward cites per patent and 

co-inventor difference in years of inventor experience to date. We then compute the binary dummy 

variables both top 10% inventors and both have 5+ years of tenure at the focal firm. Please refer 

to Appendix A for details of these transformations. 

In our treatment effects specifications, we include a number of control variables that could 

influence the innovation production of inventor teams. To capture how the overall ‘level’ of team 

members’ prior professional accomplishments and/or experiences may affect subsequent team 

productivity, we compile the team-level average of each individual team members’ relevant 

characteristics. We thus include the following “inventor team average controls” in our regressions: 

team average total number of patents to date, team average inventor experience to date, team 

average technology class experience to date, team average forward citations to date per patent and 

team average backward citations per patent. To capture how ‘diversity’ in team members’ prior 

professional accomplishments and/or experiences may affect subsequent team productivity, we 
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compute the team-level standard deviation across each team members’ relevant characteristics. We 

thus include the following “inventor team diversity controls” in our empirical specifications: team 

gender diversity, team geographic diversity, team diversity in total number of patents to date, team 

diversity in inventor experience to date, team diversity in technology class experience to date, team 

diversity in average forward citations to date per patent and team diversity in average backward 

citations per patent. Please refer to Appendix A for variable definitions. 

2.4 Summary statistics 

Table 1 provides the mean, median and standard deviation of the various characteristics of the 

U.S. based inventors working at U.S. listed firms that comprise our sample.  

In Table 1 – Panel A, we present summary statistics detailing the lifetime characteristics of all 

individual inventors working at U.S. public firms in our sample. In Table 1 – Panel B, we provide 

information on team-level characteristics for the inventor teams in our sample. Consistent with 

Jaravel et al. (2018), we find that while teamwork is common amongst inventors employed at large 

firms, individual inventors usually only collaborate with a small number of other inventors over 

the course of their career. This implies that co-inventor networks are relatively sticky and exert an 

important influence on an individual inventor’s long-term productivity. We explore the factors 

influencing the formation of these co-inventor relationships in more detail in Section 3. 

In Table 1 – Panel C, we show the sample pairwise characteristics of newly formed co-inventor 

pairs at the time of their first collaboration. One particularly noteworthy feature is that first-time 

collaborators tend to have greater similarity in their cultural values (or less distance in their cultural 

backgrounds) across all three co-inventor cultural similarity measures described in Section 2.3.2. 

We explore this univariate relationship further in our co-inventor selection analysis in Section 3 as 

well as the associated team performance implications in Section 4.  
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III. SELECTION FACTORS IN INVENTOR TEAM FORMATION 

In this section, we seek to understand the relative importance of inherited affinity-based traits 

vis-a-vis acquired career experiences in explaining the establishment of new collaborations 

between inventors employed at the same firm. 

3.1 Empirical methodology – ex ante selection 

Following Dyck, Morse & Zingales (2010), Bena & Li (2015) and Bereskin (2018), we estimate 

the following conditional logit regressions using cross-sectional data: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝛼𝛼+ 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑡𝑡−1                              (1) 

+ 𝛽𝛽2𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡−1 

+ 𝛽𝛽4𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖,𝑡𝑡−1 

+ 𝛽𝛽5𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑡𝑡𝑡𝑡𝑡𝑡 10% 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡−1 +  𝛽𝛽6𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡−1 

+ 𝛽𝛽7𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡−1 

+ 𝛽𝛽8𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡−1 

+ 𝛽𝛽9𝐵𝐵𝐵𝐵𝐵𝐵ℎ ℎ𝑎𝑎𝑎𝑎𝑎𝑎 5 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡 

The dependent variable 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡 is equal to one if the inventor pair 𝑖𝑖𝑖𝑖 represents a real, first 

time collaboration formed at a U.S. publicly listed firm in year 𝑡𝑡 (sometimes also referred to as a 

‘treated pair’ or ‘realized pair’)14 and zero otherwise.15 For each realized inventor pairing 

observation, there are two associated counterfactual co-inventor pair observations (sometimes also 

referred to as a ‘control pair’) whose construction is outlined in Section 3.2 below. As a result, 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹 represents the fixed effect for each new realized pairing of co-inventors and its 

counterfactual control pairs of potential (but ultimately unchosen) co-inventors. As such, our 

coefficient estimates are based on ‘within group’ variation in pairwise characteristics. 

Our main variables of interest in this analysis are 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖,𝑡𝑡−1 and 

𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑡𝑡−1 which capture the degree to which the affinity-based characteristics of shared 

 
14 We focus our analysis on the very first collaboration between two individual U.S. based inventors since the decision 
to collaborate for the first time is unaffected by confounding factors such as experience with past collaborations and 
accumulated team-specific relationship capital. For clarity, we do not include cases where two inventors work together 
for the first time at an unlisted organization and then subsequently patent together at a U.S. publicly listed firm. 
15 Following the prior literature, we use the patent application date as an objective estimate of the time when two co-
inventors commenced their new research collaboration (Jaravel et al., 2018). 
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cultural values and shared gender are meaningful drivers of realized co-inventor pairing (after 

accounting for firm and time effects as well as controls for relative inventor ability and similarity 

in past professional experiences). Appendix A defines all other independent variables. Following 

Bena & Li (2015), we use robust standard errors clustered at the ‘group’ level. 

3.2 Counterfactual inventor pairs 

In order to understand which factors significantly influence the formation of new collaborations 

between inventors, we utilize our unique within-firm corporate R&D setting to construct a plausible 

set of potential co-inventors that were available for collaboration at the time when the focal inventor 

decided to collaborate with a different co-inventor. This set of counterfactual inventors enables us 

to construct counterfactual pairs of firm inventors (i.e. a set of control pairs) that, when compared 

against the set of realized first-time inventor collaborations, allows us to isolate the importance of 

affinity-based personal characteristics and other explanatory variables in driving the choice of co-

inventor (see generally Gompers et al., 2016). 

We commence the process of generating credible counterfactual inventor pairs by first 

identifying each actual pair of inventors that initiate a first-time collaboration at a U.S. publicly 

listed firm 𝑓𝑓 in the year 𝑡𝑡 (denote these co-inventors as 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇1 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇2 respectively). 

Next, we generate counterfactual or pseudo inventor pairs by partnering each of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇1 and 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇2 with one potential (but ultimately unchosen) collaborator that is most “comparable” to 

the actually chosen collaborator on the following dimensions (denote these pseudo co-inventors as 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶1 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶2 respectively). First, the counterfactual co-inventor and the actual or 

treated co-inventor must be currently employed at the same firm 𝑓𝑓 in the year 𝑡𝑡. Second, the 

counterfactual co-inventor must not have ever collaborated with either inventor in the treated pair 

prior to or during year 𝑡𝑡.16 Third, for the firm’s inventors that are available to serve as potential 

counterfactual control inventors after applying the first two filters, we select the inventor with the 

same number of (eventually granted) patent applications to date as the actually chosen co-inventor 

to serve as counterfactual co-inventors 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶1 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶2 respectively).17 This final 

 
16 In our baseline analysis, we only use information that is available at the date that the first-time collaboration is 
formed in order to avoid the introduction of any “look ahead” bias. Nevertheless, our results are virtually identical if 
we instead exclude any inventors from the counterfactual control sample who ever collaborate with either inventor in 
the treated pair at any time during our sample period (even if this occurs after year 𝑡𝑡).  
17 If more than one inventor at the firm satisfies these three criteria for selection as a counterfactual control inventor, 
we follow Jaravel et al. (2018) by choosing amongst these potential counterfactual inventors at random. 
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requirement helps to ensure that the counterfactual inventor has similar innovation experience and 

patenting productivity to the actually chosen collaborator. 

As a result of implementing this procedure, our baseline pairwise dataset contains 1.297 million 

first time collaborations formed in the period spanning 1981 to 2011 between pairs of U.S. based 

inventors employed at the same U.S. publicly listed firm (i.e. treated or realized pair 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇1–

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑜𝑜𝑜𝑜𝑇𝑇2) and 2.417 million counterfactual control pairs (i.e. pseudo pairs 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇1–

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶2 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶1–𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇2).18 Once we merge in our shared culture measures and 

other inventor characteristics, we obtain a final pairwise dataset of 1.130 million treated pairs and 

2.004 counterfactual control pairs. 

3.3 Determinants of inventor collaboration decisions 

Table 2 outlines the ability of various pairwise inventor characteristics to explain the observed 

collaboration decisions of inventors working within the same firm. We find strong evidence for 

homophily driven partnering decisions in internal skilled labor markets. This result applies to 

affinity-based pairwise traits, overlaps in technical skills and relative career experience.  

With respect to affinity-based characteristics, both shared culture and gender play a key role in 

the decision of inventors to form new teams with each other. For example, we find that two 

inventors with more similar cultural origins are approximately 20% more likely to work with one 

another than two otherwise comparable inventors who have a one standard deviation greater 

distance in their cultural backgrounds. This result holds across all of the three cultural value 

classification schemes discussed in Section 2.3.2 and Appendix A and are uniformly significant at 

the 1% level.19 Similarly, we consistently find across all specifications that, all else being equal, 

female inventors are about 16% more likely to choose to collaborate with other female inventors.  

Beyond the affinity-based characteristics previously discussed, we unsurprisingly find that 

inventors that are relatively more successful (based on professional outcomes to date) are more 

 
18 In less than 1% of cases, we are unable to find any valid counterfactual control pairs that meet our criteria for 
inclusion in the conditional logit analysis. Given that these rare cases tend to arise in small public firms with a limited 
pool of R&D personnel and relatively low patenting output, we drop these observations from our final sample. 
19 When considering our findings with respect to the relationship between shared cultural values and inventor 
collaboration choices, it is important to note that our results are not simply driven by two inventors having the same 
country of origin. In Internet Appendix Table IA1, we re-run our conditional logit regressions only on the subsample 
of inventor pairs where the two inventors are not from the same country of origin (i.e. the Same nation dummy is equal 
to zero). In this subsample, we still find that the coefficient on our three shared culture measures remains strongly 
positive and significant. This provides further support for the notion that shared cultural value systems are a nuanced 
yet critical determinant of inventor collaboration choices. 
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likely to collaborate with one another in the future (Herkenhoff et al., 2018). In particular, we first 

find that inventors that exhibit a greater disparity in the number of subsequent citations made to 

their previous work are significantly less likely to collaborate with one another. Furthermore, we 

document that two inventors are much more likely to work with each other if the total number of 

patents that they have generated across their career to date places them in the top 10% of their 

profession (so-called “star” inventors). This implies that an inventor’s patenting history and 

observable success to date has crucial signaling value for potential collaborators about that 

inventor’s inherent ability and thus their desirability as a future research partner. 

A natural follow-on question is whether the effect of cultural similarity on the collaboration 

choices of inventors is still present for “star” inventors who may potentially have a larger set of 

potential co-inventors to choose from for future research projects. Interestingly, while we observe 

a more muted influence of cultural value similarity on the collaboration decisions of more 

professionally accomplished inventors, we still find in unreported regressions that otherwise 

comparable “star” inventors are approximately 13% more likely to work with one another if they 

share similar cultural values. 

Inventors also appear to exhibit a strong preference to collaborate with colleagues who have 

previously worked in similar technology fields. For example, greater overlaps in the technological 

experience of potential collaborators (as captured by the cosine similarity measure Co-inventor 

technological proximity) as well as greater shared expertise in technology fields with similar 

lifecycle properties (as captured by the average scaled backward citations of each inventor’s prior 

patent portfolio) strongly increase the likelihood of a realized future collaboration. 

Interestingly, we also find that the seniority of R&D personnel within a given organizational 

structure has a considerable impact on their future collaboration choices. Specifically, it is quite 

rare for relatively more senior colleagues (those with 5+ years of experience at the firm) to start 

collaborating on new R&D projects. Indeed, the probability that two of the firm’s inventors decide 

to work together is reduced by over 30% if both of those inventors have tenures exceeding 5 years 

at their current employer. This provides suggestive evidence on the key role of organizational 

structure in building internal co-inventor networks.20 

 
20 Whether this observed phenomenon is a conscious organizational choice (whereby firms actively encourage senior 
colleagues to work with and mentor more junior colleagues) or the result of unconscious biases (for example arising 
due to two senior colleagues being unable or unwilling to adjust their respective approaches to innovation production 
in order to work together) is an open question that we leave to future research. 
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Finally, we find that physical proximity between inventors is a key determinant of the decision 

to collaborate with a colleague working in a similar R&D related field. In particular, we find that 

inventors are far more likely to start working with one another if they live in close geographic 

proximity to their potential collaborator. This is consistent with the general conclusions of the 

networking literature that emphasizes the importance of face-to-face interactions in promoting 

teamwork and network formation (e.g. Morrison-Smith & Ruiz, 2020; Gera, 2013). 

Overall, our results on co-inventor partnering decisions demonstrate that individual inventors 

are much more likely to collaborate with others who possess similar personal characteristics and 

professional experiences, irrespective of whether these traits are correlated with technical skills 

and/or inherent ability. In particular, the role of affinity-based personal characteristics such as 

shared cultural values and shared gender identity in shaping observed co-inventor networks within 

the boundaries of firm are highly significant in both statistical and economic terms. 

3.4 Robustness tests 

While we claim that the use of similarly accomplished inventors working at the same company 

at the same point in time is a valid comparison group for the treated pairs in our sample, we 

nevertheless test the robustness of our previous results by applying stricter filters in the construction 

of counterfactual control pairs.  

First, since geographic proximity is an important driver of inventor partnering decisions (that 

may in turn correlate with other unobserved relationship-based characteristics and/or reflect 

differences in local economic conditions), we specify that the potential (but ultimately not chosen) 

co-inventor must also be located within 50 miles of the actual treated co-inventor (see column (1) 

of Table 3).21 Second, given the possibility that different divisions/subsidiaries within the larger 

corporate entity may have differential access to firm resources and inventor talent, we define an 

alternative counterfactual sample using only potential (but ultimately not chosen) co-inventors that 

work in the same division or subsidiary of the firm at the same point in time (see column (2) of 

Table 3).22 Finally, our most restrictive counterfactual sample requires that both treated and 

 
21 We use a 50-mile radius cut-off as an estimate of the high likelihood that two co-inventors work in the same corporate 
office location (see generally Tian, 2010). Nevertheless, our results are qualitatively unchanged if we instead use a 25 
mile or 100 mile threshold.  
22 Using both the Berkeley-Fung patent assignee database and the USPTO patent database, we identify two inventors 
as being part of the same division/subsidiary if there is an exact match on the name and location of the patent assignee 
in their most recently developed patents. For example, diversified corporations such as Tesla, Inc. will usually file 
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counterfactual co-inventor pairs must involve two inventors who: (a) work in the same division/ 

subsidiary of the same company, (b) work at the same geographic location/office and (c) are active 

R&D researchers in the firm at the same point in time (see column (3) of Table 3). 

Table 3 presents the conditional logit regression results from estimating equation (1) with each 

of these alternative counterfactual control samples. Despite the use of these more restrictive and 

refined definitions of counterfactual co-inventors for comparison purposes, the results in Table 3 

highlight the very important role of affinity-based characteristics in influencing the decision of two 

inventors to collaborate with one another. With respect to shared culture, two inventors working in 

the same company division at the same geographic location are approximately 16% more likely to 

work with each other if there is a one standard deviation increase in the similarity of their cultural 

background and beliefs (utilizing the Hofstede cultural value classification system).23 Similarly, a 

female inventor is approximately 14% more likely to choose to collaborate with another female 

inventor relative to an otherwise similar male inventor working in the same corporate office. These 

are economically and statistically significant effects, especially when assessed in the context that 

we are comparing pairs of similarly experienced inventors working in the same corporate division 

at the same geographic location at the same point in time.  

To provide a sense of the economic magnitude of our results, our estimates imply that shared 

cultural values are at least as important as prior technical experience in explaining co-inventor 

matching. As such, it is clear that affinity-based characteristics such as shared cultural values are 

of first order importance in explaining the observed variation in inventor collaboration decisions.  

 
patents under the specific subsidiary or division that created the new invention (such as Tesla Motors Inc., Tesla 
Engineering Ltd, Tesla Laboratories LLC, Tesla Nanocoatings Inc. and Tesla Electronics Inc.). 
23 In unreported results, the coefficients on our other measures of shared cultural values (based on the Schwartz culture 
classification system and shared trust measure) remain positive and statistically significant at the 1% level. 
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IV. TREATMENT EFFECT OF INVENTOR HOMOPHILY ON INNOVATION 

Thus far, we have established the important role of shared inherited traits (such as shared 

cultural values) between individual inventors in the decision to collaborate as part of a team in a 

corporate R&D setting. Given the strong evidence for homophily in the collaboration decisions of 

corporate inventors, a natural question to explore is whether these familiarity biases enhance or 

impede different types of innovative output (the ‘ex post treatment effect’). The identification 

challenge in this context is that the selection of co-inventors is not a random process. For example, 

inventors may intentionally target new collaborations with individuals from relatively different 

personal and professional backgrounds in furtherance of the pursuit of a more risky, exploration-

focused innovation search strategy. As a result, any differences in the average innovation outcomes 

of diverse and non-diverse inventor teams may be due to selection effects that arise from 

endogenous co-inventor matching or the direct treatment effect (i.e. the causal impact) of inventor 

team diversity on team performance. Thus, in order to disentangle these potential selection and 

treatment effects, we use triple difference-in-difference comparisons around exogenous co-

inventor deaths to identify the causal impact on inventor team diversity on teams’ subsequent 

innovation productivity. 

4.1 Quasi-natural experiment involving co-inventor deaths 

A potential issue with OLS and matching estimators is that it is still possible that there are 

unobserved differences in team characteristics that drive both the initial decision to collaborate and 

subsequent team innovation production. In order to address any remaining selection concerns, we 

exploit a quasi-natural experiment involving premature co-inventor deaths that allows us to observe 

the change in a team’s innovation output after the team experiences an exogenous change in the 

cultural composition of the inventor team. 

4.1.1 Triple difference-in-differences approach 

Relying upon the premature death methodology used in Bennedsen, Nielsen, Perez-Gonzalez 

& Wolfenzon (2007), Azoulay, Graff Zivin & Wang (2010), Nguyen & Nielsen (2010) and Jaravel 

et al. (2018), we provide causal estimates of how an inventor team’s innovation production would 

change if there were an exogenous shift in the diversity of the cultural background of its team 

members. Using data from the USPTO, LexisNexis Public Records and the Fold3 Social Security 
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Death Index, we use the premature deaths of inventors working at U.S. public firms at the time of 

their passing as a source of exogenous variation in the diversity of an inventor team’s cultural 

values to examine the evolution of treated team innovative output around co-inventor deaths. 

We identify the causal effect of inventor team diversity on team innovation performance by 

utilizing a triple difference-in-differences research design. We start our analysis by identifying a 

control group of inventor teams working at the same firm at the same time whose co-inventors do 

not pass away but who have a similar level of cultural diversity as the treated team (pre-death) and 

who are otherwise similar to the inventor teams that experience the premature death of a co-

inventor. However, we do not simply compare the change in the innovative output of treated and 

control teams around co-inventor deaths in order to identify the effect of cultural diversity on 

inventor team output. This is because the difference in the subsequent innovation of treated teams 

and control teams in the post-treatment period may be due to factors other than changes in the 

cultural value composition of treated teams induced by co-inventor deaths (such factors may 

include, for example, the productivity shock to team skill and experience arising from a colleague’s 

unexpected departure). 

However, a unique aspect of our empirical setting is that a co-inventor’s death can exogenously 

increase or decrease the cultural value similarity of a treated team’s surviving inventors. This 

allows us to compare the difference in innovation output between treated teams whose cultural 

similarity increases post their co-inventor’s death and their associated control teams vis-à-vis the 

difference in innovation output between treated teams whose cultural similarity decreases post their 

co-inventor’s death and their associated control teams. Under the identifying assumption that, 

conditional on observable team and inventor characteristics, there is no other contemporaneous 

shock that systematically affects the relative outcomes of the treatment group around the date of 

co-inventor death (Gruber, 1994; see Section 4.1.2 for further discussion), we can use a triple 

difference-in-difference regression specification to isolate the causal effect of inventor team 

cultural diversity on team innovation output. 

We use the following triple difference-in-difference empirical setup to investigate how changes 

in the degree of inventor team cultural diversity impacts subsequent team performance. We 

estimate the following regression using a panel dataset that compares the difference in output 

between treated teams whose cultural similarity increased (i.e. team cultural diversity decreased) 

after a co-inventor’s death relative to their associated control teams vis-à-vis the difference in 
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output between treated teams whose cultural similarity decreased after a co-inventor’s death 

relative to their matched control teams: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼+ 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖                     (2) 

+ 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 

+ 𝛾𝛾𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

The dependent variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is one of the patent-based outcome measures in each 

year 𝑡𝑡 as described in Section 2.3.1.24 The indicator variable 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 equals one for all years after 

the focal co-inventor’s death and zero otherwise. The indicator variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 equals one 

for all teams that experience the shock of losing a co-inventor and zero otherwise. The continuous 

variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 equals the difference between the treated team’s 

cultural similarity immediately post the focal co-inventor’s death (based on the treated team’s 

surviving inventors) minus the treated team’s cultural similarity immediately prior to their death 

(which includes the eventually deceased co-inventor).25 As a result, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 will be positive when the treated team’s cultural similarity increases post their co-

inventor’s death and will be negative when the treated team’s cultural similarity decreases post 

their co-inventor’s death.26 The key coefficient of interest in this regression is 𝛽𝛽3 which compares 

the relative pre- and post-death impact on team innovation performance for cases where treated 

inventor team cultural similarity increases vis-a-vis cases where treated inventor team cultural 

similarity decreases. We include team fixed effects to difference away any time-invariant team-

level characteristics and year fixed effects to absorb any common time trends across teams that 

experience either an increase or a decrease in team cultural similarity.27  

 
24 Following Jaravel et al. (2018), we examine the change in team innovative output from ten years prior to the focal 
co-inventor’s death to ten years post-death. Our results are qualitatively similar if we narrow our focus to the 5 year 
period pre- and post- the focal co-inventor’s death. 
25 Note that treated teams only experience a change in cultural similarity associated with the removal of the decreased 
inventor from the treated team while control teams do not experience any change in team cultural similarity over the 
test period because membership of the control team remains constant over time. 
26 In robustness tests, we alternatively define the indicator variable Team Cultural Similarity Increases that is equal to 
one for treated teams that experience an increase in their team’s cultural value similarity after their teammate’s 
premature death and zero otherwise. We obtain similar results to those presented using the continuous variable Team 
Cultural Similarity Change with similar levels of statistical significance. 
27 Note that Team FEs absorbs the Treated Team dummy variable as well as the coefficients on Team Culture Similarity 
Change and After × Team Culture Similarity Change (noting that no control team observations experience a change 
in team cultural similarity throughout the pre- and post-death period). 
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Obviously, the death of a co-inventor can induce other important changes in team-related 

characteristics besides team cultural similarity (for example, a colleague’s death may change the 

level and/or diversity of team inventor experience). As such, we explicitly control for other changes 

in non-culture related team variables induced by the focal co-inventor’s death. The vector 𝑋𝑋𝑖𝑖,𝑡𝑡 

comprises various control variables including team gender diversity; team geographic diversity; 

the average (and standard deviation) in total patents per team member; the average (and standard 

deviation) of co-inventor experience; the average (and standard deviation) in the number of 

different technology classes that each co-inventor has previously patented in; the average (and 

standard deviation) of backward citations per patent developed by each co-inventor and the average 

and standard deviation of scaled forward citations to date for patents developed by each co-inventor 

(please see Appendix A for further details on the construction of each of these variables). 

The first step in implementing our empirical strategy involves identifying active inventor teams 

at U.S. publicly listed firms who suffer the ‘premature’ death of one of their team members 

(otherwise referred to as the “treated teams”). We begin with USPTO data and reports that directly 

identify inventors who died around the date of patent application.28 We then match this information 

with LexisNexis Public Records and the Fold3 Social Security Death Index to identify those 

deceased inventors that are:  

a) Employed at a U.S. publicly listed firm at the time of their death; 

b) Died between 1981 and 2011 (in order to ensure we have at least 5 years of pre-death and 

post-death patent output); and  

c) Are no older than 60 years of age at the time of their death.29  

Next, to isolate ‘active’ inventor teams that are likely to be genuinely impacted by the death of their 

colleague, we identify all teams of 3+ inventors that collaborated with the deceased inventor (whilst 

all team members were employed at the focal U.S. public firm) on a patent that was applied for 

 
28 In the inventor fields on the patent data published on the USPTO website, a recently deceased inventor will have a 
‘deceased’ or ‘late’ label affixed to their name and/or have their ‘legal representative’ noted on the patent application. 
Separately, the USPTO publishes records of petitions related to deceased inventors and their patent applications. A key 
advantage of relying directly on this USPTO data is that it more precisely identifies the deceased inventor’s name, 
location and employer at the approximate time of death. This helps to facilitate the process of matching this deceased 
co-inventor’s patenting history and personal characteristics. 
29 Following Jaravel et al. (2018), we define a ‘premature’ co-inventor death as an inventor that was 60 years old or 
younger at the date of their passing. We chose this threshold to reduce the likelihood that the death results from a long-
standing health condition. 
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within three years of the focal inventor’s death.30 Finally, we require that we have data on each 

team member’s cultural heritage, gender, location and patenting history. These filters ultimately 

result in the identification of 1,599 treated teams that were actively collaborating at a U.S. publicly 

listed firm around the date of a co-worker’s premature death. 

The second step in our empirical strategy is to use the following procedure to match each treated 

team with a corresponding counterfactual control team that does not experience a co-inventor death. 

First, we identify all teams of inventors working at the same firm as the treated team and keep those 

teams that have the same number of inventors as the treated team (prior to the focal co-inventor’s 

death). Second, we specify that none of the potential control team’s constituents have an existing 

collaboration with any member of a treated team in our sample (including the deceased inventor).31 

Third, we require that the potential control team is actively working together around the time of the 

focal co-inventor’s death (namely the control team must have successfully patented together at least 

once in the three years leading up to the focal co-inventor’s death). Fourth, we require that the 

potential control team has developed the same number of (eventually granted) patent applications 

to date as the treated team at the time of the focal co-inventor’s death to ensure that the control 

team has similar team-specific human capital and patenting productivity as the treated team. 

Finally, we specify that the chosen control team must have the closest proximity to the treated 

inventor team in terms of cultural value diversity. We then use this control team’s characteristics 

and patenting activity as the assumed counterfactual for how the relevant treated inventor team 

would have performed if they did not suffer the loss of their collaborator. After we implement this 

procedure for identifying counterfactual control teams, we have a final sample of 1,460 treated 

teams and a corresponding 1,460 counterfactual controls.32  

To illustrate our approach, take as an example from our data three inventors (Mr. A, Mr. B and 

Ms C.) who are working at the technology company Z. This team applies for three (eventually 

granted) patents before the year 2005. We then unfortunately observe that Mr. A dies before his 

 
30 In our main analysis, we exclude original two person inventor teams (comprising the deceased inventor plus one 
more surviving inventor) because it is not feasible to calculate meaningful “team-based” measures in the post-treatment 
period when the surviving treated “team” only comprises one living inventor. Nevertheless, we obtain qualitatively 
similar results when we include two-person treated teams in our diff-in-diff analysis.  
31 This is to ensure that these control teams are not subject to any direct spill over effects arising from the death of one 
of their R&D colleagues at the firm. 
32 We are not able to find a suitable counterfactual control team for approximately 9% of our sample. This principally 
occurs in smaller U.S. public firms with a more limited pool of inventors that are unaffiliated with inventors comprising 
the treated teams. However, the unmatched treated teams do not appear to be significantly different on observable 
characteristics from those that do find a matching control team. 
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60th birthday in the year 2005. We would proceed to form a pair of treated and counterfactual 

control teams related to this co-inventor death as follows. First, we define the post-death treated 

team as the combination of the surviving Mr. B. and Ms. C. and calculate all post-death team-level 

output (e.g. total patents) and characteristics (e.g. the diversity in cultural values) based on these 

two individuals. Second, we find a counterfactual control inventor team working at the same firm 

Z with no connection to any of the treated inventors based on the following criteria:  

(1) The control team must have the same number of team members in the pre-treatment period 

as the treated inventor team (in this case, three individuals); 

(2) The control team must be “actively” working together around the time of the focal co-

inventor’s death (in this case, we require that the control team must have patented together 

at least once between 2002 and 2005);  

(3) The control team must have generated three (eventually granted) patent applications by the 

date of the focal co-inventor’s death (in this case, 2005); and 

(4) We select as the counterfactual control team the team that is most similar in terms of cultural 

value diversity to the treated team (pre-death). 

4.1.2 Evidence supporting identification assumptions 

As discussed previously, our triple difference-in-difference regressions focus on comparing the 

changes in innovative output for treated inventor teams whose cultural similarity increases post 

their co-inventor’s death relative to their associated control teams with the changes in innovative 

output for treated inventor teams whose cultural similarity decreases post their co-inventor’s death 

relative to their associated control teams. Our key identifying assumption is that, conditional on 

controlling for changes in observable team and inventor characteristics, randomly distributed co-

inventor deaths do not cause a contemporaneous shock to an unobserved variable that is 

systematically correlated with the subsequent patenting output of these different sets of treated 

teams (delineated based on the change in team cultural similarity post co-inventor death). 

To assess the reasonableness of the assumptions underlying our empirical strategy, we first 

explore whether there are significant differences in observable characteristics between treated and 

control teams. As illustrated in Panels A and B of Table 4, we find no significant differences 

between the two sets of inventor teams across a range of team innovation outputs (quantity, quality 

and explorativeness of patents produced) and observable team characteristics (including the 
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average experience and technical expertise of team members) in the period leading up to the focal 

co-inventor’s death. 

To more directly evaluate the reasonableness of the key identifying assumption underlying our 

triple difference-in-difference empirical strategy, we next compare the pre-treatment innovation 

output and characteristics of treated inventor teams that are split by whether the treated team’s 

cultural value similarity does or does not increase post their co-inventor’s death. As shown in 

Panels C and D of Table 4, we find no significant differences between the set of treated inventor 

teams whose cultural similarity increases post-death vis-à-vis the set of treated teams whose 

cultural similarity does not increase post-death in terms of their innovation output and observable 

team characteristics in the period leading up to the focal co-inventor’s death. Furthermore, in Panel 

E of Table 4, we show that there does not appear to be any significant difference in the observable 

characteristics and productivity of the individual deceased inventors who exogenously depart 

treated teams whose cultural similarity increases post their death vis-à-vis the characteristics of 

deceased individuals at treated teams whose cultural similarity does not increase post their death. 

This is consistent with the idea that the random distribution of inventor deaths across time and 

individuals represents an exogenous shock to team cultural value diversity that is not systematically 

correlated with changes in team quality and other unobserved team characteristics. 

Overall, the empirical evidence suggests that the treated and control teams that comprise our 

test sample are quite comparable in terms of their professional accomplishments, personal traits 

and innovation potential, thus allowing us to estimate the causal effect of inventor team cultural 

diversity on team performance. 

4.1.3 Empirical results 

Table 5 provides the results of our triple difference-in-difference research design. First, as 

shown in column (1) of Table 5, we find that teams that experience an increase/(decrease) in the 

level of team cultural value similarity (i.e. become less/(more) culturally diverse) significantly 

increase/(decrease) the quantity of patents produced. This is consistent with the organization 

behavioural theory that it is relatively easier to produce immediate, quantifiable output when team 

members share common perspectives. Second, we find that the quality of patents produced by more 

or less culturally diverse teams (as measured using average forward patent citations and the average 

market value of each patent in columns (2) and (3) of Table 5 respectively) does not significantly 
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change between the pre- and post-treatment period. Third, we document in columns (4) and (5) of 

Table 5 that teams who become more/(less) diverse after a co-inventor’s death are relatively more 

likely to produce more exploratory/(exploitative) patents. This is consistent with the idea that teams 

with greater homogeneity in their cognitive thought processes and beliefs are more likely to search 

in their common known areas of technological expertise for more incremental improvements while 

teams that are more diverse are more likely to engage in risky research pursuits outside the 

boundaries of existing knowledge. Finally, we find evidence to support the hypothesis that while 

more culturally diverse teams are more likely to engage in failed research endeavours (whether in 

terms of a decrease in the number of patents generated and/or an increased likelihood of producing 

patents that are not highly valued by the scientific or investor community), more culturally diverse 

teams appear to have a greater ability to produce breakthrough innovations (as measured by the 

number of team patents that fall in the top 5% or top 10% of the patent citation distribution).  

Overall, our evidence strongly suggests that the level of diversity in an inventor team’s cultural 

values has a first order effect on team productivity. In particular, we show that more culturally 

homogenous teams tend to produce a higher quantity of patents that are more likely to exploit 

existing technologies and become moderately successful inventions while more culturally diverse 

teams tend to produce a higher share of risky, more exploratory patents that have a greater chance 

of becoming high impact innovations. This is consistent with the idea that while inventors with 

more diverse cultural backgrounds may encounter greater difficulties in successfully synthesizing 

different viewpoints and communication preferences (leading to less total patenting), the successful 

combination of these more novel and disparate perspectives can foster more exploratory and high-

impact innovation (Choudhury & Kim, 2019; Uhlbach & Anckaert, 2020). 

4.1.4 Alternative heterogeneous treatment effects specification (treated teams only) 

A potential objection to the triple differences-in-differences with matched controls approach 

used previously is that it may be unreasonable to rely on any comparisons of the innovation 

trajectory of a treated inventor team that suffers the upheaval and numerical disadvantage 

associated with a co-inventor’s death with the innovation trajectory of a counterfactual control team 

that does not experience such turmoil. As such, we employ an alternative heterogeneous treatment 

effects specification that only examines the treated team subsample, focusing on the comparison of 

innovation outcomes for treated teams that experience an increase in cultural value similarity after 
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a co-inventor’s death relative to treated teams that experience a decrease in the team’s similarity of 

cultural values post a team member’s death.  

There are several advantages to this alternative heterogeneous treatment effects specification. 

First, all of the teams in this subsample analysis experience an exogenous shock to their personal 

and professional composition arising from a co-inventor’s premature death. Second, we can include 

dead inventor fixed effects to control for a deceased individual’s unique accumulated human capital 

and personal/professional traits. As such, this empirical test involves comparing sets of treated 

teams that are actively working together at the same firm and who suffer the loss of the exact same 

co-inventor but where the cultural similarity of one treated team increases after the co-inventor’s 

death while the cultural similarity of the other treated team instead decreases. In other words, by 

keeping the loss of inventor-specific human capital/skill constant (because both teams experience 

the same individual co-inventor death), we can better isolate the unique effect that changes in 

inventor team cultural value diversity exert on inventor team performance. 

We use the following regression specification to undertake this alternative test: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼+ 𝛽𝛽1𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 

+ 𝛾𝛾𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝜀𝜀𝑖𝑖,𝑡𝑡   (3) 

Where the dependant variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is one of the patent-based outcome measures 

described in Section 2.3.1. The indicator variable 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 equals one for all years after the focal 

co-inventor’s death and zero otherwise. The continuous variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 equals the difference between the treated team’s cultural similarity post the focal co-

inventor’s death (based on the treated team’s surviving inventors) minus the treated team’s cultural 

similarity pre-death (which includes the eventually deceased co-inventor). As a result, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 will be positive when the treated team’s cultural similarity 

increases post their co-inventor’s death and will be negative when the treated team’s cultural 

similarity decreases post their co-inventor’s death.33 We include team fixed effects to difference 

away any time-invariant team-level characteristics, dead inventor fixed effects to control for an 

individual deceased inventor’s traits and experiences and year fixed effects to absorb any common 

 
33 In robustness tests, we alternatively define the indicator variable Team Cultural Similarity Increases that is equal to 
one for treated teams that experience an increase in their team’s cultural value similarity after their teammate’s 
premature death and zero otherwise. We obtain similar results to those presented using the continuous variable Team 
Cultural Similarity Change with similar levels of statistical significance. 
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time trends across teams that experience either an increase or a decrease in cultural diversity. The 

vector 𝑋𝑋𝑖𝑖,𝑡𝑡 comprises the same control variables used in Section 4.1.1 and are designed to control 

for any changes in non-culture related team characteristics over the test period. 

Table 6 presents coefficient estimates from equation (3) using only treated teams that suffered 

the exogenous shock of losing an active co-inventor. Consistent with the results of the triple 

difference-in-difference with matched controls specification in Section 4.1.3, we see that inventor 

teams that experience an exogenous decline in team cultural diversity (i.e. the remaining inventor 

team is more similar in terms of cultural values than the original, pre-death inventor team) tend to 

produce a higher quantity of more exploitative, moderately cited patents. Conversely, we observe 

that inventor teams that experience an exogenous increase in the teams’ cultural diversity (i.e. the 

remaining inventor team’s cultural backgrounds are less similar than the original, pre-death team) 

tend to shift their patenting towards the production of risky, more explorative patents that have a 

greater probability of falling into the upper tails of the citation distribution. Once again, this implies 

a large degree of specialization in the generation of new, breakthrough technologies by more 

culturally diverse inventor teams.  
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V. CONCLUSION 

In our paper, we open the “black box” process of corporate innovation production by focusing 

on the most important input into the firm’s R&D process, namely the individual employees tasked 

with developing new inventions. Using information on over two million inventors employed at 

U.S. public firms, we investigate how individual inventors’ inherited traits (particularly shared 

cultural values) and acquired career experiences affect their desire to collaborate with one another 

in a corporate R&D team setting and how shared cultural values amongst R&D team members 

affects innovative output. We provide novel evidence that, even amongst groups of comparably 

experienced inventors working for the same firm in the same local office, inventors who share 

similar cultural values are significantly more likely to work together on new research projects. 

Second, utilizing exogenous shocks to inventor team composition arising from premature co-

inventor deaths, we find that more culturally homogenous teams produce a higher quantity of 

patents that are more likely to exploit existing technologies and become moderately successful 

inventions. In contrast, more culturally diverse inventor teams tend to produce a higher share of 

risky, more exploratory patents that have a greater chance of becoming high impact innovations.  

Overall, our results have important implications for the implementation of policies designed to 

promote corporate innovation in R&D intensive yet culturally diverse workplace environments. 

For example, the strong homophily biases in inventor collaboration choices that we document point 

to the importance of exploration-focused firms enacting policies to incentivize existing employees 

to work with a more inherently diverse set of R&D team members. In addition, our study suggests 

that cultural diversity has a non-monotonic relationship with team productivity such that firms may 

have a different (possibly time-varying) optimal mix of diverse and homogenous inventor teams in 

order to execute the firm’s chosen innovation search strategy. 
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Table 1: Summary statistics 

This table reports summary statistics for the entire sample of individual inventors and inventor teams at U.S. 
public firms from 1981 to 2011. Panel A presents descriptive statistics for individual U.S. based inventors 
working at U.S. publicly listed firms. Panel B outlines descriptive statistics for inventor teams that comprise U.S. 
based inventors and that are first formed whilst employed at a U.S. publicly listed firm. Panel C reports pairwise 
characteristics for all first-time collaborations between pairs of U.S. based inventors where that first-time 
collaboration occurs at a U.S. publicly listed firm. Appendix A outlines the definition of the variables listed. 

Panel A: Individual lifetime inventor characteristics 
  Mean Median Std. dev. 
Female  0.12 0.00 0.31 
Total lifetime patents  5.68 2.00 15.97 
Years of inventor experience (lifetime)  5.72 4.00 7.14 
Technology class experience (no. of classes)  2.12 1.00 3.08 
Top 10% Inventor  0.18 0.00 0.41 

 

Panel B: Inventor team characteristics 
  Mean Median Std. dev. 
Size of inventor team per patent  2.59 2.00 1.94 
Number of teams per inventor (lifetime)  2.80 1.00 4.56 
Distinct co-inventors per inventor (lifetime)  3.75 2.00 4.09 

 

Panel C: Pairwise characteristics of newly formed co-inventor pairs (at time of first collaboration) 
  Mean Median Std. dev. 
Co-inventor cultural similarity – Hofstede  0.62 0.60 0.24 
Co-inventor cultural similarity – Schwartz  0.67 0.66 0.23 
Co-inventor cultural similarity – Trust only  0.85 0.89 0.16 
Same nation  0.19 0.00 0.39 
Both female  0.02 0.00 0.12 
Co-inventor geographic distance (miles)  214.10 20.11 537.75 
Co-inventor difference in avg. forward cites to date per patent  1.06 0.59 1.91 
Both top 10% inventors  0.07 0.00 0.25 
Co-inventor tech proximity  0.22 0.00 0.36 
Co-inventor difference in avg. backward cites to date per patent  0.90 0.60 1.42 
Co-inventor difference in years of inventor experience to date  6.60 5.00 6.65 
Both have 5+ years of tenure at focal firm  0.17 0.00 0.37 

  



Table 2: Determinants of choice of co-inventor – Main results 

This table reports the results of conditional logit models that estimate the factors affecting the choice of co-
inventor. The dependent variable is equal to one for all new, actually formed co-inventor pairwise relationships 
and zero for the counterfactual pairs that form the comparison/control group (based on inventors working at the 
same firm in the same year as the new actually formed co-inventor pair: see Section 3.2 for further details). 
Appendix A provides definitions for all independent variables. All regression specifications include group fixed 
effects. Robust standard errors (clustered at the group level) are reported in parentheses. *, ** and *** denote 
statistical significance at the 10%, 5% and 1% level respectively. 

Counter-factual group Same Firm 
Same Year 

Same Firm 
Same Year 

Same Firm 
Same Year 

 (1) (2) (3) 
Co-inventor cultural similarity – Hofstede 0.205*** 

(0.006) 
  

Co-inventor cultural similarity – Schwartz  0.240*** 
(0.007) 

 

Co-inventor cultural similarity – Trust only   0.225*** 
(0.001) 

Both female 0.142*** 
(0.014) 

0.146*** 
(0.014) 

0.143*** 
(0.014) 

Co-inventor geographic distance -0.419*** 
(0.001) 

-0.419*** 
(0.001) 

-0.420*** 
(0.001) 

Co-inventor difference in avg. forward cites to date per patent -0.003*** 
(0.001) 

-0.003*** 
(0.001) 

-0.003*** 
(0.001) 

Both top 10% inventors 3.097*** 
(0.878) 

3.101*** 
(0.877) 

3.109*** 
(0.885) 

Co-inventor tech proximity 1.769*** 
(0.007) 

1.772*** 
(0.008) 

1.769*** 
(0.007) 

Co-inventor difference in avg. backward cites to date per patent -0.019*** 
(0.001) 

-0.019*** 
(0.001) 

-0.019*** 
(0.001) 

Co-inventor difference in years of inventor experience to date -0.130*** 
(0.003) 

-0.129*** 
(0.003) 

-0.130*** 
(0.003) 

Both have 5+ years of tenure at focal firm -0.472*** 
(0.006) 

-0.472*** 
(0.006) 

-0.471*** 
(0.006) 

Group fixed effects? Yes Yes Yes 

No. of observations (mil) 3.134 3.042 3.063 

No. of actual pairs (mil) 1.130 1.102 1.108 

No. of counter-factual pairs (mil) 2.004 1.940 1.955 

Pseudo R2
 0.25 0.25 0.25 



Table 3: Determinants of choice of co-inventor – Alternative counterfactual controls 

This table reports the results of conditional logit models that estimate the factors affecting the choice of co-
inventor, using alternative specifications for defining counterfactual control pairs. The dependent variable is 
equal to one for all new, actually formed co-inventor pairwise relationships and zero for the counterfactual pairs 
that form the comparison/control group. Column (1) uses other inventors working at the same firm, in the same 
year and at the same location to form the counterfactual control pairs. Column (2) uses other inventors working 
in the same division/subsidiary of a firm at the same time to form the counterfactual control pairs. Column (3) 
uses other inventors working in the same division/subsidiary of a firm, in the same year and at the same location 
to form the counterfactual control pairs (see Section 3.4 for further details). Appendix A provides definitions for 
all independent variables. All regression specifications include group fixed effects. Robust standard errors 
(clustered at the group level) are reported in parentheses. *, ** and *** denote statistical significance at the 10%, 
5% and 1% level respectively. 

Counter-factual group Same Firm 
Same Year 

Same Location 

Same Division 
Same Year 

 

Same Division 
Same Year 

Same Location 
 (1) (2) (3) 
Co-inventor cultural similarity – Hofstede 0.180*** 

(0.006) 
0.208*** 

(0.006) 
0.176*** 

(0.006) 
Both female 0.163*** 

(0.012) 
0.156*** 

(0.014) 
0.160*** 

(0.012) 
Co-inventor geographic distance -0.121*** 

(0.001) 
-0.379*** 
(0.001) 

-0.110*** 
(0.001) 

Co-inventor difference in average forward cites to date 
per patent 

-0.003*** 
(0.001) 

-0.003*** 
(0.001) 

-0.004*** 
(0.001) 

Both top 10% inventors 1.429*** 
(0.247) 

3.347*** 
(0.920) 

1.359*** 
(0.214) 

Co-inventor tech proximity 1.450*** 
(0.006) 

1.589*** 
(0.007) 

1.350*** 
(0.006) 

Co-inventor difference in average backward cites to date 
per patent 

-0.016*** 
(0.001) 

-0.017*** 
(0.001) 

-0.016*** 
(0.001) 

Co-inventor difference in years of inventor experience to 
date 

-0.123*** 
(0.003) 

-0.128*** 
(0.003) 

-0.118*** 
(0.003) 

Both have 5+ years of tenure at focal firm -0.384*** 
(0.005) 

-0.450*** 
(0.006) 

-0.367*** 
(0.005) 

    

Group fixed effects? Yes Yes Yes 
No. of observations (mil) 2.869 3.090 2.818 
No. of actual pairs (mil) 1.077 1.121 1.063 
No. of counter-factual pairs (mil) 1.792 1.969 1.755 
Pseudo R2 0.05 0.21 0.04 
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Table 4: Evidence supporting validity of experimental design using co-inventor deaths 

This table reports summary statistics that compare the inventor teams that form the basis of our difference-in-
difference tests involving premature co-inventor deaths. Panels A and B focus on comparing inventor teams that 
suffer a co-inventor death (‘treated’ teams) with inventor teams active in the same firm at the same time that do 
not experience the loss of a team member (‘control’ teams) (see Section 4.1.1 for additional details for the 
construction of control teams). Panel A compares the average output of treated and control firms in the 3 years 
before the focal co-inventor death while Panel B compares the average pre-treatment characteristics of treated 
and control teams. In contrast, Panels C and D focus on comparing inventor teams whose cultural similarity 
increases post their co-inventor’s death with inventor teams whose cultural similarity does not increase post their 
colleague’s death. Panel C and Panel D compares these teams’ 3-year average pre-treatment output and 
characteristics at the time of co-inventor death respectively. Finally, Panel E compares the observable 
characteristics of individual deceased inventors at the time of their death for treated teams whose cultural 
similarity does increase post the focal co-inventor’s death vis-à-vis the characteristics of focal deceased inventors 
at treated teams whose cultural similarity does not increase after the focal co-inventor’s death. Please refer to 
Appendix A for definitions of all outcome and independent variables listed. *, ** and *** indicate that the 
difference in means is statistically significant at the 10%, 5% and 1% level respectively. 

Panel A: Average annual output in the 3-year period prior to the focal co-inventor’s death 
  Treated team 

Mean 
Control team 

Mean 
Difference 

Total patents  0.39 0.38 0.01 
Average forward cites per patent  0.49 0.51 -0.02 
Average market value of patents  4.97 4.53 0.44 
Average backward cites per patent  0.54 0.51 0.03 
Average claims per patent  0.38 0.39 -0.01 
Top 5% cited patents  0.05 0.05 0.00 

 

Panel B: Team characteristics at the time of the focal co-inventor’s death 
  Treated team 

Mean 
Control team 

Mean 
Difference 

Team cultural similarity (Hofstede)  0.52 0.53 -0.01 
Team gender diversity  0.20 0.19 0.01 
Team geographic diversity  250.52 232.57 17.95 
Team average total number of patents to date  13.66 13.11 0.55 
Team average inventor experience to date  8.51 8.64 -0.13 
Team average technology class experience to date  2.90 2.79 0.11 
Team average backward citations to date per patent  1.21 1.26 -0.05 
Team average forward citations to date per patent  1.15 1.21 -0.06 
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Panel C: Average annual output in the 3-year period prior to the focal co-inventor’s death 
 Treated team 

(Cultural sim.   
does increase) 

Mean 

Treated team 
(Cultural sim. 
does not increase)  

Mean 

Difference 

Total patents 0.48 0.49 -0.01 
Average forward cites per patent 0.52 0.49 0.03 
Average market value of patents 4.28 4.64 -0.36 
Average backward cites per patent 0.56 0.61 -0.05 
Average claims per patent 0.41 0.40 0.01 
Top 5% cited patents 0.06 0.05 0.01 

 
Panel D: Team characteristics at the time of the focal co-inventor’s death 

 Treated team 
(Cultural sim.   
does increase) 

Mean 

Treated team 
(Cultural sim. 
does not increase)  

Mean 

Difference 

Team cultural similarity (Hofstede) 0.48 0.50 -0.02 
Team gender diversity 0.20 0.18 0.02 
Team geographic diversity 294.72 267.58 27.14 
Team average total number of patents to date 14.59 13.48 1.11 
Team average inventor experience to date 8.84 8.52 0.32 
Team average technology class experience to date 2.87 2.91 -0.04 
Team average backward citations to date per patent 1.21 1.28 -0.07 
Team average forward citations to date per patent 1.34 1.29 0.05 

 
Panel E: Individual deceased inventor characteristics at the time of their death 

 Treated team 
(Cultural sim.   
does increase) 

Mean 

Treated team 
(Cultural sim. 
does not increase)  

Mean 

Difference 

Total patents 10.13 9.84 0.29 
Years of inventor experience 8.96 8.53 0.43 
Technology class experience (no. of classes) 3.64 3.50 0.14 
Average scaled backward citations per patent 1.37 1.50 -0.13 
Average scaled forward citations per patent 1.51 1.54 -0.03 

 
 
 
 
 
 
 

  



Table 5: Innovation output around exogenous co-inventor turnover – Triple difference-in-difference tests 

This table reports the change in innovative output for treated teams around the death of a co-inventor relative to control teams as defined in equation (2) in 
Section 4.1.1. Afteri,t is an indicator variable equal to one for all years after the focal co-inventor’s death and zero otherwise. Treated Teami is an indicator 
variable equal to one for all teams that suffer the death of a team member and zero otherwise. Team Cultural Similarity Changei is a continuous variable 
equal to the remaining team’s cultural similarity post the focal co-inventor’s death minus the pre-death/pre-treatment team’s cultural similarity. We measure 
the quantity of team innovative output each year as Ln(1+Total patents). The average quality of team innovative output is alternatively measured as 
Ln(1+Average forward citations per patent) and Ln(1+Average market value of patents). A team is designated as being more focused on innovation 
exploitation if they have a higher average number of backward citations per patent, Ln(1+Average backward citations per patent), and a higher average 
number of claims per patent, Ln(1+Average claims per patent). We measure the propensity for producing high impact innovations as Ln(1+Top 5% cited 
patents) and Ln(1+Top 10% cited patents). Inventor team average controls comprise the team-level mean of each team members’ total number of patents 
produced to date, inventor experience and technology class experience, average forward citations to date per patent and average backward citations per 
patent. Inventor team diversity controls comprise team gender diversity and team geographic diversity as well as the standard deviation (i.e. diversity) in 
team members’ total patents to date, inventor experience and technology class experience, average forward citations to date per patent and average backward 
cites per patent. Please refer to Appendix A for the definitions of dependent and independent variables used in this analysis. All regression specifications 
include Team and Year fixed effects. Robust standard errors (clustered at the team level) are reported in parentheses. *, ** and *** denote statistical 
significance at the 10%, 5% and 1% level respectively. 

Category of innovation outcome Quantity of 
innovation 

Average quality or value 
of innovation 

Relative focus on 
exploitative innovation 

Likelihood of producing 
high impact innovation 

Dependent variable Ln(1+Total 
patents) 

Ln(1+Avg 
forward cites 
per patent) 

Ln(1+Avg 
market value 
of patents) 

Ln(1+Avg 
back cites 
per patent) 

Ln(1+Avg 
claims per 

patent) 

Ln(1+Top 
5% cited 
patents) 

Ln(1+Top 
10% cited 
patents) 

 (1) (2) (3) (4) (5) (6) (7) 
Afteri,t -0.261*** 

(0.005) 
-0.240*** 
(0.006) 

-0.523*** 
(0.013) 

-0.256*** 
(0.007) 

-0.243*** 
(0.004) 

-0.033*** 
(0.002) 

-0.059*** 
(0.003) 

Afteri,t × Treated Teami -0.002 
(0.004) 

0.007 
(0.004) 

-0.022 
(0.015) 

-0.002 
(0.005) 

0.006* 
(0.004) 

0.002 
(0.002) 

0.000 
(0.002) 

Afteri,t × Treated Teami ×  
Team Cultural Similarity Changei 

0.079** 
(0.033) 

0.029 
(0.033) 

0.066 
(0.062) 

0.095** 
(0.038) 

0.079*** 
(0.025) 

-0.017** 
(0.008) 

-0.015* 
(0.008) 

        

Inventor team average controls Yes Yes Yes Yes Yes Yes Yes 
Inventor team diversity controls Yes Yes Yes Yes Yes Yes Yes 
Team fixed effects Yes Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes 
Number of observations 63,474 63,474 63,474 63,474 63,474 63,474 63,474 
Adjusted R2 0.16 0.11 0.10 0.13 0.12 0.11 0.12 
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Table 6: Heterogeneous treatment effects around co-inventor deaths (treated teams only) 

This table reports the change in innovative output for treated teams only around the death of a co-inventor (see equation (3) in Section 4.1.4 for further 
details). Afteri,t is an indicator variable equal to one for all years after the focal co-inventor’s death and zero otherwise. Team Cultural Similarity Changei 
is a continuous variable equal to the remaining team’s cultural similarity post the focal co-inventor’s death minus the pre-death/pre-treatment team’s cultural 
similarity. We measure the quantity of team innovative output each year as Ln(1+Total patents). The average quality of team innovative output is 
alternatively measured as Ln(1+Average forward citations per patent) and Ln(1+Average market value of patents). A team is designated as being more 
focused on innovation exploitation if they have a higher average number of backward citations per patent, Ln(1+Average backward citations per patent), 
and a higher average number of claims per patent, Ln(1+Average claims per patent). We measure the propensity for producing high impact innovations as 
Ln(1+Top 5% cited patents) and Ln(1+Top 10% cited patents). Inventor team average controls comprise the team-level mean of each team members’ total 
number of patents produced to date, inventor experience and technology class experience, average forward citations per patent and average backward 
citations per patent. Inventor team diversity controls comprise team gender diversity and team geographic diversity as well as the standard deviation (i.e. 
diversity) in team members’ total patents to date, inventor experience and technology class experience, average forward citations to date per patent and 
average backward citations per patent. Please refer to Appendix A for the definitions of dependent and independent variables used in this analysis. All 
regression specifications include Team fixed effects, Individual dead co-inventor fixed effects and Year fixed effects. Robust standard errors (clustered at 
the team level) are reported in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively. 

Category of innovation outcome Quantity of 
innovation 

Average quality or value 
of innovation 

Relative focus on 
exploitative innovation 

Likelihood of producing 
high impact innovation 

Dependent variable Ln(1+Total 
patents) 

Ln(1+Avg 
forward cites 
per patent) 

Ln(1+Avg 
market value 
of patents) 

Ln(1+Avg 
back cites 
per patent) 

Ln(1+Avg 
claims per 

patent) 

Ln(1+Top 
5% cited 
patents) 

Ln(1+Top 
10% cited 
patents) 

 (1) (2) (3) (4) (5) (6) (7) 
Afteri,t -0.309*** 

(0.008) 
-0.259*** 
(0.008) 

-0.533*** 
(0.018) 

-0.303*** 
(0.009) 

-0.268*** 
(0.005) 

-0.036*** 
(0.003) 

-0.065*** 
(0.008) 

Afteri,t × Team Cultural Similarity Changei 0.071** 
(0.033) 

0.020 
(0.033) 

0.044 
(0.061) 

0.086** 
(0.038) 

0.070*** 
(0.024) 

-0.017* 
(0.009) 

-0.019* 
(0.011) 

        

Inventor team average controls Yes Yes Yes Yes Yes Yes Yes 
Inventor team diversity controls Yes Yes Yes Yes Yes Yes Yes 
Team fixed effects Yes Yes Yes Yes Yes Yes Yes 
Dead co-inventor fixed effects Yes Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes 
Number of observations 34,894 34,894 34,894 34,894 34,894 34,894 34,894 
Adjusted R2 0.16 0.11 0.10 0.13 0.11 0.12 0.11 



Appendix A: Variable definitions 

Variable Description 

Panel A: Individual inventor and inventor team innovation output 
Total patents The number of patents filed (and subsequently granted) in a given year. 
Average forward cites per patent The patent portfolio average of the scaled forward citations of each patent 

applied for (and subsequently granted) in that year. Scaled forward citations is 
calculated as the number of citations that the focal patent receives divided by 
the average number of citations made to patents applied for in the same year 
and CPC technology sub-class. 

Average market value of patents The average dollar value of (subsequently granted) patents (in millions of 
nominal U.S. dollars) that an inventor team applies for in a given year (see 
methodology and data in Kogan et al., 2017). 

Average backward cites per patent The average of the scaled backward citations of each patent applied for (and 
subsequently granted) in that year. Scaled backward cites equals the number 
of citations made by the focal patent divided by the average backward citations 
made by patents applied for in the same year and CPC sub-class. 

Average claims per patent The average of the number of scaled claims made by each patent applied for 
(and subsequently granted) in that year. Scaled claims equals the number of 
claims that the focal patent makes divided by the average number of claims 
made by patents applied for in the same year and CPC technology sub-class. 

Top 5% cited patents A patent is classed as a top 5% cited patent if it receives citations from other 
patents that place the focal patent in the top five percent of patents in the same 
application year and CPC technology sub-class. 

Top 10% cited patents A patent is classed as a top 10% cited patent if it receives citations from other 
patents that place the focal patent in the top decile of patents in the same 
application year and CPC technology sub-class. 

Panel B: Individual inventor and inventor team characteristics 
Female A dummy variable equal to one if the inventor is a female and zero otherwise 

(see methodology and data in Toole et al., 2019). 
Total lifetime patents A count of the number of patents granted to an inventor over their entire career. 
Years of inventor experience 
(lifetime) 

The number of years between the application date of the first (subsequently 
granted) patent that an inventor ever applies for and the application date of the 
last (subsequently granted) patent filed for by an inventor. 

Technology class experience  
(no. of classes) 

A count of the number of distinct CPC technology sub-classes that an inventor 
patents in over the course of their career. 

Top 10% Inventor A dummy variable equal to one for inventors whose total number of patents 
developed to date place them in the top decile (10%) of all inventors in the 
USPTO universe and zero otherwise. 

Average backward cites per patent 
(lifetime) 

Equals the mean of the scaled backward citations made across all of patents 
developed over an inventor’s lifetime. 

Average forward cites per patent 
(lifetime) 

Equals the mean of the scaled forward citations received up until the end of 
the sample period across all of patents developed over an inventor’s lifetime. 

Size of inventor team per patent The number of unique inventors listed on a particular patent. 
Number of teams per inventor 
(lifetime) 

The number of unique teams of which the focal inventor is a team member 
over the course of their entire career. 

Distinct co-inventors per inventor 
(lifetime) 

The number of unique co-inventors that the focal inventor works with over the 
course of their entire career. 
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Variable Description 

Panel C: Pairwise inventor characteristics 
Co-inventor cultural similarity – 
Hofstede 

The pairwise inventor cultural similarity measure is calculated as –1 multiplied 
by the Euclidean distance between two inventors’ cultural values based on 
Hofstede’s framework using the following formula:−1 × [(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 −
𝑃𝑃𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 −
𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 −
𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1 − 𝐼𝐼𝑉𝑉𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 2)2]1

2. This measure is 
transformed so that its values are bound between zero and one, where higher 
values indicate higher cultural similarity between inventor 1 and inventor 2.  

Co-inventor cultural similarity – 
Schwartz 

Measured as –1 multiplied by the Euclidean distance between two inventors 
based on the cultural framework of Schwartz (1992) that classifies national 
culture into seven dimensions: harmony, embeddedness, hierarchy, mastery, 
affective autonomy, intellectual autonomy, and egalitarianism. This measure 
is transformed so that its values are bound between zero and one, where higher 
values indicate higher cultural similarity between inventor 1 and inventor 2. 

Co-inventor cultural similarity – 
Trust only 

The absolute difference between inventor 1’s and inventor 2’s trust beliefs, 
where trust is calculated as the average response in each country of origin to 
the following question in the World Value Survey from 1982 to 2008: 
“Generally speaking, would you say that most people can be trusted or that 
you need to be very careful in dealing with people?” This measure is 
transformed so that its values are bound between zero and one, where higher 
values indicate higher cultural similarity between inventor 1 and inventor 2. 

Same nation A dummy variable equal to one if both inventors have the same country of 
origin and zero otherwise. 

Both Female A dummy variable equal to one when both inventors are female and zero 
otherwise. 

Co-inventor geographic distance The natural logarithm of one plus the geodetic distance (in miles) between the 
two inventors’ then current locations (where inventor locations are identified 
from current and previous patent filings). 

Co-inventor difference in average 
forward cites to date per patent 

Equals the absolute difference between each inventor’s average forward cites 
to date per patent. Average forward cites to date per patent equals the mean of 
the scaled forward citations received across all of the inventor’s patents to date. 

Both top 10% inventors A dummy variable equal to one when both inventors classify as top 10% 
inventors and zero otherwise. 

Co-inventor technological 
proximity 

Cosine similarity measure following Jaffe (1989) that computes the degree of 
overlap in CPC patent technology classes between patents that are applied for 
(and subsequently granted) to inventor A up to and including year t-1 and the 
patents that are applied for (and subsequently granted) to inventor B up to and 
including year t-1. This tech proximity measure is bound between 0 and 1. 

Co-inventor difference in average 
backward cites per patent 

Equals the absolute difference between each inventor’s average backward cites 
per patent. Average backward cites per patent equals the mean of the scaled 
back cites received across all of the inventor’s patents to date. 

Co-inventor difference in years of 
inventor experience to date 

Equals the absolute difference between each inventor’s years of inventor 
experience to date. Years of inventor experience to date equals the number of 
years between the application date of the first (subsequently granted) patent 
that an inventor ever applies for and the current year. 
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Variable Description 

Panel C: Pairwise inventor characteristics (cont.) 
Both have 5+ years of tenure at 
the focal firm 

A dummy variable equal to one when both inventors have a tenure of over 5 
years at the focal U.S. publicly listed firm and zero otherwise. The tenure of 
an inventor at a firm equals the number of years between the application date 
of the first (subsequently granted) patent that an inventor applies for whilst 
working at the focal employer and the current year. 

Panel D: Inventor team average and diversity control variables 
Team cultural similarity To measure the culture similarity within a team of N inventors, we use the 

following formula: 

−1 × � 1
𝑁𝑁−1

∑ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑁𝑁
𝑖𝑖=1   

where the distance between each inventor’s culture and the inventor’s team 
culture, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, is calculated as 
[(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 +
(𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑀𝑀𝐴𝐴𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 +
(𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2]

1
2. 

This team cultural similarity measure is transformed so that its values are 
bound between zero and one, where higher values indicate higher cultural 
similarity or less cultural diversity amongst the R&D team members. 

Team average total number of 
patents to date 

The average of each team member’s total number of (eventually granted) 
patents filed to date. 

Team average inventor experience 
to date 

The average of each team member’s inventor experience to date. 

Team average technology class 
experience to date 

The average of each team member’s technology class experience to date 
(based on a count of the number of distinct CPC technology sub-classes that 
an inventor patents in over their career to date). 

Team average forward citations to 
date per patent 

The average of each team member’s average forward citations to date per 
patent. 

Team average backward citations 
per patent 

The average of each team member’s average backward citations per patent. 

Team gender diversity Within a team of N inventors, the Blau (1977) Index of Gender Diversity 
equals 2 × (1 −∑ (𝑝𝑝𝑠𝑠)2𝑆𝑆

𝑠𝑠=1 ) where 𝑠𝑠 = male or female and 𝑝𝑝𝑠𝑠 is the 
proportion of inventors in the team that are male or female respectively. The 
value of this measure is bound between zero and one. 

Team geographic diversity The average of the pairwise co-inventor geographic distances between all of 
the members of the inventor team. 

Team diversity in total number of 
patents to date 

The standard deviation in the total number of patents developed by each team 
member to date. 

Team diversity in inventor 
experience to date 

The standard deviation in the inventor experience acquired by each team 
member to date.  

Team diversity in technology class 
experience to date 

The standard deviation in the technology class experience of each team 
member to date. 

Team diversity in average forward 
citations to date per patent 

The standard deviation in the average forward citations to date per patent of 
each team member. 

Team diversity in average 
backward citations per patent 

The standard deviation in the average backward citations per patent of each 
team member. 
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Appendix B: Surname Matching Procedure 

Inventors’ countries of ancestry are identified using their surnames similar to the methodology of 

Lauderdale and Kestenbaum (2000). Following Liu (2016), we use two main sources to identify the country 

of origin of surnames in a systematic way.  First, we use U.S. Census records from 1850 to 1940. These 

records represent the complete set of Census records available to the public in which the respondents’ names 

are disclosed since they are no longer subject to the 72-year confidentiality rule. For several of these datasets 

(1880, 1920, 1930, 1940), we acquired access to 100% of the records through the Minnesota Population 

Center. For the other years, only 1% of the records are currently available. To identify the country of origin 

of surnames, we restrict the dataset to first- and second-generation immigrants whose country of birth or 

father’s country of birth is outside of the United States, which yields 54 million census records. We then 

link each unique surname from the Census records to its most frequently associated country of birth or 

father’s country of birth.  For instance, the surname “Wong” is linked to China because 97.2% of immigrants 

with the same surname are from China.   

Second, we use the surname-ancestry country matching list from a commercial database. Origins Info 

Ltd., a well-known commercial vendor of name classification services, processed the list of surnames using 

its proprietary database constructed based on sources such as the American Dictionary of Family names and 

international telephone directories. The accuracy of Origins Info’s matching has been validated in prior 

studies (Webber, 2007).   

To create the final matching list, we do the following. First, we record matches where the most 

frequently associated country of birth from census records is the same country of origin identified by Origin 

Info. Second, we keep surnames for which the most frequently associated country of birth appears in more 

than 75% of the census records. Third, for surnames with different census and Origin Info country of origin, 

we hand-check their country of origin using sources such as dictionaries and ancestry.com, which provides 

a distribution of U.S. immigrants based on port entry records. Fourth, for the remaining unmatched 

surnames, we hand-check their country of origin using sources such as dictionaries and ancestry.com for 

3,000 of the most common surnames. The procedure generates a list of over 1.5 million unique surnames 

and their associated country of origin. Finally, we merge the surname data with the list of inventors from 

the patent database. 
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INTERNET APPENDIX 

Table IA1: Drivers of co-inventor choice – Subsample of inventors with different countries of origin 

This table reports the results of conditional logit models that estimate the factors affecting the choice of co-
inventor in the subsample where pairs of inventors are not from the same country of origin (i.e. the Same nation 
dummy is equal to 0), using alternative specifications for defining counterfactual control pairs. The dependent 
variable is equal to one for all new, actually formed co-inventor pairwise relationships and zero for the 
counterfactual pairs that form the comparison/control group. Column (1) uses other inventors working at the 
same firm in the same year as the new actually formed co-inventor pair to form the counterfactual control pairs. 
Column (2) uses other inventors working at the same firm, in the same year and at the same location to form the 
counterfactual control pairs. Column (3) uses other inventors working in the same division/subsidiary of a firm 
at the same time to form the counterfactual control pairs. Column (4) uses other inventors working in the same 
division/subsidiary of a firm, in the same year and at the same location to form the counterfactual control pairs 
(see Sections 3.2 and 3.4 for further details). Appendix A provides definitions for all independent variables. All 
regression specifications include group fixed effects. Robust standard errors (clustered at the group level) are 
reported in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively. 

Counter-factual group Same Firm 
Same Year 

Same Firm 
Same Year 

Same Location 

Same Division 
Same Year 

 

Same Division 
Same Year 

Same Location 
 (1) (2) (3) (4) 
Co-inventor cultural similarity – 
Hofstede 

0.161*** 
(0.012) 

0.139*** 
(0.010) 

0.164*** 
(0.011) 

0.141*** 
(0.010) 

Both female 0.144*** 
(0.017) 

0.170*** 
(0.015) 

0.150*** 
(0.016) 

0.169*** 
(0.015) 

Co-inventor geographic distance -0.421*** 
(0.001) 

-0.123*** 
(0.002) 

-0.381*** 
(0.001) 

-0.112*** 
(0.002) 

Co-inventor difference in average 
forward cites to date per patent 

-0.002*** 
(0.001) 

-0.003*** 
(0.001) 

-0.003*** 
(0.001) 

-0.004*** 
(0.001) 

Both top 10% inventors 3.338*** 
(1.138) 

1.618*** 
(0.318) 

3.804*** 
(1.327) 

1.382*** 
(0.264) 

Co-inventor tech proximity 1.799*** 
(0.009) 

1.490*** 
(0.008) 

1.621*** 
(0.009) 

1.391*** 
(0.008) 

Co-inventor difference in average 
backward cites to date per patent 

-0.020*** 
(0.001) 

-0.018*** 
(0.001) 

-0.018*** 
(0.001) 

-0.016*** 
(0.001) 

Co-inventor difference in years of 
experience to date 

-0.131*** 
(0.004) 

-0.128*** 
(0.003) 

0.130*** 
(0.004) 

-0.123*** 
(0.003) 

Both have 5+ years of tenure at focal 
firm 

-0.475*** 
(0.007) 

-0.390*** 
(0.006) 

-0.456*** 
(0.007) 

-0.380*** 
(0.006) 

     

Group fixed effects? Yes Yes Yes Yes 
No. of observations (mil) 2.229 2.031 2.197 1.993 
No. of actual pairs (mil) 0.865 0.811 0.856 0.800 
No. of counter-factual pairs (mil) 1.364 1.220 1.341 1.193 
Pseudo R2 0.26 0.04 0.21 0.04 
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