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1. Introduction

“The strength and vitality of the U.S. economy depends directly on effective mechanisms that protect

new ideas and investments in innovation and creativity.”

– The U.S. Patent and Trademark Office

The patent system is viewed as one of the most important institutions that provide firms with

innovation incentives by granting them temporary monopoly rights over their inventions. This, in

turn, contributes to the technological growth in the economy (see, e.g., Nordhaus, 1969; Arrow,

1972; Mansfield, 1986). However, there has been considerable criticism of the patent system for

granting too many low-quality patents through an inefficient screening process (see, e.g., Heller and

Eisenberg, 1998; Jaffe and Lerner, 2011; Feng and Jaravel, 2020). Critics argue that inefficient

screening of patent applications reduces, instead of increases, firms’ incentives to innovate (see,

e.g., Cornelli and Schankerman, 1999; Lemley and Shapiro, 2005; Schankerman and Schuett,

2016; Bessen and Maskin, 2009). Many factors may have contributed to this issue. First of all,

patent examiners have faced increasing time constraints over time. On the one hand, the number

of patent applications filed at the U.S. Patent and Trademark Office (USPTO) has skyrocketed over

the last two decades. For example, Figure 1 shows that the number of patent applications filed at

the USPTO from 2001 to 2018 has increased from 345,732 in 2001 to 643,303 in 2018.1 On the

other hand, Figure 1 also shows that the number of patent examiners working in the USPTO can

not kept up the same pace as the number of newly filed application. As a result, patent examiners

spend only 19 hours, on average, reviewing an application, but it takes around 25 months for an

application to get its screening result (Frakes and Wasserman, 2017). Second, the USPTO also

faces human capital constraints: it constantly fails to recruit and retain the best examiners due to

fierce competition from the booming private sectors (Jaffe and Lerner, 2011). Last, the incentive

structure in the USPTO favors acceptances over rejections (Merges, 1999; Frakes and Wasserman,

2015). For example, an examiner’s compensation directly ties to the number of patent applications

that he/she has finished reviewing. However, it usually takes less efforts to accept an application

than to reject one. Consequently, inefficient patent screening not only reduce firms’ incentives to
1Data source: U.S. Patent Statistics Chart and Patent Examination Data from the USPTO website.

1

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm


innovate but also mislead investors, and hurt firm performance.

Motivated by the above facts and critics of the current patent screening system in the U.S.,

this paper explores how to improve the patent screening process with the help of machine learning

algorithms. On the one hand, unlike humans, machine learning algorithms are able to process large

datasets quickly, which could potentially relax the time constraints faced by patent examiners and

resource constraints faced by the USPTO. On the other hand, machine learning algorithms neither

have career concerns nor do they have (compensation) incentive issues. Therefore, they could

potential reduce the agency frictions between the principle (the USPTO) and the agent (the patent

examiner). In fact, this idea is partly supported by the patent office itself according to a recent

news article published in the Wall Street Journal. The patent office is currently seeking help from

artificial intelligence (including machine learning) to drive efficiencies in the patent examination

process.2 The director of the USPTO, Andrei Iancu, said in the news that “our need is high and

technology has advanced, so this is a good time to take advantage of these new tools to help our

examiners.”

The key idea here is that the patent screening process can be viewed as a prediction process. To

fulfill the mandate of the Patent and Copyright Clause of the Constitution, the U.S. Patent Act (35

U.S. Code §101 – §103) requires a granted patent to be “new,” “useful,” and “non-obvious” with its

purpose of making new discoveries public knowledge in the future by rewarding inventors with a

limited exclusive right on their invention.3 Therefore, the grant of a patent based on the U.S. patent

law hinges on the prediction of its future social value to the society by a patent examiner. More

specifically, I argue that the patent office’s objective is to grant higher quality patents (i.e., patents

with higher social values) while rejecting lower quality patent applications. The USPTO itself also

supports this argument in its 2018–2022 strategic plan, that is, the most important goal for the

office is to continue optimizing patent quality. 4 However, as discussed earlier on, the objective of

patent examiners may not be closely aligned with the objective of the patent office due to various

problems: i.e., time constraints, talent constraints, career concerns, and compensation incentives.
2For the full news story, please see: https://www.wsj.com/articles/patent-office-seeks-help-from-ai-11572297295.
3See the “Patent and Copyright Clause” of the U.S. Constitution. To quote: [Congress shall have the power] “to

promote the progress of science and useful arts, by securing for limited times to authors and inventors the exclusive right
to their respective writings and discoveries.”

4For the full USPTO 2018-2022 strategic plan, please see:
https://www.uspto.gov/sites/default/files/documents/USPTO_2018-2022_Strategic_Plan.pdf.
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Therefore, it is possible that a machine learning algorithm can better execute the task and mitigate

the misalignment problem.

Using detailed data on both granted and rejected applications that are recently available from

the USPTO website, I train a supervised machine learning algorithm that maps patent application

characteristics to patent quality using earlier patent applications (i.e., with standard quality mea-

sures that capture patent’s social value innovativeness).5 I then use this trained algorithm to predict

the quality of more recent patent applications out-of-sample. My out-of-sample prediction results

show that the current patent examination system grants many low-quality patents while rejecting

many high-quality patent applications. I also show that the above machine learning algorithm

performs significantly better than an OLS regression function out-of-sample, in terms of predicting

standard quality measures of the patents such as “citation” and “generality” measures that capture

the social value of patents that have been used extensively in the literature (see, e.g., Trajtenberg,

Henderson, and Jaffe, 1997; Hall, Jaffe, and Trajtenberg, 2005; Chemmanur, Loutskina, and Tian,

2014).6

Next, I want to test whether human examiners can do a better job with the help of such a ma-

chine learning algorithm. Ideally, one wants to compare the average quality of patent applications

granted by human examiners with the help of an algorithm to the average quality of the patents

granted by human examiners along. However, the main challenge here is the missing counterfactu-

als: we do not observe actual quality information for applications rejected by humans but accepted

by the algorithm.7 To address this selection issue, I make use of the quasi-random assignment of

patent applications to examiners who have different levels of leniency (or, in other words, different

grant rates).8 Following the methodology first introduced by Kleinberg et al. (2017), I divide ex-
5The machine learning algorithm used in this paper falls into the category of supervised learning, namely, training

a prediction function that maps inputs (X) to an output (y) based on training input-output pairs. The inputs (X)
used in my setting include numerical statistics of claims text, the text-based numerical vector of claims that capture the
text similarity across contemporaneous patent applications, backward citations from prior patents, patent applications,
foreign patents, and scientific literature, the total number of novel words, filing year dummies, inventor nationality
dummy, small entity dummy, NBER classes dummies, and art unit dummies. The output (y) used in my setting includes
the generality index of patents, and forward citation counts of patents.

6Machine learning generally makes much more accurate (out-of-sample) predictions by imposing fewer restrictions
on the prediction function form compared to traditional statistical tools.

7This challenge is not unique in this setting. It shows up in most machine learning applications trying to improve
screening efficiency (e.g., recruiting decision, admission decision, and bail decision). See Kleinberg, Lakkaraju, Leskovec,
Ludwig, and Mullainathan (2017) for a detailed discussion.

8Because of the quasi-random assignment, I argue that the average quality of patent applications reviewed by ex-
aminers with different levels of leniency is similar. Many recent studies exploit this feature to make causal inferences
in their studies (see, e.g., Maestas, Mullen, and Strand, 2013; Farre-Mensa, Hegde, and Ljungqvist, 2020; Sampat and
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aminers into two groups based on their leniency (grant rate): i.e., more lenient examiners approve

78% of applications in my sample while less lenient examiners accept only 50% of patent applica-

tions. We can view these two group of examiners as two independent patent screening systems. I

focus only on patents which are already granted by more lenient examiners: (1) I first rank them

based on the above machine learning algorithm; (2) I then reject an additional 28% of patents

from the lowest predicted quality to match the grant rate of less lenient examiners (i.e., reduce the

grant rate of more lenient examiners from 78% to 50%). This identification strategy enables me to

compare the observable quality of patents granted by more lenient examiners with the help of an

machine learning algorithm to those granted by less lenient examiners. Normally, we would expect

that less lenient examiners are the better examiners, given that they set a higher bar to approve

patent applications. However, we find that more lenient examiners, with the help of a machine

learning algorithm, are able to do a significantly better job than less lenient examiners in terms of

granting higher-quality patents.

To explain the above identification more clearly, Figure 2 provides an illustrative example of the

above exercise. More lenient examiners approve 700 applications, while less lenient examiners ap-

prove 500 applications. I first rank the 700 applications granted by more lenient examiners based

on their predicted quality and then reject additional 200 patents from the lowest predicted quality.

After that, I can quantify the quality gain made by an algorithm by comparing observable quality

measures (such as the patent generality index or the number of patent citations) of the 500 patents

granted by the more lenient examiners with the help of an algorithm and the 500 patents granted

by less lenient patent examiners. I find such comparison yields to economically significant improve-

ments in patent quality: an algorithm trained against patent generality results in about a 15.5%

gain in patent generality and a 35.6% gain in the number of patent citations compared to decisions

made by less lenient examiners. In other words, the more lenient examiners (or worse-performed

examiners) can significantly out perform less lenient examiners (or better-performed examiners)

with the help of a machine learning algorithm. These results also demonstrate that a machine learn-

ing algorithm not only results in significant improvements in an objective that is targeted by the

algorithm (i.e., generality) but also results in significant improvements in an alternative measure

Williams, 2019).
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of patent quality (i.e., the number of citations) that is not targeted.9 In addition, the above analysis

also provides some suggestive evidence on why patent examiners fall short in making screening de-

cisions. For example, the algorithm suggests that important factors (predicting patent generality)

include a numerical vector that captures the text-similarity across different patent applications and

a measure of patent application originality that captures the extent of combining knowledge from

different technological fields by a given application. These factors require patent examiners either

to spend a significant amount of time or to do a more careful job. I also find that busy examiners,

more experienced examiners, and male examiners make more false acceptance mistakes. All these

findings echo back to the various constraints and issues faced by the patent office.

So far, the findings suggest that examiners could do a better job with the help of a machine

learning algorithm in terms of granting higher quality patents. Does such an algorithm also improve

the economic outcomes of firms? To answer this question, the second part of the paper examines the

economic consequence of the current patent screening process on firm performance. To do so, I first

label patents that would be rejected by the algorithm to be “falsely accepted”. I then construct an

ex-ante screening efficiency measure for each examiner by computing his/her past false acceptance

rate. I find that firms who get patents from examiners with higher false acceptance rates suffer from

the winner’s curse. In particular, I find that patents granted by such examiners have, on average

lower announcement returns around their grant news. These patents are also more likely to expire

early. In other words, these patents are winner’s curses for their owners. Further, I find that public

firms whose patents are granted by such examiners are more likely to get sued subsequently in both

the short-term and long-term future. Consequently, they cut R&D expenditures and have worse

operating performance (measured by either ROA or Cash Flow). Additionally, such a negative

impact is more significant for firms in the high-tech or health industries. In the cases of private

firms, they are less likely to exit successfully by an IPO or an M&A in the short-term and long-term

future. The above effects are economically significant. For example, the annual ROA for public

firms would increase by 1.3 percentage points, and the probability of private firms going public

or getting acquired in three years would increase by 3.6 percentage points if the above machine
9Although this study finds that machine learning algorithms can make better screening decisions in terms of granting

higher quality patents, replacing human examiners with machine learning algorithms may incur unintended conse-
quences. Instead, such am algorithm can serve as an auditing process, in which examiners are responsible to reexamine
those patent applications identified as questionable screenings. Combining the expertise of human examiners and the
strength of machine learning mitigates unintended consequences while achieving better screening outcomes.
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learning algorithm screened all patent applications. The above results can be viewed as causal

evidence since patent applications are randomly assigned to patent examiners whose characteristics

are unlikely to be correlated with firm characteristics.

The rest of the paper is organized as follows. Section 2 discusses the relation of my paper to

the existing literature. Section 3 discusses the institutional background of the patent examination

process. Section 4 describes the patent application data and sample statistics. Section 5 discusses

the empirical design and results of the machine learning analysis. Section 6 describes the firm-level

data and discusses the empirical analysis of firm performance. Section 7 concludes.

2. Relation to the existing literature

My paper is related to four different strands in the literature. The first strand is the theoret-

ical and legal literature that explores the question of improving the patent screening process by

reforming the patent system itself. For example, Dreyfuss (2008) argues that the patent system

systematically creates type II errors (i.e., erroneous grants) due to resource constraints faced by

patent examiners and the incentive structure at the USPTO. Dreyfuss (2008) proposes to increase

the nonobviousness threshold in order to reduce the number of type II errors (see also, e.g., Duffy,

2008; Eisenberg, 2008; Mandel, 2008). On the other hand, Scherer (1972) and several other the-

oretical papers focus on reforming the optimal patent right (i.e., patent length and breadth) to

improve the innovation incentive and quality (see, e.g., Gilbert and Shapiro, 1990; Matutes, Reg-

ibeau, and Rockett, 1996). Finally, a set of related papers also study the cost and benefit of the

patent litigation system in affecting patent validity and scope (see, e.g., Meurer, 1989; Choi, 1998;

Lanjouw and Schankerman, 2001; Bessen and Meurer, 2006). In this paper, I depart from the above

literature and analyze how machine learning techniques are able to improve the effectiveness of

the patent screening process without changing the current patent system itself. Additionally, I also

document the economic consequence of the current patent screening system on firms owning these

patents.

The second strand is the literature that applies machine learning techniques to economics and

finance research. For example, Athey and Imbens (2017) argue that supervised machine learn-
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ing has great potential for prediction problems but has not been widely utilized in social science

research. Several studies apply machine learning to issues in finance: e.g., measuring asset risk pre-

mia (Gu, Kelly, and Xiu, 2020), predicting stock returns (Rossi, 2018), classifying fund types (Abis,

2017), and selecting the boards of directors (Erel, Stern, Tan, and Weisbach, 2018). However, there

also exist challenges to apply machine learning in social science research. Kleinberg et al. (2017)

use New York judges’ decisions over bail cases as a setting to discuss unique potential endogeneity

problems when applying machine learning to social science and provide methodologies to address

these problems using econometric identifications.10 However, using an algorithm to screen human

activities may result in unintended algorithm biases. For example, training an algorithm using

income or education may implicitly include hidden information such as race and gender, thereby

enhancing existing racial and gender biases (inequality). In contrast, applying machine learning

in evaluating the technological advance is less subject to such biases resulting from hidden infor-

mation. Overall, mine is the first paper to apply machine learning algorithms to evaluate patent

examiners’ innovation screening efficiency and make use of the quasi-random assignment of patent

applications to patent examiners to address potential selection issues.11

Third, my paper also contributes to the empirical literature that studies the relationship of

patent quality and firm performance. For example, Hall et al. (2005) empirically document that a

larger number of citations per patent leads to higher market values for firms holding these patents

(see also, e.g., Zucker, Darby, and Armstrong, 2002). Chemmanur, Gupta, and Simonyan (2017)

also show that private firms with a large number of patents and citations per patent have higher

IPO valuations and future operating performance. However, the innovation measures used in these

studies are only ex-post available. Alternatively, Bowen III, Frésard, and Hoberg (2020) measure

the disruptive technological potential of startups using textual analyses and show that those firms

with higher disruptive technological potentials are more likely to go public and are less likely to be

sold. Kelly, Papanikolaou, Seru, and Taddy (2018) also use the textual analysis method to create

indicators of technological innovation for each patent based on its textual similarity to earlier and
10See also Kleinberg, Ludwig, Mullainathan, and Obermeyer (2015), and Mullainathan and Spiess (2017) for detailed

discussions on how to use machine learning as an applied econometrics tool.
11In addition, my paper also discusses and addresses the forward-looking issue that existed in both the training data

and the training algorithm itself. For example, when training the algorithm using future information, it will result in
unfair comparisons between humans and machines in the test set since humans in the test set are not able to access such
future information. The existing literature largely overlooks this forward-looking issue in training algorithms (see, e.g.,
Erel, Stern, Tan, and Weisbach, 2018; Kleinberg, Ludwig, Mullainathan, and Obermeyer, 2015).
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later patents. Kogan, Papanikolaou, Seru, and Stoffman (2017) measure the economic value of a

patent as the stock price announcement effect of the patent grant and study its relationship with

aggregate economic growth and TFP. Kline, Petkova, Williams, and Zidar (2019) follow a similar

approach to estimate the ex-ante value of accepted and rejected patent applications and study

the relationship between patent-induced shocks and labor productivity. Unlike the measures used

in these above papers, the screening efficiency measure of patent examiners constructed in my

paper can be viewed as an ex-ante measure of patent application quality. It is also less likely to be

related to firm characteristics, given that patent applications are randomly assigned to each patent

examiner within each art unit.

A set of recent papers also exploit the quasi-random assignment of applications to examiners

with different leniency to make causal inferences on the relationship between current innovation

and follow-on innovation. For example, Farre-Mensa et al. (2020) find that obtaining its first patent

causally increases a startup’s subsequent growth, follow-on innovation, and VC funding. On the

other hand, Sampat and Williams (2019) examine whether patents in the field of human genes af-

fect follow-on innovation and find that gene patents, on average, have no quantitatively important

effects on follow-on innovation. Unlike these papers, my paper focuses on the economic conse-

quences of weak screening by patent examiners and studies its impact on the future performance

of both public and private firms. Overall, my paper complements the above literature by docu-

menting causal evidence of the importance of corporate innovation on subsequent performance

and investment of both public and private firms.

Finally, my paper is also related to the strand of literature that analyzes the value of innovations

by examining stock market reactions to innovation-related announcements. For example, Eberhart,

Maxwell, and Siddique (2004) examine the market valuation of firms’ innovation inputs (R&D

expenditures) and show that the market consistently underreacts firms’ unexpected increases in

R&D expenditures. Cohen, Diether, and Malloy (2013) also show that the stock market does not

take firms’ past successes in innovation into considerations when valuing their future innovation.

Fitzgerald, Balsmeier, Fleming, and Manso (2021) show that firms with exploitation innovation

strategies are undervalued relative to firms with exploration innovation strategies. On the other

hand, Hirshleifer, Hsu, and Li (2013) explore the market valuation of firms’ output and show

that firms’ innovation efficiency (measured as patents scaled by R&D expenditures) can predict
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firms’ future stock returns. Shu, Tian, and Zhan (2019) test whether the workload of each patent

examiner can predict firms’ future stock market returns and show that investors underreact to

the negative effect of examiner’s workload on patent quality. My paper complements the above

literature by providing additional evidence that the stock market incorporates (at least partially)

the quality of firms’ new patents from the past performance of the patent examiners examining

these patent applications prior to patent grants.

3. Patent examination process and patentability

3.1. Patent examination process

The patent examination process starts with filing a patent application to the USPTO, where the

USPTO will forward this newly filed application to a relevant art unit for examination.12 Next, that

patent application will be assigned to a patent examiner, a specialized technology employee with

training and experience pertinent to the invention, for examination. Though there are no explicit

policies regarding how patent applications are assigned to examiners within each art unit, many

recent studies show that patent applications are randomly assigned to examiners within each art

unit: an application that has filed in the earliest date is assigned to the first available examiner

(see, e.g., Maestas, Mullen, and Strand, 2013; Farre-Mensa, Hegde, and Ljungqvist, 2020; Sampat

and Williams, 2019).

After receiving a patent application, examiners first compare the claimed invention to the ex-

isting state of knowledge in the “prior art,” consisting of patent documents as well as the scien-

tific and commercial literature to determine whether the invention satisfies legal requirements for

patentability. If an invention fails the patentable requirement, the examiner will issue an office ac-

tion rejecting that application as not patentable and explain the reasons for the rejection. Following

such a rejection, the inventor may revise the application and submit it again or withdraw it. My

paper only focuses on the earliest application of all regular non-provisional utility applications to

mitigate the concern that these subsequent applications may not be randomly assigned (Righi and
12There are nine patent examining group centers where each of them consists of several art units examining patents

in the relevant field.
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Simcoe, 2018).

3.2. The legal requirements for patentability

Patent and Copyright Clause of the Constitution (Article I, Section 8, Clause 8, of the Constitu-

tion) grants Congress the power “to promote the progress of science and useful arts, by securing

for limited times to authors and inventors the exclusive right to their respective writings and dis-

coveries.” To fulfill its mandate, the U.S. Patent Act (35 U.S. Code §101) sets the requirements for

patent protection as follows:

“Whoever invents or discovers any new and useful process, machine, manufacture, or composition

of matter, or any new and useful improvements thereof, may obtain a patent, subject to the conditions

and requirements of this title.”

Under the U.S. Patent Act, an invention is patentable after satisfying the following three crite-

ria: new, useful, and non-obvious. Specifically, the novelty requirement (35 U.S. Code §102) states

that an invention cannot be patented if the invention has been publicly disclosed before the appli-

cant filed for patent protection and the usefulness requirement states that the subject matter must

be useful. Usually, a patent application can easily pass both the novelty and usefulness require-

ments. However, the non-obvious requirement (35 U.S. Code §103), which requires the invention

to be a non-obvious improvement over the prior art, is an ambiguous threshold that attracts many

criticisms from the law literature for approving many low-quality patents (see, e.g., Duffy, 2008;

Dreyfuss, 2008; Eisenberg, 2008; Mandel, 2008).

Since the goal of U.S. Patent Act is to reward patent applicants with a limited exclusive right

on their invention for providing new discoveries to the public, I argue that the main objective for

patent examiners is to identify and grant patents of higher quality (or higher social value) while

rejecting those of lower quality.

3.3. Measuring patent quality

Recent papers start to use excess stock market returns to measure firms’ private value of a

patent (Kogan, Papanikolaou, Seru, and Stoffman, 2017). However, the private value of a patent

is unlikely to capture the objective of patent examiners for the following reasons. First, the private
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value of a given patent depends not only on its own quality but also on whom the patent belongs

to: i.e., a patent may have different private values to different owners, while examiners make

grant decisions based on the characteristics of a patent application itself. Second, the private value

of a patent can only be measured if it is filed by a public firm, while examiners also need to

evaluate patent applications filed not only by public firms but also by private firms, governments,

universities, and individual inventors to make grant decisions. On the other hand, citation-based

measures, which have been used extensively in existing literature (see, e.g., Trajtenberg, 1990;

Trajtenberg, Henderson, and Jaffe, 1997; Hall, Jaffe, and Trajtenberg, 2005), not only are available

for any patent granted by the USPTO regardless of whom filed the patent application but also, more

importantly, capture the social value (or social spillovers) of a patent (Bloom, Schankerman, and

Van Reenen, 2013).

In this paper, I use patent generality as my primary measure of patent quality: the generality

index of a patent captures the industry dispersion of citing patents in the following four years after

being granted.13 Explicitly, I compute the generality index following the existing literature (see,

e.g., Trajtenberg, Henderson, and Jaffe, 1997; Hall, Jaffe, and Trajtenberg, 2005): Gi = 1−
∑ni

j s2ij ,

where sij denotes the fraction of forward citations received by patent i in patent class j from

the total number of patent classes ni and
∑ni

j s2ij is the Herfindahl-Hirschman index (Hirschman,

1980). By definition, if a patent is cited by later patents that belong to more fields, the generality

of this patent will be higher. For example, if subsequent patents cite a patent in the field of biology

in social science, medical science, and engineering, we would expect this patent to have a higher

degree of generality than a similar patent that received the same number of citations but all from

patents in the same field. With regard to patent classes, the USPTO has developed its own U.S.

Patent Classification (USPC) system that consists of more than 450 unique classes and 150,000

subclasses. However, USPC classes provide no straightforward link to the established product and

industry classifications (Marco, Carley, Jackson, and Myers, 2015a). Hall, Jaffe, and Trajtenberg

(2001) developed a hierarchical classification (NBER classification) by aggregating USPC classes

into 37 (two-digit) sub-categories.14 Therefore, I construct two generality measures based on either
13I have also used citation counts (the number of citing patents in the following four years after a patent gets granted)

as an alternative measure of patent quality. The results using citation counts are reported in Section IA.2.2 in the Internet
Appendix and are robust to the findings in the main paper.

14The NBER classification comes from the NBER Patent Data Project: https://sites.google.com/site/patentdataproject.
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the USPC classification or the NBER classification. All results presented in empirical sections are

using the generality measure based on the NBER classification.15

4. Patent application data and sample selection

4.1. Patent application data

I collect data on patent applications from the USPTO website that provides various research

datasets.16 In particular, I collect patent application examination data from Patent Examination

Research Dataset (Graham, Marco, and Miller, 2018; Marco, Toole, Miller, and Frumkin, 2017),

patent application claims data from Patent Claims Research Dataset (Marco, Sarnoff, and Charles,

2019), patent application citation data from Office Action Research Dataset for Patents (Lu, Myers,

and Beliveau, 2017) and PatentsView, and patent assignment data from Patent Assignment Dataset

(Marco, Myers, Graham, D’Agostino, and Apple, 2015b).17

4.1.1. Turning patent claims text into numerical variables

The claim section in each patent application defines the extent of the protection sought in

a patent application. A typical patent contains several claims, where each claim represents an

original contribution and thereby being viewed as a good measure of the real invention in a patent

(Tong and Frame, 1994). If claims in a patent application are very similar or closed to claims in

other patent applications, we would expect that this patent application’s quality (innovativeness)

to be low. To capture the similarity of each patent application filed in a given year compared to

all patent applications filed in that year, I take all claims text in each patent application to produce
15The results are quantitatively similar using the generality measure based on the USPC classification and are reported

in Section IA.2.1 in the Internet Appendix.
16For a complete list of research datasets provided by the USPTO please see: https://www.uspto.gov/ip-

policy/economic-research/research-datasets.
17Public PAIR data have been recently available from the USPTO website. Though not all patent applications received

by the USPTO are included in Public PAIR, more than 83% of all patent applications are available after the implementa-
tion of The American Inventors Protection Act (AIPA) in late 2000. For regular utility patent applications that this paper
focuses on, inclusion in Public PAIR increases to 95% since 2001 as a consequence of AIPA according to Graham et al.
(2018).
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a vector of 50 dimensions from claims text using the Word2vec algorithm.18 I use this vector

of 50 numerical variables as well as numerical statistics of claims and other patent application

characteristics discussed in the later section as input variables in my machine learning prediction,

where I find the prediction accuracy of the machine learning algorithm is improved with this set of

text-based variables.

4.2. Summary statistics

Table 1 reports summary statistics of numerical variables for all patent applications used in my

machine learning prediction. Out of 637,305 applications, 434,496 (68.2%) are approved, 236,643

of which have non-zero 4-year forward citations: the average 4-year forward citations and the gen-

erality index per patent among patents with non-zero citations are 3.886 and 0.072, respectively. In

terms of numerical statistics of claims, each patent application on average has 2.791 independent

claims and 15.528 dependent claims, where the average length of an independent claim (around

138 words) tends to be longer than that of a dependent claim (around 42 words). The average

number of novel words per patent is 0.309.19 I also compute the originality index for each patent

application, which is defined similarly as generality except that it is based on backward citations

each application has made. The average backward patent citations and the originality index are

8.511 and 0.166, respectively. In addition to citing prior patents, a patent application may also

cite previous applications, scientific literature, and foreign patents. The average backward citations

from patent applications, scientific literature, and foreign patent citations are 2.755, 3.837, and

2.905, respectively.20 Besides patent application characteristics, 26.9% of patent applications are

submitted by small entities, and 43.9% of primary inventors are from the U.S.
18The Word2vec algorithm learns vector representations of words from the input text corpus and places words that

share similar context in the corpus in close proximity to one another in the vector space, where the vector space is set
to 50 dimensions (see, e.g., Mikolov, Chen, Corrado, and Dean, 2013a, Mikolov, Le, and Sutskever, 2013b, and Mikolov,
Yih, and Zweig, 2013c for details).

19The number of novel words for each patent is produced by Balsmeier, Assaf, Chesebro, Fierro, Johnson, Johnson,
Li, Lück, O’Reagan, Yeh, et al. (2018), which I used as an input variable when I train the algorithm. My results remain
quantitatively similar without including the number of novel words.

20I exclude citations made by examiners when counting backward citations for each patent application.
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5. Machine learning prediction design and results

The empirical design to analyze the efficiency of the patent screening process follows three steps

(Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan, 2017). First, I partition my sample

into a training set and a test set, as described in Subsection 5.1. Second, I train an algorithm

using the training set by mapping the characteristics a patent application to its quality and present

results in Subsection 5.2. Third, I evaluate the predicting accuracy of this algorithm using patent

applications in the out-of-sample test set and present results in Subsection 5.3. Last, I test whether

my prediction function can improve screening decisions of actual patent examiners by comparing

the decision of this algorithm to that of patent examiners and present relevant results in Subsection

5.4.

5.1. Sample partition

I use the unique application number to merge across different data sets and obtain an initial

sample of 3,473,251 patent applications with screening outcomes available (i.e., either granted or

rejected) filed at the USPTO from 2001 to 2014.21 When we train a machine learning algorithm

to compare its prediction with human decisions, we have to make sure the data used to train the

algorithm is ex-ante available for actual examiners in the test set in order to make fair comparisons.

In my setting, I use patent application characteristics and patent outcomes of earlier applications

in the training set. Since my outcome variable for training the algorithm, the generality index

of patent applications, is constructed based on 4-year forward citations and is only available four

years after each application being granted, I set a 4-year gap between the training sample and the

test sample. In particular, I use applications filed from 2001 to 2005, which have their screening

status available before 2006 for the training sample to train the machine learning algorithm, and

use applications filed from 2010 to 2013 with their status available before 2014 for the test sample

to evaluate the algorithm.22

21The patent application claims data from the “Patent and Patent Application Claims Research Dataset for Academia
and Researchers” section is available until the end of 2014.

22I have partitioned my sample using alternative ways: partition the whole sample randomly to a training sample
and test sample; partition the whole sample along the time but without a 4-year gap. Though these alternative ways of
sample partition are subject to concerns raised in this section, results using these alternative ways of sample partition
are similar to the main findings in this paper.
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Partitioning my sample in this way, both my trained machine learning algorithm and the quality

measure of patent applications in the training sample is available at the beginning of 2010. In

other words, whatever information is needed to train the algorithm is also available for patent

examiners in the test sample. Such a sample partition allows me to make a fair comparison between

the algorithm and actual examiners in terms of screening any patent application in the test set.

Figure 3 presents the sample partition along the timeline. The final sample used in my machine

learning prediction consists of 280,243 patent applications in the training set and 357,101 patent

applications in the test set.

5.2. Training a machine learning algorithm

To train a supervised machine learning algorithm, I need both input variables of patent appli-

cation characteristics and an output variable of patent application quality from applications in the

training data: the output variable y is the generality index of each patent as described in Subsection

3.3; and input variables, X, include numerical statistics of claims text as described in Subsection

4.2, the text-based numerical vector of claims, backward citations from prior patents, patent ap-

plications, foreign patents, and scientific literature, the total number of novel words, filing year

dummies, inventor nationality dummy, small entity dummy, NBER classes dummies, and art unit

dummies. As I mentioned earlier in Subsection 5.1, my training set consists of 280,243 patent

applications, including 81,352 rejected applications, 83,558 accepted applications with zero 4-year

forward citations, and 115,333 accepted applications with the number of 4-year forward citations

larger than zero. Since the number of the 4-year forward citation to construct the generality index

of a patent (an accepted application) needs to be larger than zero, 115,333 accepted applications

with their generality index available are used for training the machine learning algorithm.

I train the prediction function called “Extreme Gradient Boosting,” an ensemble method of

decision trees based on tree boosting.23 A decision tree is a tree-like prediction function that

can be trained by splitting the data set into subsets based on particular values of input variables,

where the process is repeated until splitting no longer adds value to predictions (see, e.g., Rokach

and Maimon, 2008). Since a single decision tree may produce a weak learning function subject to
23Section IA.1 of the Internet Appendix provides for a detailed discussion about the supervised machine learning

problem and the Extreme Gradient Boosting algorithm.
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noise, gradient boosting algorithms optimize a cost function by iteratively choosing a weak learning

function that follows the negative gradient direction to produce a strong learning function (see,

e.g., Friedman, 2001; Chen and Guestrin, 2016). The strength of an Extreme Gradient Boosting

algorithm is finding the best feature across different subsamples. In addition, I implement 5-fold

cross-validation when training the algorithm to alleviate the in-sample over-fitting problem.

Figure 6 shows 10 important features identified by the machine learning algorithm in terms

of predicting patent generality. The most important feature is the numerical vector that captures

the text-similarity across different patent applications filed in the same year. The 50 variables in

this feature collectively explain 43.8% of the total predictive power in the trained algorithm. The

second most important feature is the originality measure of patent applications, which captures

the dispersed knowledge cited by each patent application. Together, these two features explain

70.9% of the total predictive power in the trained algorithm, suggesting that patent applications

with original ideas are more likely to be high-quality patents. Other important features include the

number of cited scientific literature, cited patents, claims, and words in claims. Interestingly, the

inventor’s nationality also explains 1.5% of the total predictive power in the trained algorithm.

5.3. Evaluating the out-of-sample predicting performance of machine learning and OLS

In this subsection, I compare the out-of-sample predicting performance between machine learn-

ing and an OLS function. In an OLS regression, I regress patent generality on all input variables

used in the machine learning prediction with patent applications in the training sample. I then use

the fitted model to predict the generality of patent applications in the test set. Figure 4 presents

the correlation between predicted generality and actual generality using patent applications in the

out-of-sample test set. The left panel of Figure 4 plots the predicted generality based on the ma-

chine learning algorithm against the actual generality of granted patents, where I find that most of

the data is centered around the 45-degree line, suggesting that the accuracy of the out-of-sample

prediction is high. Yet the right panel of Figure 4 plots the predicted generality based on an OLS

regression against the actual generality of granted patents, where the out-of-sample fitting is much

less close to the 45-degree line.24

24Formally, the out-of-sample mean square error (MSE) of the algorithm is 0.032. I also separately regress the actual
generality on predicted generality by this machine learning algorithm (XGBOOST) and the OLS function. I find that the
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Next, I test whether this algorithm can identify patent applications with the highest quality

(i.e., so-called “tail innovation”). In particular, I compare the predicted generality distribution from

a machine learning algorithm to that from an OLS function and present the results in Table 2. The

second column of Table 2 shows that only 20.5% of patent applications identified as the top 1 %

highest quality in the predicted generality by an ML algorithm are also identified as the top 1 %

highest quality by an OLS function. The actual generality of patent applications identified as the

top 1% generality by the machine learning algorithm, as reported in the third column of Table

2, is 0.171, which is significantly higher than that of patent applications identified as the top 1%

generality by OLS reported in the fourth column of Table 2: 0.136. The difference between the

machine learning algorithm and OLS is persistent and significant when we compare the results

of the machine learning algorithm and OLS in terms of top 5%, 10%, and 25% of the quality

distribution as reported in the second, third, and fourth rows of Table 2.

5.4. Improve screening decisions with the help of a machine learning algorithm

5.4.1. Do examiners reject high-quality patents?

To answer this question, I examine the grant rate of actual examiners across patent applications

with different predicted generality. To visualize the results, I divide patent applications in the

test set equally into 1,000 bins based on their predicted generality and compute the grant rate

of patent applications made by actual examiners in each of these 1,000 bins. Figure 5 plots the

correlation between the grant rate of actual examiners and the average predicted generality of

patent applications in each bin. I find that the grant rate of examiners indeed increases with the

predicted generality of patent applications. However, I also notice a significant portion of patent

applications with very high predicted quality (i.e., patent applications in the rightmost bins) being

rejected by actual examiners.25

coefficient of predicted generality by XGBOOST is 0.838, while that from OLS is 0.374.
25Figures IA.1 and IA.3 in the Internet Appendix show similar results using the generality measure based on the USPC

classification and the number of citations.
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5.4.2. Using variation in the leniency of examiners to quantify the improvement of screening decisions

by a machine learning algorithm

One way to quantify the potential quality gain achieved by the algorithm is to rank all patent

applications based on my predicted generality and then set the grant rate of the algorithm to be

the same as that of examiners. I can then compare the average generality of all patent applica-

tions granted by the algorithm to the average generality of the actually granted patents. However,

measuring the improvement in this way may be misleading since I do not have information on

the actual generality of those patent applications rejected by examiners but approved by the algo-

rithm. To address this issue, I make use of the fact that patent applications are randomly assigned

to examiners who have different grant rates: more lenient examiners (i.e., with an above-median

grant rate) accept around 77.6% of patent applications and less lenient examiners accept 49.5% of

patent applications. Thus, given all patents granted by more lenient examiners, I can reject addi-

tional applications based on predicted generality to match the grant rate of less lenient examiners

(i.e., examiners with a below-median grant rate). Now, I can compare the average actual generality

of applications granted by the algorithm to that of applications granted by less lenient examiners.

More importantly, comparing across examiners with different leniency allows me to track the

quality (generality) of marginal applications that get rejected. Figure 7 shows the results of such

comparisons. I sort patent applications by predicted generality and divided them equally into 20

bins. At the bottom of a given bin, the black bar shows the fraction of patent applications being

rejected by more lenient examiners. The red bar on the top of the black bar in a given bin shows the

fraction of additional applications being rejected by less lenient examiners, while the blue bar on

the top of the black bar in a given bin shows the share of additional applications that would be by

the algorithm. The top panel of Figure 7 shows that less lenient examiners would reject additional

applications from patent applications in both the low- and high-quality bins. However, the bottom

panel of Figure 7 shows that the machine learning algorithm would reject additional applications

starting from the lowest quality of predicted generality, suggesting that examiners do not screen

out the low-quality applications identified by the algorithm.

Next, I quantify the quality gain for the above exercise by comparing the actual outcome re-

sulting from examiners to that from the algorithm. I find that the magnitude of improvement in
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generality (by comparing the actual generality of patents granted by the algorithm to that granted

by less lenient examiners) is 15.5%. Moreover, I find that training the algorithm using generality

also significantly improves citations of granted patents. In particular, I find that the magnitude of

improvement in citations (by comparing the actual 4-year forward citations of patents granted by

the algorithm to that granted by less lenient examiners) is 35.6%.26

5.4.3. Why do examiners underperform?

To answer this question, I link examiners’ characteristics with their screening performance. I

measure examiners’ screening performance based on the disagreement between the machine learn-

ing predictions and actual screening decisions of patent examiners. To do so, I first compute the

number of applications granted by actual examiners within each art unit in any given year. Then

I rank all patent applications filed within each art unit in a given year based on their predicted

generality by the algorithm and hypothetically grant the same number of patent applications as

examiners within each art unit in a given year. So far, each patent application has an actual grant

decision made by examiners and a hypothetical grant decision made by the machine learning algo-

rithm. Finally, I label a patent to be “falsely accepted” if it is accepted by an actual examiner but

rejected by the algorithm and label a patent application to be “ falsely rejected” if it is rejected by

an actual examiner but accepted by the algorithm. I then construct the following four measures of

examiners’ screening performance in a given year: the number of falsely rejected cases, the false

rejection rate, the number of falsely accepted cases, and the false acceptance rate. I also construct

the following three measures of examiner’s characteristics: work experience in a given year, the

workload in a given year, and examiner gender. To identify the gender of each examiner, I make

use of the following Social Security Administration’s data set: National Data on the relative fre-

quency of given names in the population of U.S. births where the individual has a Social Security

Number.27 This data set contains all given names and their associated genders with a population

greater than 5. I match examiners’ first names with this data set to obtain examiners’ genders.28

26I have trained a similar algorithm using the number of 4-year forward citations to proxy patent quality, where I
find that the magnitude of improvement in the number of citations reaches 28.7%. All results based on the number of
citations are reported in Figures IA.3 and IA.4 in the internet appendix.

27To access this data set, please see: https://www.ssa.gov/oact/babynames/limits.html.
28When a given name is associated with both genders, I first calculate its probability of being a specific gender based

on the gender-specific population and assign its gender with the probability > 90%.
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I test the relationship between examiners’ characteristics with their screening performance with

the following regression:

yi,t = α+ β1WorkExperiencei,t + β2WorkLoadi,t + β3MaleExamineri

+Art Unita + Status Yeart + ϵi,t, (1)

where i indexes patent examiner; a indexes art unit; and t indexes the issue year of a patent. y

includes # False Rejection, False Rejection Rate, # False Acceptance, and False Acceptance Rate.

WorkExperiencei,t measures the work experience of a given examiner in year t and is calculated as

the natural logarithm of the number of years worked in the patent office for examiner i. WorkLoadi,t

measures the work load of examiner i in year t and is calculated as the natural logarithm of the

number of patent applications reviewed by that examiner. MaleExamineri: is a dummy variable that

equals to one if the gender of examiner i is male and zero otherwise. Art Unita and Status Yeart

indicate the art unit fixed effect and the status year fixed effect.

Table 3 presents the results of the above regression. First, the negative coefficients of WorkEx-

perience in columns (1) and (2) of Table 3 suggest that more experienced patent examiners tend to

make fewer false rejection mistakes. However, they tend to make more false acceptance mistakes

as suggested by the positive coefficient of WorkExperience in columns (3) and (4) of Table 3. These

findings are also consistent with the agency problem induced by the compensation structure in the

patent office: examiners get higher compensation by accepting more patent applications. Second,

busy examiners tend to make more mistakes in both ends, as suggested by the positive coefficient

of WorkLoad in columns (1), (3), and (4) of Table 3. These findings are consistent with how in-

creasing time constraints faced by patent examiners reduce their screening efficiency. Last, I also

find that male examiners tend to make more cases of false rejections and false acceptances.

5.4.4. Robustness test: disagreement between humans and machine algorithms, and early patent

expiration

In this subsection, I test whether these granted patents in the out-of-sample test set, which this

algorithm would reject, should or should not be granted in the first place as another robustness

test. To measure the disagreement between the machine learning predictions and actual screening
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decisions of patent examiners, I first compute the number of applications granted by actual exam-

iners within each art unit in any given year. Then I rank all patent applications filed within each art

unit in a given year based on their predicted generality by the algorithm and hypothetically grant

the same number of patent applications as examiners within each art unit in a given year. So far,

each patent application has an actual grant decision made by examiners and a hypothetical grant

decision made by the machine learning algorithm. Finally, I label a patent to be “falsely accepted”

if it is accepted by an actual examiner but rejected by the algorithm.

Section 154 of the U.S. Patent Law (35 U.S. Code §154 (a)) sets forth the term of a utility

patent filed on or after June 8, 1995, in the U.S. to be 20 years from the earliest filing date of the

application on which the patent was granted. Section 41 of the U.S. Patent Law (35 U.S. Code §41

(b) & (c)) states that maintenance fees are required to be paid in every certain period in order to

maintain utility patents in force.29 If these “falsely accepted” patents should not be granted in the

first place, we would expect that these patents are more likely to get expired early as a result of

delaying and defaulting in payment of maintenance fees. In particular, I test whether these “falsely

accepted” patents are properly maintained with the following regression.

yi = α+ βFalseAccepti + ArtUnita + IssueYeart + Small&MicroEntitys + USPCj + ϵi, (2)

where i indexes patent; a indexes art unit; t indexes the issue year of a patent; s indexes the size

of a patentee; and j indexes the USPC class. y represents the patent-maintenance-related dummies

indicating the following four aspects: payment of maintenance fee in the 4th year, payment of

maintenance fee in the 8th year, maintenance fee reminder mailed, patents expired for failure to

pay maintenance fees. FalseAccepti is a dummy variable, equaling to one if a patent is accepted by

actual examiners but would be rejected by the algorithm. ArtUnita, IssueYeart, SmallEntitys, and

USPCj represent art unit fixed effects, issue year fixed effects, small entity dummies, and USPC

class fixed effects.30

Table 4 presents the results of regressing Equation (2). The negative coefficients of FalseAccept

in columns (1) and (2) of Table 4 suggest that “falsely accepted” patents are less likely to be
29A patentee needs to pay maintenance fees before the 4th year, the 8th year, and the 12 years to keep its patent in

force.
30A patentee only needs to pay 1/2 or 1/4 of maintenance fees paid by a large entity if it is a small entity or a micro

entity.
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maintained four years and eight years after being granted. The positive coefficient of FalseAccept

in column (3) of Table 4 suggests that patentees who own these “falsely accepted” patents are

more likely to receive maintenance fee reminders. Further, the positive coefficient of FalseAccept in

column (4) of Table 4 indicates that these “falsely accepted” patents are more likely to expire for

the failure of paying maintenance fees. These results collectively show that these “falsely accepted”

patents turn out to be not very useful to their holders.

6. Innovation screening and firm performance

This section extends my empirical analysis to study the (potential) economic consequences of

the current patent screenings on firm performance. First, I describe firm data as well as an ex-

ante measure of innovation screening efficiency of patent examiners in Subsection 6.1. Second, I

present empirical findings on the relationship between innovation screening efficiency and stock

market returns of public firms in Subsection 6.2. Third, I discuss empirical results on the effect of

innovation screening on the subsequent operating performance of public firms in Subsection 6.3.

Lastly, I also examine the effect of innovation screening on subsequent exits of private firms in

Subsection 6.4.

6.1. Firm data and sample selection

I use all patent applications that have been filed since 2010 with their screening results available

by 2018 in my analysis. In addition to the data on patent applications and patent examiners that I

have used in the previous section, I have also collected data on patent assignees from the USPTO

website, accounting and financial data for public firms from Compustat and CRSP, firm character-

istics, and VC financing for private firms from VentureXpert. I match each dataset with firm names

standardized by the NBER Patent Data Name Standardization Routine.31 By construction, both

public and private firms analyzed in this section should have at least one patent application filed

since 2010.
31The name standardization routine comes from the NBER Patent Data Project:

https://sites.google.com/site/patentdataproject.
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6.1.1. Measure innovation screening efficiency

I construct an ex-ante measure of innovation screening efficiency based on the disagreement

between the machine learning prediction and the actual screening decision of patent examiners.

Based on the “falsely accepted” label I have assigned to each patent as described in Section 5.4.4,

I compute the false acceptance rate of each examiner using all patent applications he/she has

examined prior to any newly filed patent application. Specifically, I calculate the false acceptance

rate of examiner e in art unit a who reviews patent application p at date t as follows:

ExaminerFalseAcceptRatep,e,t,a =
#FalseAccepte,t,a
#Reviewede,t,a

, (3)

where #Reviewede,t,a and #FalseAccepte,t,a are the numbers of patents reviewed and falsely accepted

by examiner j prior to date t, respectively.32 A simple plot in Figure 8 shows that the false accep-

tance rate of patent examiners has been increasing since 2010, which is consistent with my findings

in the previous section that patent examiners are less able to screen in high-quality patents over

time.

To match the time horizon of financial and accounting data on firm performance, I further

measure the patent screening of examiners associated with each firm in each quarter by averaging

false acceptance rates of examiners who have examined that firm’s patent applications in the past

three years (i.e., a three-year rolling window ).33 For example, the false acceptance rate of firm i

in quarter q is calculated as follows:

AvgExaminerFalseAcceptRatei,q =
1

N

N∑
a=1

 q−1∑
t=q−13

ExaminerFalseAcceptRatep,e,t,a

 , (4)

where ExaminerFalseAcceptRatep,e,t,a is the false acceptance rate of examiner e who reviews firm i’s

patent application p in the past three years, and N is the total number of patent applications filed

by firm i with screening results available in the past three years.

By construction, the false acceptance rate of an individual examiner is ex-ante available for any
32I exclude the patent application p in both the numerator and the denominator. I also exclude firms whose patent

application is assigned to a patent examiner who has reviewed less than 10 patent applications prior to the patent
application p. All results in this section are robust to removing the above exclusions.

33I have used different time windows to measure firm-level innovation screening efficiency (i.e., a 1-quarter, 1-year,
and 2-year window), and all my empirical results in this section remain qualitatively similar.
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newly filed patent application in my sample. More importantly, it is also unlikely to be correlated

with firm characteristics due to the quasi-random assignment of patent applications to patent ex-

aminers within each art unit (see, e.g., Maestas, Mullen, and Strand, 2013; Farre-Mensa, Hegde,

and Ljungqvist, 2020; Sampat and Williams, 2019).

6.1.2. Summary statistics

Table 5 reports summary statistics for my measures of innovation screening efficiency as well as

firm characteristics. Panel A of Table 5 presents summary statistics of stock returns for the sample

of public firms at the firm-event level. For example, the average and the median false acceptance

rates of examiners who screen a firm’s patents are 16.6% and 16.0%. I estimate abnormal returns

using the market model with CRSP value-weighted index return as the market return, where market

model variables (alphas and betas) are estimated over 150 days ending 50 days before the screening

decision date of each patent application.34 The average cumulative abnormal returns over a 3-

trading-day window around patent grant news are 3.2 basis points (bps), while the average 1-

quarter, 2-quarter, 3-quarter, and 4-quarter buy-and-hold abnormal returns are 0%, -0.6%, -1.8%,

and -3.8%, respectively.35

Panel B of Table 5 presents the summary statistics of firm performance and firm characteristics

for public firms at the firm-quarter level. The average false acceptance rate for public firms is

16.7%; the median number of patent applications being reviewed and granted for public firms in

a given three-year window are 15 and 12; the median quarterly ROA and Cash Flow, which are

defined as net income and cash flow divided by total assets, are 0.6% and 1.6%. Public firms, on

average, have the logarithm of book assets of 7.2, a leverage ratio of 0.2, the logarithm of the

market to book ratio of 1.1, and R&D expenditures of 3.5%.36 Most of the public firms in my

sample are not involved in any patent litigation as defendants after their patents were granted: the

average quarterly number of patent litigation for public firms is 0.1.
34I also estimate abnormal returns using alternative models such as Fama-French three-factor model, and Carhart

four-factor model(see, e.g., Fama and French, 1993; Carhart, 1997). My results remain qualitatively similar using these
alternative estimation models.

35The negative long-run stock return after patent being granted is somewhat surprising. However, my results are con-
sistent with that in Cao, Jiang, and Ritter (2013) and they show that firms with patent filings (regardless of application
outcomes) have negative profitability on average in the five years after IPOs.

36All accounting variables (i.e., ROA, Cash Flow, R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1% and
99.9%. All regression results are qualitatively similar before winsorizing and are robust to different winsorizing thresh-
olds.
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Panel C of Table 5 presents the summary statistics of firm performance and firm characteristics

for private firms at the firm-quarter level. The average false acceptance rate for private firms is

16.6%; the median number of patent applications being reviewed and granted for private firms in

a given three-year window are 4 and 3, which is much lower compared to those for public firms.

In terms of firm characteristics, the average age of private firms is 10.6; private firms have the

logarithm of quarterly VC financing amount of 0.2, and the quarter number of VC funds of 0.3.

Finally, the average rate of successful exits through IPOs or M&As is 21.2%.

6.2. Innovation screening and stock market returns of public firms

In this subsection, I test whether my measure of innovation screening efficiency can explain

stock market reactions to patent grant news and predict post-granting long-run stock returns. I

measure stock market reactions to patent grant news using the cumulative abnormal return on a

firm’s equity over a 3-trading-day window (from day -1 to day 1) around the patent grant date

(CAR [-1:1]) and long-run stock returns using the 1-quarter, 2-quarter, 3-quarter, and 4-quarter

buy-and-hold abnormal returns on a firm’s equity after the patent grant date (BHAR [1:63], BHAR

[1:125], BHAR [1:188], and BHAR [1:250]).37

I separately regress each stock return measure on the average false acceptance rates of exam-

iners who examine firms’ patent applications and report regression results in Table 6. Panel A of

Table 6 reports regression results testing the effect of innovation screening efficiency on stock mar-

ket reactions to patent grant news. The coefficient of the constant term in column (1) shows that

the announcement returns (CAR [-1:1]) on average are positive and significant, which is consistent

with the findings in Kogan et al. (2017). However, the coefficient of ExaminerFalseAcceptRate is

negative and statistically significant in column (2), suggesting that the false acceptance rates of

examiners are able to explain some variation in stock market reactions to those patents they have

granted. Economically, a one-standard-deviation increase in ExaminerFalseAcceptRate decreases the

3-day announcement return by 2 bps. In other words, if all patent applications were screened by

the machine learning algorithm used in this paper (i.e., ExaminerFalseAcceptRate decreases from

0.166 to 0), the 3-day announcement return would increase by 4 bps.

Finally, panel B of Table 6 reports regression results testing the effect of innovation screening
37I restrict my sample in this subsection to those patents with applications publicly available before they are granted.
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efficiency on post-granting long-run stock market returns. Again, the coefficients of Examiner-

FalseAcceptRate are negative and statistically significant in all four regressions, suggesting that my

ex-ante measure of innovation screening efficiency negatively predicts firms’ long-run stock market

returns out of sample, thus can be viewed as ex-ante measures of patent quality. Economically, a

one-standard-deviation increase in ExaminerFalseAcceptRate decreases the following 1-quarter, 2-

quarter, 3-quarter, and 4-quarter buy-and-hold abnormal return by 9 bps, 20 pbs, 37 pbs, and 64

bps, respectively. In other words, if all patent applications were screened by the machine learn-

ing algorithm (i.e., ExaminerFalseAcceptRate decreases from 0.166 to 0), the 1-year buy-and-hold

abnormal return would increase by 1.2%.

6.3. Innovation screening and subsequent operating performance of public firms

As I have shown, the average quality of patents would be higher if the algorithm granted them.

If this is indeed the case, we would expect that firms should have worse performance if examiners

with higher false acceptance rates granted their patents. In this subsection, I empirically test the

effect of innovation screening efficiency on the subsequent operating performance of public firms

with my baseline regression as follows:

yi,q+n = α+ βAvgExaminerFalseAcceptRatei,q + γXi,q + Industryj + Quarterq + ϵi,q, (5)

where i indexes firm; j indexes industry; q indexes quarter; and n equals 1, 4, 8, or 12. y is the

operating performance of each public firm, which is measured using either ROA or Cash Flow. For

example, ROAi,q+4 measures the subsequent 4-quarter (or 1-year) operating performance of each

public firm. AvgExaminerFalseAcceptRatei,q is my screening efficiency measure of examiners who

have examined firm i’s patent applications in the past three years (or twelve quarters) as described

in 6.1.1. X is a vector of control variables including the number of patents reviewed and granted in

the past three years, firm size in quarter t, leverage in quarter t, market to book ratio in quarter t,

and R&D expenditures in quarter t as described in 6.1.2. Industryj and Quarterq represent two-digit

SIC industry fixed effects and quarter fixed effects. All standard errors in my baseline regressions

are double clustered at the firm and quarter level.

The baseline results using ROA as the dependent variable are reported in Table 7. Table 7
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shows that coefficient of AvgExaminerFalseAcceptRate is negative and statistically significant in all

regressions, suggesting that public firms whose patent applications are granted by examiners with

higher past false acceptance rates perform worse in both the short- and long-term. These results

are also economically significant: a one-standard-deviation increase in AvgExaminerFalseAcceptRate

decreases the following 1-quarter, 1-year, 2-year, and 3-year ROA by 32 bps, 83 bps, 157 bps, and

156 bps, respectively. In other words, if all patent applications were screened by the machine learn-

ing algorithm (i.e., AvgExaminerFalseAcceptRate decreases from 0.167 to 0), ROA would increase by

0.8% and 3.9% over the following 1-quarter and 3-year periods.38 More importantly, since patent

applications are randomly assigned to patent examiners, the effect of the current patent screening

system on firm performance is likely to be causal due to the quasi-random assignment of patent

applications to patent examiners.

6.3.1. Potential channels: innovation screening, subsequent R&D expenditures, and subsequent patent

litigation

In this subsection, I test two potential channels behind the effect of innovation screening on

firm performance. Specifically, I study the impact of innovation screening on subsequent R&D

expenditures and the subsequent number of patent litigation using the same baseline specification

as described in Equation (5).

Table 8 presents regression results with the subsequent R&D expenditures as the dependent

variable and shows that the coefficient of AvgExaminerFalseAcceptRate is negative and statistically

significant in all regressions, suggesting that firms lower their R&D expenditures after their patents

reviewed by examiners with lower screening efficiency. These results are also economically signifi-

cant. For example, a one-standard-deviation increase in AvgExaminerFalseAcceptRate decreases the

following 1-quarter and 3-year R&D expenditures by 4 pbs and 45 pbs (i.e., a 1.1%, and 1.1% de-

crease compared to the median 1-quarter and 3-year R&D expenditures). All these results suggest

that innovation screening has a causal and real effect on the innovation input of public firms that

might hurt their short-term and long-term performance.

Table 9 presents regression results with the number of subsequent patent litigation as depen-
38Due to space limitation, the baseline results using Cash Flow as the dependent variable are reported in Table IA.1

in the Internet Appendix. The results on firm cash flows are both qualitatively and quantitatively similar to the results
reported in Table 7.
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dent variables and shows that coefficients of AvgExaminerFalseAcceptRate are positive and statisti-

cally significant in all regressions. Economically, a one-standard-deviation increase in AvgExamin-

erFalseAcceptRate increases the number of patent litigation in the next one quarter and three years

by 0.012 and 0.134 (i.e., a 9.3% and 8.6% increase compared to the average number of patent

litigation over the same period). These results suggest that firms whose patents are granted by ex-

aminers with higher past false acceptance rates are more likely to be involved in subsequent patent

litigation, which in turn might harm their short- and long-term performance.39

6.3.2. A cross-industry analysis: innovation screening and subsequent operating performance

In this subsection, I empirically test whether the effect of innovation screening on firm perfor-

mance is larger in innovation-intensive industries with the following specification:

yi,q+n = α+ β1AvgExaminerFalseAcceptRatei,q + β2HiTechAndHealth

+β3AvgExaminerFalseAcceptRatei,q × HiTechAndHealth

+γXi,q + Industryj + Quarterq + ϵi,q, (6)

where HiTechAndHealth is a dummy variable, which equals to one if a firm belongs to the High-

Tech or Health industry and zero otherwise. The High-Tech and Health industry definition is based

on the Fama and French 5 industry groups.40 I add an industry dummy (HiTechAndHealth) and its

interaction with AvgExaminerFalseAcceptRatei,q to Equation (5) as described in Equation (6).

Table 10 presents the regression results of the cross-industry analysis. Panels A and B of Table

10 show that β3 is negative and statistically significant in all regressions. These results suggest that

firms in industries that rely more heavily on technological innovation experience a significantly

larger impact from the current patent screening system. However, β3 is not statistically significant

in Panel C of Table 10 but is significantly negative in Panel D of Table 10, suggesting that the larger

impact experienced by firms in the High-Tech and Health industry is related to subsequent litigation

costs.
39I have also run the same set of regressions with firm fixed effects and reported the results in Table IA.2 in the Internet

Appendix. Most of the results remain statistically significant, suggesting that the effect of innovation screening on firms’
outcome exists within each firm and persistent across different time horizons.

40For a complete list of four-digt SIC code in each industry provided by Kenneth R. French’s data library please see:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html.
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6.4. Innovation screening and subsequent exits of private firms

In this subsection, I study the relationship between innovation screening and subsequent exits

of private firms with the following specification:

yi,q+n = α+ βAvgExaminerFalseAcceptRatei,q + γZi,q + States + Industryj + Quarterq + ϵi,q, (7)

where y is SuccessfulExit, which measures the successful exit of each private firm. For example,

SuccessfulExiti,q+4 is a dummy variable that equals one if a firm successfully exits either by an

IPO or M&A in the following 1-year (4-quarter) period, and zero otherwise; SuccessfulExiti,q+12

is a dummy variable that equals one if a firm successfully exits either by an IPO or M&A in the

following 3-year (12-quarter) period, and zero otherwise. AvgExaminerFalseAcceptRatei,q is my

screening efficiency measure of examiners who have examined firm i’s patent applications in the

past three years (twelve quarters) as described in 6.1.1. Z is a vector of control variables including

the number of patents reviewed and granted in the past three years, firm age in quarter t, total

funding received ending in quarter t−1, VC funding received in quarter t, and the number of funds

invested in quarter t as described in 6.1.2. States, Industryj , and Quarterq represent the state of

incorporation fixed effects, two-digit SIC industry fixed effects, and quarter fixed effects. Standard

errors are clustered at the state level.

The regression results reported in Table 11 show that the coefficient of AvgExaminerFalseAccep-

tRate is negative and statistically significant in all regressions, suggesting that private firms whose

patent applications are granted by examiners with higher past false acceptance rates are less likely

to exit successfully either by an IPO or by an M&A in both the short- and long-term. These results

are also economically significant: a one-standard-deviation increase in AvgExaminerFalseAcceptRate

decreases the following 1-quarter, 1-year, 2-year, and 3-year probabilities of exiting successfully by

an IPO or an M&A by 15 bps, 72 bps, 139 bps, and 165 bps, respectively. In other words, if all

patent applications were screened by the machine learning algorithm (i.e., AvgExaminerFalseAccep-

tRate decreases from 0.166 to 0), the probability of exiting successfully by an IPO or M&A increases

by 3.6% over the following three-year period. More importantly, these results suggest that weak
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innovation screenings in the current patent screening system causally reduce the probability of

subsequent exits by IPOs or M&As for private firms due to the quasi-random assignment of patent

applications to patent examiners.41

7. Conclusion

In this paper, I examine whether the patent screening process can be improved under the current

patent system in terms of granting better quality patents. I argue that examiners may not process

relevant information efficiently to screen out low-quality applications due to their increasing time

constraints and their own incentives. However, machine learning algorithms have much larger

capacities to process information efficiently and potentially reduce human biases. Using utility

patent applications filed at the USPTO from 2001 to 2018, I train a machine learning algorithm

using earlier patent applications and predict the quality of more recent patent applications out of

sample. I show that the current patent system screens in many low-quality patents, which can be

mitigated with the help of a machine learning algorithm. To compare the performance between

humans and machine learning algorithms, I make use of the quasi-random assignment of patent

applications to examiners who have different levels of leniency. I find that the improvement in

quality is substantial and significant: training an algorithm targeting the generality of patents

results in a 15.5% gain of patent generality and a 35.6% gain of the number of patent citations.

Further, regression analyses show that these patents, which an algorithm would reject, are more

likely to expire early, suggesting that these “falsely accepted” patents indeed turn out to be useless

to their holders, or in other words, an winner’s curse for their owners.

To examine the economic consequences of current patent screening, I study the impact of in-

novation screening efficiency on the future performance of firms who have at least one patent

application filed at the USPTO since 2010. To do so, I construct an ex-ante efficiency measure

of innovation screening by computing the false acceptance rate of examiners who examine firms’

patent applications. I find that my measure of innovation screening efficiency is able to predict
41To make sure my empirical results are not primarily driven by the art-unit level of screening efficiency, I have also

constructed a measure of art-unit adjusted innovation screening efficiency and rerun all the regressions in Sections 6.3
and 6.4 as a robustness test. Due to space limitation, the results using this alternative measure are reported in Tables
IA.3 and IA.4 in the Internet Appendix and are consistent with my findings reported in Sections 6.3 and 6.4.
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both the announcement return around patent grant news and the subsequent long-run stock return

and thereby can be viewed as an ex-ante measure of patent quality. Next, I find that public firms

whose patent applications are accepted by examiners with higher false acceptance rates are likely

to have lower operating performance (measured by ROA and Cash Flow) and lower their R&D

expenditures; also more likely to be involved in more patent litigation in both the short-term and

long-term future. Such a negative impact is larger for firms in the High-Tech and Health industries.

Lastly, I find that private firms whose patent applications are accepted by examiners with higher

false acceptance rates are less likely to exit successfully by an IPO or an M&A in the short-term

and long-term future. The above results are also economically significant. For example, the 3-year

ROA for public firms increases by 3.9 percentage points, and the 3-year probability of exiting suc-

cessfully by an IPO or an M&A for private firms increases by 3.6 percentage points if the machine

learning algorithm screened all patent applications. More importantly, these findings can be inter-

preted as causal evidence for the economic consequences of current patent screening since patent

applications are randomly assigned to patent examiners that are unlikely to be correlated with firm

characteristics.

Overall, this study shows how new technologies such as machine learning algorithms can help

improve human decisions and thereby generating policy implications for USPTO policymakers.

Based on findings in this paper, machine learning algorithms could potentially serve as a supporting

tool in assisting human examiners to make better decisions. For example, human examiners may

use a machine learning algorithm as a tool to double-check those questionable screening decisions

identified by the machine learning algorithm. While human examiners may or may not change

their decisions after reexaminations of those patent applications, such a reexamination process

may potentially reduce human bias from their behavioral issues or the increasing time constraint

faced by them.

Although this study finds that machine learning algorithms can potentially make better screen-

ing decisions in terms of granting higher-quality patents, replacing human examiners with ma-

chine learning algorithms may incur unintended consequences: i.e., inventors may strategically file

patent applications to respond to such replacements. Therefore, this study proposes that such a

machine learning algorithm can serve at most as an auditing tool, which presumably could be im-

plemented at a relatively low cost. Combining the expertise of human examiners and the strength
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of machine learning mitigates such unintended consequences while achieving better screening out-

comes.
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Figure 1: The number of patent applications and patent examiners at the USPTO from 2001 to
2018

This figure shows the number of patent applications and patent examiners at the USPTO from 2001 to 2018. Each blue

bin represents the number of patent applications and the yellow line represents the number of patent examiners. Data

source: Patent Statistics Chart and Patent Examination Data from the USPTO website.
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Figure 2: An illustrative example of using examiner leniency to evaluate the screening
performance of a machine learning algorithm

This figure provides an illustrative example of using examiner leniency to compare the performance of actual examiners

and a machine learning algorithm.
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Figure 3: Training and testing data used for my machine learning prediction

The figure shows the partition for the training and test data used for my machine learning prediction. I select appli-

cations filed from 2001 to 2005 with screening status available before the beginning of 2006 into the training set, and

applications filed from 2010 to 2013 with screening status available before the beginning of 2014 into the test set. The

training set is used to form the algorithm for my prediction and the test set is used to evaluate all of my results. The final

sample used in my machine learning prediction consists of 280,243 patent applications in the training set and 357,101

patent applications in the test set.
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Figure 4: The relation between predicted generality and actual generality in the test set

The figure shows the results of the machine learning algorithm (in the left panel) and OLS regressions (in the right

panel) built using applications in the training set, applied to applications in the out-of-sample test set. The average

predicted generality of patent application in each bin based on the machine learning algorithm and the OLS regression

are on the x-axis of the left panel and the right panel. The actual generality is on the y-axis of both panels.
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Figure 5: The relation between predicted generality by the machine learning algorithm and actual
examiner grant decisions

The figure shows the relation between predicted generality by the machine learning algorithm and actual examiner grant

decisions. The rank of average predicted generality of all patent application in each pin is on the x-axis. The grant rate

is on the y-axis.
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Figure 6: Ten important features identified by the machine learning algorithm

The figure shows ten important features identified by the machine learning algorithm. The predictive power by each

feature measured as the percentage of total predictive power is on the x-axis. The name of each of the ten features is on

the y-axis.
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Figure 7: Comparison between applications rejected by stricter examiners and applications
rejected by the algorithm

This figure shows comparison between applications rejected by stricter examiners and applications rejected by the algo-

rithm. I divide patent applications in the test set into 20 bins by predicted generality (x-axis). In both panels, the black

bar at the bottom of a given bin shows the fraction of patent applications being rejected by more lenient examiners. The

red bar in the top panel shows which applications less lenient examiners actually reject. The blue bar in the below panel

shows which applications the algorithm would reject to match the grant rate of less lenient examiners.
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Figure 8: The screening efficiency of patent examiners since 2010

The figure shows the fitted false acceptance rate of patent examiners since 2010. The time variable is on the x-axis. The

solid line is the fitted value from regressing the false acceptance rate of individual patent examiners on the time variable;

the gray shade represents the 95% confidence interval of the fitted value.
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Table 1: Summary statistics (patent applications)

This table shows descriptive statistics for the sample of patent applications from 2001 to 2013 used in my machine
learning analysis. ForwardCitations counts the number of future citation that each patent has received over a 4-year
period after it being granted. Generality captures the industry dispersion of 4-year forward citing patents, which
equals to one minus Herfindahl-Hirschman index of industries that citing patents belong to. NumberIndepClaims
and NumberDepClaims count the number of independent claims and dependent claims for each patent application.
NumberWordsIndepClaims and NumberWordsDepClaims count the total number of words in independent claims
and dependent claims for each patent application. MinNumberWordsIndepClaims and MinNumberWordsDepClaims
count the minimum number of words in independent claims and dependent claims for each patent application.
AvgNumberWordsIndepClaims and AvgNumberWordsDepClaims count the average number of words per indepen-
dent claim and per dependent claim for each patent application. NumberCitedForeignPatents counts the number
of foreign patents that each patent application has cited. NumberCitedForeignPatents counts the number of novel
words that each patent application has. NumberCitedLiterature counts the number of scientific literature that each
patent application has cited. NumberCitedApplications counts the number of patent applications that each patent
application has cited. OriginalityApplication captures the industry dispersion of backward cited patent applications
that each patent application has made, which equals to one minus Herfindahl-Hirschman index of industries that
cited patent applications belong to. NumberCitedPatents counts the number of patents that each patent application
has cited. OriginalityPatent captures the industry dispersion of backward cited patents that each patent applica-
tion has made, which equals to one minus Herfindahl-Hirschman index of industries that cited patents belong to.
USInventorDummy is a dummy variable indicating whether an investor is from U.S. or not. SmallEntityDummy is a
dummy variable indicating whether a patent application is from a small entity or not.

Panel A: Patent application quality variables

N Mean Median p10 p90 S.D.

ForwardCitations 236,643 3.464 2 1 7 6.709
Generality 236,643 0.133 0 0 0.500 0.220

Panel B: Patent application characteristics

N Mean Median p10 p90 S.D.

NumberIndepClaims 637,344 2.791 2 1 5 2.545
NumberDepClaims 637,344 15.528 14 4 27 13.438
NumberWordsIndepClaims 637,344 361.497 258 85 695 499.292
NumberWordsDepClaims 637,344 601.290 475 135 1,134 879.788
MinNumberWordsIndepClaims 637,344 115.735 92 32 210 130.584
MinNumberWordsDepClaims 637,344 21.837 17 11 30 64.500
AvgNumberWordsIndepClaims 637,344 138.185 114 51.500 235.333 136.399
AvgNumberWordsDepClaims 637,344 42.348 34.125 20.875 64.500 69.755
NumberCitedForeignPatents 637,344 2.905 0 0 7 10.680
NumberNovelWords 637,344 0.309 0 0 1 5.103
NumberCitedLiterature 637,344 3.837 0 0 6 22.254
NumberCitedApplications 637,344 2.755 0 0 5 15.446
OriginalityApplication 637,344 0.155 0 0 0.776 0.309
NumberCitedPatents 637,344 8.511 0 0 18 35.589
OriginalityPatent 637,344 0.166 0 0 0.618 0.259
USInventorDummy 637,344 0.439 0 0 1 0.496
SmallEntityDummy 637,344 0.269 0 0 1 0.444
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Table 2: Comparing OLS to machine learning prediction of high-quality patents

This table compare the performance of a machine learning algorithm and an OLS function in terms of identifying high-
quality patents in the test set. The first column indicates the top 1%, 5%, 10%, and 25% of the predicted generality
distribution and the second column shows the percentage of applications that identified by both ML and OLS as the top
1%, 5%, 10%, and 25% of predicted generality distribution. The third and fourth columns report the actual generality
among the applications within each of the predicted generality distribution that are identified either by ML only, or by
OLS only. The last column shows the statistical difference between results in the third and fourth columns.

Predicted
generality

ML&OLS overlap Average actual generality for applications identified as high
predicted generality by:

ML Only OLS Only Difference (t-statistic)

Top 1% 20.5% 0.281 0.218 0.063∗∗∗ (6.82)
Top 5% 33.3% 0.227 0.162 0.065∗∗∗ (13.33)
Top 10% 38.4% 0.198 0.136 0.062∗∗∗ (16.47)
Top 25% 42.7% 0.151 0.113 0.038∗∗∗ (14.95)
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Table 3: Relationship between patent examiner characteristics and screening performance

The sample consists of patent examiners in the out-of-sample test set. # False Rejections counts the number of false rejections made by a given examiner in
each year, where False Rejection equals to one if a patent application is rejected by that examiner but accepted by the algorithm and zero otherwise. False
Rejection Rate measures the false rejection rate by a given examiner in each year. # False Acceptances counts the number of false acceptances made by a given
examiner in each year, where False Acceptance equals to one if a patent is accepted by that examiner but rejected by the algorithm and zero otherwise. False
Acceptance Rate measures the false acceptance rate by a given examiner in each year. WorkExperience measures the work experience of a given examiner in
a given year and is calculated as the natural logarithm of the number of years worked in the patent office for that examiner. WorkLoad measures the work
load of a given patent examiner in a given year and is calculated as the natural logarithm of the number of patent applications reviewed by that examiner.
MaleExaminer is a dummy variable that equals to one if the gender of a given examiner is male and zero otherwise. Art Unit fixed effects and issue year fixed
effects are included in all regressions. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent Variable Dependent Variable # False Rejections False Rejection Rate # False Acceptances False Acceptance Rate

(1) (2) (3) (4)

WorkExperience -0.153∗∗∗ -0.010∗∗∗ 0.165∗∗∗ 0.005∗∗∗

(-21.45) (-16.46) (17.89) (9.26)
WorkLoad 1.267∗∗∗ -0.047∗∗∗ 2.051∗∗∗ 0.018∗∗∗

(34.72) (-15.65) (43.71) (6.92)
MaleExaminer 0.114∗∗ 0.006 0.181∗∗∗ 0.001

(2.33) (1.46) (2.88) (0.23)
Constant -5.026∗∗∗ 0.481∗∗∗ -11.044∗∗∗ -0.020

(-9.57) (11.11) (-16.35) (-0.54)
Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.463 0.134 0.411 0.081
Observations 18003 18003 18003 18003
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Table 4: Relationship between weak patent screening and subsequent patent maintenance

The sample consists of granted patents in the out-of-sample test set. FalseAccept equals to one if a patent is accepted by an actual examiner but rejected by the algorithm
and zero otherwise as described in Section 5.4.4. Small & Micro Entity Dummies, Art Unit fixed effects, issue year fixed effects, and patent USPC class fixed effects are
included in all regressions. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent Variable Payment of
Maintenance Fee in the

4th Year

Payment of
Maintenance Fee in the

8th Year

Maintenance Fee
Reminder Mailed

Patent Expired for
Failure to Pay

Maintenance Fees

(1) (2) (3) (4)

FalseAccept -0.032∗∗∗ -0.011∗∗∗ 0.026∗∗∗ 0.032∗∗∗

(-19.26) (-7.75) (13.22) (18.14)
Small & Micro Entity Dummies Yes Yes Yes Yes
Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Patent USPC Class FE Yes Yes Yes Yes
R2 0.092 0.458 0.081 0.056
Observations 235552 235552 235552 235552
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Table 5: Summary statistics (firms)

This table shows descriptive statistics for the sample of both public and private firms that have at least one patent
application filed since 2010 and with status available before (and including) 2018. Panels A and B show summary
statistics for the sample of public firms; Panel C shows summary statistics for the sample of private firms. Examiner-
FalseAcceptRate is the false acceptance rate of an examiner associated with each patent application, which is defined
as the ratio of falsely accepted applications over all applications he/she has made decisions prior to that patent
application. A patent application is falsely accepted if it is accepted by the actual examiner but rejected by the
machine learning algorithm. CAR [-1:1] is the cumulative abnormal return on a firm’s equity over a 3-trading-day
window (from day -1 to day 1) around each patent grant date. BHAR [1:63], BHAR [1:125], BHAR [1:188], and
BHAR [1:250] are the buy-and-hold abnormal returns on a firm’s equity over a 63-trading-day, 125-trading-day,
188-trading-day, and 250-trading-day window after each patent grant date. AvgExaminerFalseAcceptRate is defined
as the average false acceptance rates of examiners that are related to all granted and rejected applications for each
firm in a given past three-year rolling window as described in Section 6.1.1, where the false acceptance rate of an
examiner associated with each patent application is defined as the ratio of falsely accepted applications over all ap-
plications he/she has made decisions prior to that patent application. #ApplicationsReviewed and #PatentsGranted
count the number of patent applications being reviewed and accepted for each firm in a given past three-year
rolling window. ROA is the ratio of quarterly net income over book assets. Cash Flow is the quarterly cash flow
over book assets. R&D Expenditures are the quarterly R&D expenditures over book assets. #PatentLitigation counts
the quarterly number of patent litigation that firms act as defendants. FirmSize is the natural logarithm of book
assets. Leverage is the total debt (both current liability and long-term debt) over book assets. Ln(M/B) is the
natural logarithm of the market to book ratio. SuccessfulExit is a dummy, which equals one if a given private firm
has exited through an IPO or an M&A by the end of my sample period and zero otherwise. LnVCFinancingAmount
is the natural logarithm of the quarterly investment amount for each firm. LnNumberFundInvested is the natural
logarithm of the quarterly number of invested funds for each firm. TotalFundingToDate is the natural logarithm of
total funding each firm has received prior to a given quarter. LnFirmAge is the natural logarithm of firm age, which
equals the current year minus the firm founding year plus one. All accounting variables (i.e., ROA, Cash Flow, R&D
Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1% and 99.9%.

Panel A: public firm sample – stock returns (firm-event level)

N Mean Median p10 p90 S.D.

ExaminerFalseAcceptRate 115,673 0.166 0.160 0.062 0.273 0.091
CAR [-1:1] 115,664 0.032 0.016 -2.540 2.568 2.592
BHAR [1:63] 115,669 -0.004 -0.275 -16.943 17.371 15.408
BHAR [1:125] 115,353 -0.571 -0.301 -28.009 27.763 26.214
BHAR [1:188] 114,183 -1.834 -0.257 -40.514 36.723 38.290
BHAR [1:250] 112,607 -3.862 0.063 -55.678 45.625 52.162

Panel B: public firm sample – operating performance (firm-quarter level)

N Mean Median p10 p90 S.D.

AvgExaminerFalseAcceptRate 13,416 0.167 0.164 0.105 0.227 0.066
#ApplicatiosReviewe 13,416 160.624 15 2 200 839.933
#PatentsGranted 13,416 127.365 12 1 162 686.466
ROA 13,130 -0.022 0.006 -0.118 0.034 0.102
Cash Flow 12,768 -0.012 0.016 -0.111 0.043 0.101
R&D Expenditures 13,141 0.035 0.020 0 0.087 0.050
#PatentLitigation 13,416 0.131 0 0 0 0.622
FirmSize 13,354 7.196 6.985 4.214 10.560 2.429
Leverage 12,800 0.199 0.165 0 0.459 0.220
Ln(M/B) 12,718 1.130 1.051 0.075 2.255 0.909
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Panel C: private firm sample (firm-quarter level)

N Mean Median p10 p90 S.D.

SuccessExit 13,496 0.212 0 0 1 0.409
AvgExaminerFalseAcceptRate 13,496 0.166 0.164 0.080 0.248 0.077
#ApplicationsReviewed 13,496 9.772 4 1 20 23.827
#PatentsGranted 13,496 7.833 3 0 16 20.929
LnVCFinancingAmount 13,496 0.209 0 0 0 0.774
LnNumberFundInvested 13,496 0.319 0 0 1 1.203
TotalFundingToDate 13,496 0.461 0 0 2.401 1.382
FirmAge 13,496 10.623 10 6 17 4.683
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Table 6: Relationship between screening efficiency of patent examiners and stock market returns
of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with application out-
come available by 2018. CAR [-1:1] is the cumulative abnormal return on a firm’s equity over a 3-trading-day
window (from day -1 to day 1) around each patent grant date. BHAR [1:63], BHAR [1:125], BHAR [1:188], and
BHAR [1:250] are the buy-and-hold abnormal returns on a firm’s equity over a 63-trading-day, 125-trading-day,
188-trading-day, and 250-trading-day window after each patent grant date. ExaminerFalseAcceptRate is the false
acceptance rate of an examiner associated with each patent application, which is defined as the ratio of falsely
accepted applications over all applications he/she has made decisions prior to that patent application. A patent
application is falsely accepted if it is accepted by the actual examiner but rejected by the machine learning algo-
rithm. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Panel A: Relationship between screening efficiency of patent examiners and stock market reactions
around each patent grant date

Dependent Variable CAR [-1:1] CAR [-1:1]

(1) (2)

ExaminerFalseAcceptRate -0.233∗∗∗

(-2.78)
Constant 0.032∗∗∗ 0.071∗∗∗

(4.19) (4.45)
Observations 115664 115664

Panel B: Relationship between screening efficiency of patent examiners and long-run stock market
return

Dependent Variable [BHAR [1:63] BHAR [1:125] BHAR [1:188] BHAR [1:250]

(1) (2) (3) (4)
ExaminerFalseAcceptRates -0.992∗∗ -2.195∗∗∗ -4.060∗∗∗ -7.031∗∗∗

(-1.99) (-2.59) (-3.27) (-4.14)
Constant 0.161∗ -0.205 -1.158∗∗∗ -2.691∗∗∗

(1.71) (-1.28) (-4.91) (-8.34)
Observations 115669 115353 114184 112609
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Table 7: Relationship between screening efficiency of patent examiners and subsequent operating
performance of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. ROA is the ratio of quarterly net income over book as-
sets. AvgExaminerFalseAcceptRate is defined as the average false acceptance rates of examiners
that are related to all granted and rejected applications for each firm in a given past three-year
rolling window as described in Section 6.1.1, where the false acceptance rate of an examiner
associated with each patent application is defined as the ratio of falsely accepted applications
over all applications he/she has made decisions prior to that patent application. A patent ap-
plication is falsely accepted if it is accepted by the actual examiner but rejected by the machine
learning algorithm. #ApplicationsReviewed and #PatentsGranted count the number of patent ap-
plications being reviewed and accepted for each firm in a given past three-year rolling window.
FirmSize is the natural logarithm of book assets. Leverage is the total debt (both current liability
and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the market to book
ratio. R&D Expenditures are the quarterly R&D expenditures over book assets. All accounting
variables (i.e., ROA, Cash Flow, R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1%
and 99.9%. Quarter fixed effects and industry (two-digit SIC code) fixed effects are included in
all regressions. All regressions are OLS regressions with standard errors double clustered at the
firm and quarter level. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.048∗∗∗ -0.125∗∗∗ -0.238∗∗∗ -0.236∗∗∗

(-4.83) (-3.93) (-4.35) (-2.96)
#ApplicationsReviewed -0.018∗∗∗ -0.070∗∗∗ -0.142∗∗∗ -0.196∗∗∗

(-5.01) (-5.05) (-4.80) (-4.08)
#PatentsGranted 0.018∗∗∗ 0.066∗∗∗ 0.136∗∗∗ 0.181∗∗∗

(4.86) (4.94) (4.72) (3.91)
FirmSize 0.011∗∗∗ 0.047∗∗∗ 0.090∗∗∗ 0.130∗∗∗

(14.26) (18.30) (18.14) (15.41)
Leverage -0.084∗∗∗ -0.296∗∗∗ -0.481∗∗∗ -0.636∗∗∗

(-13.18) (-14.22) (-11.66) (-8.87)
Ln(M/B) 0.013∗∗∗ 0.045∗∗∗ 0.084∗∗∗ 0.128∗∗∗

(11.22) (12.35) (11.27) (9.78)
R&D Expenditures -0.936∗∗∗ -3.466∗∗∗ -6.545∗∗∗ -9.661∗∗∗

(-18.58) (-23.38) (-20.92) (-18.97)
Constant -0.143∗∗∗ -0.748∗∗∗ -1.589∗∗∗ -2.577∗∗∗

(-5.15) (-6.95) (-8.55) (-6.74)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.409 0.523 0.543 0.537
Observations 11954 10536 8170 5995
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Table 8: Relationship between screening efficiency of patent examiners and subsequent R&D
expenditures of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. R&D Expenditures are the quarterly R&D expenditures
over book assets. AvgExaminerFalseAcceptRate is defined as the average false acceptance rates
of examiners that are related to all granted and rejected applications for each firm in a given
past three-year rolling window as described in Section 6.1.1, where the false acceptance rate of
an examiner associated with each patent application is defined as the ratio of falsely accepted
applications over all applications he/she has made decisions prior to that patent application. A
patent application is falsely accepted if it is accepted by the actual examiner but rejected by the
machine learning algorithm. #ApplicationsReviewed and #PatentsGranted count the number of
patent applications being reviewed and accepted for each firm in a given past three-year rolling
window. FirmSize is the natural logarithm of book assets. Leverage is the total debt (both current
liability and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the market
to book ratio. R&D Expenditures is the R&D expenditure over the book value total assets. All
accounting variables (i.e., R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1% and
99.9%. Quarter fixed effects and industry (two-digit SIC code) fixed effects are included in all
regressions. t-statistics are in parentheses. All regressions are OLS regressions with standard
errors double clustered at the firm and quarter level. ∗∗∗, ∗∗ and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent R&D Expenditures

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.006∗ -0.021∗∗ -0.036∗ -0.069∗∗

(-1.85) (-2.00) (-1.77) (-2.15)
#ApplicationsReviewed 0.000 0.001 0.004 0.001

(0.38) (0.26) (0.49) (0.06)
#PatentsGranted 0.001 0.004 0.008 0.022∗

(0.56) (1.11) (1.05) (1.76)
FirmSize -0.002∗∗∗ -0.011∗∗∗ -0.025∗∗∗ -0.042∗∗∗

(-7.50) (-10.82) (-11.43) (-10.38)
Leverage -0.001 -0.013∗∗ -0.062∗∗∗ -0.128∗∗∗

(-0.74) (-2.10) (-4.07) (-5.02)
Ln(M/B) 0.002∗∗∗ 0.006∗∗∗ 0.012∗∗∗ 0.017∗∗∗

(3.62) (4.04) (3.55) (2.87)
R&D Expenditures 0.808∗∗∗ 2.961∗∗∗ 5.465∗∗∗ 7.679∗∗∗

(25.61) (27.49) (23.01) (17.34)
Constant 0.032∗∗∗ 0.197∗∗∗ 0.482∗∗∗ 0.938∗∗∗

(4.85) (5.98) (9.10) (8.09)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.760 0.796 0.784 0.767
Observations 11965 10572 8215 6039
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Table 9: Relationship between screening efficiency of patent examiners and the subsequent
number of patent litigation of public firms

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. #PatentLitigation counts the quarterly number of patent
litigation that firms act as defendants. AvgExaminerFalseAcceptRate is defined as the average
false acceptance rates of examiners that are related to all granted and rejected applications for
each firm in a given past three-year rolling window as described in Section 6.1.1, where the false
acceptance rate of an examiner associated with each patent application is defined as the ratio of
falsely accepted applications over all applications he/she has made decisions prior to that patent
application. A patent application is falsely accepted if it is accepted by the actual examiner but
rejected by the machine learning algorithm. #ApplicationsReviewed and #PatentsGranted count
the number of patent applications being reviewed and accepted for each firm in a given past
three-year rolling window. FirmSize is the natural logarithm of book assets. Leverage is the total
debt (both current liability and long-term debt) over book assets. Ln(M/B) is the natural loga-
rithm of the market to book ratio. R&D Expenditures are the quarterly R&D expenditures over
book assets. All accounting variables (i.e., R&D Expenditures, Leverage, Ln(M/B)) are winsorized
at 0.1% and 99.9%. Quarter fixed effects and industry (two-digit SIC code) fixed effects are in-
cluded in all regressions. t-statistics are in parentheses. All regressions are OLS regressions with
standard errors double clustered at the firm and quarter level. ∗∗∗, ∗∗ and ∗ indicate significance
at the 1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent #PatentLitigation

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate 0.184∗ 0.749∗∗∗ 1.331∗∗ 2.043∗∗

(1.70) (2.63) (2.49) (2.21)
#ApplicationsReviewed 0.029∗∗ 0.119∗∗ 0.260∗∗∗ 0.506∗∗∗

(2.02) (2.57) (2.73) (3.25)
#PatentsGranted 0.004 0.017 0.031 -0.030

(0.34) (0.42) (0.36) (-0.21)
FirmSize 0.069∗∗∗ 0.270∗∗∗ 0.571∗∗∗ 0.924∗∗∗

(11.13) (11.89) (11.51) (10.77)
Leverage -0.284∗∗∗ -1.229∗∗∗ -2.699∗∗∗ -4.457∗∗∗

(-5.63) (-6.35) (-6.24) (-5.81)
Ln(M/B) 0.018∗∗ 0.066∗∗ 0.155∗∗ 0.347∗∗∗

(2.45) (2.41) (2.52) (3.03)
R&D Expenditures 0.780∗∗∗ 2.868∗∗∗ 5.351∗∗∗ 7.308∗∗∗

(8.33) (9.26) (7.98) (6.02)
Constant -0.244 -0.787 -2.522∗∗ -4.666∗∗

(-1.03) (-1.28) (-2.02) (-2.53)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.121 0.159 0.179 0.197
Observations 12204 11197 9228 7182

54



Table 10: Relationship between screening efficiency of patent examiners and subsequent
operating performance of public firms (A cross-industry analysis)

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. ROA is the ratio of quarterly net income over book as-
sets. R&D Expenditure is the R&D expenditure over the book value total assets. #PatentLitigation
counts the quarterly number of patent litigation that firms act as defendants. AvgExaminer-
FalseAcceptRate is defined as the average false acceptance rates of examiners that are related to
all granted and rejected applications for each firm in a given past three-year rolling window as
described in Section 6.1.1, where the false acceptance rate of an examiner associated with each
patent application is defined as the ratio of falsely accepted applications over all applications
he/she has made decisions prior to that patent application. A patent application is falsely ac-
cepted if it is accepted by the actual examiner but rejected by the machine learning algorithm.
HiTechAndHealth is a dummy, which equals one if a firm belongs to the High-Tech industry or the
Health industry based on Fama and French 5 industry groups. Control variables are defined as
in Table 7. Quarter fixed effects and industry (two-digit SIC code) fixed effects are included in
all regressions. All regressions are OLS regressions with standard errors double clustered at the
firm and quarter level. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

Panel A: Relationship between screening efficiency of patent examiners and subse-
quent ROA

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

A: AvgExaminerFalseAcceptRate -0.015 -0.036 -0.148∗∗ -0.209∗∗

(-1.53) (-1.15) (-2.52) (-2.40)
B: HiTechAndHealth 0.012∗∗∗ 0.030∗∗ 0.027 0.017

(3.26) (2.50) (1.26) (0.49)
A × B -0.058∗∗∗ -0.155∗∗ -0.161 -0.044

(-3.11) (-2.56) (-1.52) (-0.28)
Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.409 0.523 0.543 0.537
Observations 11954 10536 8170 5995
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Panel B: Relationship between screening efficiency of patent examiners and subse-
quent R&D expenditures

Dependent Variable Subsequent R&D Expenditures

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

A: AvgExaminerFalseAcceptRate -0.003 -0.017∗∗ -0.036∗∗ -0.073∗∗

(-1.18) (-2.28) (-2.11) (-2.45)
B: HiTechAndHealth 0.006∗∗∗ 0.028∗∗∗ 0.064∗∗∗ 0.101∗∗∗

(4.77) (6.72) (7.49) (6.58)
A × B -0.001 0.016 0.054 0.098∗

(-0.20) (0.91) (1.51) (1.67)
Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.762 0.799 0.788 0.772
Observations 11965 10572 8215 6039

Panel C: Relationship between screening efficiency of patent examiners and subse-
quent patent litigation

Dependent Variable Subsequent #PatentLitigation

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

A: AvgExaminerFalseAcceptRate -0.052 0.210 0.247 -0.076
(-0.47) (0.76) (0.52) (-0.10)

B: HiTechAndHealth -0.015 0.060 0.092 -0.002
(-0.39) (0.55) (0.44) (-0.01)

A × B 0.467∗∗ 1.151∗∗ 2.265∗∗ 4.255∗∗

(2.35) (2.22) (2.35) (2.55)
Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.123 0.161 0.180 0.198
Observations 12204 11197 9228 7182
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Table 11: Relationship between screening efficiency of patent examiners and subsequent exits of
private firms

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. SuccessfulExit is a dummy, which equals one if a given
private firm has exited through an IPO or an M&A by the end of my sample period and zero oth-
erwise. AvgExaminerFalseAcceptRate is defined as the average false acceptance rates of examiners
that are related to all granted applications for each firm in the past three years as described in
Section 6.1.1, where the false acceptance rate of an examiner associated with each patent applica-
tion is defined as the ratio of falsely accepted applications over all applications he/she has made
decisions prior to that patent application. A patent application is falsely accepted if it is accepted
by the actual examiner but rejected by the machine learning algorithm. #ApplicationsReviewed
and #PatentsGranted count the number of patent applications being reviewed and accepted for
each firm in a given past three-year rolling window. LnVCFinancingAmount is the natural log-
arithm of the quarterly investment amount for each firm. LnNumberFundInvested is the natural
logarithm of the quarterly number of invested funds for each firm. TotalFundingToDate is the
natural logarithm of total funding each firm has received prior to a given quarter. LnFirmAge is
the natural logarithm of firm age, which equals the current year minus the firm founding year
plus one. Year fixed effects, industry (two-digit SIC code) fixed effects, and state fixed effects are
included in all regressions. t-statistics are in parentheses. All regressions are OLS regressions with
standard errors clustered at the state level. ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and
10% level, respectively.

Dependent Variable Subsequent SuccessfulExit

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.019∗∗∗ -0.094∗∗∗ -0.182∗∗∗ -0.214∗∗∗

(-4.04) (-4.74) (-3.90) (-4.75)
#PatentsGranted 0.006∗∗∗ 0.021∗∗∗ 0.038∗∗∗ 0.059∗∗∗

(3.23) (4.55) (3.46) (3.42)
#ApplicationsReviewed -0.003 -0.008 -0.013 -0.032

(-1.28) (-1.37) (-1.04) (-1.68)
InvestmentAmount -0.005∗∗ -0.005∗∗ 0.007∗ 0.004

(-2.58) (-2.28) (1.83) (0.56)
NumberFundInvested 0.005∗∗∗ 0.010∗∗∗ 0.010∗∗ 0.017∗∗∗

(4.01) (3.77) (2.49) (3.42)
TotalFundingToDate 0.001 0.004∗∗∗ 0.008∗∗∗ 0.009∗∗∗

(1.27) (4.27) (3.08) (3.46)
LnFirmAge 0.010∗∗∗ 0.020∗∗∗ 0.022 0.019

(3.34) (2.69) (1.55) (0.82)
Constant -0.038∗∗∗ -0.045 0.077 0.136

(-6.93) (-1.20) (0.75) (0.98)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
R2 0.013 0.026 0.041 0.051
Observations 13478 12545 10022 7413
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Internet Appendix to “How can Innovation Screening be Improved? A
Machine Learning Analysis with Economic Consequences for Firm

Performance”

IA.1. The supervised machine learning problem and the algorithm used in this paper

IA.1.1. The supervised machine learning problem

Supervised learning is a machine learning problem of learning a function that maps input vari-
ables to an output variable using the training data with both input and output variables available.
The goal of supervised learning is to predict well with a new out-of-sample dataset (which we
usually called it the test data).

In the context of this paper, I use the training data to construct f̂(X) = ŷ from input variables
X about patent applications to predict an outcome variable y about the performance of patent
applications such that f̂(X) predicts well out of sample. Specifically, I use the training data to train
f(X) as follows:

ŷ = f̂(X) = argmin
f∈F

L(f(X), y) +R(f(X)), (IA.1)

where L(f(X), y) is the training loss function, F is the set of all possible functions f , and R(f(X))
is the regularization term.

The goal of minimizing the training loss function is to increase the in-sample prediction accuracy
as much as possible, while adding the regularization term is to avoid in-sample over fitting by
penalizing the algorithm for choosing more expressive functions.

IA.1.2. The “Extreme Gradient Boosting” algorithm

The “Extreme Gradient Boosting” algorithm (XGBoost) is an implementation of gradient boost-
ing machines, which is used for the supervised machine learning prediction described above (see,
e.g., Chen and Guestrin, 2016; Friedman, 2001). XGBoost is a decision tree ensemble based on
tree boosting. A decision tree ensemble consists of a set of decision trees, where each tree i itself
is a prediction function fi(X). Tree boosting is to train the each prediction function fi(X) using an
additive strategy: add one new tree at a time from what we have learned. Specifically, we have

ŷ0 = f̂0(X) = 0 (IA.2)

ŷ1 = f̂1(X) = f̂0(X) + f1(X) = f1(X) (IA.3)

ŷ2 = f̂2(X) = f̂1(X) + f2(X) = f1(X) + f2(X) (IA.4)

...

ŷt = f̂t(X) = f̂t−1(X) + ft(X) =

t∑
i=1

fi(X), (IA.5)

and the goal at step t is to find ft(X) that solves the following minimization problem:

ŷt = f̂t(X) = argmin
f∈F

L(ft(X) + ŷt−1, y) +R(ft(X)). (IA.6)
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Here, each prediction function fi(X) and the corresponding regularization term R(fi(X)) are de-
fined as

fi(X) = ωq(X), q : Rm → T, ω ∈ RT , (IA.7)

R(fi(X)) = γT +
1

2
λ

T∑
j=1

ω2
j (IA.8)

where ω are the leaf weights, q is a function mapping each data point to the corresponding leaf
index, T is the total number of leaves in the tree, both γ and λ are parameters to weight each of
these two complexity measures in order to avoid over-fitting (see Chen and Guestrin, 2016 for a
detailed discussion).
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IA.2. Additional Figures

IA.2.1. Results using the generality measure based on the USPC classification

Figure IA.1: The relation between predicted USPC-based generality, actual USPC-based generality, and grant rate of actual examiners in
the test set

The figure shows the relation between predicted USPC-based generality, actual USPC-based generality, and grant rate of actual

examiners in the test set. In the left panel, the average predicted USPC-based generality of patent applications in each bin based on

the machine learning algorithm is on the x-axis and the actual USPC-based generality is on the y-axis. In the right panel, the rank of

the average predicted USPC-based generality of patent applications in each bin based on the machine learning algorithm is on the

x-axis and the grant rate is on the y-axis.
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Figure IA.2: Comparison between applications rejected by stricter examiners and applications
rejected by the algorithm

This figure shows comparison between applications rejected by stricter examiners and applications rejected by the algo-

rithm. I divide the sample up equally into 20 bins by predicted USPC-based generality (x-axis). In both panels, the black

bar at the bottom of each bin shows the fraction of patent applications rejected by more lenient examiners. The red bar

in the top panel shows which applications less lenient examiners actually reject. The blue bar in the below panel shows

which applications the algorithm would reject to match the grant rate of less lenient examiners.
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IA.2.2. Results using the number of citations

Figure IA.3: The relation between predicted citations, actual citations, and grant rate of actual examiners in the test set

The figure shows the relation between predicted citations, actual citations, and grant rate of actual examiners in the test set. In the

left panel, the average predicted number of citations of patent application in each bin based on the machine learning algorithm is on

the x-axi and the actual citation is on the y-axis. In the right panel, the rank of the average predicted number of citations of patent

application in each bin based on the algorithm is on the x-axis and the grant rate is on the y-axis.
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Figure IA.4: Comparison between applications rejected by stricter examiners and applications
rejected by the algorithm

This figure shows comparison between applications rejected by stricter examiners and applications rejected by the al-

gorithm. I divide patent applications in the test set into 20 bins by the predicted number of citations (x-axis). In both

panels, the black bar at the bottom of each bin shows the fraction of patent applications rejected by more lenient exam-

iners. The red bar in the top panel shows which applications less lenient examiners actually reject. The blue bar in the

below panel shows which applications the algorithm would reject to match the grant rate of less lenient examiners.
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IA.3. Additional Tables

Table IA.1: Relationship between screening efficiency of patent examiners and subsequent
operating performance of public firms (Cash Flow)

The sample consists of firms that have at least one patent application filed since 2010 and with application outcome
available by 2018. Cash Flow is the quarterly cash flow over book assets. AvgExaminerFalseAcceptRate is defined as
the average false acceptance rates of examiners that are related to all granted and rejected applications for each
firm in a given past three-year rolling window as described in Section 6.1.1, where the false acceptance rate of an
examiner associated with each patent application is defined as the ratio of falsely accepted applications over all
applications he/she has made decisions prior to that patent application. A patent application is falsely accepted
if it is accepted by the actual examiner but rejected by the machine learning algorithm. #ApplicationsReviewed
and #PatentsGranted count the number of patent applications being reviewed and accepted for each firm in a
given past three-year rolling window. FirmSize is the natural logarithm of book assets. Leverage is the total debt
(both current liability and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the market to
book ratio. R&D Expenditures are the quarterly R&D expenditures over book assets. All accounting variables (i.e.,
Cash Flow, R&D Expenditures, Leverage, Ln(M/B)) are winsorized at 0.1% and 99.9%. Quarter fixed effects and
industry (two-digit SIC code) fixed effects are included in all regressions. All regressions are OLS regressions with
standard errors double clustered at the firm and quarter level. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate
significance at the 1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent Cash Flow

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.045∗∗∗ -0.119∗∗∗ -0.240∗∗∗ -0.265∗∗∗

(-5.09) (-3.96) (-4.35) (-3.28)
#ApplicationsReviewed -0.020∗∗∗ -0.076∗∗∗ -0.160∗∗∗ -0.237∗∗∗

(-5.44) (-5.38) (-5.24) (-4.71)
#PatentsGranted 0.019∗∗∗ 0.073∗∗∗ 0.155∗∗∗ 0.224∗∗∗

(5.33) (5.36) (5.24) (4.63)
FirmSize 0.011∗∗∗ 0.046∗∗∗ 0.088∗∗∗ 0.124∗∗∗

(13.89) (17.39) (16.96) (14.07)
Leverage -0.074∗∗∗ -0.254∗∗∗ -0.390∗∗∗ -0.470∗∗∗

(-11.65) (-11.99) (-8.95) (-6.13)
Ln(M/B) 0.011∗∗∗ 0.037∗∗∗ 0.069∗∗∗ 0.101∗∗∗

(9.84) (10.17) (8.90) (7.29)
R&D Expenditures -0.924∗∗∗ -3.381∗∗∗ -6.361∗∗∗ -9.494∗∗∗

(-18.61) (-22.71) (-20.03) (-18.08)
Constant -0.130∗∗∗ -0.695∗∗∗ -1.464∗∗∗ -2.340∗∗∗

(-4.77) (-6.58) (-8.00) (-6.28)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.432 0.536 0.546 0.542
Observations 11622 10125 7744 5591
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Table IA.2: Relationship between screening efficiency of patent examiners and subsequent
outcomes of public firms (A within-firm analysis)

The sample consists of firms that have at least one patent application filed since 2010 and with
application outcome available by 2018. ROA is the ratio of quarterly net income over book assets.
R&D Expenditure is the R&D expenditure over the book value total assets. #PatentLitigation counts
the quarterly number of patent litigation that firms act as defendants. AvgExaminerFalseAcceptRate
is defined as the average false acceptance rates of examiners that are related to all granted and
rejected applications for each firm in a given past three-year rolling window as described in Sec-
tion 6.1.1, where the false acceptance rate of an examiner associated with each patent application
is defined as the ratio of falsely accepted applications over all applications he/she has made deci-
sions prior to that patent application. A patent application is falsely accepted if it is accepted by
the actual examiner but rejected by the machine learning algorithm. #ApplicationsReviewed and
#PatentsGranted count the number of patent applications being reviewed and accepted for each
firm in a given past three-year rolling window. FirmSize is the natural logarithm of book assets.
Leverage is the total debt (both current liability and long-term debt) over book assets. Ln(M/B) is
the natural logarithm of the market to book ratio. Quarter fixed effects and firm fixed effects are
included in all regressions. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

Panel A: Relationship between screening efficiency of patent examiners and subse-
quent ROA

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.013 -0.045∗ -0.091∗∗∗ -0.146∗∗∗

(-1.23) (-1.90) (-2.62) (-3.50)
#ApplicationsReviewed -0.002 0.018∗∗ 0.036∗∗∗ 0.033∗∗

(-0.59) (2.38) (2.93) (2.05)
#PatentsGranted 0.002 -0.014∗ -0.017 -0.008

(0.49) (-1.93) (-1.49) (-0.55)
FirmSize 0.014∗∗∗ 0.025∗∗∗ -0.007 -0.012

(6.78) (4.91) (-0.85) (-1.01)
Leverage -0.087∗∗∗ -0.218∗∗∗ -0.174∗∗∗ -0.012

(-12.34) (-12.30) (-5.69) (-0.28)
Ln(M/B) 0.023∗∗∗ 0.068∗∗∗ 0.079∗∗∗ 0.075∗∗∗

(18.13) (22.16) (15.36) (10.40)
R&D Expenditures -0.365∗∗∗ -1.081∗∗∗ -1.090∗∗∗ -0.741∗∗∗

(-13.53) (-16.98) (-10.60) (-5.03)
Constant -0.117∗∗ -0.361∗∗∗ -0.087 -0.377∗

(-2.06) (-2.85) (-0.51) (-1.95)
Firm FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.692 0.875 0.936 0.964
Observations 11954 10536 8170 5995
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Panel B: Relationship between screening efficiency of patent examiners and subse-
quent R&D expenditures

Dependent Variable Subsequent R&D Expenditures

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate -0.007∗ -0.019∗ -0.036∗∗ -0.034∗

(-1.96) (-1.76) (-2.16) (-1.70)
#ApplicationsReviewed 0.000 -0.010∗∗∗ -0.022∗∗∗ -0.031∗∗∗

(0.25) (-2.97) (-3.81) (-3.92)
#PatentsGranted -0.000 0.008∗∗ 0.017∗∗∗ 0.029∗∗∗

(-0.27) (2.48) (3.07) (3.85)
FirmSize -0.007∗∗∗ -0.017∗∗∗ -0.013∗∗∗ -0.021∗∗∗

(-9.24) (-7.14) (-3.12) (-3.46)
Leverage 0.008∗∗∗ 0.018∗∗ 0.024 0.001

(3.05) (2.17) (1.64) (0.05)
Ln(M/B) -0.001 -0.006∗∗∗ -0.007∗∗∗ -0.010∗∗∗

(-1.36) (-4.20) (-2.95) (-2.95)
R&D Expenditures 0.351∗∗∗ 0.838∗∗∗ 0.611∗∗∗ 0.016

(35.03) (28.58) (12.29) (0.23)
Constant 0.056∗∗∗ 0.182∗∗∗ 0.219∗∗∗ 0.394∗∗∗

(2.65) (3.12) (2.62) (4.21)
Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.844 0.917 0.956 0.975
Observations 11965 10572 8215 6039
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Panel C: Relationship between screening efficiency of patent examiners and subse-
quent patent litigation

Dependent Variable Subsequent #PatentLitigation

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRate 0.140 0.511∗∗ 0.594 1.008∗

(1.49) (2.01) (1.37) (1.82)
#ApplicationsReviewed -0.122∗∗∗ -0.474∗∗∗ -0.949∗∗∗ -1.248∗∗∗

(-4.21) (-5.89) (-6.26) (-5.84)
#PatentsGranted 0.006 0.002 -0.006 -0.110

(0.22) (0.02) (-0.04) (-0.54)
FirmSize -0.008 -0.049 -0.138 -0.201

(-0.42) (-0.92) (-1.33) (-1.30)
Leverage -0.187∗∗∗ -0.816∗∗∗ -1.236∗∗∗ -0.989∗

(-2.92) (-4.38) (-3.38) (-1.84)
Ln(M/B) -0.011 -0.066∗∗ -0.169∗∗∗ -0.204∗∗

(-0.98) (-2.04) (-2.68) (-2.17)
R&D Expenditures 0.142 0.520 0.586 0.610

(0.58) (0.76) (0.46) (0.32)
Constant 0.024 0.261 2.836∗ 4.158

(0.05) (0.19) (1.65) (1.52)
Firm FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.499 0.691 0.788 0.871
Observations 12204 11197 9228 7182
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Table IA.3: Relationship between screening efficiency of patent examiners and subsequent
outcomes of public firms (Robustness tests)

The sample consists of firms that have at least one patent application filed since 2010 and with ap-
plication outcome available by 2018. ROA is the ratio of quarterly net income over book assets. R&D
Expenditure is the R&D expenditure over the book value total assets. #PatentLitigation counts the quar-
terly number of patent litigation that firms act as defendants. AvgExaminerFalseAcceptRateAdj is defined
as the average (art-unit adjusted) false acceptance rates of examiners that are related to all granted
and rejected applications for each firm in a given past three-year rolling window as described in Sec-
tion 6.1.1, where the false acceptance rate of an examiner associated with each patent application is
defined as the ratio of falsely accepted applications over all applications he/she has made decisions
prior to that patent application. A patent application is falsely accepted if it is accepted by the actual
examiner but rejected by the machine learning algorithm. #ApplicationsReviewed and #PatentsGranted
count the number of patent applications being reviewed and accepted for each firm in a given past
three-year rolling window. FirmSize is the natural logarithm of book assets. Leverage is the total debt
(both current liability and long-term debt) over book assets. Ln(M/B) is the natural logarithm of the
market to book ratio. All accounting variables (i.e., ROA, R&D Expenditures, Leverage, Ln(M/B)) are
winsorized at 0.1% and 99.9%. Quarter fixed effects and industry (two-digit SIC code) fixed effects are
included in all regressions. All regressions are OLS regressions with standard errors double clustered
at the firm and quarter level. t-statistics are in parentheses. ∗∗∗, ∗∗ and ∗ indicate significance at the
1%, 5%, and 10% level, respectively.

Panel A: Relationship between screening efficiency of patent examiners and subsequent
ROA

Dependent Variable Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRateAdj -0.041∗∗∗ -0.093∗∗∗ -0.199∗∗∗ -0.231∗∗∗

(-3.84) (-2.69) (-3.33) (-2.68)
#ApplicationsReviewed -0.018∗∗∗ -0.068∗∗∗ -0.139∗∗∗ -0.193∗∗∗

(-4.85) (-4.92) (-4.70) (-4.02)
#PatentsGranted 0.017∗∗∗ 0.065∗∗∗ 0.133∗∗∗ 0.178∗∗∗

(4.72) (4.82) (4.63) (3.86)
FirmSize 0.011∗∗∗ 0.047∗∗∗ 0.090∗∗∗ 0.130∗∗∗

(14.24) (18.27) (18.12) (15.41)
Leverage -0.085∗∗∗ -0.297∗∗∗ -0.483∗∗∗ -0.638∗∗∗

(-13.22) (-14.29) (-11.73) (-8.93)
Ln(M/B) 0.013∗∗∗ 0.045∗∗∗ 0.085∗∗∗ 0.129∗∗∗

(11.29) (12.41) (11.32) (9.81)
R&D Expenditures -0.935∗∗∗ -3.463∗∗∗ -6.539∗∗∗ -9.653∗∗∗

(-18.56) (-23.36) (-20.91) (-18.97)
Constant -0.149∗∗∗ -0.764∗∗∗ -1.618∗∗∗ -2.605∗∗∗

(-5.36) (-7.07) (-8.66) (-6.80)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.408 0.522 0.542 0.537
Observations 11954 10536 8170 5995
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Panel B: Relationship between screening efficiency of patent examiners and subsequent
R&D expenditures

Dependent Variable Subsequent R&D Expenditures

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRateAdj -0.006∗ -0.020 -0.042∗ -0.079∗∗

(-1.76) (-1.62) (-1.86) (-2.24)
#ApplicationsReviewed 0.000 0.001 0.004 0.001

(0.42) (0.33) (0.52) (0.11)
#PatentsGranted 0.001 0.004 0.008 0.022∗

(0.54) (1.06) (1.03) (1.72)
FirmSize -0.002∗∗∗ -0.011∗∗∗ -0.025∗∗∗ -0.042∗∗∗

(-7.49) (-10.81) (-11.43) (-10.38)
Leverage -0.001 -0.014∗∗ -0.062∗∗∗ -0.129∗∗∗

(-0.76) (-2.12) (-4.08) (-5.05)
Ln(M/B) 0.002∗∗∗ 0.006∗∗∗ 0.012∗∗∗ 0.017∗∗∗

(3.64) (4.06) (3.57) (2.89)
R&D Expenditures 0.808∗∗∗ 2.961∗∗∗ 5.466∗∗∗ 7.680∗∗∗

(25.63) (27.51) (23.02) (17.36)
Constant 0.031∗∗∗ 0.195∗∗∗ 0.479∗∗∗ 0.931∗∗∗

(4.83) (5.95) (9.12) (8.09)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.760 0.796 0.784 0.767
Observations 11965 10572 8215 6039
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Panel C: Relationship between screening efficiency of patent examiners and subsequent
patent litigation

Dependent Variable Subsequent #PatentLitigation

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRateAdj 0.229∗ 0.890∗∗ 1.659∗∗ 2.641∗∗

(1.70) (2.57) (2.55) (2.35)
#ApplicationsReviewed 0.029∗∗ 0.116∗∗ 0.253∗∗∗ 0.497∗∗∗

(2.00) (2.51) (2.69) (3.24)
#PatentsGranted 0.005 0.019 0.034 -0.025

(0.36) (0.48) (0.40) (-0.18)
FirmSize 0.069∗∗∗ 0.270∗∗∗ 0.572∗∗∗ 0.925∗∗∗

(11.14) (11.91) (11.53) (10.78)
Leverage -0.284∗∗∗ -1.227∗∗∗ -2.695∗∗∗ -4.449∗∗∗

(-5.63) (-6.35) (-6.24) (-5.81)
Ln(M/B) 0.018∗∗ 0.065∗∗ 0.153∗∗ 0.344∗∗∗

(2.42) (2.37) (2.49) (3.01)
R&D Expenditures 0.777∗∗∗ 2.854∗∗∗ 5.322∗∗∗ 7.244∗∗∗

(8.31) (9.22) (7.94) (5.99)
Constant -0.226 -0.712 -2.396∗ -4.485∗∗

(-0.96) (-1.16) (-1.93) (-2.46)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
R2 0.122 0.159 0.179 0.197
Observations 12204 11197 9228 7182

IA-13



Table IA.4: Relationship between screening efficiency of patent examiners and subsequent exits of
private firms (Robustness tests)

The sample consists of firms that have at least one patent application filed since 2010 and with application outcome
available by 2018. SuccessfulExit is a dummy, which equals one if a given private firm has exited through an IPO or
an M&A by the end of my sample period and zero otherwise. AvgExaminerFalseAcceptRateAdj is defined as the aver-
age (art-unit adjusted) false acceptance rates of examiners that are related to all granted applications for each firm
in the past three years as described in Section 6.1.1, where the false acceptance rate of an examiner associated
with each patent application is defined as the ratio of falsely accepted applications over all applications he/she
has made decisions prior to that patent application. A patent application is falsely accepted if it is accepted by
the actual examiner but rejected by the machine learning algorithm. #ApplicationsReviewed and #PatentsGranted
count the number of patent applications being reviewed and accepted for each firm in a given past three-year
rolling window. LnVCFinancingAmount is the natural logarithm of the quarterly investment amount for each firm.
LnNumberFundInvested is the natural logarithm of the quarterly number of invested funds for each firm. Total-
FundingToDate is the natural logarithm of total funding each firm has received prior to a given quarter. LnFirmAge
is the natural logarithm of firm age, which equals the current year minus the firm founding year plus one. Year
fixed effects, industry (two-digit SIC code) fixed effects, and state fixed effects are included in all regressions.
t-statistics are in parentheses. All regressions are OLS regressions with standard errors clustered at the state level.
∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Dependent Variable Subsequent SuccessfulExit

1 Quarter 1 Year 2 Years 3 Years

(1) (2) (3) (4)

AvgExaminerFalseAcceptRateAdj -0.012 -0.065∗∗ -0.131∗∗ -0.151∗∗∗

(-1.24) (-2.37) (-2.29) (-2.81)
#PatentsGranted 0.006∗∗∗ 0.019∗∗∗ 0.035∗∗∗ 0.056∗∗∗

(2.85) (4.07) (3.23) (3.20)
#ApplicationsReviewed -0.002 -0.006 -0.010 -0.028

(-1.04) (-1.03) (-0.79) (-1.46)
InvestmentAmount -0.005∗∗ -0.005∗∗ 0.007∗ 0.004

(-2.61) (-2.34) (1.80) (0.53)
NumberFundInvested 0.005∗∗∗ 0.010∗∗∗ 0.010∗∗ 0.017∗∗∗

(4.02) (3.79) (2.55) (3.52)
TotalFundingToDate 0.001 0.004∗∗∗ 0.008∗∗∗ 0.010∗∗∗

(1.28) (4.33) (3.11) (3.51)
LnFirmAge 0.010∗∗∗ 0.020∗∗ 0.022 0.019

(3.34) (2.68) (1.53) (0.81)
Constant -0.038∗∗∗ -0.044 0.078 0.136

(-7.08) (-1.15) (0.76) (0.98)
Industry FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
R2 0.012 0.026 0.040 0.050
Observations 13478 12545 10022 7413
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