CHINA SHOCK AND FEMALE LABOR MARKET PARTICIPATION IN BRAZIL

Juliana Cristofani – Federal University of ABC

Ana Claudia Polato e Fava – Federal University of ABC

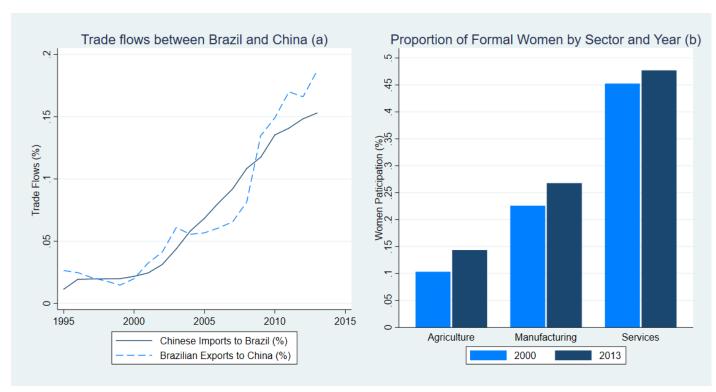
Mônica Yukie Kuwahara – Federal University of ABC

The Presentation

Context: China Shock and Brazilian Formal Labor Market

Related Literature

Empirical Strategy



Data and Main Results

Final Remarks

Context: China Shock and Brazilian Formal Labor Market

Sources: BACI database and RAIS microdata, 2021.

- In last century's final years, China experienced a fast economic growth, expanding its trade relations: China shock (Autor et al., 2013; Acemoglu et al., 2016);
- In Brazil, the China Shock effects are spread by two channels (Costa et al., 2016):
 - · Rise of commodities exports to China;
 - · Rise of manufactured imports from China.
- In a similar period, the Brazilian formal labor market also grew, with more women occupying formal jobs.

The Study: China Shock and Brazilian Formal Labor Market

- Main goal: Identify whether Chinese international trade expansion was able to improve the female labor market conditions in Brazil between 2000 and 2013, by answering two questions:
 - Does the China shock increase women's participation into the formal labor market?
 - Model 1: Effects on women's participation by microregion.
 - Does the China shock increase formal women's wages when compared to their male counterparts?
 - Model 2: Effects on the gender wage ratio (female/male) by microregion.

Related Literature

Brazil had a trade liberalization in 1990, based on import tariffs' reduction

 Workforce from most exposed industries and microregions were negatively affected (Arbache and Corseuil, 2004; Dix-Carneiro; Kovak, 2017; Kovak, 2013; Ulyssea and Ponczek, 2018).

China Shock

- In U.S., the effects for manufacturing workers were negative (Autor et al., 2013; Acemoglu et al., 2016);
- In Brazil, the exports channel tends to benefit workers, while the imports channel doesn't (Costa et al., 2016).

Literature of how trade shocks affects women in Brazil

• Analysis of how the imports channel affects women (Benguria; Ederington, 2017; Cavalcanti et al., 2020; Gaddis; Pieters, 2017).

Our contribution: Analyze the effects of both China Shock channels on formal female workers in Brazil.

Empirical Strategy

- Estimation of the China Shock effects on formal women's outcomes in each Brazilian microregion (Autor et al., 2013; Costa et al., 2016)
 - Data: RAIS Brazilian formal labor Market Census; BACI Database trade flows between countries

$$\Delta Y_{mt} = \beta_1 I S_{mt} + \beta_2 X D_{mt} + Z'_m \beta_3 + \varepsilon_m$$
 (1)

ΔY_{mt} :

- $\Delta Relative_{participation}$ = Variation in the proportion of formalized women by microregion
- $\Delta lnWage_{female/male}$ = Variation in the log of female to male (hourly) wage ratio by microregion

Measures of how each Brazilian microregion was exposed to trade with China

$$IS_{mt} = \sum_{j} \frac{L_{jm,2000}}{L_{j,2000}} \frac{\Delta I_{j}}{L_{m,2000}}, \qquad \Delta I_{j} = V_{CjB,2013} - V_{CjB,2000}$$
 (2a)

$$XD_{mt} = \sum_{j} \frac{L_{jm,2000}}{L_{j,2000}} \frac{\Delta X_{j}}{L_{m,2000}}, \qquad \Delta X_{j} = V_{BjC,2013} - V_{BjC,2000}$$
 (2b)

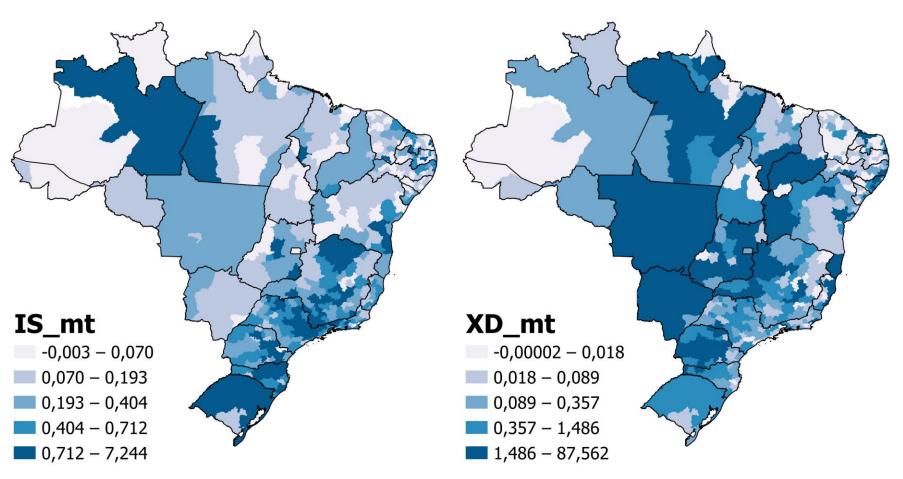
j = sector; m = microregion; t = year; L = Formalized labor force; V_{BjC} = Trade flows between Brazil and China (US\$ 1000)

 Z'_m : Covariates by microregion in 2000 => average age, proportion of workers with high school or college education, average wages, cubic polynomial of income per capita, formal women's (ln) employment

 ε_m : Error.

Empirical Strategy – Instrumental Variables

- The measures of changes in Brazil-China trade patterns might also be capturing some internal shocks
 - Solution: Instrumental variables strategy (Autor et al., 2013; Costa et al., 2016):


$$ivIS_{mt} = \sum_{j} \frac{L_{jm,2000}}{L_{i,2000}} \frac{\Delta I_{j}^{*}}{L_{m,2000}}, \qquad \Delta I_{j}^{*} = V_{0jC,2013} - V_{0jC,2000}$$
(3a)

$$ivXD_{mt} = \sum_{j} \frac{L_{jm,2000}}{L_{j,2000}} \frac{\Delta X_{j}^{*}}{L_{m,2000}}, \qquad \Delta X_{j}^{*} = V_{0jC,2013} - V_{0jC,2000}$$
(3b)

 V_{OiC} = Value (US\$ 1000) of exports (imports) from China to the other countries in the database (except Brazil).

Geographic Distribution of China Shock's Metrics (IS_{mt} e XD_{mt})

N = 411 microregions

Sources: BACI database and RAIS microdata, 2021.

Description and Summary of Variables by Microregion

Variable	Mean	Std. Dev.
$\triangle Relative_{participation}$	0.0381	(0.0802)
$\Delta lnWomen_{employment}$	0.9852	(0.3470)
$igg] \Delta ln Men_{employment}$	0.8111	(0.4191)
$\Delta lnWage_{female/male}$	0.0877	(0.2178)
ΔlnWomen _{hourly wage}	1.2906	(0.2556)
ΔlnMen _{hourly wage}	1.2029	(0.1931)
IS _{mt}	0.4986	(0.7096)
XD _{mt}	2.1594	(7.7427)
ivIS _{mt}	24.3211	(32.3083)
ivXD _{mt}	34.4260	(100.9242)
In Women's employment 2000	8.9209	(1.5144)
In Men's employment 2000	9.4223	(1.6946)
Average Age 2000	34.2680	(2.0377)
% Workers with High School	0.2445	(0.0831)
% Workers with College Education	0.0513	(0.0327)
Average Monthly Wages 2000	0.4168	(0.1574)
Income per Capita	158.01	(91.07)

Sources: BACI database and RAIS microdata, 2021.

Table 1: Effects of China Shock on Employment of Formal Women and Men by Microregion

	OLS	OLS + FE	2SLS	2SLS + FE
	(1)	(2)	(3)	(4)
Panel A: \(\Delta Relative\) participation				
	-0.563*	-0.639***	-0.554*	-0.429
S_{mt}	(0.332)	(0.243)	(0.315)	(0.318)
ZD.	-0.063***	-0.091***	-0.049	-0.100
$\mathrm{XD}_{\mathrm{mt}}$	(0.022)	(0.028)	(0.083)	(0.071)
Panel B: AlnWomen _{employment}				
	-3.18	-2.03	-3.00	-1.40
S_{mt}	(2.05)	(2.44)	(2.36)	(2.91)
/D	0.371	0.212**	0.200	0.335
$\mathrm{XD}_{\mathrm{mt}}$	(0.230)	(0.106)	(0.300)	(0.326)
Panel C: \(\Delta\lnMen_{employment}\)				
	-0.393	1.28	-0.259	1.17
IS _{mt}	(2.04)	(2.61)	(2.39)	(2.86)
VD.	0.634***	0.563***	0.416	0.685*
KD _{mt}	(0.232)	(0.184)	(0.300)	(0.411)
Observations	411	411	411	411
State Fixed Effects (FE)	No	Yes	No	Yes

Notes: Robust standard errors with mesoregion cluster in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 2: Effects of China Shock on Hourly Wages of Formal Women and Men by Microregion

	OLS	OLS + FE	2SLS	2SLS + FE
	(1)	(2)	(3)	(4)
Panel A:∆lnWage _{female/male}				
	1.57	2.37*	2.08*	2.11**
IS _{mt}	(0.968)	(1.20)	(1.12)	(1.03)
VD.	-0.120	-0.061	-0.052	-0.207
$\mathrm{XD}_{\mathrm{mt}}$	(0.080)	(0.073)	(0.176)	(0.233)
Panel B: ∆lnWomen _{hourly wag}	16			
· -	1.62	3.64**	2.26	3.38***
IS _{mt}	(1.13)	(1.42)	(1.56)	(1.29)
VD	0.334**	0.325***	1.38**	1.24**
XD_{mt}	(0.137)	(0.105)	(0.687)	(0.614)
Panel C:∆lnMen _{hourly wage}				
IC	-0.153	0.959	0.0130	1.02
IS _{mt}	(1.02)	(0.948)	(1.38)	(1.12)
VD	0.467***	0.416***	1.46**	1.51**
XD _{mt}	(0.119)	(0.113)	(0.673)	(0.762)
Observations	411	411	411	411
State Fixed Effects (FE)	No	Yes	No	Yes

Notes: Robust standard errors with mesoregion cluster in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 3: Heterogeneity Results by Structural Characteristics - Effects of China Shock on Outcomes of Formal Women and Men by Microregion

	Microregions More Educated	Microregions Less Educated	Richest Microregions	Poorest Microregions	Microregions More Populated	Microregions Less Populated
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: ∆Rela	ative _{participation}					
IS _{mt}	-0.103	-1.07**	-0.719	0.409	-0.009	-0.202
	(0.281)	(0.539)	(0.491)	(0.949)	(0.243)	(1.07)
XD_{mt}	-0.008	0.007	0.015	0.002	0.208	-0.007
	(0.052)	(0.047)	(0.039)	(0.372)	(0.151)	(0.120)
Panel B: ∆lnW	Jage _{female/male}					
IS _{mt}	0.585	3.22**	3.78***	7.26**	1.73	7.39**
	(1.14)	(1.53)	(1.36)	(3.46)	(1.24)	(3.43)
XD_{mt}	-0.028	-0.468***	0.015	-1.48	0.043	-0.526
	(0.128)	(0.145)	(0.178)	(1.75)	(0.370)	(0.321)
Observations	137	137	137	137	137	137

Notes: All models are estimated by 2SLS with State Fixed Effects; Robust standard errors with mesoregion cluster in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 4: Effects of China Shock on Outcomes of Formal Women and Men by Microregion: Short, Medium and Long Terms

	Short Term (2000-2005)	Medium Term (2000-2010)	Main Specification (2000-2013)	Long Term (2000-2015)	
	(1)	(2)	(3)	(4)	
Panel A: $\Delta Relative_{pa}$	articipation				
IS _{mt}	-4.91***	-1.24***	-0.429	-0.795**	
	(1.10)	(0.393)	(0.318)	(0.384)	
XD_{mt}	-1.19*	-0.139*	-0.100	-0.119	
	(0.627)	(0.0824)	(0.071)	(0.114)	
Panel B: $\Delta lnWage_{fer}$	male/male				
IS _{mt}	-15.1***	-1.18	2.11**	1.62	
	(4.39)	(1.76)	(1.03)	(1.29)	
XD_{mt}	-3.20	-0.479	-0.207	-0.292	
	(2.50)	(0.355)	(0.233)	(0.344)	
Observations	411	411	411	411	

Notes: All models are estimated by 2SLS with State Fixed Effects; Robust standard errors with mesoregion cluster in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 5: Robustness Checks - Effects of China Shock on Outcomes of Formal Women and Men by Microregion

	Main	South America	Latin America	BRICS	Placebo Test
	Specification	Instrument	Instrument	Instrument	(1995-2000)
	(1)	(2)	(3)	(4)	(5)
Panel A: ΔRelativ	Pe participation				
IS _{mt}	-0.429	-0.701***	-0.313	-0.577**	0.247
	(0.318)	(0.258)	(0.436)	(0.258)	(0.425)
XD_{mt}	-0.100	-0.135	-0.131	-0.059	0.0656
	(0.0708)	(0.131)	(0.134)	(0.104)	(0.0740)
Panel B: ΔlnWag	$e_{female/male}$				
IS _{mt}	2.11**	2.87***	2.41**	3.00**	0.195
	(1.03)	(1.07)	(1.03)	(1.29)	(1.75)
XD _{mt}	-0.207	0.329	0.362	-0.222	0.238
	(0.233)	(0.447)	(0.455)	(0.291)	(0.334)
Observations	411	411	411	411	411

Notes: All models are estimated by 2SLS with State Fixed Effects; Robust standard errors with mesoregion cluster in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Final Remarks

This paper is focused on the China shock effects on formal female workers in Brazil, between 2000 and 2013

Regarding the imports channel:

- In microregions most exposed, the China shock worsened the women's entry in formal labor market in some specifications;
- For those who remained in the formal market, there was a relative improvement in terms of wages.

Regarding the exports channel:

• The effects were positive for both formal women and men's hourly wages.

Other Results

- Formal female workers experience rises in relative wages in disadvantaged regions less educated, poorest, and less populated;
- Considering China shock effects in short, medium and long terms:
 - Negative for formal women's relative employment;
 - For formal women's relative wages: negative in short term, and positive on the long term.

References

- Acemoglu, D; Autor, D; Dorn, D.; Hanson, G. H.; Price, B. (2016), Import Competition and the Great US Employment Sag of the 2000s, **Journal of Labor Economics**, Vol. 34, No. S1, pp. S141-S198.
- Arbache, J. S.; Corseuil, C. H. (2004), Liberalização comercial e estruturas de emprego e salário, **Rev. Bras. Econ.**, Vol. 58, nº. 4, p. 485-505.
- Autor, D. H., Dorn, D.; Hanson, G. H. (2013), The China Syndrome: Local Labor Market Effects of Import Competition in the United States, **American Economic Review**, Vol. 103, no 6, pp. 2121-68.
- Benguria, F.; Ederington, J. (2017), Decomposing the Effect of Trade on the Gender Wage Gap, **SSRN Working Paper**.
- Cavalcanti, P.; Figueiredo, E.; Patrick, W. (2020), "Efeitos da Liberalização do Comércio sob a Desigualdade Salarial entre Gêneros", in 48° Encontro Nacional de Economia, 48., Rio de Janeiro, pp. 1-21.
- Costa, F.; Garred, J.; Pessoa, J. P. (2016), Winners and losers from a commodities-for-manufactures trade boom, **Journal of International Economics**, Vol. 102, pp. 50-69.
- Dix-Carneiro, R.; Kovak, B. K. (2017), Margins of labor market adjustment to trade, **National Bureau of Economic Research**, Working Paper No. 23595.
- Gaddis, I.; Pieters, J. (2017), The Gendered Labor Market Impacts of Trade Liberalization, **Journal of Human Resources**, Vol. 52, no 2, pp.457-490.
- Kovak, B. K. (2013), Regional Effects of Trade Reform: What Is the Correct Measure of Liberalization? **American Economic Review**, Vol. 103, no. 5, pp. 1960-76.
- Ulyssea, G; Ponczek, V. (2018), Enforcement of Labor Regulation and the Labor Market Effects of Trade: Evidence from Brazil, **IZA Discussion Papers**, No. 11783.

THANK YOU!

Juliana Cristofani - juh.cristofani@gmail.com

Ana Claudia Polato e Fava - ana.fava@ufabc.edu.br

Mônica Yukie Kuwahara - monica.kuwahara@ufabc.edu.br