Minimum Wages and the Rigid-Wage Channel of Monetary Policy

Robbie Minton Harvard University

Brian Wheaton Hoover Institute and UCLA Anderson

January 9, 2022

Introduction

- Nominal wages are thought to be rigid, especially downward, generating non-neutrality of monetary policy
- We investigate empirically whether the effect of monetary policy differs with the degree of wage rigidity in a state
- But wage rigidity has been difficult to measure, especially when monetary policy shocks were large and well-identified
- We view the extent of wage rigidity in a state as a latent variable which can be proxied by the shares of institutionally/legislatively rigid groups like
 - 1. Minimum wage workers
 - 2. Unionized workers
 - **3**. Government workers
- These groups are measurable even prior to the Volcker era

Theory

Recall the real profit maximization problem of a competitive firm:

$$\max_{X,L} F(X,L) - \frac{1}{P}\omega \cdot X - \frac{1}{P}\overline{w}L$$

- *L* is labor subject to a wage floor, and *X* is all other inputs
 - L could include, e.g., minimum wage workers or unionized workers whose wage contracts are not inflation-indexed
- If expansionary monetary policy increases ω along with P,
- Then inflation would lead to
 - A substitution effect towards factor L, as the real wage floor has fallen while other input prices have remained constant;
 - A scale effect, as inflation has reduced a real input price and induces firms to use more of all inputs.

Graphical Intuition

- Inflation causes prices, P, flexible wages, and other input prices, to increase
- The nominal wage floor, W, remains fixed. Therefore the real wage floor declines.
- The extent of the distortion in the labor market is reduced.
 - New hiring can occur particularly of workers subject to a wage floor

4

Proxy for Wage Rigidity: Minimum Wage Share

- Minimum wage worker: Any hourly wage worker making between 90%-110% of the minimum wage in the state of residence (computed in the CPS ORG).
- Boxplot shows heterogeneity across states in their minimum wage employment shares.
- We focus on this proxy today

Proxy for Wage Rigidity: Union Share

- Union worker: Any worker covered by a union contract (taken from Hirsch, Macpherson, and Vroman 2001)
- Correlation of 0.23 with the minimum wage employment share (across states and time)

Share of Employed Workers Covered by a Union Contract

Proxy for Wage Rigidity: Government Share

- Government worker: Any wage/salaried worker classified as working for the government (computed in the basic monthly CPS)
- Misses some military in group quarters/barracks
- Correlation of .09 with MW share, .10 with union share

Baseline Regressions

- Data cover 1975 2008.
- Standard (monthly) monetary policy regression:

$$\Delta L_t = \sum_{j=1}^{48} \beta_j^L \Delta L_{t-j} + \sum_{j=0}^{48} \beta_j^{FFR} \Delta FFR_{t-j} + \epsilon_t$$

- ΔL : change in log national monthly employment (from the QCEW).
- Δ*FFR*: exogenous component of the change in the federal funds rate developed in Romer and Romer (2004).
- Minimally alter this regression to test for state heterogeneity mediated by the rigid wage *cost* share (use ## to denote a full interaction):

$$\Delta L_{s,t} = \sum_{j=1}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \beta_j^{FFR} \cdot (ShareRigid_{s,t} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t}$$

Baseline Interaction Effect

- Interpretation: in response to a 1pp unexpected increase in the FFR, a state at the 90th pct of wage rigidity, relative to a state at the 10th pct, experiences
 - 1.6 pp less employment growth (MW proxy)
 - 0.6 pp less employment growth (union proxy)
 - 0.5 pp less employment growth (government proxy)

Outline for Remainder of Talk

- How robust are these results?
 - We focus on the minimum wage proxy today
 - For time reasons, and because it is our strongest result
- In light of robustness, what magnitudes do we believe? How much of monetary policy's total effect does the rigid wage channel of monetary policy explain?
- Are our results using the minimum wage proxy driven in part by changes in minimum wage employment?

Outline for Remainder of Talk

- How robust are these results?
 - We focus on the minimum wage proxy today
 - For time reasons, and because it is our strongest result
- In light of robustness, what magnitudes do we believe? How much of monetary policy's total effect does the rigid wage channel of monetary policy explain?
- Are our results using the minimum wage proxy driven in part by changes in minimum wage employment?

Initial Robustness

- Effect remains significant if we use VAR shocks (Coibion, 2012) instead of the narrative Romer and Romer (2004) shocks.
- Effect remains significant if we run the same exercise on Canadian data using shocks constructed analogously to Romer and Romer (2004) by Champagne and Sekkel (2018)

Industry Confounds

- States with a high share of rigid wage workers may have different industries than other states, and these may be the industries more exposed to monetary policy.
 - Result is robust to state and time fixed effects.
 - Controls for persistent industry differences by state and national time trends
 - Result is robust to a Bartik control, constructed as follows:
 - In each time period *t*, compute employment growth in each national industry *j*: *Shift*_{*j*,*t*}
 - For each state and time period, weight national industry employment growth by the employment share in that industry *last* period: *Share*_{s,j,t-1}
 - The control is $\Delta S_{s,t} = \sum_{j} Shift_{j,t} Share_{s,j,t-1}$
 - Result is robust to instrumenting a state's minimum wage share with legislated minimum wage increases (at the state or federal level)

Industry Confounds

 Results remain highly significant, but magnitudes have fallen to be very close to those predicted by the full model (not shown today)

Other Controls

- Not driven by crude measures of banking use: deposits per capita.
- Not driven by share of liquid deposits in banks (checking deposits / total deposits by state).
 - Motivated by Drechsler, Savov, and Schnabl (2017)
- Not driven by personal income per capita.
 - Motivated by potential MPC issues highlighted in Mian, Rao and Sufi (2013)
 - More on this soon with tradable/non-tradable analysis

Results Using the FFR Directly

Baseline Specification with FFR Treatment

Shift-Share + State/Time FE Specification with FFR Treatment

State Confounds

- One might think that the states with a high share of minimum wage workers are the same states over time.
 - Three responses:
 - The states with a high share of minimum wage workers are changing over our sample.
 - Just showed baseline results are robust to state and time fixed effects.
 - No result if, instead of minimum wage share, we interact with a dummy for being in the South.
- We perform the same analysis at the county level and include state by time fixed effects.
 - Idea here is to compare low and high minimum wage share counties within state-time to control for time-varying, state-level confounds.

Focusing on Cross-Sectional Variation

Focusing on Time-Series Variation

Conversely, we can shut down the cross-sectional variation and focus entirely on time-series variation by interacting the shock series with state FEs:

$$\Delta L_{s,t} = \sum_{j=0}^{48} \beta_j^{FFR} \cdot (ShareMin_{s,t} \# \# \Delta FFR_{t-j}) + \sum_{j=1}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \# \Delta FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} + \sum_{j=0}^{48} \gamma_j \cdot (\mathbf{1}\{State = s\} \# \Phi FFR_{t-j}) + \epsilon_{s,t} + \sum_{j=0}^{48} \beta_j^L \Delta L_{s,t-j} +$$

Exploits the variation that each state had different minimum wage shares are different moments in time

Tradable/Non-Tradable Analysis

- Our model suggests a larger effect for tradables.
- If our empirical results are actually driven by differences in the MPC across places, we would expect the opposite (since non-tradables must be produced locally).
- Results we find are more consistent with our model.

Outline for Remainder of Talk

- How robust are these results?
 - We focus on the minimum wage proxy today
 - For time reasons, and because it is our strongest result
- In light of robustness, what magnitudes do we believe? How much of monetary policy's total effect does the rigid wage channel of monetary policy explain?
- Are our results using the minimum wage proxy driven in part by changes in minimum wage employment?

Implications for Monetary Policy Efficacy

- The peak effect of a 1 pp monetary policy shock during the 1975-1990 period is a 2.8 pp reduction in employment.
- Our empirical specifications have an average interaction effect of approx. -0.5.
 - Average minimum-wage cost share over this period: 2.28%
- Implies that, over the 75-90 period, the minimum wage proxy is responsible for 41% of monetary policy's total effect.

Outline for Remainder of Talk

- How robust are these results?
 - We focus on the minimum wage proxy today
 - For time reasons, and because it is our strongest result
- In light of robustness, what magnitudes do we believe? How much of monetary policy's total effect does the rigid wage channel of monetary policy explain?
- Are our results using the minimum wage proxy driven in part by changes in minimum wage employment?

Testing the Mechanism: CPS Data

The CPS is partially longitudinal in nature.

- Households are present in the CPS for 4 months in a row, out of the CPS for 8 months, and then back in the CPS for another 4 months.
- In the 4th month, individuals are asked a variety of questions about their employment and wage status – including hourly wage.
- 12 months later, they are asked the same questions again.
- We can leverage this data to determine whether, indeed, expansionary monetary policy leads to new hires that are disproportionately minimum-wage workers.

$$\Delta L_{s,t} = ShareMin_{s,t} + \sum_{j=0}^{3} \beta_{j}^{FFR} (ShareMin_{s,t} \# \Delta FFR_{t-j}) + \vartheta_{t} + \eta_{s} + \epsilon_{s,t}$$

Effect of Monetary Policy on Hiring of Minimum-Wage vs. Non-Minimum-Wage Workers

- Share of new hires earning the minimum wage declines more in the high minimum wage states
- Similar but borderline insignificant effect for fires

Conclusion

- Rigid wages have long been thought to lead to non-neutrality of monetary policy
- We demonstrate that this hypothesis holds and may explain at least 41% of monetary policy's total effect
- Moreover, heterogeneity in rigid wage shares may generate substantial heterogeneity in the effect of monetary policy across states and time

Thank You!