Estimation of a Partially Linear Seemingly Unrelated Regressions Model Application to a Translog Cost System

Xin Geng [∗] & Kai Sun †

[∗]Nankai University †Shanghai University

nptotic normality

em 1. Under Assumptions A1–A4, we have

by [Zellner \(1962\)](#page-0-1), our SUR estimator for β is

$$
\widehat{\beta}_{\text{sur}} = \left(\sum_{i=1}^{n} \widehat{x}_{i}^{*} \widehat{\Sigma}_{m}^{-1} \widehat{x}_{i}^{*} \right)^{-1} \left(\sum_{i=1}^{n} \widehat{x}_{i}^{*} \widehat{\Sigma}_{m}^{-1} \widehat{y}_{i}^{*} \right).
$$
\n(7)

where \widehat{x}_{si}^* and \widehat{y}_{si}^* are residuals from single-equation nonparametric regression for $\mathbb{E} (x_{si} | z_{si})$ and $\mathbb{E} (x_{si} | z_{si})$ $\mathbb{E} (y_{si} | z_{si})$, and $\widehat{\Sigma}_m = {\{\widehat{\sigma}_{sl}\}}_{s,l=1}^{m,m}$ $\sum_{s,l=1}^{m,m}$ with $\widehat{\sigma}_{sl} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n \widehat{u}_{si}\widehat{u}_{li}$ and $\widehat{u}_{si} = \widehat{y}_{si}^* - \widehat{x}_{si}^{*'}\widehat{\beta}_s$.

$$
\sqrt{n}\left(\widehat{\beta}_{\text{sur}} - \beta\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V),\tag{8}
$$

where $V = \left(\mathbb{E}\left(x_i^*\right)\right)$ $\sum_{i}^{*}\sum_{m}^{-1}x_{i}^{*}$ $\binom{N}{i}$ $^{-1}$.

rametric estimator

$$
\widehat{\theta}_s(z) = \widehat{g}_{sy}(z) - \widehat{g}_{sx}(z)'\widehat{\beta}_s, \qquad \widetilde{\theta}_s(z) = \widehat{g}_{sy}(z) - \widehat{g}_{sx}(z)'\widehat{\beta}_{s,\text{sur}}.
$$

Theorem 2. Under Assumption A1–A4 and assuming that $\mathbb{E}\left(|u_{si}|^{2+\delta} \mid z_{si}, x_{si}\right) \leq C$ for some | ve have

this result suggests that it is optimal to estimate the nonparametric part using the Cholesky decomposition and always place the equation of interest at the end of the system.

> $y_{1i} = \theta_1(z_{1i}) + \beta_1 x_{1i} + u_{1i}$ $y_{2i} = \theta_2(z_{2i}) + \beta_2 x_{2i} + u_{2i}$

Table 1: Finite Sample Performance with Cross-Equation Correlation ($\sigma_{12} = 0.6$)

$$
\sqrt{nh_s^{p_s}}\left(\widetilde{\theta}_s(z)-\theta_s(z)-b_{s,1}(z)\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0,\mathcal{V}_{s,1}(z)\right),\tag{9}
$$

where $b_{s,1}(z) = O_p(h_s^{p_s})$ s^{p_s}) and $\mathcal{V}_{s,1}(z) \equiv f_{sz}^{-1}$ $\int_{s}^{t-1}(z)\sigma_{ss}\int K_{s}^{2}$ $s^2(y)$ dy.

ncy discussion

► by [Zellner \(1962\)](#page-0-1), $\widehat{\beta}_{\text{sur}}$ is efficient relative to $\widehat{\beta}_{s}$ as $\text{AVar}(\widehat{\beta}_{\text{sur}}) \leq \text{AVar}(\widehat{\beta}_{s})$. z) and $\widetilde{\theta_s}(z)$ are asymptotically equivalent; cross-equation correlation is not effectively lored.

) efficient estimation of $\theta_s(\cdot)$

Martins-Filho and Yao (2009) and [Su et al. \(2013\)](#page-0-3), pre-whitening (rendering errors s rerical) for nonparametric estimation also matters

$$
X_{s} = (x_{s1}, ..., x_{sn})', \Theta_{s} (Z_{s}) = (\theta_{s} (z_{s1}), ..., \theta_{s} (z_{sn}))',
$$

$$
Y_{s} - X_{s} \beta_{s} = \Theta_{s} (Z_{s}) + U_{s},
$$

$$
Y_{s} - \Theta (Z) + U_{s}
$$
 (10)

$$
Y - X\beta = \Theta(Z) + U,\tag{10}
$$

where
$$
Y = (Y'_1, ..., Y'_m)'
$$
, $X = \begin{pmatrix} X_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_m \end{pmatrix}$, $\Theta(Z) = (\Theta_1(Z_1)', ..., \Theta_m(Z_m)')'$.
\nlet $\Sigma \equiv \mathbb{E}(UU') = PP'$, $V \equiv P^{-1}$, $\mathcal{E} \equiv VU$ with $\mathbb{E}(\mathcal{E}\mathcal{E}') = I_{mn}$.

 $\Sigma = \Sigma_m \otimes I_n$, we have $P = P_m \otimes I_n$ and $V = V_m \otimes I_n$

let $Y^* \equiv H\Theta(Z) + \mathcal{E}$ where $H \equiv \text{diag}(V)$, for each equation

$$
Y_s^* \equiv v_{ss} \Theta_s (Z_s) + \mathcal{E}_s. \tag{11}
$$

local linear estimation of an estimated Y_{si}^* σ_{si}^{*}/ν_{ss} on z_{si} would yield our SUR nonparametric imator $\widetilde{\theta}_{s,\mathrm{sur}}(z)$.

 \hat{v}_{si}^* / v_{ss} can be estimated by \widehat{Y}_{si}^* $\widehat{S}_{si}/\widehat{\nu}_{ss} \equiv \widehat{\theta}_s(z_{si}) + \widehat{\mathcal{E}}_{si}/\widehat{\nu}_{ss}$ and $\widehat{\mathcal{E}}_{si} \equiv \sum_{l=1}^m \widehat{\nu}_{sl} \widehat{U}_{li}.$

iency of $\widetilde{\theta}_{s,\mathrm{sur}}(z)$

where l

Theorem 3. Under Assumptions A1–A3, and if for any s, $l = 1, \cdots, m,$ $h_{1s}/h_{2l} \rightarrow 0,$ $nh_{1s}^{p_s}$ $\frac{p_s}{1s} \rightarrow \infty$ and $nh_{2s}^{p_s+2r_s} \to C \in [0,\infty]$ as $n \to \infty$, we have

$$
\sqrt{nh_{2s}^{p_s}}\left(\widetilde{\theta}_{s,\mathrm{sur}}(z)-\theta_s(z)-b_{s,2}(z)\right)\stackrel{d}{\longrightarrow}\mathcal{N}\left(0,\mathcal{V}_{s,2}(z)\right),\tag{12}
$$

$$
b_{s,2}(z) = O_p(h_{2s}^{r_s})
$$
 and $V_{s,2}(z) \equiv f_{sz}^{-1}(z) v_{ss}^{-2} \int K_s^2(y) dy$.

 $\widetilde{\theta}_{s,\mathrm{sur}}(z)$ is more efficient relative to $\widehat{\theta}_s(z)$ as $\mathcal{V}_{s,2} \leq \mathcal{V}_{s,1}$ given that $\Sigma_m = P_m P'_m$ and $\sigma_{ss} = \sum_{l=1}^{m} p_{sl}^2 \ge p_{ss}^2$ $v_{ss}^2 = v_{ss}^{-2}$ $\frac{-2}{ss}$.

Efficiency dependency on square root choice

-
- the Cholesky decomp. e.g, $\Sigma_m = P_m^{\text{S}} P_m^{\text{S}}$ with P_n^{S}
- we can show algebraically that
- 2. $(v_{mm})^{-2} \le (v_m^S)$ $\binom{S}{m m}^{-2}$.
-

Simulations

Consider the following DGPs

where z_{1i} and z_{2i} are i.i.d. $\mathcal{U}[0, 2], \theta_1(z_{1i}) = \sin(z_{1i}), \theta_2(z_{2i}) = \cos(z_{2i}), \beta_1 = 1, \beta_2 = 2, x_{si} = \rho z_{si} + e_{si}$ ϱ = 0.6, e_{si} ∼ i.i.d. $\mathcal{N}(1,0.5^2)$ ∀s = 1, 2, and $(u_{1i}, u_{2i})' \sim$ i.i.d. multivariate normal $\mathcal{N}(0,\Omega)$ with $\Omega = {\{\sigma_{sl}\}}_{s}^{2,2}$ $_{s,l=1}^{2,2}, \sigma_{11} = \sigma_{22} = 1$, and $\sigma_{12} = \sigma_{21} = 0.6$.

	β_1				β_2			$\theta_1(\cdot)$			$\theta_2(\cdot)$		
\boldsymbol{n}	Bias	Var	MSE	Bias	Var	$_{\rm{MSE}}$	Abias	Avar	AMSE	Abias	Avar	AMSE	
Partially linear SUR $-\hat{\beta}_{s,\text{sur}},\tilde{\theta}_{s}(\cdot)$													
100	0.0046	0.0298	0.0298	0.0097	0.0309	0.0310	-0.0033	0.0421	0.1292	-0.0093	0.0414	0.1306	
200	0.0050	0.0128	0.0128	-0.0017	0.0140	0.0140	0.0007	0.0223	0.0590	0.0104	0.0234	0.0634	
400	-0.0011	0.0063	0.0063	0.0032	0.0066	0.0066	0.0052	0.0118	0.0306	-0.0011	0.0121	0.0322	
800	0.0022	0.0034	0.0034	0.0039	0.0033	0.0034	-0.0021	0.0072	0.0170	-0.0031	0.0071	0.0169	
1600	0.0012	0.0016	0.0016	0.0020	0.0017	0.0017	-0.0008	0.0040	0.0088	0.0001	0.0040	0.0090	
Robinson's single-equation $-\hat{\beta}_s, \hat{\theta}_s(\cdot)$													
100	0.0025	0.0469	0.0469	0.0087	0.0464	0.0465	0.0000	0.0438	0.1754	-0.0078	0.0435	0.1727	
200	0.0063	0.0198	0.0198	-0.0045	0.0211	0.0211	-0.0014	0.0230	0.0785	0.0148	0.0242	0.0822	
400	0.0015	0.0094	0.0094	0.0045	0.0100	0.0100	0.0010	0.0122	0.0393	-0.0034	0.0124	0.0413	
800	0.0028	0.0051	0.0051	0.0052	0.0052	0.0052	-0.0031	0.0073	0.0214	-0.0052	0.0073	0.0220	
1600	0.0010	0.0025	0.0025	0.0002	0.0024	0.0024	-0.0005	0.0041	0.0113	0.0029	0.0040	0.0111	

Nonparametric SUR estimator $-\tilde{\theta}_{s,\text{sur}}(\cdot)$

Note: (1) This table compares the effects of sample size on the partially linear SUR and Robinson equation-by-equation models when there exists cross-equation correlation (i.e., $\sigma_{12} = 0.6$). (2) For the partially linear SUR model, the parametric components are estimated with the feasible SUR estimator, and the nonparametric components are estimated with the two-step nonparametric estimator.

 \blacktriangleright efficiency of $\widetilde{\theta}_{s,\mathrm{sur}}(z)$ depends on $\mathcal{V}_{s,2}$ via v_{ss} , which varies with the square root choice for Σ_m denote terms induced using the Spectral decomp. by adding a superscript S , and those without for $p_m^S = P_m^{S'}$.

I Theorem 3 remains true for both $\widetilde{\theta}_{s, \text{ sur }}(z)$ and $\widetilde{\theta}_{s, \text{ sur }}^{S}(z)$.

1. moving the position of the sth equation to a later spot in the system reduces the corresponding $(v_{ss})^{-2}$.

References

Martins-Filho, C., Yao, F., 2009. Nonparametric regression estimation with general parametric error covariance. Journal of Multivariate Analysis 100 (3), 309–333.

Robinson, P., 1988. Root-n-consistent semiparametric regression. Econometrica 56 (4), 931–954.

Su, L., Ullah, A., Wang, Y., 2013. Nonparametric regression estimation with general parametric error covariance: A more efficient two-step estimator. Empirical Economics 45, 1009-1024. Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57 (298), 348-368.

Xin Geng [\(x.geng@outlook.com\)](mailto:x.geng@outlook.com)

sites.google.com/site/xingeng2015