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Motivation
I translog cost system with one input (simplified)

lnC = lnΘ(Z) + 𝛽1 lnW + 1
2
𝛽2(lnW )2 + u1

S = 𝛽1 + 𝛽2 lnW + u2

• C: total cost;W : input price
• Θ(·): eiciency parameter of environmental factors Z
• S: input share obtained by Shephard’s lemma

I more eicient estimating the system as a whole

Abstract
I motivated by estimation of a translog cost system
I propose more eicient estimators for a partially linear SUR model
I combine profile least-square (Robinson, 1988) and SUR (Zellner, 1962)
I establish asymptotic normality and eiciency for both the linear and nonparametric estimators
I covariance decomposition method maers in terms of nonparametric eiciency, i.e., Cholesky

prevails Spectral

A partially linear SUR model

Consider a system of m equations
ysi = 𝜃s(zsi) + x′si𝛽s + usi, (1)

for i = 1, · · · , n and s = 1, · · · ,m.

I 𝜃s is unknown and xsi enters linearly
I errors across equations are correlated s.t. E (usiuli) = 𝜎sl but not across time E (usiult) = 0

Moment conditions
1. as E (usi | zsi, xsi) = 0, leing gsw (z) ≡ E (wsi | zsi = z) for w = x, y,

gsy (zsi) = 𝜃s(zsi) + gsx (zsi)′𝛽s, (2)
y∗si = x∗′si 𝛽s + usi, (3)

𝛽s = E
(
x∗six

∗′
si
)−1
E

(
x∗siy

∗
si
)
, (4)

where y∗si = ysi − E (ysi | zsi) and x∗si = xsi − E (xsi | zsi).
2. GLS moment condition is

𝛽 = E
(
x∗i Σ

−1
m x∗′i

)−1
E

(
x∗i Σ

−1
m y∗i

)
, (5)

where 𝛽 = (𝛽′1, · · · , 𝛽′m)′, y∗i = (y∗1i, · · · , y∗mi)′, x∗i =
©«
x∗1i · · · 0
... . . . ...

0 · · · x∗mi

ª®¬, ui = (u1i, · · · , umi)′, and

Σm = Var (ui) = {𝜎sl}m,m
s,l=1.

Estimation
I by Robinson (1988), single-equation estimator for 𝛽s is

𝛽s =

(
n∑︁
i=1

x̂∗six̂
∗′
si

)−1 n∑︁
i=1

x̂∗siŷ
∗
si. (6)

I by Zellner (1962), our SUR estimator for 𝛽 is

𝛽sur =

(
n∑︁
i=1

x̂∗i Σ̂
−1
m x̂∗′i

)−1 (
n∑︁
i=1

x̂∗i Σ̂
−1
m ŷ∗i

)
. (7)

where x̂∗si and ŷ∗si are residuals from single-equation nonparametric regression for E (xsi | zsi) and
E (ysi | zsi), and Σ̂m = {𝜎sl}m,m

s,l=1 with 𝜎sl =
1
n
∑n

i=1 ûsiûli and ûsi = ŷ∗si − x̂∗
′

si 𝛽s.

Asymptotic normality

Theorem 1. Under Assumptions A1–A4, we have
√
n

(
𝛽sur − 𝛽

)
d−→ N(0,V ), (8)

where V =
(
E

(
x∗i Σ

−1
m x∗′i

) )−1.
Nonparametric estimator

𝜃s(z) = ĝsy (z) − ĝsx (z)′𝛽s, 𝜃s(z) = ĝsy (z) − ĝsx (z)′𝛽s,sur.

Theorem 2. Under Assumption A1–A4 and assuming that E
(
|usi |2+𝛿 | zsi, xsi

)
≤ C for some

𝛿 > 0, we have √︃
nhpss

(
𝜃s(z) − 𝜃s(z) − bs,1(z)

)
d−→ N

(
0,Vs,1(z)

)
, (9)

where bs,1(z) = Op(hpss ) andVs,1(z) ≡ f −1sz (z)𝜎ss
∫
K2
s (𝛾) d𝛾 .

Eiciency discussion

I by Zellner (1962), 𝛽sur is eicient relative to 𝛽s as AVar(𝛽sur) ≤ AVar(𝛽s).
I 𝜃s(z) and 𝜃s(z) are asymptotically equivalent; cross-equation correlation is not eectively

explored.

More eicient estimation of 𝜃s(·)
I by Martins-Filho and Yao (2009) and Su et al. (2013), pre-whitening (rendering errors

spherical) for nonparametric estimation also maers
I let Ys = (ys1, ..., ysn)′, Xs = (xs1, ..., xsn)′, Θs (Zs) = (𝜃s (zs1) , ..., 𝜃s (zsn))′,

Ys − Xs𝛽s = Θs (Zs) + Us,

Y − X𝛽 = Θ(Z) + U , (10)

where Y =
(
Y ′
1, ..., Y

′
m
)′, X =

©«
X1 · · · 0
... . . . ...

0 · · · Xm

ª®¬, Θ(Z) =
(
Θ1 (Z1)′ , ...,Θm (Zm)′

)′.
I let Σ ≡ E (UU ′) = PP′, V ≡ P−1, E ≡ VU with E (EE′) = Imn.
I as Σ = Σm ⊗ In, we have P = Pm ⊗ In and V = Vm ⊗ In
I let Y ∗ ≡ HΘ(Z) + E where H ≡ diag(V ), for each equation

Y ∗
s ≡ vssΘs (Zs) + Es. (11)

I local linear estimation of an estimated Y ∗
si/vss on zsi would yield our SUR nonparametric

estimator 𝜃s,sur(z).
I Y ∗

si/vss can be estimated by Ŷ ∗
si/̂vss ≡ 𝜃s (zsi) + Êsi/̂vss and Êsi ≡

∑m
l=1 v̂slÛli.

Eiciency of 𝜃s,sur(z)

Theorem 3. Under Assumptions A1–A3, and if for any s, l = 1, · · · ,m, h1s/h2l → 0, nhps1s → ∞
and nhps+2rs2s → C ∈ [0,∞] as n → ∞, we have√︃

nhps2s
(
𝜃s,sur(z) − 𝜃s(z) − bs,2(z)

)
d−→ N

(
0,Vs,2(z)

)
, (12)

where bs,2(z) = Op(hrs2s) andVs,2(z) ≡ f −1sz (z)v−2ss
∫
K2
s (𝛾) d𝛾 .

I 𝜃s,sur(z) is more eicient relative to 𝜃s(z) asVs,2 ≤ Vs,1 given that Σm = PmP′m and
𝜎ss =

∑m
l=1 p

2
sl ≥ p2ss = v−2ss .

Eiciency dependency on square root choice
I eiciency of 𝜃s,sur(z) depends onVs,2 via vss, which varies with the square root choice for Σm

I denote terms induced using the Spectral decomp. by adding a superscript S, and those without for
the Cholesky decomp. e.g, Σm = PSmP

S
m with PSm = PS′m .

I Theorem 3 remains true for both 𝜃s, sur (z) and 𝜃Ss, sur (z).
I we can show algebraically that

1. moving the position of the sth equation to a later spot in the system reduces the corresponding (vss)−2.
2. (vmm)−2 ≤

(
vSmm

)−2.
I this result suggests that it is optimal to estimate the nonparametric part using the Cholesky

decomposition and always place the equation of interest at the end of the system.

Simulations
Consider the following DGPs

y1i = 𝜃1(z1i) + 𝛽1x1i + u1i,
y2i = 𝜃2(z2i) + 𝛽2x2i + u2i,

where z1i and z2i are i.i.d. U[0, 2], 𝜃1(z1i) = sin(z1i), 𝜃2(z2i) = cos(z2i), 𝛽1 = 1, 𝛽2 = 2, xsi = 𝜚zsi + esi,
𝜚 = 0.6, esi ∼ i.i.d. N(1, 0.52) ∀s = 1, 2, and (u1i, u2i)′ ∼ i.i.d. multivariate normal N(0,Ω) with
Ω = {𝜎sl}2,2s,l=1, 𝜎11 = 𝜎22 = 1, and 𝜎12 = 𝜎21 = 0.6.
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