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1 Introduction

Modern central banks deploy a variety of policies in their efforts to steer the economy and

measuring the effects of these different policies is of paramount importance for monetary

economics. Since Kuttner (2001), many papers identify monetary policy shocks from the

changes of financial asset prices in a narrow time window around Federal Open Market

Committee (FOMC) announcements. Prior to the announcement, asset prices reflect the

consensus view on the state of the economy and the Fed’s expected response to it. Afterwards,

asset prices incorporate also any unexpected news conveyed in the announcement. These

news could be about the current fed funds rate or its future path, asset purchases, the Fed’s

view on the state of the economy, etc. They represent different structural shocks that may

affect the economy differently, so it is crucial to disentangle their effects.

This paper estimates the structural shocks that underlie the financial market reactions

to FOMC announcements. While the nature of the shocks is not specified ex ante, ex

post the estimated shocks can be naturally labeled as the current fed funds rate policy, an

“Odyssean” forward guidance (a commitment to a future course of policy rates), a large

scale asset purchase and a “Delphic” forward guidance (a statement about the future course

of policy rates understood as a forecast of the appropriate stance of the policy rather than

a commitment, see Campbell et al. 2012).

To estimate the structural shocks I exploit a striking, yet hitherto neglected feature

of the data. Namely, the reactions of financial variables, such as interest rates and stock

prices, to FOMC announcements are usually very small, but sometimes very large, i.e. they

have very fat tails, or excess kurtosis. This feature implies that these data may contain

information about the nature of the underlying structural shocks. Given the importance of

the Fed policies, it is vital to exploit this available information as well as possible. Previous

literature has ignored it, treating the shocks explicitly or implicitly as Gaussian. This paper

is, to my knowledge, the first attempt to tap this valuable source of information.

Intuitively, fat-tailed shocks can be identified from the data because they tend to pro-

duce informative case studies. When we see a significant market reaction to an FOMC

announcement, and the underlying shocks are independent and fat-tailed, there is a high
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chance that only a subset of the shocks is driving this reaction, while the others are very

small. This greatly facilitates detecting the unique patterns in the data corresponding to

individual shocks. As a result, the shocks are identifiable from the data via the likelihood

function alone, even in the absence of economic identifying restrictions. One contribution

of this paper is to provide the intuition of the identification based on fat tails using a sim-

ple supply and demand example. The example also illustrates how identification weakens,

and eventually vanishes, when the independence assumption is relaxed, which is particularly

relevant in the case of disentangling Fed policies.

It is a separate question why the Fed shocks’ reflections in financial data are fat tailed.

One reason could be that the Fed generally avoids surprising financial markets, until oc-

casionally it is forced to do it big time. Another reason could be that investors process

information imperfectly and focus only on the most salient dimensions (Van Nieuwerburgh

and Veldkamp, 2010).

My baseline model expresses the surprises (i.e., the high-frequency reactions to FOMC

announcements) in the near-term fed funds futures, 2- and 10-year Treasury yield and the

S&P500 stock index as linear combinations of four Student-t distributed shocks. It turns

out that these four shocks are very precisely estimated and ex post have natural economic

interpretations. The first shock raises the near-term fed funds futures, with a diminishing

effect on longer maturities, and depresses the stock prices. It can be naturally labeled as the

standard monetary policy shock. The second shock increases the 2-year Treasury yield the

most and depresses the stock prices. It can be naturally labeled as the (Odyssean) forward

guidance shock. The third shock increases the 10-year Treasury yield the most and plays a

large role in some of the most important asset purchase announcements. It can be naturally

labeled as the asset purchase shock. The fourth shock has a similar impact on the yield curve

as the Odyssean forward guidance shock, but triggers an increase, rather than a decrease,

in the stock prices. Therefore, this shock matches the concept of Delphic forward guidance

introduced by Campbell et al. (2012). I find very similar four shocks when repeating the

estimation on the principal components of a larger dataset and under a variety of other

modifications of the baseline model.

The findings of this paper are relevant for the ongoing research on the effectiveness of
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non-standard monetary policies. I track the effects of the estimated shocks using daily

local projections. I find persistent and significant effects of non-standard policies (Odyssean

forward guidance and asset purchases) on long term Treasury yields. The shocks gradually

propagate through the financial system and after a few days get reflected also in the corporate

bond spreads. Also the Delphic forward guidance shocks have significant and persistent

effects on financial variables and contribute to the historical narrative of Fed policies. One

of the largest Delphic shocks occurs in August 2011, when the Fed stated that exceptionally

low interest rates will be warranted at least through mid-2013, triggering pessimism about

the economy.

It is important that the results are robust to relaxing the assumption that the structural

shocks are independent. If different Fed shocks tend to be large simultaneously (e.g. if

they have some common stochastic volatility), the identification from fat-tails gets diluted

and eventually vanishes (e.g. Montiel Olea et al., 2022). To account for this possibility, I

generalize the Independent Student-t model and allow endogenously determined dependence

of the tail behavior. More in detail, I design a new Partially Dependent Multivariate t-

distribution (PDMT), which nests the Independent t and Multivariate t as extreme cases

and spans all intermediate degrees of tail dependence between these extremes. The PDMT

model estimated with data augmentation methods (Jacquier et al., 2007) and applied to the

Fed policy shocks detects some tail dependence, but there is also a sufficient degree of tail

independence to yield tight identification and virtually the same estimated shocks.

Previous research has used a variety of approaches and assumptions to decompose the

financial market reactions into economically interpretable components (see Gürkaynak et al.,

2005; Inoue and Rossi, 2018; Cieślak and Schrimpf, 2019; Lewis, 2019; Swanson, 2021;

Miranda-Agrippino and Ricco, 2021; Jarociński and Karadi, 2020, and others). Most of

these papers ignore the non-Gaussianity in the data and construct the shocks with the a

priori assumed features. They often use identifying restrictions familiar from the Structural

VAR literature. For example, Gürkaynak et al. (2005) separate the target factor (standard

monetary policy) from the path factor (forward guidance) imposing a zero restriction on

the response of short term rates to forward guidance. Swanson (2021) imposes a narrative

restriction that the asset purchase shock is small prior to the Zero Lower Bound (ZLB)
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period. Jarociński and Karadi (2020) separate monetary policy (a summary of standard and

non-standard policies) from information (Delphic) shocks using sign restrictions. It is very

interesting that, although I do not impose any of these restrictions, the shocks I estimate

satisfy them (sometimes up to a numerical approximation). They are also highly correlated

with their counterparts in these papers. Thus, my approach provides a statistical validation

of the assumptions imposed in these papers. That said, I refine these papers’ interpretations

of the data by distinguishing four main shocks, while they identify at most three.

Identification through non-Gaussianity, such as the excess kurtosis exploited here, has

been known since the 1990s but economic applications have started to appear only recently.

This source of identification underlies the Independent Components Analysis (ICA) (Comon,

1994; Hyvärinen et al., 2001), which is widely used in signal processing, telecommunica-

tions and medical imaging. Bonhomme and Robin (2009) use ICA to identify factor load-

ings. Methodologically closest paper to the present one is Lanne et al. (2017) who identify

structural VARs with Student-t shocks. Gouriéroux et al. (2017) extend the inference on

Structural VARs to pseudo-maximum likelihood. Gouriéroux et al. (2020) show that also

the Structural Vector Autoregression Moving Average (SVARMA) model is identified under

shock non-Gaussianity. Fiorentini and Sentana (2020) study the effects of distributional

misspecification and identify a structural VAR of volatility indices. Drautzburg and Wright

(2021) use non-Gaussianity to strengthen the identification in sign-restricted in VARs. Braun

(2021) applies identification through non-Gaussianity to the oil market. Davis and Ng (2022)

provide econometric theory for VARs with disaster-type shocks and apply it to economic un-

certainty and Covid shocks.

There are analogies between identification by non-Gaussianity and identification by het-

eroskedasticity (Rigobon, 2003). Both approaches are examples of a statistical identification

exploiting that the shocks arrive “irregularly”. For some recent applications of identification

by heteroskedasticity see e.g. Lewis (2019, 2021, forthcoming); Brunnermeier et al. (2021);

Miescu (2021). Most importantly, Lewis (2019) also identifies the effects of the Fed policies

from high-frequency financial data, and, remarkably, finds similar four dimensions of mone-

tary policy. This is notable, because his approach is very different from the present paper.

Lewis exploits the intraday time variation of the asset price volatility on the days of FOMC
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announcements. On each of these days he fits a separate time series model and performs a

separate identification. By contrast, here each FOMC announcement contributes only one

observation and I rely on contrasting financial market reactions across the announcements.

Economists commonly assume Gaussian shocks, where shock independence boils down to

their orthogonality. Consequently, in the Gaussian case the researcher needs additional iden-

tifying assumptions to choose among the infinity of orthogonal rotations of the shocks. By

contrast, in models with statistical identification, such as the non-Gaussian or heteroskedas-

tic cases, the rotations are no longer equivalent and one can discriminate among them based

on the data, for example using the likelihood function. This does not preclude imposing

identifying restrictions or informative Bayesian priors. I do not do it in this paper but it

would be a straightforward extension.

The fact that in the non-Gaussian or heteroskedastic case the likelihood function discrim-

inates among the shock rotations sidesteps some controversial issues, such as the critique of

the sign restrictions by Baumeister and Hamilton (2015), or the challenges of doing inference

in set-identified models (e.g Giacomini and Kitagawa, 2021). However, since these statistical

methods pin down the shocks only up to sign and permutation, in Monte Carlo methods one

needs to address the technical challenges of shock normalization (Waggoner and Zha, 2003)

and label switching, and this paper shows how to do it.

Section 2 presents the data, highlighting their excess kurtosis. Section 3 lays out the

baseline econometric model and explains the identification with a simple example. Section 4

reports the estimation results for the baseline model. Section 5 relaxes the key assumption

of independence in the baseline model. Section 6 estimates models with larger information

sets and different numbers of structural shocks. Section 7 tracks the longer term effects of

the shocks using daily local projections. Section 8 concludes.

2 Data

The data on high-frequency financial market reactions to FOMC announcements come from

the widely-used dataset of Gürkaynak et al. (2005) (GSS from now on) updated by Gürkaynak

et al. (forthcoming). This dataset contains the changes of financial variables in a 30-minute
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window around FOMC announcements (from 10 minutes before to 20 minutes after the

announcement). The sample studied here contains 241 FOMC announcements from 5 July

1991 to 19 June 2019.

In the baseline analysis I consider a vector of four variables (later I also extract factors

from a larger set of variables). I refer to the variables using their well-known GSS database

identifiers. MP1, or the first fed funds future adjusted for the number of the remaining days

of the month (see GSS for details) is the expected fed funds rate after the meeting. ONRUN2

and ONRUN10 are the 2- and 10-year Treasury yields. Finally, SP500 is the Standard and

Poors 500 blue chip stock index.

The choice of MP1, ONRUN2 and ONRUN10 follows Swanson (2021), who finds that

these three variables approximately span the target, path and LSAP factors that he con-

structs. I add the SP500 in order to capture the effects beyond the yield curve.

Figure 1: The empirical distributions of the baseline variables.
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The responses of the four baseline variables to FOMC announcements are very non-

Gaussian. Figure 1 reports, for each variable, the histogram, a Gaussian density and a

Student-t density each fitted into the data by maximum likelihood. We can clearly see

that the Gaussian densities, plotted in red, fit the histograms poorly. First, the Gaussian

distributions predict too few near-zero observations. Second, the observed 4-, 6- and even 8-

standard deviation outliers are unlikely under the Gaussian distribution. The fitted Student-

t densities, which agree with the histograms quite well, have very low shape parameters

(v = 0.6, 1.7, 2.3, 2.3, respectively) implying very large departures from Gaussianity.

3 The baseline econometric model

The baseline model assumes that market responses to FOMC announcements are driven by

independent t-distributed shocks:

yt = C ′ ut, un,t ∼ i.i.d.T (v). (1)

yt = (y1,t, ..., yN,t)
′ is a vector of N variables observed at time t. ut = (u1,t, ..., uN,t)

′ is a

vector of unobserved, structural (i.e. uncorrelated) shocks. C is an N × N matrix whose

i, j-th element C(i, j) contains the effect of shock i on variable j. Equation (1) is a special

case of a Structural VAR with no lags of yt.
1 T (v) denotes the Student-t density with v

degrees of freedom and the probability density function

p(un,t) = c(v) (1 + u2n,t/v)
− v+1

2 , (2)

where c(v) = v−1/2B
(
1
2
, v
2

)−1
is the integrating constant, with B(·, ·) denoting the beta

function.

A sample of T observations satisfies

Y = U C, (3)

1Lags of yt do not help predict yt. Bauer and Swanson (2022) argue that yt can be partly predicted (in
sample) by certain other lagged variables but that this is inconsequential for studying the high-frequency
effects of FOMC announcements on financial variables.
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where Y is the T × N matrix with y′t in row t and U is the corresponding T × N matrix

of structural shocks. It is convenient to reparameterize the model in terms of W = C−1, so

that we can write YW = U . The log-likelihood of the sample Y is

log p(Y |W, v) = T log | detW | − v + 1

2

∑
t

∑
n

log(1 + u2n,t/v) + TN log c(v), (4)

where un,t = y′tw
n, with wn the n-th column of W . By maximizing the likelihood (4) we

can estimate the set of shocks U and their effects C = W−1. U and C are identified up

to reordering and flipping the signs. The identification of this model depends crucially on

non-Gaussianity and a sufficient degree of independence of the shocks.

3.1 The intuition behind the identification

The purpose of this section is to provide a simple illustration how structural relationships get

revealed in the data in the presence of excess kurtosis and a sufficient degree of independence.

For formal proofs that non-Gaussianity (of a more general form) of all but one shocks implies

identification see e.g. Lanne et al. (2017), Proposition 2, or the discussion in Sims (2021).

For a simple illustration, consider a market for good A. Market prices P and quantities

Q are determined by demand and supply, each subject to shocks. ∆P and ∆Q are the

innovations in P and Q in response to shocks. Can we identify the slopes of the demand

and supply curves from the data on ∆P and ∆Q?

Consider two structural models. In Model 1 the demand schedule is flat and the supply

schedule is steep, while in Model 2 it is the reverse. Models 1 and 2 satisfy equation (5) with

coefficients C1 and C2 respectively,∆Q

∆P

 = C ′
i∈{1,2}

s
d

 , with C ′
1 =

 0.94 0.33

−0.14 0.99

 , C ′
2 =

 0.14 0.99

−0.94 0.33

 , (5)

where s is a supply shock and d a demand shock. In Model 1 a unit supply shock s increases

the quantity supplied by 0.94 while the market price falls by 0.14, revealing a flat demand

curve with the slope of −0.14/0.94 ≈ −0.15. The slope of the supply curve is 0.99/0.33 = 3.
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In Model 2 the slopes are -6.7 and 0.33 respectively. Panels A and B of Figure 2 plot these

demand and supply curves.

Figure 2: Stylized example: demand and supply of good A.
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Figure 2: Continued

Model 1 Model 2
Partially Dependent Student-t shocks
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Note. Each scatter plot has 1000 observations. The samples in the left column are generated from (5) with
coefficients C1, and the samples in the right column are generated with coefficients C2. In panels C and D
the shocks d and s are independent Gaussian with mean 0 and variance 1. In panels E and F the shocks d
and s are independent Student-t with mean 0, scale parameter 1 and shape parameter v = 1.5. In panels
G and H the shocks d and s are drawn from the Partially Dependent Multivariate t distribution defined in
section 5, with mean 0 and parameters v0 = 0.85 and v̄ = 0.65. In panels I and J the shocks are drawn
from the Multivariate Student-t with mean 0, scale parameter identity matrix and shape parameter v = 1.5.
Before feeding to the model, the shocks are re-scaled so that their sample standard deviations equal 1. In
all scatter plots, ∆P and ∆Q have sample mean zero, sample variance 1 and sample correlation 0.2.

When the shocks s and d are Gaussian, we cannot identify the slopes from the data

on ∆P and ∆Q. The second row of Figure 2 presents the combinations of ∆P and ∆Q

obtained from Model 1 in panel C and from Model 2 in panel D, when the shocks d and

s are drawn from independent Gaussian distributions with mean 0 and variance 1. In this

example C1×C ′
1 = C2×C ′

2 = ( 1 0.2
0.2 1 ). Consequently, in both cases (∆P,∆Q) are Gaussian
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with the same first two moments, (0, 0) and ( 1 0.2
0.2 1 ), so the samples look the same.

However, when shocks s and d are independent Student-t, the situation changes. Now

Models 1 and 2 produce systematically different combinations of ∆P and ∆Q. This is

illustrated in the third row of Figure 2. The samples in the third row are generated from (5)

but this time shocks d and s are drawn from independent Student-t distributions with mean

0 and shape parameter v = 1.5. For comparability with the previous example, the drawn

shocks are re-scaled to ensure that their sample variance is 1. Hence, (∆P,∆Q) continue

to have the same first two sample moments, (0, 0) and ( 1 0.2
0.2 1 ). Nevertheless, the samples

in panels E and F look very differently from each other and even an observer lacking any

statistical training will have no problem matching each sample with the correct structural

model.

What helps here is the high kurtosis of the Student-t distribution, i.e. the fact that the

shocks are often tiny, but sometimes large. For an outlying observation, chances are that

only one of the shocks was large, while the other was tiny. Hence, these observations cluster

around the demand and supply schedules, revealing their slopes.

Figure 3: Stylized example: information in the likelihood function of the data from panel E
of Figure 2.
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Note. Likelihood of the sample in panel E of Figure 2, as a function of the rotation angle α. α = 0
corresponds to the Choleski decomposition of the sample variance of Y . Left panel: Independent Student-t
likelihood given in (4). Right panel: Gaussian likelihood.

Obviously, if we can identify the structural model visually, we can also do it numerically
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by evaluating the likelihood function. Let Y be the T×2 matrix collecting the data on prices

and quantities from panel E of Figure 2, i.e. generated from Model 1. Let U be the T × 2

matrix with orthogonal shocks. We can decompose Y into orthogonal shocks in infinitely

many ways because

Y = UC = UQ(α)Q(α)′C = Ũ C̃ for any Q(α) =

 sinα cosα

− cosα sinα

 (6)

where U ′U = I = Ũ ′Ũ . Parameter α indexes all models that fit the data Y while implying

different slopes of demand and supply. All these models have the same likelihood if we incor-

rectly assume that the shocks are Gaussian. However, the Student-t likelihood discriminates

between these alternative models. This is illustrated in Figure 3. The log-likelihood of the

data from panel E implied by the Student-t distribution of shocks, given in (4), peaks at

the rotation angle α that corresponds to Model 1. On the other hand, a researcher who

wrongly assumes the Gaussian model would not be able to discriminate between the models,

as the Gaussian likelihood is the same for any value of α. The Gaussian likelihood depends

only on the first two moments and all values of α yield the same first two moments. How-

ever, incorrect values of α imply that demand and supply shocks must exhibit particular

relations (such as a positive co-kurtosis), in order to match the data in panel E. This vio-

lates the independence of the shocks and hence gets penalized in the Independent Student-t

likelihood.

The identification relies crucially on the shocks being independent. Figure 2 shows also

what happens when the shock continue to have marginal Student-t distributions but the

independence assumption is relaxed. In particular, they are still orthogonal, but when one

of the shocks is large in absolute value, the probability that the other shock is large in

absolute value increases. This blurs the picture compared with the case of independence. In

panels G and H the shocks are moderately dependent and the models are still identifiable,

but less clearly so, because there are more cases when both shocks are large, producing

outliers that lay far away from either of the curves. Finally, in panels I and J the shocks are

extremely dependent, (they come from a 2-dimensional Multivariate Student-t distribution).
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In this case the identification breaks down. An outlying observation is very likely to reflect

a combination of a large demand and large supply shock, and it is not likely to lay on one

of the curves. The samples generated from Models 1 and 2 are not systematically different.

The likelihood as a function of α is again flat.

The rest of the paper investigates whether the non-Gaussianity of the FOMC policy

surprises reveals the slopes of structural relations conditional on different Fed shocks. In

this real-life case no bi-variate scatter-plot of the variables from the GSS dataset looks as

clear as panels E and F of Figure 2, so clearly one needs to consider more than two shocks

and one needs to reconsider the assumption of independence. For ease of exposition, I start

with the case of independence and then show that relaxing independence changes little in

this particular empirical application.

3.2 Estimation

I estimate model (1) and conduct inference on the structural shocks and their impacts on

the variables. I use the maximum likelihood estimation to obtain the point estimates Ŵ

and v̂, the structural shocks Û = Y Ŵ , the impact matrix Ĉ = Ŵ−1 and other quantities

discussed later. To assess the estimation uncertainty I estimate the model with the Bayesian

approach under flat priors (so effectively I simulate the exact shape of the likelihood), using

the Metropolis-Hastings algorithm.

3.2.1 Maximum likelihood

I maximize the likelihood function (4). The Online Appendix provides the analytical ex-

pression for the gradient. One peculiarity of model (1) is that it is only identified up to a

permutation of the shocks and up to scaling each shock by +/-1. The likelihood p(Y |W ) is

invariant to permuting the columns of W (N ! possibilities) and flipping their signs (2N pos-

sibilities), and consequently it has N ! × 2N equally high modes. The maximization routine

converges to one of these modes, Ŵ , which corresponds to a particular ordering and signs

of the shocks. I compute the asymptotic variance of (vec Ŵ ′, v̂)′ as V = (−H)−1, where H is

the Hessian of the log-likelihood at Ŵ , v̂.
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3.2.2 Bayesian estimation with the Metropolis-Hastings algorithm

Next I use the Metropolis-Hastings algorithm to draw a sample of parameter values from the

distribution proportional to the likelihood. This has two purposes. First, I want to explore

the shape of the likelihood function in order to detect potential identification problems.

Second, I want the inference about nonlinear functions ofW , such as the C, to be as precise as

possible. With a sample from the Metropolis-Hastings algorithm I can assess the uncertainty

about all quantities of interest precisely without relying on asymptotic approximations.

Simulation. I start the simulation from the maximum likelihood estimate Ŵ , v̂. I gen-

erate proposal draws with a random walk model with the innovation variance equal to the

asymptotic variance V scaled to ensure the acceptance rate of about 20%. The scale is 0.66 in

the baseline model. I generate 10,000,000 draws and keep every 10,000-th. This simulation

takes less than 5 minutes on a standard laptop. The convergence of the Markov Chain is

confirmed with the Geweke (1992) diagnostics.

Normalization. The Metropolis-Hastings chain may visit the neighborhoods of different

modes. As a consequence, given a draw of W one does not know to what ordering and signs

of the shocks it corresponds. The draw needs to be normalized, i.e. mapped into the same

ordering and signs of the shocks as in Ŵ . One of the contributions of this paper is to propose

a practical procedure for doing this. I proceed in two steps. First, I fix the signs of the shocks

for each permutation. Second, I pick one of the (up to) N ! permutations, choosing the one

that has the highest probability under the Gaussian approximation of the likelihood function

around Ŵ .

Let W̃ denote a draw of W , let p = 1, ..., N ! index the permutations of the N columns of

W̃ , let W̃p denote the matrix obtained by the p-th permutation of the columns of W̃ , let VW
denote the asymptotic variance of vecW (i.e., V without the last row and column) and let

F (x|m,V ) denote the multivariate Gaussian density with mean m and variance V evaluated

at the point x.

Algorithm 1 Given a draw W̃ , for each permutation W̃p, p = 1, ..., N !:
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1. Scale the columns of W̃p by +/-1 using the Likelihood Preserving normalization of

Waggoner and Zha (2003) (their Algorithm 1), obtaining a sign-normalized matrix

W̃LP
p .

2. Evaluate f(p) = F (vec W̃LP
p | vec Ŵ ,VW ).

Take the W̃LP
p∗ where p∗ = argmaxp f(p) as the normalized W̃ .

In practice, a finite Markov Chain may visit the neighborhoods of only a subset of modes.

In this case, rather than considering all theN ! permutations, I only consider the permutations

of those columns of W that have multiple modes before the normalization. This speeds

normalization up.

In the baseline model (defined below) estimated on the full sample the different modes of

the likelihood are well separated by regions of very low likelihood. As a result, a 10,000,000

long chain with the standard, 20% acceptance rate is unlikely to visit the neighborhood of

another mode. However, for some of the alternative models studied later the chains do visit

the neighborhoods of multiple modes and the normalization is indispensable (in these cases

I apply the Geweke (1992) diagnostics to the normalized draws of W ).

4 Estimation results for the baseline model

I define yt=(MP1, ONRUN2, ONRUN10, SP500), estimate model (1) by maximum likelihood

and then simulate the shape of the likelihood.

Figure 4 reports the distribution of the elements of C obtained with the simulation.

Vertical lines represent the maximum likelihood estimates and the histograms represent

the distribution of the draws from the Metropolis-Hastings algorithm. The distributions

look approximately Gaussian and, ex post, yield very similar inferences as the asymptotic

distribution of the maximum likelihood estimates. However, next subsections report some

models where the likelihood functions have less regular shapes and the simulation-based

inference matters.

Figure 5 reports the distribution of the degree of freedom parameter v. The maximum
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Figure 4: The distribution of C
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Figure 5: The distribution of v
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Note: Histogram of v based on the Metropolis-Hastings chain. The black vertical line represents the maxi-
mum likelihood estimate.

likelihood estimate is 1.35 and virtually all the probability mass lies between 1 and 2, im-

plying a very leptokurtic distribution.
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4.1 The impact effects of the four baseline shocks

Figure 6 reports C in a more convenient way. First, C gives the responses of Y to a unit

shock, but it is easier to interpret and compare with the previous literature the effects of a

one standard deviation shock. Although the standard deviation of u is not defined for the

Student-t density with v ≤ 2, one can always compute the sample standard deviation of Û

(obtained as Y Ŵ ). Therefore, in the following plots I re-scale the entries in each row of C

by the sample standard deviation of the corresponding column of Û . Second, for simplicity

I report only the modes and the 95% probability ranges (the ranges between quantiles 0.025

and 0.975). Third, I arrange the responses of interest rates into a yield curve, with the

maturities on the x-axis. Figure 6 shows this more convenient presentation of C and Table

1 provides the underlying numbers for reference.

Figure 6: The responses of the variables to standardized shocks, 95% band.

0 2Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

yield curve

-40

-20

0

20

40
SP500

0 2Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

← u1 = Standard monetary policy

← u2 = Odyssean forward guidance

← u3 = Long term rate shock (LSAP)

← u4 = Delphic forward guidance
(information)

The shocks reported in Figure 6 are tightly estimated and have intuitive economic inter-

pretations.
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Table 1: The responses of the variables to standardized shocks

MP1 ONRUN2 ONRUN10 SP500

u1 7.50 3.91 1.55 -26.17
(0.03) (0.30) (0.24) (3.51)

u2 -0.03 4.31 3.38 -43.31
(0.14) (0.19) (0.20) (2.47)

u3 0.03 -1.53 2.16 8.47
(0.11) (0.39) (0.33) (4.88)

u4 -0.02 2.55 1.74 35.51
(0.16) (0.30) (0.24) (2.82)

Notes. Standard deviations in parentheses. The same coefficients are
reported graphically in Figure 6.

u1 looks like a standard contractionary monetary policy shock. The fed funds rate in-

creases by 7.5 basis points and other interest rates follow, with a weaker effect for longer

maturities. The 2-year Treasury yield increases by almost 4 basis points and the 10-year

Treasury yield by about 1.6 basis points. The SP500 index drops by 26 basis points.

u2 looks like the effect of forward guidance. The fed funds rate does not change in the

near term, but the 2-year yield increases by more than 4 basis points and the 10-year yield

by 3.4 basis points in the half-hour window around the FOMC announcement. This shock

is very contractionary and the SP500 drops by 43 basis points.

u3 mostly affects the 10-year yield, while having has little effect on anything else, except

the 2-year rate, which falls a little. However, I show later that in the second half of the sample

this shock has a significant negative impact on the stock market and a positive impact on

the 2-year rate. Furthermore, its large realizations coincide with important announcements

of asset purchase policies, which justifies calling it an LSAP shock.2

Finally, u4 moves the yield curve similarly as the forward guidance shock u2, only is

about two-thirds of the size. However, by contrast to u2, this shock is accompanied by an

increase in the SP500 index by 35 basis points, which can be rationalized by the presence

of the Fed information effect. In particular, this shock perfectly matches the notion of the

Delphic forward guidance of Campbell et al. (2012).

2Swanson (2021) also finds that his LSAP shock has an insignificant effect on the stock prices in the full
sample.
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Table 2: Variance decomposition

MP1 ONRUN2 ONRUN10 SP500

u1 1.00 0.36 0.11 0.18
(0.00) (0.04) (0.03) (0.04)

u2 0.00 0.44 0.53 0.48
(0.00) (0.04) (0.07) (0.03)

u3 0.00 0.05 0.22 0.02
(0.00) (0.03) (0.06) (0.03)

u4 0.00 0.15 0.14 0.32
(0.00) (0.03) (0.03) (0.06)

Total 1.00 1.00 1.00 1.00

Note: Shares of the sample variance. Standard deviations in parentheses.

Since the shocks do not have a well-defined variance, also variance decompositions need

to be taken with a grain of salt and we should expect them to be sensitive to outliers.

Table 2 reports the variance decompositions of all variables, which should be interpreted

with this caveat. u1 is basically equivalent to MP1. In light of this, the federal funds rate

surprises are a valid instrument for the standard monetary policy shock (e.g. Kuttner (2001);

Bernanke and Kuttner (2005) use this instrument). However, the most important shock is

the Odyssean forward guidance shock u2, which accounts for 44% of the variation of 2-year

bond yields and about a half of the variation of 10-year bond yields and stock prices in

the half-hour windows around FOMC announcements. The third shock that is pervasive, in

the sense that it accounts for non-trivial shares of multiple variables, is the Delphic forward

guidance shock u4. It accounts for about 15% of the variation of Treasury yields and one

third of the variation of stock prices.

The effects of u1 and u2 on MP1 and Treasury yields reported in Table 1 are very similar

to the effects of the target factor and path factor of GSS and Swanson (2021) (see e.g.

Swanson’s Table 3). This is in spite of the fact that I do not impose any of their identifying

restrictions. Furthermore, the estimation uncertainty is very small. We can conclude that

the maximum likelihood estimation that exploits the kurtosis of the data validates these

earlier studies and their assumptions.

Another important lesson is that Fed information effects matter, as witnessed by the
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nontrivial role of u4, and they manifest themselves as the Delphic forward guidance. The

theoretical models of Melosi (2017) and Nakamura and Steinsson (2018) focus on the infor-

mation effects that accompany current fed fund rate changes, but my agnostic estimation

picks up the information effects in the forward guidance.

4.2 The estimated shocks: the history

Figure 7: The estimated shocks over time.
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Figure 7 reports the history of the shocks over time. To facilitate interpretation, the
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shocks are rescaled so that a one unit u1 shock raises the MP1 by 1 basis point, a one unit u2

and u4 raises the ONRUN2 by 1 basis point, and a one unit u3 shock raises the ONRUN10

by 1 basis point. The top panel of Figure 7 shows the pre-ZLB period 1991-2008 and the

bottom panel the remaining period 2009-2019. Vertical bars highlight many of the same

events as GSS and Swanson (2021). (For reference, the Online Appendix B provides the

responses of the variables yt to each of these events.)

The history of the standard monetary policy shock u1 agrees with the accepted ac-

counts. u1 is essentially equal to MP1 and is also highly correlated with the GSS target

factor/Swanson (2021) fed funds rate shock (rank correlation 0.76, linear correlation 0.95).

Table 3 reports these and other correlations between various shocks. In the 1991-2008 plot

we can see that, as is frequently noted, the largest realizations of standard policy shocks

occur at inter-meeting announcements (labeled “IM” in the plot). Unsurprisingly, in the

Zero Lower Bound period the standard monetary policy shocks are negligible.

The Student-t model interprets some of the forward guidance episodes as Odyssean, u2

and some as Delphic, u4, or the mix of both. Table 3 reports that the forward guidance shock

of Swanson (2021) is highly positively correlated with both u2 and u4 (rank correlations of

0.74 and 0.48 respectively). The 1991-2008 plot in Figure 7 highlights the dates of the

ten forward guidance episodes discussed in GSS (their Table 4, “Ten Largest Observations

of the Path Factor”). They are labeled with the key word of the FOMC statement or a

one-word description of its message. The Odyssean forward guidance, u2 dominates the

announcements marked ‘overshooting’ (December 1994, markets expect future tightening

after Blinder’s recent comments of ‘overshooting’), ‘unsettled’ (October 1998), ‘tightening’

(May and October 1999) and ‘drop considerable’ (January 2004, dropping of the commitment

to a ‘considerable period’ of the same policy). The Delphic forward guidance u4 dominates

the episodes labeled ‘Jan3,2001’ and ‘weakness’ (August 2002). The remaining highlighted

announcements (‘first easing’, ‘unwelcome’ and ‘considerable’) are mixtures of both types of

forward guidance.

The announcement on January 3, 2001 triggers the largest Delphic shock in the sample.

This is a large inter-meeting rate cut that, as discussed in GSS, caused financial markets to

mark down the probability or a recession and as a result expect higher rates down the road.
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The GSS methodology picks it up as a combination of a target factor easing and a path factor

(forward guidance) tightening. In this paper’s methodology the forward guidance is of the

Delphic kind and therefore reinforces the stock market gains rather than dampening them,

which helps match the extremely large, 400bp increase in the S&P500. Since this u4 shock is

so large, I test the robustness of the results to dropping the January 3, 2001 observation from

the sample and re-estimating the model. The results without this observation are basically

unchanged. The correlation of the two estimates of u4 on the remaining dates is more than

0.99 (Table 3).

In the announcement labeled ‘weakness’ on August 13, 2002 the FOMC stated that the

balance of risks has shifted towards economic weakness. This stimulated both pessimism,

reflected in stock market losses, and expectations of lower rates in the future. Therefore,

while the announcement did not promise a rate cut explicitly, it worked as a Delphic forward

guidance.

In the 2009-2019 plot in Figure 7 the largest Delphic shock is the ‘mid-2013’ announce-

ment, issued on August 9, 2011, in which the FOMC stated that the “economic conditions

... are likely to warrant exceptionally low levels for the federal funds rate at least through

mid-2013”. It is intuitive that such a wording of the forward guidance is prone to trigger

a Delphic interpretation (e.g. Del Negro et al. 2012 discuss the Delphic nature of this an-

nouncement). By contrast, the forward guidance episodes from December 2014 to March

2016 are either Odyssean, u2 or mixes of Delphic and Odyssean.

Interestingly, the ‘dovish’ announcement on September 17, 2015, which is a major forward

guidance shock in Swanson (2021), does not show up as such here. On that day markets

priced in some probability that the Fed would raise the rates for the first time since 2008.

The Fed did not change the rates and the MP1 dropped by 6.4 basis points upon the

announcement. This is interpreted here as a standard fed funds rate shock u1 of -6.4 basis

points, accompanied by a mix of small Odyssean and Delphic forward guidance shocks of

-1.5 basis points each. However, there are few other so clear discrepancies between the two

approaches.

The largest by far LSAP shock u3 accompanies the announcement of the expansion of

the QE1 program (March 18, 2009). I check the robustness of the results to omitting this
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observation, but all the lessons remain almost unchanged (see the second line of Table 3). As

in Swanson’s analysis, this shock is accompanied by a large expansionary Odyssean forward

guidance shock. Another sizable expansionary LSAP shock happens at the announcement

of the ‘Operation Twist’ (September 21, 2011). Finally, there is first a contractionary and

then an expansionary LSAP shock during the “taper tantrum” episode, the first on June

19, 2013 (‘taper’) the second on September 18, 2013 (‘no taper’). Also consistently with

Swanson’s findings, there are no expansionary LSAP shocks during the announcements of

QE2 and QE3 programs.

Table 3: Pairwise rank and linear correlations with baseline shocks u1, u2, u3 and u4

Obs. u1 u2 u3 u4

Changing the sample

Drop January 3, 2001 240 u1:
0.998

(1.000)
u2:

0.998

(0.999)
u3:

0.988

(0.995)
u4:

0.997

(0.999)

Drop QE1 (March 18, 2009) 240 u1:
0.99

(1.00)
u2:

0.99

(1.00)
u3:

0.95

(0.95)
u4:

0.96

(0.98)

Sample 1999-2004 120 u1:
0.93

(0.98)
u2:

0.89

(0.95)
u3:

0.91

(0.94)
u4:

0.97

(0.99)

Sample 2005-2019 120 u1:
0.94

(1.00)
u2:

0.82

(0.78)
u3:

0.88

(0.97)
u4:

0.96

(0.98)

Other papers

Swanson (2021) 241 ff:
0.76

(0.95)
fg:

0.75

(0.80)
lsap:

-0.66

(-0.84)
fg:

0.47

(0.49)

JK (2020) FF4 221 MP:
0.48

(0.69)
MP:

0.62

(0.44)
MP:

-0.05

(-0.04)
CBI:

0.58

(0.65)

JK (2020) 1stPC 237 MP:
0.50

(0.64)
MP:

0.69

(0.56)
MP:

-0.06

(0.02)
CBI:

0.77

(0.81)

Note. Rank (Spearman’s) correlations on top, regular font; linear (Pearson’s) correlations below,

in brackets, italics. ‘ff’, ‘fg’ and ‘lsap’ stand for fed funds, forward guidance and large scale asset

purchase shocks. ‘MP’ and ‘CBI’ stand for monetary policy and central bank information shocks.

Table 3 shows the correlations between u1, u2, u3, u4 and the related shocks identified

with very different techniques by Swanson (2021) and Jarociński and Karadi (2020). The

standard policy shock u1 is highly correlated with Swanson’s Fed Funds rate shock, the two

forward guidance shocks u2 and u4 are both highly correlated with Swanson’s single forward
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guidance shock (he does not distinguish between Delphic and Odyssean forward guidance)

and the LSAP shock u3 is highly correlated with Swanson’s LSAP shock (he scales his shock

with the opposite sign). Jarociński and Karadi (2020) have a single catch-all monetary

policy shock which is highly correlated both with u1 and with u2 (but does not capture asset

purchases u3). The Delphic shock u4 is highly correlated with the central bank information

(CBI) shock of Jarociński and Karadi (2020), which also picks up the positive correlation

between interest rate surprises and stock price surprises. For the baseline CBI shock, which

uses the fourth fed funds future (FF4) as the summary of the interest rate surprises, the

correlation is 0.58. For the CBI shock based on the first principal component of futures with

maturities up to 1 year as the summary of interest rate surprises, (reported by Jarociński

and Karadi, 2020 in the Appendix), the correlation is even higher, 0.77.

4.3 Results in subsamples

Estimation of the model on smaller sub-samples yields two corrections to the previous mes-

sages. First, in the earlier part of the sample there is some evidence of the standard infor-

mation effects associated with the movements of the current fed funds rate (as in Melosi,

2017; Nakamura and Steinsson, 2018). These standard information effects do not replace or

modify the Delphic forward guidance but appear as a separate shock substituting the LSAP

shock. Second, the LSAP shock u3 has a significant effect on the stock prices in the later

part of the sample.

Figure 8 reports the responses of all variables estimated in the first half of the sample

(left panel) and in the second half of the sample (right panel). The error bands in these

smaller samples are wider. A number of differences between the left and the right panel

show up. First, the standard policy shock is moves the yield curve in a similar way but is

larger in the first sample (MP1 increases by 9 basis points) and smaller in the second sample

(MP1 increases by less than 6 basis points). Second, in response to the Odyssean forward

guidance shock u2 medium and long rates move in parallel in the first sample, while the

effect is hump-shaped in the second sample, with the 10-year rate moving much less. Third,

the LSAP shock is non-existent in the first sample. Instead, the shock u3 now resembles the

standard information shock associated with the fed funds rate, but is not precisely estimated.
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Figure 8: First vs second half of the sample
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By contrast, the LSAP shock in the second sample is very pronounced and has a significant

and intuitive effect on the stock prices. Finally, the Delphic forward guidance shock is

broadly similar but it moves the stock prices more relatively to the interest rates in the first

half of the sample.

Figure 9 reports the responses of all variables estimated on rolling windows of 100 ob-

servations. Many of these models are imprecisely estimated, but the overall tendencies are

clear and quite intuitive. First, the standard monetary policy shock u1 becomes smaller

as the windows include more observations from the ZLB period. Second, for the Odyssean

forward guidance u2 we can see the gradual emergence of the ‘hump-shaped’ yield curve

response noted above. Third, the shock u3 is unstable and switches from being a standard

information shock in the early windows (where it is a fed funds rate hike associated with a

positive stock price response) to being a contractionary LSAP shock in the later windows.

The switch occurs at the point where the rolling window includes for the first time the QE1

announcement of March 18, 2009. However, the same switch occurs, only several months

later, when the QE1 announcement is omitted from the sample. Finally, the Delphic for-
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Figure 9: Rolling window estimates of C
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Notes. Each line plots the effect of shock ui on variable j, C(i, j) estimated on rolling samples

of 100 observations. The horizontal axis shows the last observation of the rolling sample. The

vertical line shows the beginning of the last sample.

ward guidance shock maintains similar features, while becoming slightly smaller in the later

windows.

4.4 Are the estimated shocks leptokurtic and independent?

The marginal distributions of the estimated shocks Û are very leptokurtic, consistently with

the assumed model. Figure 10 shows the histograms of the estimated shocks Û (blue bars)

along with the plots of Student-t densities T (1.35), with the degrees of freedom parameter

v = 1.35 that maximizes the likelihood function (red lines). We can see that the Student-t

densities match the histograms quite well. But how independent are the estimated shocks?
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Figure 10: The distribution of û
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Table 4: Rank correlations and linear correlations between the shocks

Rank correlations Linear correlations

u1 u2 u3 u4

u1 1 -0.01 -0.01 0.02
u2 (0.92) 1 0.02 0.04
u3 (0.90) (0.77) 1 0.01
u4 (0.70) (0.52) (0.83) 1

u1 u2 u3 u4

u1 1 -0.17 -0.07 -0.12
u2 (0.01) 1 0.31 0.04
u3 (0.25) (0.00) 1 0.02
u4 (0.06) (0.49) (0.76) 1

Note: Correlation coefficients above the diagonal, p-values in parentheses below the di-
agonal. Rank correlations (Spearman’s correlations) in the left panel, linear correlations
(Pearsons’s correlations) in the right panel. The linear correlation between u2 and u3
drops from 0.31 to 0.06 if one omits the QE1 announcement.

Table 4 reports the correlations between the shocks and, at the same time, illustrates

the perils of applying linear statistics to non-Gaussian variables. The rank (Spearman’s)

correlations, reported in the left panel are all negligible. However, the linear (Pearson’s)

correlations, reported in the right panel, are sometimes large. Especially striking is the

correlation of 0.31 between u2 (forward guidance shocks) and u3 (LSAP shocks). Such a

high correlation between Gaussian shocks would mean that they are systematically related

and hence considering their effects in isolation makes little sense. However, for non-Gaussian
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variables such a high linear correlations can happen by chance. In fact, in this case the linear

correlation is almost entirely driven by a single observation, namely the announcement of

the QE1 program in March 2009. After omitting this data point the linear correlation drops

to 0.06, revealing that the shocks u2 and u3 are not in fact systematically linearly related.

Table 5: Rank correlations between the squared shocks

(u1)
2 (u2)

2 (u3)
2 (u4)

2

(u1)
2 1 0.16 0.12 0.19

(u2)
2 (0.01) 1 0.19 0.15

(u3)
2 (0.07) (0.00) 1 0.23

(u4)
2 (0.00) (0.02) (0.00) 1

Note: Correlation coefficients above the diagonal, p-values in parentheses below the diagonal.

Table 5 reports the rank correlations between the squared shocks, in order to understand

if the shocks’ absolute sizes are also independent, as assumed in model (1). It turns out

that the shock sizes are not independent: in general large shocks are somewhat more likely

to occur together. The rank correlations are positive and, with one exception, statistically

significant at the 5% level. Given that independence plays a crucial role in the identification,

it is important to revisit model (1) and check the robustness to relaxing the assumption of

full independence (Montiel Olea et al., 2022).

5 Relaxing the assumption of independence

In this section I formulate and estimate an alternative model,

yt = C ′ut, ut ∼ PDMT (v0, v̄), (7)

where PDMT (v0, v̄) denotes the new Partially Dependent Multivariate t-distribution de-

fined below. The PDMT distribution nests the Independent t and Multivariate t as extreme

cases and spans all intermediate degrees of tail dependence between these extremes.
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5.1 The PDMT distribution

I construct the PDMT through the following steps, inspired by Jones (2002); Shaw and Lee

(2008); Jiang and Ding (2016). The construction is based on the fact that a t-distributed

variate can be obtained by scaling a Normal variate by an inverse square root of a Chi-squared

variate divided by its degrees of freedom:

If z ∼ N (0, 1), q ∼ χ2(v) and t = z

√
v

q
, then t ∼ T (v). (8)

Consequently, a vector of independent t’s can be constructed as

(
z1

√
v

q1
, z2

√
v

q2
, . . .

)
(9)

where z1, z2, ... are independent standard Normal variates and q1, q2, ... are independent Chi-

squared variates with v degrees of freedom. The Multivariate t-distribution imposes a tight

dependence on the tail behavior of all elements of the vector. A vector from the Multivariate

t distribution can be constructed as

(
z1

√
v

q
, z2

√
v

q
, . . .

)
(10)

i.e. all the independent Normal variates are scaled by the same Chi-squared variate q. The

new PDMT distribution is constructed as

(
z1

√
v0 + v1
q0 + q1

, z2

√
v0 + v2
q0 + q2

, . . .

)
(11)

where q0, q1, q2, ... are Chi-squared with v0, v1, v2, ... degrees of freedom. In the baseline case

I will impose that v1 = v2 = · · · = v̄.

The PDMT (v0, v̄) has the following attractive properties:

1. Each of its univariate marginal densities is T (v0 + v̄). This is because the sum of a

Chi-squared(v0) and Chi-squared(v̄) is Chi-squared(v0 + v̄).

2. When v0 = 0 it collapses to a vector of Independent t-distributions with v̄ degrees of
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freedom.

3. When v̄ = 0 it collapses to a Multivariate t-distribution with v0 degrees of freedom.

The disadvantage of the PDMT is that it does not have a tractable density.3 Conse-

quently, it needs to be studied using simulation methods.

5.2 Estimation

I estimate model (7) using Bayesian methods with diffuse priors and data augmentation.4 I

first rewrite it as

yt = W−1′Q
−1/2
t zt, zt ∼ N (0, IN) (12)

where

Qt = diag

(
qt0 + qt1
v0 + v̄

,
qt0 + qt2
v0 + v̄

, . . .

)
. (13)

I treat the qtn as missing data, and specify a “prior” or a likelihood for them that is χ2(vn),

i.e. gamma G(vn/2, 2), given by

p(qtn) = Γ(vn/2)
−12−vn/2q

vn/2−1
tn exp(−qtn/2) (14)

where n = 0, 1, ..., N and, in the baseline case, v1 = ... = vN = v̄. Hence, the complete data

likelihood in period t is

p(yt, q1t, ...qNt|W, v0, ..., vN) = |W−1′Q−1
t W−1|−1/2 exp

(
−1

2
y′t(W

−1′Q−1
t W−1)−1yt

)
×

N∏
n=0

Γ(vn/2)
−12−vn/2q

vn/2−1
tn exp(−qtn/2) (15)

I specify priors for parameters W, v0, v1, .... The prior for W is flat, p(W ) ∝ 1. The prior for

vn is G(αn, βn) = Γ(αn)
−1β−αn

n vαn−1
n exp(−vn/βn). I use the noninformative priors αn = 0

and βn = ∞ in the estimations reported below (I verified that using proper but weakly

informative priors makes little difference to the results).

3Jones (2002) discusses a related distribution that does have a tractable density but notes that this seems
to be an exception in this class of distributions.

4For a frequentist perspective on data augmentation see e.g. Jacquier et al. (2007).
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I conduct inference on the parameters W, v0, v1, ... using a version of the Metropolis-

Hastings algorithm. At each step of the simulation I draw new W, vn, qtn for n = 0, ..., N

and t = 1, ..., T from their respective conditional densities, conditioning on the most recent

draw of the remaining quantities.

The conditional posterior of W is

p(W |Y, ·) ∝ |W |T exp

(
−1

2

∑
t

y′tWQtW
′yt

)
. (16)

This posterior is nonstandard. To draw from it, I draw a candidateW ∗ from the Gaussian

proposal density

f(W ) = N
(
ŵ, κH−1

)
(17)

where ŵ is the mode of p(W |Y, ·), H the Hessian of log p(W |Y, ·) and κ ≥ 1 is a scalar. I

derive the analytical expressions for the gradient and the Hessian of log p(W |Y, ·) using the

methods of Magnus and Neudecker (2019).

The candidate draw is accepted with probability

min

(
1,
p(W ∗|Y, ·) f(W )

f(W ∗) p(W |Y, ·)

)
(18)

and with the complementary probability I keep the previous draw W .

The conditional posteriors of qnt, vn are also non-standard densities, related to the Gamma

density. Therefore, as the proposal density I use a Gamma density close to the target

density. I draw from the proposal Gamma density and accept the draw with the appropriate

acceptance probability as in (18). The Online Appendix provides the details.

The following results are based on a chain of 1,050,000 draws, of which I discard the first

50,000 and keep every 500th from the rest. I confirm the stationarity of the chain with the

Geweke (1992) diagnostics. While the whole inference with the Independent t model (1) in

the previous section takes seconds (maximum likelihood) or minutes (simulation), generating

a 1,050,000-long chain for the PDMT takes a few hours.
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5.3 Results

The PDMT model detects a nontrivial degree of tail dependence. Figure 11 reports the

posterior distributions of the degree of freedom parameters. The common degrees of freedom

v0 are about 50% larger than the idiosyncratic degrees of freedom v̄ (0.9 vs 0.6).

Figure 11: PDMT model: the posterior distributions of v0, v̄.
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The uncertainty about C increases in the PDMT model, but not dramatically. Figure 12

reports the 95% posterior bands for C in the PDMT model, together with the 95% bands

and maximum likelihood estimates in the independent Student-t model (1) for comparison.

We can see that the uncertainty bands are still quite tight and the bottom line is that the

estimated shocks are the same.

To gauge the sensitivity to idiosyncratic degree of freedom v̄ I push the model even further

and re-estimate it imposing a restriction v̄ = 0.3 (i.e. cutting v̄ by half) and v̄ = 0.15. As

shown in Figure 13, these restrictions widen the uncertainty bands considerably, although the

key features of the shocks are still distinguishable. Only when I try to push v̄ even lower, the

conditional posterior ofW becomes too flat and the algorithm runs into numerical problems.

The key lesson from this section is that the shocks need not be fully independent to

achieve meaningful identification. In this empirical application the baseline results are robust

to relaxing the assumption of independence. Therefore, in the remainder of the paper I revert

to the Independent t model for simplicity.
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Figure 12: PDMT model: the responses of the variables to standardized shocks.
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← u1 = Standard monetary policy

← u2 = Odyssean forward guidance

← u3 = Long term rate shock (LSAP)

← u4 = Delphic forward guidance
(information)

Notes: The blue areas show the 95% posterior probability bands in the PDMT model. The dotted
lines show the 95% bands in the Independent t model. The blue solid lines show the maximum
likelihood estimates in the Independent t model.

6 Using more information

6.1 Estimation with the principal components of interest rates

In this section I reestimate the baseline model replacing the three interest rates MP1, ON-

RUN2, ONRUN10 with the first three principal components extracted from a larger set of

interest rates. I take eight variables from the GSS dataset: the first and third fed funds

futures, the second through fourth eurodollar futures, 2-year, 5-year, and 10-year Treasury

yields. In terms of the GSS identifiers, I specify

x = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10). (19)

This choice of variables follows Swanson (2021)’s choice of liquid instruments with maturities

that do not overlap. I extract the first three principal components from x and plug them
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Figure 13: PDMT model: restricting v̄.

restriction: v̄ = 0.3 restriction: v̄ = 0.15
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Notes: The blue areas show the 95% posterior probability bands in the PDMT model. The blue
solid lines show the maximum likelihood estimates in the Independent t model.

into the model along with the SP500, i.e. I specify y=(PC1(x), PC2(x), PC3(x), SP500).

I estimate model (1) by maximum likelihood, obtaining four shocks and the matrix C

containing their effects on the three principal components and on SP500. Then I multiply

the coefficients of the principal components (i.e. the first three columns of C) by their

loadings in the principal components analysis, thus backing out the effects of the shocks on

the original GSS variables. Figure 14 reports the results.

We can see four shocks that are very similar as in the baseline case.5 The model is

now even more tightly estimated, which is intuitive if the principal components extraction

removes some idiosyncratic noise. The new findings are about the intermediate maturities

that were missing in the baseline specification. In particular, we can see that both Odyssean

and Delphic forward guidance have the strongest effects on the fourth eurodollar future, i.e.

on interest rate expectations approximately one year to the future.

5Table 7 reports their rank correlations with the baseline shocks, which range from 0.73 to 0.96.
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Figure 14: The model with the principal components: responses of the variables to stan-
dardized shocks.

with principal components baseline (for reference)
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Notes: The blue areas show the 95% posterior probability bands and the solid lines with dots
show the maximum likelihood estimates. The results are based on the Independent t model.

6.2 Models with three shocks

In this section I estimate models with three shocks. First, I drop the SP500 surprise and

limit the analysis to the three principal components of interest rate surprises, y=(PC1(x),

PC2(x), PC3(x)). This information set is the same as in Swanson (2021). It turns out that

in this case I estimate basically the same shocks as Swanson (2021). Table 6 reports that the

rank correlations between these shocks range from 0.83 to 0.95 and the linear correlations

range from 0.94 to 0.97 (I normalize the lsap shock to be a tightening so for this shock the

sign of the correlation is negative). Figure 15 shows the effects of the three shocks in the

first column. We can see the intuitive effects of a standard policy shock, a forward guidance

shock and an asset purchase shock. It is remarkable that one can recover Swanson’s shocks

by maximizing the Student-t likelihood only, without imposing his bespoke factor rotations.
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This exercise serves as another statistical validation of Swanson’s approach.

Figure 15: Models with three shocks: responses of the variables to standardized shocks.

y=(PC1(x), PC2(x), PC3(x)) y=(PC1(x′), PC2(x′), PC3(x′))
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Notes: The blue areas show the 95% posterior probability bands and the solid lines with dots
show the maximum likelihood estimates. The results are based on the Independent t model.

Table 6: Pairwise rank and linear correlations for models with three shocks

Obs. u1 u2 u3

y=(PC1(x), PC2(x), PC3(x))

Swanson (2021) 241 ff:
0.83

(0.97)
fg:

0.95

(0.95)
lsap:

-0.88

(-0.94)

y=(PC1(x′), PC2(x′), PC3(x′))

Baseline 241 u1:
0.74

(0.94)
u2:

0.97

(0.98)
u4:

0.97

(0.99)

Note. Rank (Spearman’s) correlations on top, regular font; linear (Pearson’s) correlations
below, in brackets, italics. ‘ff’, ‘fg’ and ‘lsap’ stand for fed funds, forward guidance and
large scale asset purchase shocks.

In the second experiment, I include the stock price in the vector from which I extract

three principal components. That is, I specify a nine-variable vector x′, consisting of the
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previous eight variables plus SP500,

x′ = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10, SP500). (20)

I extract three principal components, specify y=(PC1(x′), PC2(x′), PC3(x′)) and estimate

model (1). This time the three shocks picked up by the maximum likelihood estimation

are essentially the same as the standard policy (u1), Odyssean forward guidance (u2) and

Delphic forward guidance (u4) shocks in the baseline specification. This is clear both from

the impact effects of the shocks, reported in the right panel of Figure 15 and from the high

positive correlations with baseline u1, u2, u4 reported in Table 6.

To sum up, a three shock model focused on the interest rates alone recovers the fed funds,

forward guidance and LSAP shocks of Swanson (2021). A three shock model accounting for

the stock prices as well recovers the fed funds, Odyssean forward guidance and Delphic

forward guidance shocks.

6.3 Searching for more shocks

In this section I estimate models with five or more shocks. These exercises yield either

additional Delphic shocks differing by the stock price responsiveness, or a new shock that

mainly affects the exchange rate.

First, I extract five principal components from x′ and specify y=(PC1(x′), PC2(x′),

PC3(x′) PC4(x′), PC5(x′)). See the first panel of Figure 16. In this case the first three

shocks remain unchanged, but instead of a single Delphic shock we now have two Delphic

shocks, of which one moves the stock prices more relative to the yield curve, and another

less.

Second, I specify a ten-variable vector x′′, consisting of the previous nine variables plus

the euro-dollar exchange rate,

x′′ = (MP1, FF3, ED2, ED3, ED4, ONRUN2, ONRUN5, ONRUN10, SP500, EURO).

(21)

I extract five principal components from x′′ and specify y=(PC1(x′′), PC2(x′′), PC3(x′′)
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Figure 16: Models with more shocks

y =PC1-5(x′) y =PC1-5(x′′) y =PC1-6(x′′)
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PC4(x′′), PC5(x′′)). See the second panel of Figure 16. In this case the first four shocks

are again basically as in the baseline specification. Additionally, we can now observe the

responses of the dollar. The first three shocks, standard policy, Odyssean forward guidance

and LSAP shocks, have a similar effect on the dollar: it strengthens by about 15 basis points

in each case. By contrast, the Delphic shock has an insignificant effect on the dollar. We also

obtain a new, fifth shock which mainly affects the exchange rate, while having very small

effect on the interest rates and stock prices.

In the third exercise I extract six principal components from x′′ and include all of them

in y. See the third panel of Figure 16. In this case we obtain the shocks familiar from the

previous two exercises: two Delphic shocks and an exchange rate shock, in additional to the

standard policy, Odyssean forward guidance and asset purchases.

Table 7 reports the rank correlations of the shocks obtained in the above exercises with the

baseline shocks. In each case the first four shocks are highly correlated with the corresponding

baseline shocks. The new Delphic shock is mainly correlated with the baseline Delphic shock

(0.48). The new exchange rate shock is weakly negatively correlated with the LSAP shock
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Table 7: Pairwise rank correlations with the baseline model shocks

Obs. u1 u2 u3 u4

Model in Figure 14

PC1-3(x),SP500 241 u1: 0.90 u2: 0.96 u3: 0.73 u4: 0.96

Models in Figure 16

PC1-5(x′) 241 u1: 0.93 u2: 0.89 u3: 0.93 u4: 0.77

u5: 0.03 u5: 0.19 u5: -0.14 u5: 0.48

PC1-5(x′′) 241 u1: 0.91 u2: 0.92 u3: 0.69 u4: 0.97

u5: 0.00 u5: 0.12 u5: -0.23 u5: -0.06

PC1-6(x′′) 241 u1: 0.93 u2: 0.87 u3: 0.92 u4: 0.77

u5: 0.04 u5: 0.18 u5: -0.12 u5: 0.47

u6: 0.00 u6: 0.14 u6: -0.23 u6: -0.07

Note. The first column identifies the models by the variable(s) included in y.

(-0.23) and very little with the other shocks.

7 Longer term effects: daily local projections

To study the effects of the four baseline shocks beyond the first thirty minutes after the

FOMC announcement I estimate local projections:

xt+h − xt−1 = α + βi
hui,t + et, (22)

where xt is a daily financial variable and t is day of the FOMC announcement. I consider

horizons h = 1, 3, 5, 10, 15, 20, 25 business days. ui,t, i = 1, 2, 3, 4 are the maximum likelihood

estimates of the shocks implied by the baseline model above, rescaled so that a one unit

u1 shock raises the MP1 by 1 basis point, a one unit u2 and u4 raises the ONRUN2 by 1

basis point, and a one unit u3 shock raises the ONRUN10 by 1 basis point. The shocks

are included in the regressions one-by-one. βi
h is the quantity of interest: the effect of a

one unit shock. I estimate equation (22) with OLS and compute heteroskedasticity-robust

errors. Figure 17 reports the results.

Three main lessons follow from these local projection results. First, the effects of the
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Figure 17: The effects of the shocks on daily financial variables: local projections
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shocks on interest rates and stock prices in the first 30 minutes given by the matrix C are

not just temporary blips. They persist in the following days and weeks, and are statistically

significant at many, though not all horizons. In particular, shocks u1 and u2 significantly

increase the 2-year Treasury yield (with the elasticity of approximately 0.5) and depress

the stock prices (with the elasticities of -6 and -8). Shocks u2 and u3 significantly increase

the 10-year Treasury yields (with the elasticities of 1 and almost 2). The positive effect of

the Delphic shock u4 on Treasury yields and stock prices is marginally significant at some

horizons and insignificant at others.
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Second, the shocks gradually propagate through the financial system and with some delay

get reflected in the corporate bond spreads. Especially the Odyssean and Delphic forward

guidance shocks u2, u4 significantly affect the corporate bond spreads after a few weeks (in

the opposite directions).

Third, the standard policy and forward guidance shocks u1 and u2 significantly strengthen

the dollar vs the euro (with the elasticities of 3 and 6 respectively). The effect of the asset

purchase shock u3 is even larger according to the point estimates (the elasticity of 8), but

estimated with a large uncertainty. The effect of the Delphic shock u4 on the dollar is the

weakest, it is actually zero at most horizons. This shock’s weak impact on the exchange rate

is consistent with the recently highlighted role of the dollar as a key barometer of financial

market risk-taking capacity (Avdjiev et al., 2019). A positive Delphic shock increases the

financial markets’ appetite for risk and this pushes the dollar down, in practice roughly

canceling any effect of higher US interest rates.

8 Conclusions

This paper exploits the high kurtosis of financial market responses to pin down four main

dimensions of FOMC announcements, which can be naturally labeled as: standard monetary

policy, Odyssean forward guidance, LSAP and Delphic forward guidance. These shocks have

plausible effects on financial markets and provide intuitive interpretations of the FOMC

announcements in the sample. The paper explains the intuition behind the fat tails-based

identification and shows that it requires only a sufficient degree of independence, rather

than full independence. It proposes estimation approaches that can be used in many other

applications.
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Online Appendices

Appendix A Sensitivity of the results to the degree of

non-Gaussianity

This section studies to what extent the identification weakens as we impose a higher degree

of freedom parameter v in the Student t distribution. The results remain very similar for

values of v between 1 and 10. For v > 10 the identification becomes weaker and the point

estimates begin to change. However, even values much smaller than 10 are strongly rejected

in favor of the point estimate v = 1.33.

Figure A.1: Maximum log-likelihood conditional on different values of v
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Note. The horizontal line shows the cut-off point implied by the likelihood ratio test at the 1%

significance level.

To examine the sensitivity of the results to v I re-estimate model (4) fixing v at a grid

of values from 0.5 to 30. Figure A.1 shows that the maximum attainable value of the log-

likelihood decreases quickly as v deviates from the unconstrained estimate of 1.33. The figure

is truncated at v = 10 for readability but the log-likelihood continues to decrease also for

v > 10. The horizontal line at the top of the figure shows the cut-off point implied by the

likelihood ratio test at the 1% significance level. We can see that already the null hypothesis
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of v = 2 is rejected.

Figure A.2: The effects of standardized shocks, conditional on different values of v
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Figure A.2 shows that the effects of the four shocks are very similar for values of v from

1 to 12. Especially for the shocks u1 and u4 the estimates are difficult to distinguish in

the figure as they lie almost on top of each other. The main visible difference is present

for long-term rate shocks u3: its effect on the 2-year yield is slightly negative for low v

and becomes positive starting at about v = 3. The point estimates change qualitatively

somewhere between v = 12 and v = 15: shocks u1 and u4 become essentially fed funds rate

shocks with little effect on the longer maturities, while u2 becomes an almost parallel shift of

the whole yield curve including the shortest maturity. However, for v = 15 the uncertainty

is substantially larger and many effects are no longer statistically significant (the same is

true for v = 12, but not for v ≤ 10).
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Appendix B Additional figures

Figure B.1: The effects of selected FOMC announcements before 2008
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Note. The horizontal line in the right subplots represents the change of the S&P500 stock index.

IM stands for an “inter-meeting” announcement.
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Figure B.2: The effects of selected FOMC announcements since 2008
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Note. The horizontal line in the right subplots represents the change of the S&P500 stock index.
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Appendix C Analytical results used in the estimation

C.1 The gradient of the likelihood function in the baseline model

I derive the analytical gradient of the log-likelihood (4) with the help of the results in Magnus

and Neudecker (2019) and Khatri and Rao (1968). Differentiating (4) w.r.t. vecW yields

d log p(Y |W, v)
d vecW

= T vecW−1′ + ι′T (A • Y ) (C.1)

where • denotes the row-wise Khatri-Rao product,

A • Y =


a′1 ⊗ y′1
. . .

aT ⊗ yT

 , (C.2)

at is an N × 1 vector with the n-th element

at,n ≡ −
v + 1

v

ut,n
1 + u2t,n/v

, (C.3)

and ιT denotes a T × 1 vector with each element equal to 1.

Differentiating (4) w.r.t. v yields

d log p(Y |W, v)
dv

= −1

2

∑
t

∑
n

log(1 + u2t,n/v) +
v + 1

2v2

∑
t

∑
n

u2t,n
(1 + u2t,n/v)

+ TN
d log c(v)

dv

(C.4)

where

d log c(v)

dv
= − 1

2v
− 1

2
ψ(v

2
) +

1

2
ψ(v+1

2
) (C.5)

where ψ denotes the digamma function (i.e. the derivative of the log of the Gamma function).

In practice, I reparameterize the log-likelihood in terms of z = log(v).
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C.2 The conditional posteriors of qnt, vn in the PDMT model

In the next two paragraphs I omit the subscript t to avoid clutter.

The conditional posterior of qn, n = 1, 2, ...N is

p(qn|·) ∝ qvn/2−1
n (q0 + qn)

1/2 exp

(
−1

2

(
1 +

u2n
v0 + vn

)
qn

)
(C.6)

This is a nonstandard density, which resembles the Gamma density except for the presence

of the sum (q0 + qn). Therefore, I draw qn from the proposal Gamma density obtained by

setting q0 to zero and accept the proposal draw with the probability analogous to (18).

The conditional posterior of q0 is

p(q0|·) ∝ q
v0/2−1
0

N∏
n=1

(q0 + qn)
1/2 exp

(
−1

2
q0

(
1 +

N∑
n=1

u2n
v0 + vn

))
(C.7)

Again, this density resembles the Gamma density except for the presence of the sum (q0+qn)

and as the proposal I use the Gamma density obtained by setting qn = 0 for all n.

The conditional posterior of v̄: Recall that v1 = ... = vN = v̄. Let αn, βn denote the

parameters of the Gamma prior for v̄, with the kernel v̄αn−1 exp(−v̄/βn).

p(v̄|·) ∝ v̄αn−1 exp(−v̄/βn)Γ(v̄/2)−TN2−TNv̄/2

N∏
n=1

T∏
t=1

q
v̄/2
tn

× (v0 + v̄)−TN/2 exp

(
− 1

2(v0 + v̄)

N∑
n=1

T∑
t=1

u2tn(qt0 + qtn)

)
(C.8)
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The conditional posterior of v0: Let α0, β0 denote the parameters of the Gamma prior

for v0, with the kernel v̄α0−1 exp(−v̄/β0).

p(v0|·) ∝ vα0−1
0 exp(−v0/β0)Γ(v0/2)−T2−Tv0/2

T∏
t

q
v0/2
t0

×
N∏
n

(v0 + vn)
−T/2 exp

(
−1

2

N∑
n

(v0 + vn)
−1

T∑
t

u2tn(qt0 + qtn)

)
(C.9)

The conditional posteriors of v̄ and v0 are again nonstandard densities related to the

Gamma density. To draw from them I follow Jiang and Ding (2016). I first compute the

conditional posterior mode and the curvature at the mode. Then I find the Gamma density

with the same mode and curvature at the mode and I use that Gamma density as the

proposal density.

In an alternative simulation I also use the approach of matching the mode and the cur-

vature at the mode to obtain proposal densities for q0, q1, ..., qN . In this case the acceptance

rates are lower but, with the 1 million-long chain, all estimation results are very similar

and the simulation is substantially slower. This indicates that the simple Gamma proposal

densities for qn’s are good enough in my case.
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