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Abstract

This paper develops a new approach to make welfare assessments based on the notion of
Dynamic Stochastic weights, or DS-weights for short. We leverage DS-weights to characterize
three sets of results. First, we develop an additive decomposition of aggregate welfare assessments
that satisfies desirable properties. We show that, for a large class of dynamic stochastic
economies with heterogeneous individuals, welfare assessments can be exactly decomposed into
four components: i) aggregate efficiency, ii) risk-sharing, iii) intertemporal-sharing, and iv)
redistribution. Second, we introduce the notion of normalized welfarist planners, which allows
us to revisit how welfarist (e.g., utilitarian) planners make interpersonal welfare comparisons in
consumption units. Third, we use DS-weights to systematically formalize new welfare criteria
that are exclusively based on one or several of the components of the aggregate decomposition.
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1 Introduction

Assessing whether a policy change is desirable in dynamic stochastic economies with rich individual
heterogeneity and imperfect insurance is far from trivial. One significant challenge is to understand
the channels — such as aggregate efficiency, intertemporal-sharing, risk-sharing, or redistribution —
through which a particular normative criterion finds a policy change desirable. A different challenge
is how to formally define welfare criteria that exclusively value one or several of the aforementioned
channels but not others.1

This paper tackles both challenges by developing a new approach to making welfare assessments
in dynamic stochastic economies. This approach is based on the notion of Dynamic Stochastic
Generalized Social Marginal Welfare Weights (Dynamic Stochastic weights or DS-weights, for
short). The introduction of DS-weights accomplishes two main objectives. First, DS-weights allow
us to decompose aggregate welfare assessments of policy changes into four distinct components:
aggregate efficiency, intertemporal-sharing, risk-sharing, and redistribution, each capturing a
different normative consideration. Second, DS-weights allow us to systematically formalize new
welfare criteria that society may find appealing. In particular, we are able to define normative
criteria that are exclusively based on one or several of the four normative considerations that we
identify, potentially disregarding the others.

We introduce our results in a canonical dynamic stochastic environment with heterogeneous
individuals. As a benchmark, we explicitly define in our environment i) Pareto-improving policies
and ii) desirable policies for a welfarist planner. While Pareto improvements seem highly desirable,
they are rare to find, which forces planners/policymakers to make interpersonal welfare comparisons.
Such comparisons typically rely on a Social Welfare Function — this is the welfarist approach. While
the welfarist approach is popular and widely applicable, it is not easy to understand how a welfarist
planner exactly makes tradeoffs among individuals that are ex-ante heterogeneous, because of the
ordinal nature of individual utilities. By reviewing these well-understood approaches and treating
them as benchmarks, we set the stage for the introduction of DS-weights.

In our approach, it is not necessary to specify a social welfare objective that a planner maximizes.
Instead, in order to make welfare assessments, a planner must simply specify DS-weights, which
represent the value that society places on a marginal dollar of consumption by a particular individual
i at a particular time t and along a particular history st. Equipped with these weights, we define a
policy to be desirable when the weighted sum — using DS-weights — across all individuals, dates,
and histories of the instantaneous consumption-equivalent effects of a policy is positive. By defining
DS-weights marginally, we can define normative criteria that the welfarist approach cannot capture.

In order to understand how a DS-planner, that is, a planner who adopts DS-weights, carries out
welfare assessments, we introduce two different decompositions. First, we introduce an individual

1Recently, the Federal Reserve seems to have explicitly included cross-sectional considerations in its policy-making
process — see e.g., https://www.nytimes.com/2021/04/19/business/economy/federal-reserve-politics.html.
The approach that we develop in this paper can plausibly be used to define a mandate for a monetary authority
or other policymakers that explicitly incorporates or removes cross-sectional concerns from policy assessments.
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multiplicative decomposition of DS-weights. We show that, in general, the DS-weights assigned to
a given individual can be decomposed into i) an individual component, which is invariant across all
dates and histories; ii) a dynamic component, which can vary across dates, but not across histories at
a given date; and a stochastic component, which can vary across dates and histories. Moreover, we
show that there exists a unique normalized individual multiplicative decomposition of DS-weights,
which is easily interpretable and has desirable properties.

Having introduced DS-weights, we leverage them to characterize three sets of results. First,
we develop an aggregate additive decomposition of welfare assessments (Section 3). Second, we
introduce normalized welfarist planners that allow us to precisely describe how welfarist planners
make interpersonal tradeoffs (Section 4). Third, we show how to use DS-weights to systematically
formalize new welfare criteria (Section 5).

In our first set of results, we introduce an aggregate additive decomposition of welfare assessments.
We show that, in dynamic stochastic environments, welfare assessments made by DS-planners can
be exactly decomposed into four components: i) an aggregate efficiency component, ii) a risk-sharing
component, iii) an intertemporal-sharing component, and iv) a redistribution component.2 The
aggregate efficiency component accounts for the change in aggregate consumption-equivalents across
all individuals. The remaining three components of the decomposition are driven by the cross-
sectional variation of each of the three elements (individual, dynamic, stochastic) of the individual
multiplicative decomposition. In particular, the risk-sharing component adds up across all dates
and histories the cross-sectional covariances between the stochastic component of the individual
multiplicative decomposition and the change in normalized instantaneous utility at each date and
history. Similarly, the intertemporal-sharing component adds up across all dates the covariances
between the dynamic component of the individual multiplicative decomposition and the change in
normalized net utility at each date. Finally, the redistribution component can be expressed as a
single cross-sectional covariance between the individual components of the individual multiplicative
decomposition and the change in individual lifetime marginal utility from the perspective of a DS-
planner.

Next, we systematically present properties of the aggregate additive decomposition and its
components for a general DS-planner. We show that a DS-planner who assigns DS-weights that do not
vary across individuals at all dates and histories makes welfare assessments purely based on aggregate
efficiency considerations. Similarly, different components of the aggregate additive decomposition
may vanish depending on which specific components of the individual multiplicative decomposition
of DS-weights are invariant across individuals: if the individual multiplicative component is constant
across individuals, then the redistribution component of the aggregate decomposition is zero; if the
dynamic multiplicative component is constant across individuals at all dates, then the intertemporal-
sharing component of the aggregate decomposition is zero; if the stochastic multiplicative component

2The aggregate additive decomposition can be used to separate efficiency from redistribution considerations. The
sum of the first three components of the decomposition — aggregate efficiency, risk-sharing, and intertemporal-sharing
— defines a notion of efficiency.
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is constant across individuals at all dates and histories, then the risk-sharing component of the
aggregate decomposition is zero. We highlight four implications of these results with practical
relevance. First, welfare assessments in single- or representative-agent economies are exclusively
attributed to aggregate efficiency considerations. Second, welfare assessments in perfect-foresight
economies (under normalized DS-weights) are never attributed to risk-sharing. Third, welfare
assessments in economies in which all individuals are ex-ante identical (but not necessarily ex-
post) are never attributed to intertemporal-sharing or redistribution. Fourth, welfare assessments
in static economics (under normalized DS-weights) are exclusively attributed to aggregate efficiency
or redistribution considerations. We also provide conditions on policies that imply that a subset
of the components of the aggregate decompositions are zero. In particular, we show that, under
normalized DS-weights, the risk-sharing, intertemporal-sharing, and redistribution components are
zero whenever a given policy impacts all individuals identically. Finally, we show that the aggregate
efficiency component of the aggregate decomposition is zero in endowment economies.

In our second set of results, given the importance of the welfarist approach in practice, we
characterize how a welfarist DS-planner makes tradeoffs across periods and histories for a given
individual, and across individuals.3 Critically, we do so in easily interpretable consumption units. We
formally characterize the unique normalized individual multiplicative decomposition of DS-weights
implied by a given welfarist planner and discuss its implications. Armed with this decomposition,
we characterize five new additional properties of the aggregate additive decomposition of welfare
assessments for welfarist planners. In particular, we show that all normalized welfarist planners
conclude that i) the risk-sharing and intertemporal-sharing components are zero when markets are
complete, ii) the intertemporal-sharing component is zero when all individuals can freely trade a
riskless bond, and iii) that different normalized welfarist planners — with different Social Welfare
Functions — exclusively disagree on the redistribution component. We also show that iv) the
efficiency components (aggregate efficiency, risk-sharing, and intertemporal-sharing) of the aggregate
additive decomposition are invariant to monotonically increasing transformations of individual’s
lifetime utilities and positive affine (increasing linear) transformations of individual’s instantaneous
utilities and v) that all normalized welfarist planners conclude that Pareto improving policies increase
efficiency, i.e., the sum of aggregate efficiency, risk-sharing, and intertemporal-sharing. To our
knowledge, the aggregate additive decomposition of welfare assessments introduced in this paper
is the first welfare decomposition for which these properties — which seem highly desirable — have
been established.

In our third set of results, we describe how to use DS-weights to systematically formalize new
welfare criteria that society may find appealing. We first introduce three sets of novel DS-planners:
aggregate efficiency (AE) DS-planners, aggregate efficiency/risk-sharing (AR) DS-planners, and no-
redistribution (NR) DS-planners, and characterize their properties.4 The welfare assessments made

3Adopting a conventional Social Welfare Function (e.g., utilitarian) to make welfare assessments can be interpreted
as selecting a particular set of DS-weights, which we show how to compute.

4For instance, the current “dual mandate” (stable prices and maximum employment) of the Federal Reserve (as
defined by the 1977 Federal Reserve Act) seems to be better described by an aggregate efficiency (AE) DS-planner than
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by these new planners purposefully set to zero particular components of the aggregate additive
decomposition. Within each set of DS-planners, we identify a pseudo-welfarist planner as the one
that represents the minimal departure relative to the normalized welfarist planner. We also introduce
an α-DS-planner, a new planner that spans i) AE, ii) AR, and iii) NR pseudo-welfarist planners, as
well as iv) the associated normalized welfarist planner. Finally, we explain why some new planners
(AE and AR) are paternalistic, while others are not (NR).5 We also discuss the implications of
introducing new planners for policy mandates and institutional design.

Before presenting an application of our framework, we describe several additional results. First,
we further decompose the components of the aggregate additive decomposition and then explain how
to connect welfare assessments to measures of inequality. We explain how to make welfare assessments
using DS-weights in recursive environments, and show how to implement welfare assessments via an
instantaneous Social Welfare Function. We also show that each of the component of the aggregate
decomposition, as well as aggregate welfare assessments, have a term structure, which allows us
to distinguish transition from steady-state welfare gains and losses. Finally, we briefly describe
additional results included in the Online Appendix. Among other results, we show how our approach
nests the widely used consumption-equivalent approach introduced by Lucas (1987) and Alvarez and
Jermann (2004).

At last, we illustrate the mechanics of our approach by conducting welfare assessments in a fully
specified application. We explore two particular scenarios in single-good economies with no financial
markets. Scenario 1 corresponds to an economy in which individuals with identical preferences face
idiosyncratic shocks. We consider transfer policies that can potentially provide perfect consumption
smoothing and carefully explain how, depending on the persistence of idiosyncratic risk, a normalized
utilitarian planner can find such policies desirable for different reasons. In particular, when risks are
transitory, the planner attributes most of the welfare gains of the policy to risk-sharing. When
risks are very persistent, the planner attributes most of the gains to redistribution instead. Scenario
2 corresponds to an economy in which individuals with different risk preferences face aggregate
shocks. We consider transfer policies that shift aggregate risk to the more risk-tolerant individuals
and carefully explain how a normalized utilitarian planner finds such policies desirable for different
reasons depending on the state of the economy in which welfare assessments take place.

This paper is accompanied by a code repository and user guides, which can be found at
https://github.com/schaab-lab/DS-weights.

Related literature. This paper contributes to several literatures, specifically those on i)
interpersonal welfare comparisons, ii) welfare decompositions, iii) welfare evaluation of policies in
dynamic environments, and iv) institutional mandates.
Interpersonal welfare comparisons. The question of how to make interpersonal welfare comparisons
to form aggregate welfare assessments has a long history in economics — see, among many others,

by a normalized utilitarian criterion that would care about risk-sharing, intertemporal-sharing, and redistribution.
5See Section 5.3 and Section G.3.1 of the Online Appendix for formal definitions of paternalism.
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Kaldor (1939), Hicks (1939), Bergson (1938), Samuelson (1947), Harsanyi (1955), Sen (1970) or,
more recently, Kaplow and Shavell (2001), Saez and Stantcheva (2016), Hendren (2020), Tsyvinski
and Werquin (2020), and Hendren and Sprung-Keyser (2020). Formally, our approach based on
endogenous welfare weights is most closely related to the work of Saez and Stantcheva (2016),
who introduce Generalized Social Marginal Welfare Weights. Building on their terminology, in
this paper we introduce the notion of Dynamic Stochastic Generalized Social Marginal Welfare
Weights (Dynamic Stochastic weights or DS-weights, for short). In static environments, our approach
collapses to theirs, as we explain in Section G.3.4 of the Online Appendix. In dynamic stochastic
environments, using DS-weights allows us to formalize a new, larger set of welfare criteria and to
understand the normative implications for aggregate efficiency, risk-sharing, intertemporal-sharing,
and redistribution of different welfare criteria, including the widely used welfarist criteria. In
particular, Section 4 leverages DS-weights to provide a novel interpretation of how welfarist planners
trade off welfare gains or losses across individuals in dynamic stochastic environments, a result at
the heart of the question of how to make interpersonal welfare comparisons.6

Welfare decompositions. Our results, in particular the aggregate additive decomposition introduced
in Proposition 1, contribute to the work that seeks to decompose welfare changes in models with
heterogeneous agents. The most recent contribution to this literature is the work by Bhandari et al.
(2021), who propose a decomposition of welfare changes when switching from a given policy to
another that can be applied to a larger set of economies than the seminal contributions of Benabou
(2002) and Floden (2001).7 A fundamental difference between these papers and ours is that, in
addition to decomposing the aggregate welfare effects of a policy change, our approach allows us
to define a new set of normative criteria that can be used to endow a planner/policymaker with a
specific mandate.

Purely from the perspective of the decomposition of welfare assessments, there are other
significant differences between the approaches of Benabou (2002) and Bhandari et al. (2021) and ours,
as we describe in Section G.3.6 of the Online Appendix. In particular, no existing decomposition
satisfies Proposition 6, in which we show that all normalized welfarist planners conclude that the risk-
sharing and intertemporal-sharing components are zero when markets are complete; Proposition 7, in
which we show that all normalized welfarist planners conclude that intertemporal-sharing component

6The central insight in Saez and Stantcheva (2016) is that by using generalized weights it is possible to accommodate
alternatives to welfarism, such as equality of opportunity, libertarianism, or Rawlsianism, among others. It should be
evident that our approach, which nests theirs, can also accommodate these possibilities. We purposefully avoid studying
these issues, since these normative approaches are rarely used in the study of dynamic stochastic economies.

7At an intuitive level, the decomposition proposed by Benabou (2002) and Floden (2001) is based on certainty
equivalents, while the decomposition of Bhandari et al. (2021) is based on allocations. Our decomposition is instead
based on marginal utilities. Note that Benabou (2002) states the following:

“I will also compute more standard social welfare functions, which are aggregates of (intertemporal)
utilities rather than risk-adjusted consumptions. These have the clearly desirable property that maximizing
such a criterion ensures Pareto efficiency. On the other hand, it will be seen that they cannot distinguish
between the effects of policy that operate through its role as a substitute for missing markets, and those
that reflect an implicit equity concern.”

Our results show that it is actually possible to distinguish between the effects of policy that substitute for missing
markets and those that reflect equity concerns when using standard social welfare functions.
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is zero when individuals can freely trade a riskless bond; and Proposition 8, in which we show
that different normalized welfarist planners exclusively disagree on the redistribution component.
The decomposition proposed by Bhandari et al. (2021) does not satisfy Proposition 9, in which we
show that the efficiency components (aggregate efficiency, risk-sharing, and intertemporal-sharing)
of the aggregate additive decomposition are invariant to monotonically increasing transformations
of individual’s lifetime utilities and positive affine (increasing linear) transformations of individual’s
instantaneous utilities.
Welfare assessments in dynamic stochastic models. Our results are also related to the Lucas (1987)
approach to making welfare assessments in dynamic environments, in particular to its marginal
formulation introduced in Alvarez and Jermann (2004). Formally, as we show in Section G.3.4 of
the Online Appendix, the marginal approach to making welfare assessments of Alvarez and Jermann
(2004) corresponds to choosing a particular set of DS-weights. While both Lucas (1987) and Alvarez
and Jermann (2004) study representative-agent environments, others have used a similar approach
in environments with heterogeneity; see e.g., Atkeson and Phelan (1994), Krusell and Smith (1999),
or Krusell et al. (2009), among many others. However, as highlighted by these papers, a well-known
downside of the Lucas (1987) approach is that it does not aggregate meaningfully because individual
welfare assessments are reported as constant shares of individual consumption. In this paper, we
show that normalized welfarist planners — which we introduce — are able to meaningfully aggregate
welfare assessments among heterogeneous individuals.
Institutional mandates. Finally, our results contribute to the literature that studies policymakers’
mandates. For instance, Woodford (2003) shows in a representative agent economy that endowing a
monetary authority with the objective to minimize inflation and output gaps maximizes instantaneous
welfare. Relatedly, Rogoff (1985) shows that choosing a particular planner (a conservative central
banker) may be desirable in some circumstances. However, the literature on institutional mandates
has eschewed cross-sectional considerations. We hope that the approach we develop in this paper
opens the door to future disciplined discussions on policy-making mandates, in particular when
trading off efficiency and redistribution motives in dynamic stochastic environments.

Outline. Section 2 introduces the baseline environment and describes conventional approaches
used to make welfare assessments. Section 3 introduces the notion of DS-weights, defines an
individual multiplicative decomposition of DS-weights, an aggregate additive decomposition of
welfare assessments, and provides general properties of such decompositions. Section 4 studies
how welfarist planners make welfare assessments through the lens of DS-weights, characterizing
properties of the aggregate additive decomposition in that case. Section 5 formalizes new welfare
criteria that isolate different components of the aggregate additive decomposition and discusses the
implications of such planners for institutional design. Section 6 further decomposes the components
of the aggregate additive decomposition, explains how to connect welfare assessments to measures of
inequality, describes how to make welfare assessments in recursive environments, shows how to make
welfare assessments via an instantaneous Social Welfare Function, and introduces a term structure
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of welfare assessments. Section 7 illustrates how to employ the approach introduced in this paper
in the context of a fully specified dynamic stochastic model. All proofs and derivations are in the
Appendix. The Online Appendix also includes several extensions and additional results.

2 Environment and Benchmarks

In this section, we first describe our baseline environment, which encompasses a wide variety
of dynamic stochastic models with heterogeneous individuals. Subsequently, we describe the
conventional approaches to making welfare assessments, setting the stage for the introduction of
DS-weights in Section 3.

2.1 Baseline Environment

Our notation closely follows that of Ljungqvist and Sargent (2018). We consider an economy
populated by individuals, indexed by i ∈ I. For simplicity, we assume that there is a unit measure
of individuals, so

∫
di = 1, although our results apply unchanged to economies with a finite number

of individuals. At each date t ∈ {0, . . . , T}, where T ≤ ∞, there is a realization of a stochastic event
st ∈ S. We denote the history of events up to and until date t by st = (s0, s1, . . . , st). We denote the
unconditional probability of observing a particular sequence of events st by πt

(
st
∣∣ s0
)
. We assume

that the initial value of s0 is predetermined, so π0
(
s0|s0

)
= 1.

There is a single nonstorable consumption good — which serves as numeraire — at all dates and
histories. Each individual i derives utility from consumption and (dis)utility from working, with a
lifetime utility representation, starting from s0, given by

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)
, nit

(
st
))
, (1)

where cit
(
st
)
and nit

(
st
)
respectively denote the consumption and hours worked by individual i at

history st; ui (·) corresponds to individual i’s instantaneous utility, potentially non-separable between
consumption and hours; and βi ∈ [0, 1) denotes individual i’s discount factor.8 Note that Equation
(1) corresponds to the time-separable expected utility preferences with exponential discounting and
homogeneous beliefs commonly used in dynamic macroeconomics and finance. Note also that we
purposefully allow for individual-specific preferences.

We assume that preferences are well-behaved and, for now, directly impose that cit
(
st
)
and nit

(
st
)

are smooth functions of a primitive parameter θ ∈ [0, 1], so

dcit
(
st
)

dθ
and dnit

(
st
)

dθ

8Following Acemoglu (2009), we refer to Vi (·) as lifetime utility and to ui (·) as instantaneous utility. As in
Ljungqvist and Sargent (2018), we use a subscript i to refer to Vi (·), βi, and ui (·), and a superscript i to refer to
individual variables indexed by time or histories.
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are well-defined. We interpret changes in θ as policy changes although, at this level of generality, our
approach is valid for any change in primitives. This formulation allows us to consider a wide range
of policies, as we illustrate in our applications.9 In those applications — and more generally — the
mapping between outcomes, cit

(
st
)
and nit

(
st
)
, and policy, θ, emerges endogenously, and typically

accounts for general equilibrium effects. However, for most of the paper, we can proceed without
further specifying endowments, budget constraints, equilibrium notions, etc.

In the Online Appendix, we extend our results to more general environments. In particular,
in Section F.1, we describe how to account for heterogeneous beliefs. In Sections F.2 and F.3, we
show how our approach extends to richer preference specifications, in particular, the widely used
Epstein-Zin preferences. In Section F.3 we show how our results extend to economies with multiple
commodities. In Section F.4, we describe how to extend our approach to environments in which
preferences and probabilities directly depend on θ. Finally, in Section F.5 we describe how to allow
for births, deaths, and related intergenerational considerations.

2.2 Benchmarks: Conventional Approaches to Welfare Assessments

Before introducing DS-weights, we first define in our environment i) Pareto-improving policies and
ii) desirable policies for a welfarist planner. To that end, it is useful to characterize the change in
the lifetime utility of an individual i induced by a marginal policy change, dVi(s0)

dθ .

Lifetime utility effect of policy change. Starting from Equation (1), dVi(s0)
dθ , which is measured

in utils (utility units), can be expressed as

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
, (2)

where we respectively denote individual i’s marginal utilities of consumption and hours worked at
history st by

∂ui
(
st
)

∂cit
= ∂ui

(
cit
(
st
)
, nit

(
st
))

∂cit (st)
and ∂ui

(
st
)

∂nit
= ∂ui

(
cit
(
st
)
, nit

(
st
))

∂nit (st)
,

and where we denote the instantaneous consumption-equivalent effect of the policy at history st by

dui|c
(
st
)

dθ
=

dui(cit(st),nit(st))
dθ

∂ui(st)
∂cit

= dcit
(
st
)

dθ
+

∂ui(st)
∂nit

∂ui(st)
∂cit

dnit
(
st
)

dθ
. (3)

9The fact that θ is one-dimensional is not restrictive, since θ can be interpreted as the scale of an arbitrary policy
variation that can differ across individuals, dates, and histories. An advantage of formulating our approach in terms
of marginal welfare assessments is that there is no ambiguity about how to make welfare assessments in units of a
numeraire for a single individual — see Schlee (2013) for a formal proof. We explain how to use our approach to
consider global assessments in Sections G.3.4 and G.5 of the Online Appendix.
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Equation (2) shows that the impact of a policy change on the lifetime utility of individual i is given
by a particular combination of instantaneous consumption-equivalent effects, which, importantly, are
expressed in consumption units at a specific history. The relevance of each of these effects for dVi(s0)

dθ

is determined by (βi)t πt
(
st
∣∣ s0
) ∂ui(st)

∂cit
, that is, by how far in the future and how likely a given

history is, and by how much individual i values (in utils) a marginal unit of consumption at that
particular history. Equation (3) highlights that the instantaneous consumption-equivalent effect at a
given history depends on how consumption and hours worked respond to the policy change, as well
as on the rate at which an individual trades off both variables, captured by the individual marginal
rate of substitution between consumption and hours worked, given by ∂ui(st)

∂nit
/
∂ui(st)
∂cit

.10

Pareto-improving policy change. Equation (2) allows us to determine whether an individual
is better or worse off after a policy change. That is, when dVi(s0)

dθ > (<) 0, individual i perceives to
be better (worse) off after a policy change. Hence, it is possible to define a Pareto-improving policy
change as follows.

Definition 1. (Pareto-improving policy change) A policy change is strictly (weakly) Pareto-
improving if every individual i perceives to be strictly (weakly) better off after the policy change.
Hence, a policy change is strictly Pareto-improving when dVi(s0)

dθ > 0, ∀i, and weakly Pareto-improving
when dVi(s0)

dθ ≥ 0, ∀i.

Note that the notion of Pareto improvement does not involve interpersonal welfare comparisons,
and simply exploits the ordinal nature of utility. While Pareto improvements seem highly desirable,
they are rare to find, which forces planners/policymakers to make interpersonal welfare comparisons,
as we describe next.11

Desirable policy change for a welfarist planner. The conventional approach in economics to
balance welfare gains or losses among different individuals is based on individualistic social welfare
functions (SWF). As in Kaplow (2011) or Saez and Stantcheva (2016), we refer to this approach —
typically traced back to Bergson (1938) and Samuelson (1947) — as the welfarist approach. For a
welfarist planner, social welfare is a real-valued function of individuals’ lifetime utilities, which we
formally denote in our environment by

W
(
{Vi (s0)}i∈I

)
, (welfarist planner) (4)

10Note that the definition of the instantaneous consumption-equivalent effect in Equation (3) does not make use of
individual optimality (i.e., the envelope theorem). However, in specific applications, exploiting individual optimality
conditions can yield simple expressions for dui|c(st)

dθ
.

11As shown by Mas-Colell, Whinston and Green (1995) or Ljungqvist and Sargent (2018), among others, by varying
the welfare weights assigned to different individuals, a planner who maximizes a utilitarian social welfare function can
fully trace the Pareto frontier whenever a utility possibility set is convex, and partially when it is not. Even though
characterizing Pareto frontiers is a valuable exercise, we seek to study welfare assessments generally, even away from
the Pareto frontier. Moreover, the aggregate additive decomposition of welfare assessments that we introduce in this
paper can also be used at the Pareto frontier.
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where Vi (s0) is defined in Equation (1) and where typically ∂W
∂Vi
≥ 0, ∀i. As carefully explained in

Kaplow (2011), the critical restriction implied by the welfarist approach is that the social welfare
function W (·) cannot depend on any model outcomes besides individual utility levels.

Different welfarist social welfare functions W (·) have different implications for the assessment of
policies. In particular, the utilitarian SWF, which adds up a weighted sum of individual utilities, is
given by

W
(
{Vi (s0)}i∈I

)
=
∫
λiVi (s0) di, (utilitarian planner) (5)

where λi are a set of predetermined individual-specific scalars, commonly referred to as Pareto
weights. While the utilitarian SWF is by far the most used in practice, there exist other well-known
SWF’s, such as isoelastic (Atkinson, 1970) and maximin/Rawlsian (Rawls, 1971, 1974), among others,
as we describe in Section G.3.1 of the Online Appendix.

Next, we formally define when a policy change is desirable for a welfarist planner.

Definition 2. (Desirable policy change for a welfarist planner) A welfarist planner finds a policy
change desirable if and only if dWW (s0)

dθ > 0, where

dWW (s0)
dθ

=
∫
λi (s0) dVi (s0)

dθ
di (6)

=
∫
λi (s0)

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
di,

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

, and where dVi(s0)
dθ is defined in Equation (2).

The properties of the welfarist approach have been widely studied.12 In particular, a welfarist
planner is non-paternalistic, since aggregate welfare assessments are based on individual welfare
assessments, and Paretian when ∂W

∂Vi
≥ 0, ∀i, since every Pareto-improving policy is desirable.

Moreover, when individuals are ex-ante homogeneous, i.e., they have identical preferences and face
an identical environment from the perspective of s0, all welfarist planners agree on whether a policy
change is desirable or not, even if individuals experience different shocks ex-post.13

However, because of the ordinal nature of individual utilities, it is not easy to understand how
a welfarist planner exactly makes tradeoffs among individuals that are ex-ante heterogeneous along
some dimension. For instance, a welfarist planner would mechanically put more weight on the gains
or losses of an individual whose lifetime utility is multiplied by a positive constant factor, even
though, since individual utility is ordinal, this has no impact on allocations. Relatedly, it is not clear
how a welfarist planner trades off the welfare gains or losses of individuals with different preferences,
endowments, or life-cycle profiles; who have access to different insurance opportunities; or who face

12See e.g., Mas-Colell, Whinston and Green (1995), Kaplow (2011), or Adler and Fleurbaey (2016) for recent textbook
treatments. Somewhat surprisingly, dynamic and stochastic considerations are not central to the literature on policy
assessments.

13Even in this case, it is not obvious to determine whether a welfarist planner finds a policy change desirable because
of aggregate efficiency or risk-sharing considerations, as we illustrate in Section 4.
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shocks driven by different stochastic processes.
By introducing Dynamic Stochastic weights, we are able to systematically i) provide a new

transparent interpretation of how a particular planner (including all welfarist planners, but also other
non-welfarist planners) implicitly trade off gains or losses across individuals, dates, and histories, and
ii) define new welfare criteria that capture normative objectives that society may find appealing.

3 Dynamic Stochastic Weights

In this section, we introduce a new approach to assess the desirability of policy changes, based on
the notion of Dynamic Stochastic Generalized Social Marginal Welfare Weights (Dynamic Stochastic
weights or DS-weights, for short).

3.1 Definition of DS-weights

We begin by formally defining when a policy change is desirable for a planner who adopts DS-weights,
a “DS-planner.”

Definition 3. (Desirable policy change for a DS-planner/Definition of DS-weights) A DS-planner,
that is, a planner who adopts DS-weights, finds a policy change desirable if and only if dW

DS(s0)
dθ > 0,

where
dWDS (s0)

dθ
=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
) dui|c (st)

dθ
di, (7)

where dui|c(st)
dθ denotes the instantaneous consumption-equivalent effect of the policy at history st,

defined in Equation (3), and where ωit
(
st
∣∣ s0
)
> 0, which can be a function of all the possible paths

of outcomes, denotes the DS-weight assigned to individual i at history st for a welfare assessment
that takes place at s0.

Equation (7) shows that, in order to carry out a welfare assessment, a DS-planner must i) know the
instantaneous consumption-equivalent effect of a policy for each individual at all dates and histories,
that is, dui|c(st)

dθ , ∀i, ∀t, ∀st, which is measured in consumption units; and ii) specify DS-weights
ωit
(
st
∣∣ s0
)
for each individual at all dates and histories, that is, ωit

(
st
∣∣ s0
)
, ∀i, ∀t, ∀st.14 Hence,

dui|c(st)
dθ and ωit

(
st
∣∣ s0
)
are sufficient statistics for welfare analysis, which makes the computation of

welfare assessments conceptually straightforward. Intuitively, a DS-planner computes the impact of
a policy change in consumption units at each history for every individual and then weights those
changes to form an aggregate welfare assessment.15 Different choices of DS-weights ωit

(
st
∣∣ s0
)
will

have different normative implications, as the remainder of this paper will show.
14To simplify the exposition, we focus on the case in which DS-weights are strictly positive for all individuals and

histories. It is possible to extend our results to the case in which some DS-weights can be zero.
15Throughout the paper we use consumption as the numeraire for welfare assessments. In Section F.3 of the

Online Appendix we explain how to define DS-planners based on other numeraires and how this may impact welfare
assessments.

12



It is worth highlighting four features that define a DS-planner. First, note that DS-weights can be
functions of model outcomes, which are typically endogenous variables. For instance, by comparing
Equations (6) and (7), it follows that every welfarist planner can be interpreted as a DS-planner with
DS-weights given by

ωit

(
st
∣∣∣ s0
)

= λi (s0) (βi)t πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit
, (8)

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

. Second, by making s0 an explicit argument of dW
DS(s0)
dθ , we emphasize

that welfare assessments in dynamic stochastic economies are contingent on the state in which the
assessment takes place. This observation may lead to time-inconsistency of welfare assessments, a
topic we revisit in Section 6.3. Third, note that we define the welfare assessment of a DS-planner
in marginal form, i.e, DS-weights are marginal welfare weights. This contrasts with the welfarist
approach, which takes a lifetime social welfare function as primitive.16 In Section 6.4, we show how
a DS-planner can be equivalently defined in terms of an instantaneous social welfare function with
generalized (endogenous) welfare weights. Finally, note that Equation (7) allows us to define a local
optimum for a DS-planner as a value of θ for which dWDS(s0)

dθ = 0. We explain how to conduct
non-marginal welfare assessments in Section G.5 of the Online Appendix

3.2 Individual Multiplicative Decomposition of DS-weights

In Lemma 1, we introduce an individual multiplicative decomposition of DS-weights into i) individual,
ii) dynamic, and iii) stochastic components.17 This individual multiplicative decomposition of DS-
weights is useful to i) provide a meaningful economic interpretation of how a planner trades off
welfare gains or losses across individuals, dates, and histories, given a set of DS-weights; ii) formally
define and study the aggregate additive decomposition of welfare assessments, as we show in Section
3.3; and iii) formalize welfare criteria by defining DS-weights in terms of each of its components,
as we illustrate in Section 4. We also define a normalized decomposition, which is unique and has
desirable properties, as we show throughout the paper.

Lemma 1. (DS-weights: individual multiplicative decomposition; unique normalized decomposition)

a) The DS-weights that a DS-planner assigns to an individual i can be multiplicatively decomposed
into three different components, up to a choice of units, as follows:

ωit

(
st
∣∣∣ s0
)

= ω̃i (s0)︸ ︷︷ ︸
individual

ω̃it (s0)︸ ︷︷ ︸
dynamic

ω̃it(st|s0)︸ ︷︷ ︸
stochastic

, where (9)

i) ω̃i (s0) corresponds to an individual component, which is invariant across all dates and
histories;

16As we show in Section 4, it is of course possible to compute the DS-weights implied by a welfarist planner.
17This individual multiplicative decomposition is inspired by Alvarez and Jermann (2005) and Hansen and

Scheinkman (2009), who multiplicatively decompose pricing kernels into permanent and transitory components.
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ii) ω̃it (s0) corresponds to a dynamic component, which can vary across dates, but not across
histories at a given date; and

iii) ω̃it
(
st
∣∣ s0
)

corresponds to a stochastic component, which can vary across dates and
histories.

b) For any set of DS-weights, there exists a unique “normalized” individual multiplicative
decomposition, such that

i) stochastic components add up to 1 at every date, that is,
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i;

ii) dynamic components add up to 1 across all dates, that is,
∑T
t=0 ω̃

i
t (s0) = 1, ∀i; and

iii) individual components add up to 1 across individuals, that is,
∫
ω̃i (s0) di = 1.

We refer to planners who adopt this decomposition as “normalized” DS-planners.

The components of the individual multiplicative decomposition define social marginal rates of
substitution for a DS-planner across individuals, dates, and histories. The stochastic component,
ω̃it
(
st
∣∣ s0
)
, which has the interpretation of a risk-neutral measure at date t when

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1,
determines how a DS-planner values units of consumption good across different histories st at date t
for a given individual. The dynamic component, ω̃it (s0), which has the interpretation of a normalized
discount factor when

∑T
t=0 ω̃

i
t (s0) = 1, determines how a DS-planner values consumption across

different dates for a given individual.18 The individual component determines how a DS-planner
trades off permanent gains or losses across individuals. In the case of the normalized decomposition,
when

∫
ω̃i (s0) di = 1, it defines the units in which dWDS(s0)

dθ is expressed. In particular, the individual
component of individual i, ω̃i (s0), exactly determines the weight that a DS-planner gives to a
permanent transfer of one unit of consumption good at all dates and histories to individual i,
measured in units of a permanent transfer of one unit of consumption good to all individuals at
all dates and histories.

It is worth highlighting that the sign of dWDS(s0)
dθ — and hence whether a policy change is

desirable or not — is fully determined by the value of the DS-weights as a whole and not by
any individual multiplicative decomposition. However, we will show that the normalized individual
multiplicative decomposition is associated with desirable properties in the context of the aggregate
additive decomposition that we introduce next, while unnormalized decompositions typically are
not. The normalized decomposition guarantees that its components, as well as dWDS(s0)

dθ , have
a meaningful interpretation in terms of units of consumption across specific histories, dates, and
individuals. In general, once the units of ωit

(
st
∣∣ s0
)
and its components are defined, every individual

multiplicative decomposition is unique. See Section 4, and Section G.1 of the Online Appendix for
further details.

18Risk-neutral measures are widely used in finance (Duffie, 2001; Cochrane, 2005), while normalized discount factors
are common in the study of repeated games (Fudenberg and Tirole, 1991; Mailath and Samuelson, 2006).
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For instance, a possible individual multiplicative decomposition for an (unnormalized) welfarist
planner is given by

ω̃i (s0) = λi (s0) , ω̃it (s0) = (βi)t , and ω̃it

(
st
∣∣∣ s0
)

= πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit
, (10)

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

. This decomposition, because it is expressed in utils, cannot be
used to understand how a planner makes tradeoffs in terms of consumption units. In Section 4,
we instead introduce the individual multiplicative decomposition of a normalized welfarist planner,
which allows us to describe how a welfarist DS-planner precisely makes tradeoffs in consumption
units. In that section, we also show that using a normalized individual multiplicative decomposition
of DS-weights is associated with desirable properties for the aggregate additive decomposition of
welfare assessments, which we introduce next.

3.3 Aggregate Additive Decomposition of Welfare Assessments

Armed with the individual multiplicative decomposition of DS-weights, we now introduce an exact
additive decomposition of the welfare assessments made by a DS-planner. This decomposition shows
that the welfare assessment of a policy change dθ made by a DS-planner is driven by exactly four
considerations: aggregate efficiency, risk-sharing, intertemporal-sharing, and redistribution.19

Proposition 1. (Welfare assessments: aggregate additive decomposition) The aggregate welfare
assessment of a DS-planner, dWDS(s0)

dθ , can be decomposed into four components: i) an aggregate
efficiency component, ii) a risk-sharing component, iii) an intertemporal-sharing component, and iv)
a redistribution component, as follows:

19We have chosen the term risk-sharing and the (less conventional) term intertemporal-sharing to highlight that
both components of the aggregate additive decomposition are driven by cross-sectional differences, via interpersonal
sharing. Alternative terms, such as insurance, consumption smoothing, or intertemporal smoothing, do not have such
connotation, since they could be applied to a single individual.
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dWDS (s0)
dθ

=
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Efficiency)

+
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRS (Risk-sharing)

+
T∑
t=0

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS (Intertemporal-sharing)

+ Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞRD (Redistribution)

, (11)

where Ei [·] and Covi [·, ·] respectively denote cross-sectional expectations and covariances, where the
history-specific term that determines the aggregate efficiency component, Ei

[
dui|c(st)

dθ

]
, is given by

Ei

[
dui|c

(
st
)

dθ

]
=
∫
dcit
(
st
)

dθ
di+

∫ ∂ui(st)
∂nit

∂ui(st)
∂cit

dnit
(
st
)

dθ
di, (12)

and where, without loss of generality, we have assumed that Ei
[
ω̃i (s0)

]
=
∫
ω̃i (s0) di = 1.

The first component of the aggregate additive decomposition is the aggregate efficiency
component, ΞAE . This component accounts for the aggregate instantaneous consumption-equivalent
effect of the policy, expressed in consumption units. As shown in Equation (12), ΞAE adds up
— after appropriately discounting — the changes in consumption-equivalents resulting from the
marginal policy change across all dates and histories. Because ΞAE can be computed using exclusively
cross-sectional averages of ω̃it (s0), ω̃it

(
st
∣∣ s0
)
, and dui|c(st)

dθ , we refer to the this term as aggregate
efficiency.20

20Note that Equation (12) can be rewritten as

Ei

[
dui|c

(
st
)

dθ

]
=
∫

dcit
(
st
)

dθ
τ it
(
st
)
di = Ei

[
dcit
(
st
)

dθ

]
Ei
[
τ it
(
st
)]

+ Cov

[
dcit
(
st
)

dθ
, τ it
(
st
)]
,

where τ it
(
st
)

= 1 +
∂ui(st)
∂ni
t

∂ui(st)
∂ci
t

dni
t(st)
dθ

dci
t
(st)
dθ

, which shows that aggregate efficiency is tightly connected to labor wedges.

Intuitively, policies that increases aggregate consumption contribute more to aggregate efficiency when the aggregate
labor wedge is greater than 1, i.e., when Ei

[
τ it
(
st
)]

> 1. Alternatively, policies that do not change aggregate
consumption can contribute to aggregate efficiency if they increase the consumption of those individuals with higher
individual labor wedges by more. More generally, in production economies, the aggregate efficiency component is
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The remaining three components of the aggregate additive decomposition are driven by the cross-
sectional variation of each of the three elements (individual, dynamic, stochastic) of the individual
multiplicative decomposition of DS-weights. In particular, the risk-sharing component, ΞRS , adds up
across all dates and histories the covariances between the stochastic component, ω̃it

(
st
∣∣ s0
)
, and the

instantaneous consumption-equivalent effect at each date and history. Similarly, the intertemporal-
sharing component, ΞIS , adds up across all dates the covariances between the dynamic component,
ω̃it (s0), and the (expected, under the risk-neutral measure interpretation of stochastic weights)
instantaneous consumption-equivalent effect at each date. Finally, the redistribution component,
ΞRD, consists of a single cross-sectional covariance between the individual component, ω̃i

(
s0), and

the present discounted value — using the dynamic and stochastic components — of instantaneous
consumption-equivalent effects that a DS-planner assigns to a particular individual.

Before we discuss the properties of this decomposition below, it is worth making three remarks.
First, the aggregate additive decomposition is exact for any marginal policy change and does
not rely on any approximations. Relatedly, the decomposition can be computed using only the
individual multiplicative decomposition of DS-weights — typically a function of model outcomes —
and instantaneous consumption-equivalent effects.

Second, the aggregate additive decomposition is based on cross-sectional averages and covariances,
and does not include covariances over future periods or histories. In Section 6.1, we further decompose
the aggregate efficiency and redistribution components along those lines, developing a stochastic
decomposition — see Propositions 12 and 14. There, we also provide an alternative decomposition
of the risk-sharing and intertemporal-sharing components still based on cross-sectional averages and
covariances.21

Finally, one can interpret the aggregate additive decomposition as first separating efficiency and
redistribution, and then further decomposing efficiency into aggregate efficiency, risk-sharing, and
intertemporal-sharing. Formally, dW

DS(s0)
dθ can be written as

dWDS (s0)
dθ

= ΞE︸︷︷︸
Efficiency

+ ΞRD︸ ︷︷ ︸
Redistribution

, where ΞE = ΞAE + ΞRS + ΞIS .

This distinction will become clear in Section 4.2, in which we show that differences in welfare
assessments among normalized welfarist planners are exclusively based on the redistribution
component ΞRD and that Pareto improving policies must necessarily feature ΞE > 0.

3.4 General Properties of the Aggregate Additive Decomposition

The merits of the aggregate additive decomposition introduced in Proposition 1 lie in its properties.
Similarly, the names we attribute to each of the components, ΞAE through ΞRD, are only meaningful

tightly linked to production efficiency, a relation that we plan to explore in future work.
21The aggregate decomposition introduced in Proposition 1 is appealing because it systematically treats each of the

components of the individual multiplicative decomposition. That is, ΞRS is directly determined by ω̃it
(
st
∣∣ s0
)
, ΞIS by

ω̃it (s0), and ΞRD by ω̃i (s0).
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insofar as they satisfy desirable properties. Hence, in the remainder of this section, we present
properties of the aggregate additive decomposition and its components for a general DS-planner.

First, in Proposition 2, we identify conditions on DS-weights and their components under which
the welfare assessments of a DS-planner i) are purely based on aggregate efficiency considerations or
ii) are such that the risk-sharing, intertemporal-sharing, or redistribution components are zero.

Proposition 2. (Properties of aggregate additive decomposition: individual-invariant DS-weights)

a) If DS-weights ωit
(
st
∣∣ s0
)
are constant across all individuals at all dates and histories, then the

welfare assessment of a DS-planner is exclusively based on aggregate efficiency considerations,
i.e., ΞRS = ΞIS = ΞRD = 0.

b) If the stochastic component of DS-weights is constant across all individuals at all dates and
histories, then ΞRS = 0.

c) If the dynamic component of DS-weights is constant across all individuals at all dates, then
ΞIS = 0.

d) If the individual component of DS-weights is constant across all individuals, then ΞRD = 0.

Proposition 2 shows that a DS-planner who assigns DS-weights that do not vary across
individuals at all dates and histories makes welfare assessments purely based on aggregate efficiency
considerations. This result bears a resemblance to the classic question of defining a normative
representative consumer — see e.g., Mas-Colell, Whinston and Green (1995) or Acemoglu (2009). In
particular, Proposition 2a) implies that the risk-sharing, intertemporal-sharing, and redistribution
components are zero in single-agent or representative-agent economies in which all individuals have
the same DS-weights, i.e., DS-weights are symmetric. Parts b) through d) of Proposition 2 also show
that, depending on which specific components of the individual multiplicative decomposition of DS-
weights are invariant across individuals, it may be that ΞRS = 0, ΞIS = 0, or ΞRD = 0. These results
highlight the cross-sectional nature of the risk-sharing, intertemporal-sharing, and redistribution
components. Moreover, parts c) and d) of Proposition 2 respectively imply that the intertemporal-
sharing and the redistribution components are always zero when individuals are ex-ante identical.

Given their practical importance, we highlight several immediate implications of Proposition 2
in four corollaries.22

Corollary 1. (Representative-agent economies) Welfare assessments in single- or representative-
agent economies in which DS-weights are symmetric are exclusively attributed to aggregate efficiency
considerations, i.e., ΞRS = ΞIS = ΞRD = 0.

22We say that DS-weights are symmetric when two individuals with identical preferences and identical paths for
consumption and hours are assigned identical DS-weights. This is a natural restriction when making welfare assessments
— see e.g., Mas-Colell, Whinston and Green (1995) for a discussion of symmetry. Corollaries 2 and 4 require a
normalized individual multiplicative decomposition so that the choice of units of ωit

(
st
∣∣ s0
)
and ωit (s0) does not

generate meaningless cross-sectional variation when computing ΞRS and ΞIS .
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Corollary 2. (Perfect-foresight economies) Welfare assessments in perfect-foresight economies in
which the individual multiplicative decomposition of DS-weights is normalized are never attributed to
risk-sharing, i.e., ΞRS = 0.

Corollary 3. (Economies with ex-ante identical individuals) Welfare assessments in economies in
which all individuals are ex-ante identical (but not necessarily ex-post) and DS-weights are symmetric
are never attributed to intertemporal-sharing or redistribution, i.e., ΞIS = ΞRD = 0.

Corollary 4. (Static economies) Welfare assessments in static economics in which the individual
multiplicative decomposition of DS-weights is normalized are exclusively attributed to aggregate
efficiency or redistribution considerations, i.e., ΞRS = ΞIS = 0.

In Proposition 3, we identify conditions on policies under which the welfare assessments of a
DS-planner i) are purely based on aggregate efficiency considerations or ii) are such that the risk-
sharing, or the risk-sharing and the intertemporal-sharing components are zero. Generically, a policy
change will affect all four components of the aggregate additive decomposition. Hence, to guarantee
that some components of the aggregate decomposition are zero, Proposition 3 identifies policies that
impact all individuals identically along certain dimensions.

Proposition 3. (Properties of aggregate additive decomposition: individual-invariant policies) Sup-
pose that the individual multiplicative decomposition of DS-weights is normalized, so

∑
st ω̃

i
t

(
st
∣∣ s0
)

=
1, ∀t, ∀i, and

∑T
t=0 ω̃

i
t (s0) = 1, ∀i. If the instantaneous consumption-equivalent effect of a policy

change, dui|c(st)
dθ , is identical across individuals

a) at all dates and histories, then the welfare assessment of a DS-planner is exclusively based on
aggregate efficiency, i.e., ΞRS = ΞIS = ΞRD = 0.

b) at all histories on a date, for all dates, then the welfare assessment of a DS-planner is based
on aggregate efficiency and redistribution, i.e., ΞRS = ΞIS = 0.

c) conditional on a date and history, for all dates and histories, then the welfare assessment of
a DS-planner is based on aggregate efficiency, intertemporal sharing, and redistribution, i.e.,
ΞRS = 0.

Proposition 3a) shows that a policy change that affects all individuals identically across all dates
and histories can only affect aggregate welfare via aggregate efficiency considerations. Proposition
3b) shows that a policy change that varies over time but affects all agents identically across all
histories at a given date can affect aggregate welfare via aggregate efficiency and redistribution, but
not risk-sharing or intertemporal-sharing. Proposition 3c) shows that a policy change that affects
all individuals identically conditional on a history taking place but that can vary across dates and
individuals will have no risk-sharing component. It should be evident that, for generic DS-weights,
the converse of these results also holds. That is, policy changes must affect different individuals
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differently if they load on the risk-sharing, intertemporal-sharing, or redistribution components of
the aggregate additive decomposition.

Proposition 3 critically relies on considering a normalized individual multiplicative decomposition
of (the dynamic and stochastic components of) DS-weights. As highlighted above, such normalization
guarantees that the components of the individual multiplicative decomposition have meaningful
units, which makes it possible to derive conditions on how policies affect individuals in terms of
consumption. See Section G.1 of the Online Appendix for further details.

Finally, we show in Proposition 4 that, in an endowment economy, aggregate efficiency
considerations play no role for a DS-planner when making normative assessments. We use the
term endowment economy to refer to economies in which all consumption comes from predetermined
endowments of the consumption good at each date and history, and individuals’ instantaneous utility
exclusively depends on consumption. If individual utility depends on other variables, Proposition 4
remains valid only when the sum of instantaneous consumption-equivalent effects is zero.

Proposition 4. (Properties of aggregate additive decomposition: endowment economies) In an
endowment economy in which the aggregate endowment of the consumption good is invariant to
policy, the aggregate efficiency component of the welfare assessment of a DS-planner is zero for any
set of DS-weights, i.e., ΞAE = 0.

Altogether, Propositions 2 through 4 as well as Corollaries 1 through 4 show that the additive
aggregate decomposition satisfies desirable properties for any DS-planner.

4 Normalized Welfarist Planners

One of the challenges of the welfarist approach is to understand how a particular planner makes
tradeoffs among heterogeneous individuals, because of the ordinal nature of individual utilities. In
Section 4.1, we first show how to systematically characterize — critically, in easily interpretable
consumption units — how a welfarist DS-planner makes such tradeoffs across periods and histories
for a given individual, and across individuals. Next, in Section 4.2, we characterize new additional
properties of the aggregate additive decomposition of welfare assessments for normalized welfarist
planners.

We focus on defining and studying normalized welfarist planners because virtually all applied work
uses a welfarist approach and because the welfare assessments of normalized welfarist planners satisfy
highly desirable properties. In particular, we show that all normalized welfarist planners conclude
that the risk-sharing and intertemporal-sharing components are zero when markets are complete,
that the intertemporal-sharing component is zero when individuals can freely trade a riskless bond,
and that different normalized welfarist planners — with different SWF’sW (·) — exclusively disagree
on the redistribution component. We also show that the efficiency components (aggregate efficiency,
risk-sharing, and intertemporal-sharing) of the aggregate additive decomposition are invariant to
ordinal utility transformations and that Pareto improving policies always increase efficiency.
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4.1 Individual Multiplicative Decomposition for Normalized Welfarist Planners

Proposition 5 characterizes the unique normalized individual multiplicative decomposition of DS-
weights for a given welfarist planner, i.e., for a given SWF, W (·), defined in Equation (4). By
computing normalized DS-weights, we can explicitly determine how a welfarist DS-planner makes
tradeoffs — critically, in easily interpretable consumption units —across periods and histories for a
given individual, and across individuals.

Proposition 5. (Normalized welfarist planners: individual multiplicative decomposition) The unique
normalized individual multiplicative decomposition of DS-weights for a welfarist planner with SWF,
W (·), is given by
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where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

.

This normalization precisely describes how a welfarist planner makes tradeoffs. First, note that
the instantaneous consumption-equivalent effect of the policy at date t and history st, dui|c(st)

dθ , is
expressed in units of the consumption good (dollars) at such a history. The stochastic component,
ω̃i,Wt

(
st
∣∣ s0
)
, can consequently be interpreted as the marginal rate of substitution between a dollar

in history st and a dollar across all possible histories at date t for individual i from the planner’s
perspective. Formally, the denominator of Equation (13) corresponds to the marginal value of
transferring one dollar in every possible history at date t. For instance, if the stochastic component
is 0.4 for a given individual, history, and date, a welfarist planner equally values a one-dollar transfer
at that particular history and a transfer of 0.4 dollars to the same individual in each history at that
date.

The dynamic component, ω̃i,Wt (s0), can similarly be interpreted as a marginal rate of substitution
between a dollar at date t and a permanent dollar (i.e., a dollar paid at all dates, irrespective of
histories) for individual i from the planner’s perspective. Formally, the denominator of Equation (14)
corresponds to the marginal value of permanently transferring one dollar across all dates and histories.
For instance, if the dynamic component is 0.3 for a given individual and date, a welfarist planner
equally values — for that individual — a one-dollar permanent transfer across all histories at that
particular date and a transfer of 0.3 dollars at all dates, irrespective of histories. Both the stochastic
and the dynamic components are thus useful because they allow the planner to meaningfully compare

21



the welfare impact of policy changes across dates and histories for a given individual i.
Finally, the individual component, ω̃i,Wt (s0), can be interpreted as the weight that a welfarist

planner assigns to welfare changes for a given individual, expressed in terms of a permanent dollars.
Formally, the denominator of Equation (15) corresponds to the marginal value of permanently
transferring one marginal dollar to each individual in the economy across all dates and histories. For
instance, if the individual component is 0.2 for a given individual, a welfarist planner equally values
a one-dollar permanent transfer to that individual across all dates and histories and a permanent
transfer of 0.2 dollars to all individuals across all dates and histories. It follows from Equation (15)
that a welfarist planner gives more weight to individuals who are more patient, whose utility function
has more curvature, who have lower consumption, and for whom λi (s0) is lower.

Several implications follow from Proposition 5. First, the welfare assessment of a normalized
welfarist planner has a cardinal interpretation, since it is measured in dollars at all dates and histories
for all individuals. In other words, if dWW

dθ = 0.1, a normalized welfarist planner concludes that a
marginal policy change is equivalent to a permanent transfer to all individuals at all dates and
histories of 0.1 dollars.

Second, it is possible to reformulate the dynamic and stochastic normalized components as

ω̃i,Wt

(
st
∣∣∣ s0
)

= qit
(
st|s0

)∑
st q

i
t (st|s0)

= individual i date-0 state-price of history st

individual i date-0 price of date-t zero coupon bond (16)
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i
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= individual i date-0 price of date-t zero coupon bond
individual i date-0 price of T -consol bond , (17)

where qit
(
st|s0

)
denotes the state-price over history st from the perspective of individual i at date 0,

given by23

qit

(
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)
= (βi)t πt

(
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Equations (16) and (17) highlight that a welfarist planner makes tradeoffs across dates and histories
for a given individual exclusively using the individual’s own stochastic discount factor. This is a
natural result, since welfarist planners are non-paternalistic.

Third, we can reformulate the individual normalized components as

ω̃i,W (s0) =
λi (s0) ∂ui(s

0)
∂ci0
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, (19)

where qit
(
st|s0

)
is defined in Equation (19). In contrast to Equations (13) and (16), the exact form

of the SWF W (·) does impact the normalized individual components, a fact that is critical to show
that welfarist planners exclusively disagree about the redistribution — see Proposition 8 below.24

23Consol bonds are typically defined as fixed-income securities with no maturity date. Since we consider economies
that may have a finite horizon, we define a T -consol bond as a bond that pays at every date. When T = ∞, the
conventional definition and ours coincide.

24Interestingly, as we discuss in Section G.3.4 of the Online Appendix, a planner who uses a date-0 normalization
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Fourth, we typically expect all four components of the aggregate additive decomposition to be
non-zero for a normalized welfarist planner, at least when markets are incomplete — see Proposition
6 below.

Finally, aggregate welfare assessments made by a particular welfarist planner (e.g., with a
particularW (·)) are directionally invariant to whether we consider a normalized or an unnormalized
individual multiplicative decomposition. That is, both decompositions agree on whether a policy
is desirable or not. However, only the normalized individual multiplicative decomposition will have
desirable properties, as we describe next.

4.2 Properties of Aggregate Additive Decomposition for Normalized Welfarist
Planners

Since welfarist planners are particular DS-planners, every result established in Section 3 immediately
applies to normalized welfarist planners. However, we can further exploit the characterization of
the individual multiplicative decomposition introduced in Proposition 5 to identify new desirable
properties of the aggregate decomposition that apply to normalized planners.

In particular, we show that i) all normalized welfarist planners conclude that the risk-sharing
and intertemporal-sharing components are zero when markets are complete, ii) the intertemporal-
sharing component is zero when individuals can freely trade a riskless bond, iii) different
normalized welfarist planners exclusively disagree on the redistribution component, iv) the efficiency
components (aggregate efficiency, risk-sharing, and intertemporal-sharing) of the aggregate additive
decomposition are invariant to monotonically increasing transformations of individual’s lifetime
utilities and positive affine (increasing linear) transformations of individual’s instantaneous utilities,
and v) all normalized welfarist planners conclude that Pareto improving policies improve efficiency,
i.e., the sum of aggregate efficiency, risk-sharing, and intertemporal-sharing. To our knowledge, the
aggregate additive decomposition of welfare assessments introduced in this paper is the first welfare
decomposition for which these properties — which seem highly desirable — have been established.

It seems natural to conjecture that the intertemporal-sharing and risk-sharing components of
the aggregate additive decomposition depend critically on the ability of individuals to smooth
consumption intertemporally and across histories. For the purposes of Proposition 6, we say that
markets are complete when the marginal rates of substitution across all dates and histories in terms
of the numeraire are equalized across agents — this condition is endogenously satisfied in any
equilibrium model in which individuals can freely trade claims that pay in terms of consumption
goods spanning all possible contingencies.25

in which λi (s0) ∂ui(s
0)

∂ci0
= 1, implicitly assigns higher individual weights to those with higher willingness to pay for

T -consol bonds, since ω̃i,W (s0) =
∑T

t=0

∑
st
qit(st|s0)∫ ∑T

t=0

∑
st
qi
t
(st|s0)di

. This may seem desirable in particular circumstances.
25It is important that we define complete markets in terms of the numeraire. Propositions 6 and 7 imply that the

natural commodity to choose as numeraire is the commodity on which financial claims are written (e.g., dollars). In
Section F.3 of the Online Appendix, we expand on the implications of the choice of numeraire for welfare assessments.

23



Proposition 6. (Properties of normalized welfarist planners: complete markets) When the marginal
rates of substitution across all dates and histories are equalized across individuals — a condition that
complete market economies satisfy — the intertemporal-sharing and the risk-sharing components of
the aggregate welfare decomposition for a normalized welfarist planner are zero, that is, ΞRS = ΞIS =
0. Hence, in that case, welfare assessments made by a normalized welfarist planner are exclusively
driven by aggregate efficiency and redistribution.

When markets are complete, ω̃i,NUt

(
st
∣∣ s0
)
and ω̃i,NUt (s0) become identical across individuals, as

shown by the fact that there is a unique stochastic discount factor, so qit = qt, ∀i in Equations (16)
and (17). Combined with Proposition 2b), this immediately implies that ΞRS = ΞIS = 0. Intuitively,
a normalized welfarist planner perceives that no policy can entail welfare gains or losses coming from
risk-sharing or intertemporal-sharing among individuals, since individuals can perfectly share risks
and substitute intertemporally.26

Proposition 7. (Properties of normalized welfarist planners: riskless borrowing/saving) When the
marginal rates of substitution across dates are equalized across individuals — a condition that is
satisfied when all individuals are able to borrow and save freely at all times — the intertemporal-
sharing component of the aggregate welfare decomposition for a normalized welfarist planner is zero,
that is, ΞIS = 0.

When all individuals are able to borrow and save freely at all times, ω̃i,NUt (s0) becomes identical
across individuals. This follows directly from Equation (16), since in that case

∑
st q

i
t

(
st|s0

)
is

constant for all individuals. Intuitively, a normalized welfarist planner perceives that no policy can
entail welfare gains or losses coming from intertemporal-sharing among individuals, since individuals
can perfectly transfer resources across periods. Proposition 7 immediately implies that constraints
to borrowing or saving are needed for the intertemporal-sharing component to be non-zero.

Proposition 8. (Properties of normalized welfarist planners: welfarist planners only disagree about
redistribution) For a given policy, the efficiency components (aggregate efficiency, risk-sharing,
and intertemporal-sharing) of the aggregate additive decomposition are identical for all normalized
welfarist planners. Hence, differences in welfare assessments among normalized welfarist planners
are exclusively based on how they assess redistribution.

Proposition 8 follows from the fact that the individual component of the individual multiplicative
decomposition, ω̃i,W (s0), is the only component that depends on the exact form ofW (·). Therefore,
differences in welfare assessments between welfarist planners can always be traced back to differences
in the redistribution component of the aggregate additive decomposition.27 This result crucially

26Proposition 6 suggests that the cross-sectional dispersions of the dynamic and stochastic components of DS-weights,
SDi

[
ω̃it
(
st
∣∣ s0
)]

and SDi
[
ω̃it
(
s0)], may be natural candidates to measure the potential welfare gains from completing

markets for a normalized welfarist planner — see also Proposition 15 below.
27Note that Proposition 8, when combined with Corollary 3 rationalizes why all normalized welfarist planners

directionally agree on welfare assessments when individuals are ex-ante identical. In that case, Corollary 3 implies
that the redistribution component is zero, and Proposition 8 shows that ΞAE , ΞRS , and ΞIS (and consequently ΞE)
are identical for normalized welfarist planners.
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hinges on the fact that welfarist planners are non-paternalistic, that is, welfarist planners use
individual lifetime utilities as inputs into their aggregate welfare calculations. In the next section, we
introduce new “pseudo-welfarist” planners for which this property does not hold — see also Section
G.3.1 of the Online Appendix.

Proposition 9. (Properties of normalized welfarist planners: invariance of efficiency components
to utility transformations) The efficiency components (aggregate efficiency, risk-sharing, and
intertemporal-sharing) of the aggregate additive decomposition are invariant to i) monotonically
increasing transformations of individual’s lifetime utilities and ii) positive affine (increasing linear)
transformations of individual’s instantaneous utilities, for all normalized welfarist planners.

As we described in Section 2.2, a welfarist planner mechanically puts more weight on the gains or
losses of an individual whose lifetime utility experiences a monotonically increasing transformation
or whose instantaneous utility experiences a positive affine transformation, even though this has no
impact on allocations. Proposition 9 shows that this allegedly undesirable feature of the welfarist
approach is fully confined to the redistribution component of the aggregate decomposition. Hence,
Proposition 9 implies that the potential arbitrariness of the welfare assessments of a welfarist planner
due to the choice of utility units is exclusively due to the redistribution component.28

Altogether, Propositions 8 and 9 have profound implications for the use in practice of Social
Welfare Functions. First, the fact that every welfarist planner agrees on ΞAE , ΞRS , and ΞIS implies
that there should be no disagreement over the efficiency gains of any policy. Second, the fact that
only the redistribution component is sensitive to the choice of SWF and utility units implies that
the redistributional welfare implications of a policy are simply a function of judiciously choosing the
individual component of the individual multiplicative decomposition of DS-weights.

While proving the converse to Propositions 6 through 9 — that is, that the aggregate additive
decomposition for normalized welfarist planners is the only one that satisfies such properties — is
outside of the scope of this paper, it should be evident why using normalized weights is critical.29

In particular, note that Equations (13) and (14) (equivalently, (16) and (17)) are expressed as ratios
of individual marginal utilities or individual valuations. Since individual valuations of particular
claims are i) invariant to the considered utility transformations and ii) identical among individuals
when markets are complete or a riskless asset can be freely traded, Propositions 6 through 9 follow.
Hence, any other decomposition that satisfies these properties will have to rely on ratios of marginal
utilities.

Finally, we show that normalized welfarist planners always conclude that Pareto improving
policies improve efficiency. This is another desirable property that the aggregate additive
decomposition satisfies.

28We say potential arbitrariness because using different transformations of individual utilities or different social
welfare functions simply corresponds to choosing specific individual normalized components, ω̃i,W (s0), as defined in
Equation (15).

29It is straightforward to show that there are slight variations of normalized weights that satisfy Propositions 6
through 10. See, for instance, the discussion of date-0 normalizations in Section G.1 of the Online Appendix.
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Proposition 10. (Properties of normalized welfarist planners: Pareto improvements increase
efficiency) If a policy change is a (strict or weak) Pareto improvement, then the sum of the efficiency
components (aggregate efficiency, risk-sharing, and intertemporal-sharing) must be strictly positive,
that is, ΞE = ΞAE + ΞIS + ΞRS > 0.

Proposition 10 shows that every Pareto improvement must improve efficiency. Interestingly, even
when one or two of the efficiency components are negative, as long as the sum of the three is strictly
positive, there is scope for the policy considered to be a Pareto improvement. However, policies for
which ΞAE + ΞIS + ΞRS < 0 cannot be a Pareto improvement.

Proposition 10 provides a necessary but not a sufficient condition for a policy to be a Pareto
improvement since there are scenarios in which ΞAE + ΞIS + ΞRS > 0 that are not Pareto
improvements. However, converse results can be obtained in specific cases. For instance, in
economies with ex-ante identical individuals, policies for which ΞAE + ΞIS > 0 are necessarily
Pareto improvements. Also, in economies in which a planner can set permanent individual-specific
transfers that cannot be conditioned on time or histories, it can be shown that all policies for which
ΞAE + ΞIS + ΞRS > 0 are Pareto improvements.

5 New Welfare Criteria

A central objective of this paper is to provide a framework to systematically formalize new welfare
criteria to assess and conduct policy. In this section, we describe how to use DS-weights to
formalize new welfare criteria that capture particular normative objectives that society may find
appealing. These results have the potential to allow for disciplined discussions about the mandates of
independent technocratic institutions (central banks, financial regulators, other regulatory agencies,
etc.).30

5.1 AE/AR/NR DS-Planners

In this subsection, we formally introduce novel DS-planners that only value some normative
considerations but not others. By doing this, we are able to define new welfare criteria that set
to 0 particular components of the aggregate additive decomposition. We refer to these planners
as i) aggregate efficiency (AE) DS-planners, ii) aggregate efficiency/risk-sharing (AR) DS-planners,
and iii) no-redistribution (NR) DS-planners. In principle, there exists a family of DS-planners that
sets to 0 particular components of the aggregate additive decomposition. Within each family of DS-
planners, we identify a pseudo-welfarist planner as the one that represents the minimal departure
relative to the normalized welfarist planner.

By introducing these new planners we are able to formalize new welfare criteria that, for instance,
isolate aggregate efficiency as the sole welfare objective, or that remove the desire to redistribute

30For instance, in ongoing work, we explore whether it is possible to implement the timeless Ramsey solution of a
utilitarian planner, which requires commitment, in an environment in which a central banker chooses monetary policy
under discretion using one of the new welfare criteria introduced in this section.
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across individuals, among other goals. These new DS-planners are helpful not only to provide
analytical characterizations, but also to characterize and compute optimal policy solutions guided
by particular normative considerations.

Definition 4. (AE/AR/NR DS-planners: definition)

a) (Aggregate efficiency DS-planners) An aggregate efficiency (AE) DS-planner, that is, a planner
who exclusively values aggregate efficiency, is a DS-planner for whom the individual, dynamic,
and stochastic components of DS-weights are constant across all individuals at all dates and
histories. A pseudo-welfarist AE DS-planner, who values aggregate efficiency as a normalized
welfarist planner, has DS-weights ωi,W,AE

t
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b) (Aggregate efficiency/risk-sharing DS-planners) An aggregate efficiency/risk-sharing (AR) DS-
planner, that is, a planner who exclusively values aggregate efficiency and risk-sharing, is a DS-
planner for whom the individual and dynamic components of DS-weights are constant across
all individuals at all dates. A pseudo-welfarist AR DS-planner, who values aggregate efficiency
and risk-sharing as a normalized welfarist planner, has DS-weights ωi,W,AR
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c) (No-redistribution DS-planners) A no-redistribution (NR) DS-planner, that is, a planner who
exclusively values aggregate efficiency, risk-sharing, and intertemporal-sharing, but disregards
redistribution, is a DS-planner for whom the individual component of DS-weights is constant
across all individuals. A pseudo-welfarist AR DS-planner, who values aggregate efficiency,
risk-sharing, and intertemporal-sharing as a normalized welfarist planner, has DS-weights
ωi,W,NR
t
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defined by
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Formally, an AE DS-planner adopts components of the individual multiplicative decomposition of
DS-weights that are individual invariant. The pseudo-welfarist AE DS-planner sets these components
exactly equal to the cross-sectional average of those used by a normalized welfarist planner.31 An
AR DS-planner only makes the individual and dynamic components individual invariant, while the

31It is straightforward to consider other AE DS-planners that are not pseudo-welfarist. For instance, one could
choose the following weights:

ω̃i,AE (s0) = 1, ω̃i,AEt (s0) = β
t
, and ω̃i,AEt

(
st
∣∣ s0
)

= πt
(
st
∣∣ s0
)
,

for some β, plausibly β =
∫
βidi. This is helpful because, in some applications, DS-planners that are not pseudo-

welfarist may be easier to operationalize.
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Table 1: New Welfare Criteria: Summary

DS-Planners
ΞAE ΞRS ΞIS ΞRD

Aggregate Risk- Intertemporal- RedistributionEfficiency sharing sharing
Aggregate Efficiency (AE) X = 0 = 0 = 0

Aggregate Efficiency/Risk-Sharing (AR) X X = 0 = 0
No-Redistribution (NR) X X X = 0

Welfarist (W) X X X X

Note: Table 1 summarizes the properties of the aggregate additive decomposition for the DS-planners introduced in
Definition 4. These properties follow from Proposition 11.

pseudo-welfarist AR DS-planner further preserves the stochastic component used by the normalized
welfarist planner. A NR DS-planner only makes the individual component individual invariant, while
the pseudo-welfarist NR DS-planner further preserves the dynamic and stochastic components used
by the normalized welfarist planner.

We formalize the properties of these new planners for the components of the aggregate additive
decomposition in Proposition 11. Table 1 summarizes its results.

Proposition 11. (AE/AR/NR DS-planners: properties)

a) For an AE DS-planner, the risk-sharing, intertemporal-sharing, and redistribution components
of the aggregate additive decomposition are zero, that is, ΞRS = ΞIS = ΞRD = 0. The aggregate
efficiency component, ΞAE, is identical for a pseudo-welfarist AE DS-planner and its associated
normalized welfarist planner.

b) For an AR DS-planner, the intertemporal-sharing and redistribution components of the
aggregate additive decomposition are zero, that is, ΞIS = ΞRD = 0. The aggregate efficiency
and risk-sharing components, ΞAE and ΞRS, are identical for a pseudo-welfarist AR DS-planner
and its associated normalized welfarist planner.

c) For a NR DS-planner, the redistribution component of the aggregate additive decomposition
is zero, that is, ΞRD = 0. The aggregate efficient, risk-sharing, and intertemporal-sharing
components, ΞAE, ΞRS, and ΞIS, are identical for a pseudo-welfarist NR DS-planner and its
associated normalized welfarist planner.

Proposition 11 shows that the new DS-planners, by making the individual components of DS-
weights invariant across individuals, dates, or histories, are defined to directly exploit the properties of
the aggregate additive decomposition characterized in Proposition 2. Moreover, the pseudo-welfarist
planners are defined so as to exactly preserve the value of their components relative to the associated
welfarist planner along the dimensions in which they are not zero. This is useful in practice because
it allows us to interpret specific sums of the components of the aggregate decomposition of a welfarist
planner as the welfare assessment made by a pseudo-welfarist planner.

Given its practical importance, we formally state this result as Corollary 5.
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Corollary 5. (Pseudo-welfarist planners as components of welfarist aggregate additive decomposi-
tion) Specific sums of the components of the aggregate additive decomposition of welfare assessments
for a given welfarist planner have the interpretation of welfare assessments for particular pseudo-
welfarist DS-planners.

Interestingly, it is not possible to define a new pseudo-welfarist planner for whom exclusively
the risk-sharing and intertemporal-sharing components are zero, as we show in Section G.2 of the
Online Appendix. To guarantee that ΞRS = ΞIS = 0, a planner would need ωit (s0) and ω̃it

(
st
∣∣ s0
)

to be individual-invariant, which would interfere with ensuring that the value of ΞRD is the same as
for a welfarist planner. A similar logic applies to other combinations of the different components.
Nonetheless, it is certainly possible to define new planners that are not pseudo-welfarist but that for
instance exclusively value aggregate efficiency and redistribution.

5.2 α-DS-planners

The new planners that we introduce in Definition 4 by no means exhaust the set of new planners that
one can define using DS-weights. In particular, it is possible to define a new planner that spans i)
AE, ii) AR, and iii) NR pseudo-welfarist planners, as well as iv) the associated normalized welfarist
planner. We refer to this planner as an α-DS-planner.

Definition 5. (α-DS-planner: definition) An α-DS-planner is a DS-planner for whom the
individual, dynamic, and stochastic components of DS-weights are linear combinations of the
components of a normalized welfarist planner and the component of an AE pseudo-welfarist planner.
An α-DS-planner has DS-weights ωi,W,α

t
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defined by
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ω̃i,W,α
t (s0) = (1− α3) ω̃i,W,AE

t (s0) + α3ω̃
i,W
t (s0)

ω̃i,W,α (s0) = (1− α4) ω̃i,W,AE (s0) + α4ω̃
i,W (s0) ,

where α = (α2, α3, α4), and where α2 ∈ [0, 1], α3 ∈ [0, 1], α4 ∈ [0, 1].

Depending on the value of α, an α-DS-planner behaves as a particular pseudo-welfarist planner
or as a combination of pseudo-welfarist planners. In particular, as we show in Section G.2 of the
Online Appendix, when α = (0, 0, 0), we have an AE DS-planner; when α = (1, 0, 0), we have an
AR DS-planner; when α = (1, 1, 0), we have a NR DS-planner; and when α = (1, 1, 1), we have a
welfarist planner.

By varying α, it is possible to model planners who care about the different components to different
degrees. Moreover, estimating α from actual policies in the context of a particular policy problem
has the potential to uncover the weights that a particular policymaker attaches in practice to the
different components of the aggregate additive decomposition.
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Figure 1: DS-Planners: Summary

Note: Figure 1 summarizes the relations between the different planners studied in Section 5 paper. The vertical dashed
line separates non-paternalistic planners from paternalistic planners. All welfarist planners, as well as no-redistribution
(NR) planners, are non-paternalistic. Aggregate efficiency (AE) and aggregate efficiency/risk-sharing (AR) planners
are paternalistic. Some pseudo-welfarist planners are non-paternalistic (welfarist, NR), while others are paternalistic
(AE, AR). In this figure, the α-DS-planners are pseudo-welfarist with respect to the utilitarian planner.

5.3 Paternalism and Institutional Design

In Figure 1, we summarize the relations between the different planners studied in this section. We
conclude this section with two remarks.

Remark 1. (Paternalistic vs. Non-paternalistic DS-planners; AE and AR planners are paternalistic)
It is important to highlight that AE and AR DS-planners are paternalistic, in the sense that
their welfare assessments do not take as an input changes in the lifetime welfare assessments
of individuals.32 In these cases, a planner and an individual may have different assessments of
whether a policy change is welfare improving or not for that individual. However, NR DS-planners
are not paternalistic. Intuitively, the welfare assessments of any planner who respects individual
preferences must value intertemporal-sharing and risk-sharing considerations as long as individuals
do. Redistributional concerns are independent of whether a planner respects individuals’ desires for

32As explained in Section G.3.1 of the Online Appendix, a non-paternalistic planner makes welfare assessments
according to

dWNP (s0)
dθ

=
∫
φi (s0) dVi (s0)

dθ
di,

where φi (s0) are functions of all possible paths of outcomes and where dVi(s0)
dθ

is defined in Equation (2). The key
distinction between a welfarist and a non-paternalistic planner is that, for welfarist planners φi (s0) must take the
particular form ∂W({Vi(s0)}i∈I)

∂Vi
, where W (·) is a SWF of the form described in Equation (4). Non-paternalistic

planners can set φi (s0) freely.
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interpersonal sharing. Therefore, if a planner wants to make welfare assessments that do not value
intertemporal-sharing or risk sharing, such a planner must necessarily be paternalistic.

Remark 2. (Implications for policy mandates and institutional design) The framework developed
in this paper has the potential to guide the design of independent technocratic institutions. In
practice, such institutions must be given a “mandate”, much like defining a set of DS-weights.
Therefore, a society may want to consider designing independent technocratic institutions that
have some normative considerations in their mandate but not others, along the lines of the logic
we have developed in this section. For instance, the current “dual mandate” (stable prices and
maximum employment) of the Federal Reserve (as defined by the 1977 Federal Reserve Act) seems
to be better described by an aggregate efficiency DS-planner, rather than a welfarist planner,
which would care about cross-sectional considerations. Alternatively, an institution like the Federal
Emergency Management Agency (FEMA) has as part of its mandate to “support the Nation in a
risk-based, comprehensive emergency management system”, which unavoidably involves risk-sharing
considerations.

6 Additional Results

In this section, we include additional results. First, we further decompose the components of the
aggregate additive decomposition and then explain how to connect welfare assessments to measures
of inequality. Next, we explain how to make welfare assessments using DS-weights in recursive
environments, and show how to implement welfare assessments via an instantaneous Social Welfare
Function. Finally, we describe how to compute a term structure for aggregate welfare assessments
and for each of the components of the aggregate additive decomposition and then briefly describe
additional results included in the Online Appendix.

6.1 Decomposing the Components of the Aggregate Additive Decomposition

Here, we further decompose and provide additional insights into the four components of the aggregate
additive decomposition. For the aggregate efficiency and the redistribution components, we provide
new stochastic decompositions. For the risk-sharing and intertemporal-sharing components, we
provide alternative cross-sectional decompositions.

Aggregate efficiency (ΞAE). It is important to highlight that the aggregate efficiency component
ΞAE includes aggregate valuation considerations. We formalize this insight by further decomposing
the aggregate efficiency component of the aggregate additive decomposition into an expected
aggregate efficiency component and an aggregate smoothing component.

Proposition 12. (Aggregate efficiency component: stochastic decomposition) The aggregate effi-
ciency component of the aggregate additive decomposition, ΞAE, can be decomposed into i) an ex-
pected aggregate efficiency component, ΞEAE, and ii) an aggregate smoothing component, ΞAM , as

31



follows:

ΞAE =
T∑
t=0

ωt (s0)E0
[
ωπt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞEAE (Expected Aggregate Efficiency)

(23)

+
T∑
t=0

ωt (s0)Cov0

[
ωπt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAM (Aggregate Smoothing)

,

where we define ωt (s0) = Ei
[
ω̃it (s0)

]
, ωπt

(
st
∣∣ s0
)

= Ei[ω̃it( st|s0)]
πt( st|s0) , and dui|c(st)

dθ = Ei
[
dui|c(st)

dθ

]
, and

where E0 [·] and Cov0 [·, ·] denote expectations and covariances conditional on s0.

The expected aggregate efficiency component, ΞEAE , captures the discounted expectation over
time and histories of the aggregate instantaneous consumption-equivalent effect of the policy change.
The aggregate smoothing component, ΞAM , captures whether aggregate efficiency gains take place
in histories that a DS-planner values more in aggregate terms. It should be evident that aggregate
smoothing, ΞAM , based on aggregate covariances over histories, is logically different from the risk-
sharing and intertemporal-sharing components, ΞRS and ΞIS , based on cross-sectional covariances.

In practical terms, the welfare gains associated with eliminating aggregate business cycles in a
representative-agent economy, as in the policy experiment of Lucas (1987), fully arise from aggregate
smoothing considerations, that is, ΞAM . Note that both the expected aggregate efficiency and the
aggregate smoothing components incorporate discounting via ωt (s0), so policy changes that front-
load gains from expected aggregate efficiency or aggregate smoothing are more desirable.

Risk-sharing and intertemporal-sharing components (ΞRS and ΞIS). While Propositions
2 through 4 establish desirable properties of the aggregate additive decomposition, it is possible
to provide alternative formulations of the risk-sharing and intertemporal-sharing components. In
Proposition 13 we further decompose the intertemporal-sharing component into a pure intertemporal-
sharing component, a weight concentration component, and a policy-weights coskewness component.
We also show a new identity that the sum of the risk-sharing and intertemporal-sharing components,
ΞRS + ΞIS , must satisfy.

Proposition 13. (Risk-sharing/intertemporal-sharing components: alternative cross-sectional de-
compositions)

a) The intertemporal-sharing component of the aggregate additive decomposition, ΞIS, can be
decomposed into i) a pure intertemporal-sharing component, ΞPIS, ii) a weight concentration
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component, ΞWC and iii) a policy-weights coskewness component, ΞPC as follows:

ΞIS =
T∑
t=0

∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Covi

[
ω̃it (s0) ,

dui|c
(
st
)

dθ

]
︸ ︷︷ ︸

=ΞPIS (Pure Intertemporal-sharing)

+
T∑
t=0

∑
st

Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞWC (Weight Concentration)

+
T∑
t=0

∑
st

Ei

[(
dui|c

(
st
)

dθ
− Ei

[
dui|c

(
st
)

dθ

])(
ω̃it (s0)− Ei

[
ω̃it (s0)

]) (
ω̃it

(
st
∣∣∣ s0
)
− Ei

[
ω̃it

(
st
∣∣∣ s0
)])]

︸ ︷︷ ︸
=ΞPC (Policy-weights Coskewness)

.

(24)

b) The sum of the risk-sharing and the intertemporal-sharing components, ΞRS + ΞIS, can be
decomposed into i) a weight concentration component, ΞWC and ii) an interpersonal-sharing
component, ΞIPS as follows:

ΞRS + ΞIS =
T∑
t=0

∑
st

Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞWC (Weight Concentration)

+
T∑
t=0

∑
st

Covi

[
ω̃it (s0) ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞIPS (Interpersonal-sharing)

, (25)

where ΞIPS = ΞRS + ΞPIS + ΞPC .

The first component of ΞIS introduced in Proposition 13a), ΞPIS , can be interpreted as capturing
pure intertemporal-sharing considerations. The major difference between ΞIS and ΞPIS is that
the former is based on cross-sectional covariances of the dynamic component of DS-weights with
the expected — interpreting the stochastic weights as probabilities — instantaneous consumption-
equivalent effect of the policy at a given date. The latter, on the other hand, is based on the
expectation of cross-sectional covariances of the dynamic component of DS-weights with the actual
instantaneous consumption-equivalent effect of the policy. Formally, the difference between ΞIS and
ΞPIS is captured by the remaining two components, which we describe next.

The second component of ΞIS introduced in Proposition 13a), ΞWC , can be interpreted as
capturing the welfare gain (loss) associated with policies that increase aggregate instantaneous
consumption-equivalent when the dynamic and stochastic components of DS-weights are positively
(negatively) correlated across individuals. While one may consider including ΞWC in the aggregate
efficiency component, there are two good reasons not to do so. First, it would require knowledge of the
cross-section of the dynamic and stochastic components of DS-weights, which goes against expressing
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Figure 2: Aggregate additive decomposition

Note: Figure 2 illustrates the aggregate additive decomposition of welfare assessments for a general DS-planner, and
how its four components can be further decomposed. See Propositions 1, 12, 13, and 14 for formal definitions of each
of the terms.

the aggregate efficiency component exclusively as a function of aggregate statistics. Second, as
implied by Proposition 6, for the case of welfarist planners, ΞWC = 0 when markets are complete.
This fact highlights that ΞWC necessarily relies on imperfect smoothing across individuals, which
makes this term unsuitable to capture aggregate efficiency considerations.

The third component of ΞIS introduced in Proposition 13a), ΞPC , is exactly based on the
coskewness between i) the dynamic component of DS-weights, ii) the stochastic component of DS-
weights, and iii) the instantaneous consumption-equivalent effect of a policy. Coskewness is a measure
of how much three random variables jointly change. For instance, note that ΞPC could be non-zero
even when Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣ s0
)]

= 0 and, consequently, ΞWC = 0. Also, coskewness is zero when
the random variables are multivariate normal (Bohrnstedt and Goldberger, 1969), so it relies on
higher-order moments.33 Note also that if one of ω̃it (s0), ω̃it

(
st
∣∣ s0
)
, or dui|c(st)

dθ is constant across all
individuals, then ΞWC = 0.

Proposition 13b) simply provides an alternative decomposition of the sum of risk-sharing and
intertemporal-sharing. Its first component is exactly the weight concentration component just
described, ΞWC , while the second component corresponds to the sum of risk-sharing, ΞRS , pure
intertemporal-sharing, ΞPIS , and policy-weights coskewness, ΞPC . At times, this alternative
decomposition may provide additional insights relative to the one in Proposition 1.

Redistribution component (ΞRD). Similarly to the aggregate efficiency component, the
redistribution component ΞRD is shaped by valuation considerations, in this case at the individual
level. Here, we decompose the redistribution component of the aggregate additive decomposition

33We expect these terms to be in important in models that emphasize higher moments of the distribution of individual
risks (e.g., Guvenen, Ozkan and Song (2014)).
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into an expected redistribution component and a redistributive smoothing component.

Proposition 14. (Redistribution component: stochastic decomposition) The redistribution compo-
nent of the aggregate additive decomposition, ΞRD, can be decomposed into i) an expected redistribu-
tion component, ΞER, and ii) a redistributive smoothing component, ΞRM , as follows:

ΞRD = Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)E0
[
ω̃i,πt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞER (Expected Redistribution)

+ Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)Cov0

[
ω̃i,πt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞRM (Redistributive Smoothing)

,

where we define ωi,πt
(
st
∣∣ s0
)

= ω̃it( st|s0)
πt( st|s0) , and where E0 [·] and Cov0 [·, ·] denote expectations and

covariances conditional on s0.

The expected redistribution component, ΞER, captures the perceived gains for a DS-planner from
changes in the expected instantaneous consumption-equivalent effect of the policy change. When
individuals with a high individual component of DS-weights, ω̃i

(
s0), have higher expected instanta-

neous consumption-equivalent effect, a planner attributes this to the redistribution component. The
redistributive smoothing component, ΞRM , captures whether individual gains from the policy change
take place in histories that are more desirable for individuals with a higher individual component
of DS-weights, ω̃i

(
s0). In practical terms, the redistributive smoothing component will be non-zero

when a policy improves individual smoothing for individuals with a higher individual component of
DS-weights.34

6.2 Inequality, Bounds, and Welfare Assessments

Concerns related to inequality often take a prominent role when assessing policies. Our aggregate
additive decomposition provides direct insights into which particular forms of inequality matter
for the determination of aggregate welfare assessments and each of their components. Formally,
in Proposition 15, we provide bounds for the risk-sharing component, the intertemporal-sharing
component, and the redistribution component defined in Proposition 1 based on the cross-sectional
dispersion of DS-weights and policy effects.35 These bounds are helpful in practice because they
can be computed using univariate statistics, i.e., cross-sectional standard deviations, and do not
require the joint distribution of DS-weights and normalized consumption-equivalent effects, which
are necessary to compute cross-sectional covariances (a multivariate statistic).

34Note that the redistribution component, ΞRD, can be positive or negative for Pareto-improving policies. This
can occur if different individuals are differentially affected by the policy and if a DS-planner has different individual
multiplicative components for different individuals.

35It should be clear that cross-sectional variances and standard deviations can only bound the welfare effect of policies.
Equation (11) shows that cross-sectional covariances exactly determine each of the components of the aggregate additive
decomposition.
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Proposition 15. (Cross-sectional dispersion bounds) The value of the risk-sharing, the intertemporal-
sharing, and the redistribution components defined in Proposition 1 satisfy the following bounds:

|ΞRS | ≤
T∑
t=0

Ei
[
ω̃it

(
s0
)]∑

st

SDi
[
ω̃it

(
st
∣∣∣ s0
)]
× SDi

[
dui|c

(
st
)

dθ

]
(26)

|ΞIS | ≤
T∑
t=0

SDi
[
ω̃it

(
s0
)]
× SDi

[∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
(27)

|ΞRD| ≤ SDi
[
ω̃i
(
s0
)]
× SDi

[
T∑
t=0

ω̃it

(
s0
)∑

st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
, (28)

where SDi [·] denotes a cross-sectional standard deviation.

Proposition 15 shows that the magnitude of each of the three components considered here
is determined (bounded above) by i) the cross-sectional dispersion of the different components
of DS-weights, SDi

[
ω̃it
(
st
∣∣ s0)], SDi

[
ω̃it
(
s0)], and SDi

[
ω̃i
(
s0)], as well as ii) the cross-sectional

dispersion of the instantaneous consumption-equivalent effect of the policy, effectively SDi
[
dui|c(st)

dθ

]
.

Consequently, inequality considerations do matter for the aggregate assessments of policies via the
cross-sectional dispersion of DS-weights or the impact of a policy by itself.

Proposition 15 is helpful for three reasons. First, it shows that normative criteria with highly
dispersed DS-weights have the potential to generate a large welfare effect of policies via risk-sharing,
intertemporal-sharing, and redistribution. Second, by computing the cross-sectional dispersion of the
different components of DS-weights for a given criterion, it shows that it is possible to understand the
potential scope that inequality may play when determining the risk-sharing, intertemporal-sharing,
and redistribution components of aggregate welfare assessments. Finally, Proposition 15 shows that
the risk-sharing, intertemporal-sharing and redistribution components depend on the extent to which
policies impact different individuals differently. That is, the more dui|c(st)

dθ varies across individuals,
dates, or histories, the more likely dispersion in DS-weights matters for welfare assessments.

6.3 Recursive Formulation

Up to now, we have defined DS-weights for a sequence formulation of a dynamic stochastic economy.
Here, we describe how to operationalize DS-weights in recursive environments, which are widely used
in practice. As in Ljungqvist and Sargent (2018), we denote possible recursive states by s and s′.36

36Note that in recursive economies with idiosyncratic (and potentially aggregate) states (i.e., Aiyagari or Krusell-
Smith style economies) individuals can be ex-ante heterogeneous at the time of making a welfare assessment for two
different reasons. First, individuals can be heterogeneous ex-ante (e.g., individuals can have different time-invariant
preferences or face shocks that come from different distributions). Second, individuals can be heterogenous ex-post
(e.g., individuals can have different endowments or asset holdings at the time of the welfare assessment, even though
they face identical problems starting from a given idiosyncratic state). This is an important observation to interpret
correctly some of the results in this paper. For instance, Corollary 3 of Proposition 2 only applies when all individuals
are identical because of predetermined reasons and when they all have the same initial state. Obviously, ex-post,
individuals will also be heterogeneous if they experience different shocks. In the notation used in this section, ex-ante
heterogeneity of either form is captured by the index i. See Section G.6 of the Online Appendix for a reformulation of
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Proposition 16. (Recursive formulation) Suppose that individual consumption and hours are
exclusively a function of the current realization of st and do not depend on the full history leading to
those outcomes, so that cit

(
st
)

= ci (st) = ci (s) and nit
(
st
)

= ni (st) = ni (s). Then, it is possible to
express dWDS(s0)

dθ , as defined in Equation (7), as follows:

dWDS (s0)
dθ

=
∫
ωi0

(
s0|s0

) dV̂ DS
i,0 (s0)
dθ

di, (29)

where dV̂ DSi,t (s)
dθ has the following recursive representation:

dV̂ DS
i,t (s)
dθ

=
dui|c (s)
dθ

+ β̂i,t
∑
s′

π̂i,t
(
s′|s

) dV̂ DS
i,t+1 (s′)
dθ

, (30)

where β̂i,t and π̂i,t (s′|s) correspond to a twisted discount factor and a twisted set of transition
probabilities of the form:

β̂i,t =
ω̃it+1 (s0)
ω̃it (s0)

and π̂i,t
(
s′
∣∣ s) =

ω̃it+1 (s′| s0)
ω̃it (s| s0)

. (31)

For Equation (30) to be a valid recursive representation, it must be that β̂i,t is exclusively a function
of time and s0 and that π̂i,t (s′| s) is exclusively a function of time, s, and s0, but not of the full
histories.

Proposition 16 shows that, in order to make a welfare assessment at a state s0, a DS-planner
must compute the date-0 DS-weights for all individuals, ωi0

(
s0|s0

)
, as well as the value of dV̂

DS
i,0 (s0)
dθ =

dV DS
i

(s0)
dθ

ω̃i0(s0)ω̃i0( s0|s0) , which can be computed recursively following Equation (30). Intuitively, it is possible

to find a recursive representation for dV̂ DSi,t (s)
dθ , because it is expressed in units of consumption good

at state s. In fact, dV̂
DS
i,t (s)
dθ has the interpretation of an asset pricing equation for an asset that pays

dui|c(s)
dθ units of consumption good to individual i in state s.
It is worth highlighting that the set of DS-weights that admits a recursive representation is

smaller than the set of DS-weights that can be expressed non-recursively. In particular, β̂i,t and
π̂i,t (s′| s), which are ratios components of the individual decomposition of DS-weights cannot depend
on histories, although they may be time-dependent. Interestingly, even in a fully recursive economy,
the recursive representation of dV̂ DSi,t (s)

dθ is typically time-dependent, because the state in which
the welfare assessment takes place will anchor the future values of the dynamics and stochastic
components of the individual multiplicative decomposition for a DS-planner. Only in particular
cases is it possible to find a time-independent recursive representation, as we discuss next.

As we show in the Online Appendix, when π (s′| s) is Markov, we can express β̂i,t and π̂i,t (s′| s)

our approach using notation that differentiates between idiosyncratic and aggregate states.
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for a normalized welfarist planners as follows:

β̂Wi,t = βi

∑
s′ πt+1 (s′| s0) ∂ui(s

′)
∂ci∑

s πt (s| s0) ∂ui(s)
∂ci︸ ︷︷ ︸

= dynamic correction

= 1
Rfi,t

and π̂Wi,t
(
s′
∣∣ s) = π

(
s′
∣∣ s)

∂ui(s′)
∂ci∑

s′ πt+1( s′|s0) ∂ui(s
′)

∂ci

∂ui(s)
∂ci∑

s
πt( s|s0) ∂ui(s)

∂ci︸ ︷︷ ︸
= stochastic correction

= π?i,t
(
s′
∣∣ s) .

(32)
In this case, Equation (30) can be literally interpreted as a cum-dividend asset pricing equation,

since β̂Wi,t = 1/Rfi,t has the interpretation of individual i’s one-period forward rate between dates t
and t+ 1, and π̂Wi,t (s′| s) = π?i,t (s′| s) has the interpretation of individual i’s risk-neutral probability
between dates t and t+ 1. As we show in the Online Appendix, Equation (30) is time-independent
for normalized welfarist planners and NR pseudo-welfarist planners.37 However, Equation (30) is
time-dependent for AR and AE pseudo-welfarist planners. In our application, which we formulate
recursively, we further illustrate how to use DS-weights in recursive environments.

6.4 Instantaneous SWF Formulation

As explained in Section 2.2, the conventional approach to making welfare assessments relies on
defining a Social Welfare Function that takes individual lifetime utilities as arguments. In this paper,
we have shown that an approach based on generalized marginal DS-weights defined over instantaneous
consumption-equivalents allows us to consider a larger class of normative objectives. In this section,
we show that it is possible to interpret dW

DS(s0)
dθ , defined in Equation (7), as the derivative of a planner

with a particular Social Welfare Function that i) takes as arguments individuals’ instantaneous
utilities, not lifetime utilities, and ii) features generalized (endogenous) welfare weights.

Formally, a linear instantaneous Social Welfare Function, which we denote by I (·), is a linear
function of individuals’ instantaneous utilities, given by

I
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(
cit

(
st
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, nit
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))}
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)
=
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∑
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(
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)
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(
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)
, nit

(
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))
di, (33)

where the instantaneous Pareto weights λit
(
st
)
define scalars that are individual-, date-, and history-

specific.38Proposition 17 shows that welfare assessments made under DS-weights correspond to the
37Note that the product β̂Wi (s) · π̂Wi (s′| s) corresponds to the state-price assigned at state s by individual i to state

s′:
β̂Wi,t · π̂Wi,t

(
s′
∣∣ s) = βiπ

(
s′
∣∣ s) ∂ui (s′)

∂ci
/
∂ui (s)
∂ci

.

38At times, it may be more convenient to define a linear instantaneous SWF I (·) as follows:
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(
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Both formulations are fully exchangeable in the baseline environment considered in this paper.
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derivative of a planner whose objective function is given by a particular linear instantaneous SWF.
It also shows that any local optimum can be found as the first-order condition of a planner who
maximizes a linear ISWF, where DS-weights are evaluated at the optimum.

Proposition 17. (Linear instantaneous SWF formulation) For any set of DS-weights, there exist
instantaneous Pareto weights

{
λit
(
st
)}
i,t,st such that dWDS(s0)

dθ , defined in Equation (7), corresponds
to the first-order condition of a planner who maximizes a linear instantaneous SWF I (·) with
instantaneous Pareto weights λit

(
st
)

= ωit
(
st; θ

)
/
∂ui(st;θ)

∂cit
. Moreover, at a local optimum, in

which dWDS(s0)
dθ = 0, there exist instantaneous Pareto weights

{
λit
(
st
)}
i,t,st such that the optimal

policy satisfies the first-order condition formula of a linear instantaneous SWF I (·), defined in
Equation (33). The instantaneous Pareto weights in that case are evaluated at the optimum, so
λit
(
st
)

= ωit
(
st; θ?

)
/
∂ui(st;θ?)

∂cit
, where θ? denotes the value of θ at the local optimum.

Proposition 17 is helpful because it shows how to reverse-engineer Pareto weights of a linear
instantaneous SWF from DS-weights, while guaranteeing that any local optimum can be interpreted
as the solution to the maximization of a particular linear instantaneous SWF. Because the
instantaneous Pareto weights λit

(
st
)
are evaluated at the optimum θ?, they are taken as fixed in the

maximization of a linear instantaneous SWF. In practice, it is impossible to define the instantaneous
Pareto weights λit

(
st
)
without first having solved for the optimum using our approach that starts

with DS-weights as primitives. Relatedly, it is typically impossible to translate DS-weights into
instantaneous Pareto weights that are invariant to θ and the rest of the environment.39

6.5 Term Structure of Welfare Assessments: Transition vs. Steady-State
Assessments

In this subsection, we show that the aggregate additive decomposition, and each of its four
components, has a term structure. In other words, it is possible to attribute welfare gains or losses
in the aggregate or for each of the components of the aggregate additive decomposition to particular
dates in the future.40

Proposition 18. (Term structure of welfare assessments and aggregate additive decomposition) The
aggregate welfare assessment of a DS-planner, dWDS(s0)

dθ , can be expressed as follows:

dWDS (s0)
dθ

=
T∑
t=0

Ei
[
ω̃it (s0)

] dWDS
t (s0)
dθ

,

where each of the date-specific assessments, dWDS
t (s0)
dθ , can be decomposed into the same four

39For the purpose of showing that it is possible to define a DS-planner via a well-defined SWF with generalized
(endogenous) weights, it is sufficient to consider linear instantaneous SWF’s. There is scope to explore further the
welfare implications of using more general instantaneous SWF, or even SWF’s directly defined over consumption, hours,
or other commodities.

40It is also possible to define term structures for all subdecompositions introduced in Section 6.1.
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components of the aggregate additive decomposition introduced in Proposition 1:

dWDS
t (s0)
dθ

=

=ΞAE,t︷ ︸︸ ︷∑
st

Ei

[
ω̃i

t

(
st
∣∣ s0
)]

Ei

[
dui|c (st)

dθ

]
+

=ΞRS,t︷ ︸︸ ︷∑
st

Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

]

+ Covi

[
ω̃i

t (s0)
Ei

[
ω̃i

t (s0)
] ,∑

st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS,t

+Covi

[
ω̃i
(
s0) , ω̃i

t (s0)
Ei

[
ω̃i

t (s0)
] ∑

st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞRD,t

.

Proposition 18 shows that a welfare assessment can be interpreted as the discounted sum of date-
specific welfare assessments, where each of these date-specific assessments can also be decomposed
into the same four components introduced in Proposition 1.41 Interestingly, Proposition 18 shows that
the appropriate discount factor is given by the cross-sectional average of the dynamic components,
Ei
[
ω̃it (s0)

]
. In Section 7, we provide an illustration of the term structure of each of the components

of a welfare assessment, as well as of the term structure of aggregate assessments.
Proposition 18 also allows us to decompose the transition and steady-state impact of policy

changes for aggregate assessments and each of the components of the aggregate additive decompo-
sition. Formally, under the assumption that an economy reaches a new steady-state at date T ?, we
can decompose welfare assessments into transition welfare effects and steady-state welfare effects:

dWDS (s0)
dθ

=
T ?∑
t=0

Ei
[
ω̃it (s0)

] dWDS
t (s0)
dθ︸ ︷︷ ︸

transition welfare effects

+
T∑

t=T ?
Ei
[
ω̃it (s0)

] dWDS
t (s0)
dθ︸ ︷︷ ︸

steady-state welfare effects

.

We illustrate this approach in Section 7, highlighting the fact that convergence to a new steady-state
in terms of allocations does not guarantee convergence of DS-weights.42

6.6 Summary of Additional Results

In Section G of the Online Appendix, we discuss additional results. First, we provide a systematic
dimensional analysis of DS-weights and their components, illustrating why the choice of units is
critical to make meaningful welfare assessments. Second, we expand on how the approach that we

41Given the definition of ΞAE,t in Proposition 18, we can express ΞAE as follows: ΞAE =
∑T

t=0 Ei
[
ω̃it (s0)

]
ΞAE,t.

The same applies to all the other components.
42When the economy converges to the new steady-state asymptotically, we define T ? as the first period in which a

convergence criterion is satisfied. To facilitate comparisons, it seems more natural to report the value of steady-state
welfare effects expressed in permanent dollars starting at T ?, rather than starting at date-0, that is:∑T

t=T? Ei
[
ω̃it (s0)

] dWDS
t (s0)
dθ∑T

t=T? Ei [ω̃it (s0)]︸ ︷︷ ︸
steady-state gains welfare effect valued at T?

.
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develop in this paper relates to other approaches used to make welfare assessments. In particular,
we i) revisit different welfarist SWF’s; ii) describe how our results relate to Saez and Stantcheva
(2016) and the Kaldor (1939)/Hicks (1939) compensation principle; iii) show how the consumption-
equivalent approach of Lucas (1987) and Alvarez and Jermann (2004) can be seen as using a particular
set of DS-weights that are related to the DS-weights used by welfarist planners but do not allow for
aggregation; iv) explain how allowing for transfers can be interpreted as restricting or partially
selecting a set of DS-weights; and v) discuss how our welfare decomposition relates to existing
decompositions. We explain how to make use of DS-weights in optimal policy problems using both
primal and dual methods, and discuss how to use our approach to make global welfare assessments.
Finally, we show to reformulate our results using a notation that explicitly differentiates between
idiosyncratic and aggregate states.

7 Application: Transfer Policies under Incomplete Markets

In this section, we illustrate how to make welfare assessments using DS-weights in a fully specified
application. The purpose of this application is to illustrate the mechanics of our approach in a
tractable dynamic stochastic environment.

After defining a common economic environment, we consider two different scenarios. Scenario 1
corresponds to an economy in which individuals with identical preferences face idiosyncratic risk. In
this case, we consider a transfer policy that perfectly smooths consumption across individuals. An
important takeaway from our results is that depending on primitives, such policy will be attributed
to risk-sharing, intertemporal-sharing, and redistribution to different degrees. Scenario 2 corresponds
to an economy in which individuals with different preferences face aggregate risk. In this case, we
consider transfer policies that shift aggregate risk to the more risk-tolerant individuals. In both
scenarios, we carefully explain the channels through which normalized welfarist planners find such
policies desirable or not.

Common environment. We consider an economy with two types of individuals (individuals, for
short), with each corresponding to half of the population. Both individuals have time-separable
constant relative risk aversion (CRRA) preferences with exponential discounting. We formulate
individual lifetime utility recursively as follows:

Vi (s) = ui
(
ci (s)

)
+ β

∑
s′

π
(
s′|s

)
Vi
(
s′
)
, where ui (c) = c1−γi

1− γi
,

where Vi (s) and ci (s) respectively denote the lifetime utility and the consumption of individual i in
a given state s; s and s′ denote possible states, and π (s′|s) is a Markov transition matrix, described
below; β is a discount factor, equal for both individuals; and ui (c) denotes the instantaneous utility
function of an individual i. A higher CRRA coefficient γi is mechanically associated with a lower
willingness to substitute consumption intertemporally.
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Table 2: Summary of scenarios

Uncertainty Preferences
Endowment yi (s) Policy T i (s) Consumption ci (s)
y1 (s) y2 (s) T 1 (s) T 2 (s) c1 (s) c2 (s)

#1 Idiosyncratic Common y + ε (s) y − ε (s) −ε (s) ε (s) y + ε (s) (1− θ) y − ε (s) (1− θ)
#2 Aggregate Heterogeneous y + ε (s) y + ε (s) −ε (s) ε (s) y + ε (s) (1− θ) y + ε (s) (1 + θ)

Note: Instantaneous utility for both individuals is given by ui (c) = c1−γi
1−γi

. Our benchmark parameterization is given
by β = 0.975, y = 1, ε (H) = 0.25, ε (L) = −0.25, and ρ = 0.95. If preferences are common, γ1 = γ2 = 2. If preferences
are heterogeneous, we assume that individual 1 is more risk averse, so γ1 > γ2, where γ1 = 5 and γ2 = 2.

There is a single nonstorable consumption good (dollar), which serves as numeraire. We consider
an extreme form of incomplete markets: no financial markets. Hence, in the absence of policy
transfers, individuals consume their endowments. The consumption of individual i at state s is given
by their endowment yi (s), and a transfer, θT i (s) R 0, where θ ∈ [0, 1] scales the size of the transfers
at all dates and states. Hence, the budget constraint of individual i in state s is given by

ci (s) = yi (s) + θT i (s) , (34)

where the form of yi (s) and T i (s) varies in each scenario considered. Given the lack of financial
markets, the equilibrium definition is trivial, so Equation (34) also defines equilibrium consumption
for individual i. We further assume that the transfers net out in the aggregate, so T 1 (s)+T 2 (s) = 0.
This assumption will immediately imply that aggregate efficiency is 0 for any policy.

Uncertainty in this economy is captured by a two-state Markov chain, with states denoted by
s = {L,H}, standing for a low (L) and a high (H) realization of y1 (s) (for individual 1) and a
transition matrix given by

Π =

 ρ 1− ρ
1− ρ ρ

 ,
where ρ ∈ [0, 1]. Table 2 summarizes the assumptions on yi (s) and T i (s) made in each scenario. In
this model, since dui|c(st)

dθ = T i (s), welfare assessments are simply given by

dWDS (s0)
dθ

=
∫ ∞∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
)
T i (s) di.

7.1 Scenario 1: Idiosyncratic Risk, Homogeneous Preferences

Environment. In our first scenario, we assume i) that both individuals have identical preferences,
so γ1 = γ2 = γ, and ii) that they exclusively face idiosyncratic risk. Formally, we assume that

y1 (s) = y + ε (s) and y2 (s) = y − ε (s) ,

where y > 0, and where ε (L) = −ε (H). We consider the welfare assessment of a transfer policy
that provides full consumption smoothing. Formally, we set T 1 (s) = −ε (s) and T 2 (s) = ε (s), so
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individual consumption takes the form

c1 (s) = y + ε (s) (1− θ) and c2 (s) = y − ε (s) (1− θ) .

Under this policy, when θ = 1, the consumption of both individuals is fully identical. Note that
aggregate consumption does not depend on s or θ since

∫
ci (s) di = y.

Results. We adopt the following parameters: β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, and
γ1 = γ2 = 2. Importantly, we make the endowment processes persistent, by setting ρ = 0.975 as our
benchmark. In Figure 4, we compare how welfare assessments change when the endowment process
is extremely persistent (ρ = 0.999) and fully transitory (ρ = 0.5).43 As a benchmark, we consider a
normalized utilitarian planner with equal weights. In Figure 5 we compare how welfare assessments
change when we consider a normalized isoelastic planner.
Individual multiplicative decomposition of DS-weights. In Figure 3, we start by showing the
components of the individual multiplicative decomposition of DS-weights for a normalized utilitarian
planner for each of the individuals when θ = 0.25. Several insights emerge.

First, Figure 3 clearly illustrates that the DS-weights have time-dependence, despite the fact that
we consider a model that is recursive and stationary. This occurs because the shocks are persistent.

Second, the plots of the dynamic components show that a normalized utilitarian planner
overweights earlier periods for those individuals who initially have a low endowment and high
marginal utility. As reference we include the value of (1− β)βt = βt/

∑∞
t=0 β

t, which corresponds to
the dynamic weight for a hypothetical individual with linear marginal utility, i.e., when u′i

(
ci (s)

)
= 1.

Importantly, since dynamic weights must add up to 1 over time, overweighting initial periods for
individuals with low endowment and high marginal utility necessarily implies underweighting periods
later in the future.

Third, the plots of the stochastic components show that a normalized utilitarian planner initially
overweights those states that are more likely given the initial state, although eventually the impact
of the initial state dissipates. More importantly, in the long run (although also in the short run),
regardless of the initial state, the stochastic components are higher for those states in which an
individual has a lower endowment and high marginal utility.

Fourth, the individual components of the DS-weights further capture the differences in the
marginal valuation of transfers among individuals for different initial states. A normalized utilitarian
planner values a hypothetical permanent transfer at all dates and states towards the individual with
a low endowment at s0 at 1.186, and towards the individual with a high endowment at 0.814. The
plot of DS-weights multiplicatively combines the dynamic, stochastic, and individual components
just discussed.
Aggregate additive decomposition of welfare assessments. In Figure 3, we show the components of
the aggregate additive decomposition of welfare assessments for a normalized utilitarian planner for

43We use ρ = 0.999 since it makes for an easier illustration of the results. We could have used ρ = 1 instead.
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Figure 3: Individual multiplicative decomposition of DS-weights (Scenario 1)

Note: Figure 3 shows the components of the individual multiplicative decomposition of DS-weights for a normalized
utilitarian planner, defined in Proposition 5. We assume that θ = 0.25, although all figures are qualitatively similar
when θ ∈ [0, 1). The top row shows each of the components for individual 1, while the bottom row shows them for
individual 2. The left panels show the dynamic component, ω̃it (s0), for different values of t for different initial states,
s0 = {H,L}. For reference, we also show the dynamic weight for a hypothetical individual with linear marginal utility,
given by (1− β)βt = βt/

∑
t
βt. Note that the sum under each of the curves adds up to 1. The middle panels show the

stochastic component, ω̃it
(
st
∣∣ s0
)
, for different values of t, for different initial states, s0 = {H,L}, and for different final

states, st = {H,L}. The right panels show the actual DS-weights, ωit
(
st
∣∣ s0
)
, also for different values of t, and different

initial and final states: s0 = {H,L} and st = {H,L}. The parameters are θ = 0.25, β = 0.95, y = 1, ε (H) = 0.25,
ε (L) = −0.25, ρ = 0.975, and γ1 = γ2 = 2. The individual component of DS-weights are ω̃1 (s0 = L) = 1.186 and
ω̃2 (s0 = L) = 0.814 when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.814 and ω̃2 (s0 = H) = 1.186
when the assessment takes place at s0 = H.

three different parametrizations: ρ = {0.5, 0.975, 0.999}. We exclusively consider the initial state
s0 = L since the aggregate welfare assessments are identical in both states.44 A different set of
insights emerge from the aggregate additive decomposition.

First, as formally shown in Proposition 3, the aggregate efficiency component is zero, that is,
ΞAE = 0. This occurs because we study an endowment economy for which aggregate consumption
is invariant to the policy.

Second, a normalized utilitarian planner always finds it optimal to increase transfers until
θ = 1, which corresponds to perfect consumption smoothing. Moreover, we show that all three
remaining motives, risk-sharing, intertemporal-sharing, and redistribution contribute qualitatively

44If we had considered a welfare assessment at an ex-ante stage in which individuals are identical before the initial
state s0 = L or s0 = H is realized our conclusions would be significantly different. In particular, as per Corollary 3,
intertemporal-sharing and redistribution would be zero in that case. This fact underscores that the decomposition of
welfare assessments critically depends on the state in which an assessment takes place.
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Figure 4: Aggregate additive decomposition of welfare assessments (Scenario 1)

Note: Figure 4 shows the marginal welfare assessment of a normalized utilitarian planner, dW
dθ

, and the components
of its aggregate additive decomposition, as defined in Proposition 5, for three different scenarios: ρ = 0.975 (top
panel; benchmark), ρ = 0.5 (bottom left panel), and ρ = 0.999 (bottom right panel), when s0 = L. When shocks
are transitory (ρ = 0.5), most welfare gains are attributed to risk-sharing, while when shocks are almost permanent
(ρ = 0.999), most welfare gains come from redistribution. Intertemporal sharing peaks at intermediate levels of ρ.
Note that dW

dθ
= ΞAE + ΞRS + ΞIS + ΞRD. In all three scenarios, the parameters are β = 0.95, y = 1, ε (H) = 0.25,

ε (L) = −0.25, and γ1 = γ2 = 2. This Figure illustrates that the smoothing policy considered here can be attributed
to different components, depending on primitives.
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Figure 5: Aggregate additive decomposition; comparison of welfarist planners (Scenario 1)

Note: The left panel of Figure 5 shows the marginal welfare assessment of normalized welfarist planners with social
welfare function

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

,

for φ ∈ {1, 5, 10}. The utilitarian benchmark corresponds to φ = 1. The right panel of Figure 5 shows the redistribution
component, ΞRD, for such planners, as well as the sum of the risk-sharing and intertemporal-sharing components for
either of them, since ΞRS + ΞIS is identical in all three cases. In this economy, ΞAE = 0 at all times. Consistently with
Proposition 8, differences in welfare assessments among normalized welfarist planners are exclusively based on how
they assess the redistribution component. The parameters are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975,
and γ1 = γ2 = 2.

to that conclusion. Hence, in this scenario, all pseudo-welfarist planners would agree on an optimal
policy of θ? = 1. When θ = 1, markets are effectively complete, which implies that both risk
and intertemporal-sharing components are zero, that is, ΞRS = ΞIS = 0. This is consistent with
Propositions 6 and 7. When θ = 1, both individuals have identical consumption paths, so ΞRD = 0.
This is consistent with Corollary 3.

Third, the nature of endowment shocks, in particular whether such shocks are transitory or
permanent, has a significant impact on the aggregate additive decomposition of welfare assessments.
When shocks are transitory (ρ = 0.5), the planner attributes most of the welfare gains to risk-
sharing, with intertemporal-sharing playing a much smaller role and redistribution being virtually
zero. When shocks are persistent (ρ = 0.975), part of the welfare gains are now attributed to
redistribution, which is now larger than intertemporal-sharing, although risk-sharing is still the most
important component. When shocks are almost permanent (ρ = 0.999), the planner attributes most
of the welfare gains to redistribution, with risk-sharing and intertemporal-sharing playing a much
smaller role.

Finally, note that while θ? = 1 is a global optimum in this economy, setting θ = 1 is by no means
a Pareto improvement relative to θ = 0. When s0 = L, there is a value of θ that is less than 1 at
which individual 2 becomes worse off relative to θ = 0.
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Comparing Social Welfare Functions. In Figure 5, we show the marginal assessment of normalized
welfarist planners for different values of the redistribution coefficient φ of an isoelastic social welfare
function, given by

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

.

We consider three cases: φ ∈ {1, 5, 10}, where the utilitarian benchmark corresponds to φ = 1.45

Consistently with Proposition 8, differences in welfare assessments among normalized welfarist
planners are exclusively based on how they assess the redistribution component. Intuitively, higher
values of the curvature parameter φ are associated with more dispersed individual components of
DS-weights, which in turn increase the redistribution component of the aggregate decomposition.
Moreover, we show the value of the sum of the risk-sharing and intertemporal-sharing components,
ΞRS + ΞIS , is invariant to the value of φ — in fact, it corresponds to the assessment of a pseudo-
welfarist NR DS-planner. This figure illustrates an important conclusion of this paper, which is that
the choice of SWF does not impact the aggregate efficiency, risk-sharing, and intertemporal-sharing
components of a normalized welfarist DS-planner.
Term structure of welfare assessments. In Figure 6, we show the implied term structure of welfare
assessments, based on the results introduced in Section 6.5. As in Figure 3, we illustrate the results
when θ = 0.25. The top plot in Figure 6 shows that the term structure of the aggregate welfare
assessment,dW

DS
t (s0)
dθ , is mildly downward sloping, which implies that the welfare gains from the

policy are higher in earlier periods.
While the overall gains do not vary substantially over time, each of the components features

significant time-variation. The risk-sharing component, ΞRS,t, which is positive at all times and is 0
at t = 0, ends up concentrating all of the gains from the policy in the long run. This occurs because
this policy has permanent risk-sharing benefits at all dates, since Covi

[
ω̃it
(
st
∣∣ s0
)
,
dui|c(st)

dθ

]
is strictly

positive at all times after t = 0.
On the contrary, both the intertemporal-sharing and redistribution components are significantly

positive at t = 0, but they end up contributing negatively to the welfare assessments of the policy.
The bottom two plots in Figure 6 justify the time-variation in ΞIS,t and ΞRD,t. The bottom left
plot shows that the social marginal valuation of the policy at future dates,

∑
st ω̃

i
t

(
st
∣∣ s0
) dui|c(st)

dθ , is
positive for the individual with the low endowment realization (i = 1) and positive for the other, and
it converges to a positive value that is constant across individuals when t → ∞. This implies that
ΞIS,t must converge to 0 in the long run. The date at which ΞIS,t becomes negative is determined by
the date in which the dynamic components of both individuals cross — this date is shown in Figure
3. The bottom right plot shows that the discounted normalized social marginal valuation of the
welfare effect of a policy at a given date, ω̃it(s0)

Ei[ω̃it(s0)]
∑
st ω̃

i
t

(
st
∣∣ s0
) dui|c(st)

dθ , converges to positive values

45Our definition of isoelastic SWF is somewhat nonstandard since lifetime utilities are negative for CRRA individuals
with γ > 1. Our formulation, in which φ ≥ 1, guarantees that the SWF is concave, implying that a planner prefers
individual utilities to be less dispersed. See Section G.3.1 of the Online Appendix for further details.
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for both individuals, but it is higher for the individual for which it was negative at t = 0.46 Because
this object does not converge to the same value for both individuals, the redistribution component is
permanently non-zero. Intuitively, while the policy contributes positively to the flow utility of both
individuals in the long run, this gain is valued more by the individual who started with a higher
endowment, since this individual values more consumption in the future. This logic implies that
ΞRD,t must be negative in the long run. In general, the subtle patterns behind ΞIS,t and ΞRD,t are
driven by the fact that the dynamic components of the DS-weights must cross, since they integrate
to 1.

7.2 Scenario 2: Aggregate Risk, Heterogeneous Preferences

Environment. In our second scenario, we assume i) that some individuals are more risk-
averse/unwilling to substitute intertemporally than others, and ii) that all endowment risk is
aggregate. In particular, we assume that individual 1 is more risk averse than individual 2, so
γ1 > γ2. Formally, we assume that

y1 (s) = y + ε (s) and y2 (s) = y + ε (s) ,

where y ≥ 0, and where ε (L) = −ε (H). We consider the welfare assessment of a transfer policy that
shifts the amount of risk borne by individual 1 to individual 2. Formally, we set T 1 (s) = −ε (s) and
T 2 (s) = ε (s), so individual consumption takes the form

c1 (s) = y + ε (s) (1− θ) and c2 (s) = y + ε (s) (1 + θ) .

Under this policy, when θ = 1, individual 1 is fully insured, at the expense of increasing the
consumption fluctuations of individual 2 in response to aggregate shocks. In this scenario, aggregate
consumption varies with the aggregate state, but not with θ, since

∫
ci (s) di = y + ε (s).

Results. With the exception of risk aversion, set to γ1 = 5 and γ2 = 2, we use the same parameters
as in Scenario 1: β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25. As in the benchmark parameterization
of Scenario 1, we set ρ = 0.975, so endowment shocks are persistent. Once again, we consider a
normalized utilitarian planner with equal weights.
Individual multiplicative decomposition of DS-weights. In Figure 7, we show the components of the
individual multiplicative decomposition of DS-weights for a normalized utilitarian planner for each
of the individuals when θ = 0.25. This new scenario is associated with new insights.

First, the plots of the dynamic components show that a normalized utilitarian planner overweights
earlier periods for all individuals when the aggregate endowment is low (graphically, the solid blue
line is above the black dashed line for both individuals when s0 = L; this is not the case in Scenario

46In this application, limt→∞
ω̃1
t (s0)
ω̃2
t
(s0) = 0.687 when s0 = L.
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Figure 6: Term structure of aggregate welfare assessments and components (Scenario 1)

Note: The top panel of Figure 6 shows the term structure of marginal welfare assessments, dW
DS
t (s0)
dθ

, and each of its non-
zero components, ΞRS,t, ΞIS,t, and ΞRD,t for a normalized utilitarian planner, as defined in Proposition 18, when s0 = L.
The bottom left panel corresponds to the term structure of the expected values

∑
st
ω̃it
(
st
∣∣ s0
) dui|c(st)

dθ
, measured as

of date t, for both individuals. The bottom right panel corresponds to the term structure of values — as of date 0 and
normalized by Ei

[
ω̃it (s0)

]
— of the impact on an individual at date t: ω̃it(s0)

Ei[ω̃it(s0)]
∑

st
ω̃it
(
st
∣∣ s0
) dui|c(st)

dθ
. The date at

which ΞIS,t turns negative is the date in which the dynamic components cross in Figure 3. The date at which ΞRD,t turns
negative is the date in which the lines cross in the bottom left plot. Note that dW

DS
t (s0)
dθ

= ΞAE,t+ΞRS,t+ΞIS,t+ΞRD,t.
The parameters are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975, and γ1 = γ2 = 2.
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Figure 7: Individual multiplicative decomposition of DS-weights (Scenario 2)

Note: Figure 7 shows the components of the individual multiplicative decomposition of DS-weights for a normalized
utilitarian planner, defined in Proposition 5. We assume that θ = 0.25, although all figures are qualitatively similar
when θ ∈ [0, 1). The top row shows each of the components for individual 1, while the bottom row shows them for
individual 2. The left panels show the dynamic component, ω̃it (s0), for different values of t for different initial states,
s0 = {H,L}. For reference, we also show the dynamic weight for a hypothetical individual with linear marginal utility,
given by (1− β)βt = βt/

∑
t
βt. Note that the area under each of the curves adds up to 1. The middle panels show the

stochastic component, ω̃it
(
st
∣∣ s0
)
, for different values of t, for different initial states, s0 = {H,L}, and for different final

states, st = {H,L}. The right panels show the actual DS-weights, ωit
(
st
∣∣ s0
)
, also for different values of t, and different

initial and final states: s0 = {H,L} and st = {H,L}. The parameters are θ = 0.25, β = 0.95, y = 1, ε (H) = 0.25,
ε (L) = −0.25, ρ = 0.975, γ1 = 5, and γ2 = 2. The individual component of DS-weights are ω̃1 (s0 = L) = 1.125 and
ω̃2 (s0 = L) = 0.875 when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 1.027 and ω̃2 (s0 = H) = 0.973
when the assessment takes place at s0 = H.

1). As one would expect, it does so more for individual 1, with the higher curvature coefficient
γ1 = 5. Note, for instance, that ω̃1

0 (s0 = L) > ω̃2
0 (s0 = L) and that ω̃1

0 (s0 = H) < ω̃2
0 (s0 = H).

Second, as in Scenario 1, the plots of the stochastic components show that a normalized utilitarian
planner overweights more likely states, given the initial state. More importantly, in the long run
(although also in the short run), regardless of the initial state, the stochastic components give
relatively more weight to those states in which an individual has a lower endowment and higher
marginal utility, but differentially more for the individual 1, with the highest curvature coefficient
γ1 = 5. Note, for instance, that ω̃1

∞ (st = L) > ω̃2
∞ (st = L) and that ω̃1

∞ (st = H) < ω̃2
∞ (st = H).

Third, the individual components of the DS-weights still capture differences in the marginal
valuation of permanent transfers among individuals for different initial states. However, in this
scenario these differences are mostly driven by the differences in preferences between individuals.
Unlike in scenario 1, a normalized utilitarian planner gives more value to a hypothetical permanent
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Figure 8: Aggregate additive decomposition of welfare assessments (Scenario 2)

Note: Figure 8 shows the marginal welfare assessment of a normalized utilitarian planner, dW
dθ

, and the components
of its aggregate additive decomposition, as defined in Proposition 5. The left plot corresponds to the assessment when
s0 = L, while the right panel corresponds to the assessments when s0 = H. Note that dW

dθ
= ΞAE + ΞRS + ΞIS + ΞRD.

The parameters are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975, and γ1 = 5 > γ2 = 2.

transfer towards individual 1 at all states, since ω̃1 (s0 = L) > ω̃2 (s0 = L) and ω̃1 (s0 = H) >

ω̃2 (s0 = H). This result illustrates how by computing the individual component it is possible to
determine the implicit desire for redistribution of a utilitarian planner.
Aggregate additive decomposition of welfare assessments. In Figure 8, we show the components of the
aggregate additive decomposition of welfare assessments for a normalized utilitarian planner. As in
Scenario 1, because we study an endowment economy for which aggregate consumption is invariant
to the policy, the aggregate efficiency component is zero, that is, ΞAE = 0. There is a new set of
insights.

First, we show that a normalized utilitarian planner finds it optimal to increase transfers until
some value of θ?, regardless of whether the optimal policy is determined from s0 = L or s0 = H.
This should not be surprising, since transferring aggregate risk to the individual most willing to bear
such a risk seems desirable. Interestingly, the reason for why a planner finds it desirable to increase
θ until θ? varies with the initial state of the economy. When s0 = L, we show that a normalized
utilitarian planner mostly attributes welfare gains to redistribution (ΞRD), followed by risk-sharing
(ΞRS), with intertemporal-sharing (ΞIS) barely playing a role. Instead, when s0 = H, we show that
a normalized utilitarian planner mostly attributes welfare gains to risk-sharing (ΞRS), followed by
redistribution (ΞRD) and intertemporal-sharing (ΞIS).

These findings are intuitive. When s0 = L, consumption is persistently lower, which amplifies
differences in curvature between individuals on a persistent basis. This is reflected in the large
redistribution component. Building on the insights of Proposition 15, one can trace these results
to the cross-sectional dispersion of the different components of DS-weights. In particular, Figure
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8 illustrates how the cross-sectional dispersion of the individual component is significantly higher
when s0 = L, which explains why the redistribution component is more important when s0 = L.
Alternatively, Figure 8 reflects that the cross-sectional dispersion of the dynamic and the stochastic
components is higher when s0 = H.

Finally, note that at the optimal θ? for both s0 = L and s0 = H, the normalized utilitarian planner
perceives ΞRS to be positive and ΞRD to be negative and greater in magnitude than ΞRS , which is
also positive. This implies that both pseudo-utilitarian NS and NR DS-planners would choose a level
of θ? higher than the normalized utilitarian planner, regardless of the state in which the assessment is
made. This result illustrates that, in general, different pseudo-utilitarian DS-planners would disagree
on the choice of optimal policies.

8 Conclusion

In this paper, we introduce the notion of Dynamic Stochastic Generalized Social Marginal Welfare
Weights (Dynamic Stochastic weights or DS-weights, for short) and explore their properties.
We leverage DS-weights to characterize three sets of results. First, we develop an aggregate
additive decomposition of welfare assessments into four distinct components: aggregate efficiency,
intertemporal-sharing, risk-sharing, and redistribution. Second, we introduce normalized welfarist
planners that allow us to precisely describe how welfarist planners make interpersonal tradeoffs.
Third, we show how to use DS-weights to systematically formalize new welfare criteria.

Retrospectively, the aggregate additive decomposition and the definition of normalized welfarist
planners introduced in this paper open the door to revisiting the exact rationales that have justified
particular welfare assessments in existing work. Looking forward, we hope that our approach informs
ongoing and future discussions on i) the desirability of particular policies and ii) the design of policy-
making mandates, particularly when trading off efficiency and redistribution objectives.
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Appendix
A Proofs and Derivations: Section 3

Proof of Lemma 1. (DS-weights: individual multiplicative decomposition; unique
normalized decomposition)

Proof. By offering a constructive proof of part b), we automatically show that it is always possible
to construct an individual multiplicative decomposition, in particular a normalized one. Let us
start with a set of DS-weights ω̌it

(
st
∣∣ s0
)
> 0, defined for each individual, date, and history. After

multiplying and dividing by
∑
st ω̌

i
t

(
st
∣∣ s0
)
,
∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)
, and

∫ ∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)
di, we

reach the following identity:

ω̌it
(
st
∣∣ s0
)∫ ∑T

t=0
∑
st ω̌

i
t (st| s0) di︸ ︷︷ ︸

=ωit( st|s0)

=
∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)∫ ∑T

t=0
∑
st ω̌

i
t (st| s0) di︸ ︷︷ ︸

=ω̃i(s0)

∑
st ω̌

i
t

(
st
∣∣ s0
)∑T

t=0
∑
st ω̌

i
t (st| s0)︸ ︷︷ ︸

=ω̃it(s0)

ω̌it
(
st
∣∣ s0
)∑

st ω̌
i
t (st| s0)︸ ︷︷ ︸

=ω̃it( st|s0)

,

which defines an individual multiplicative decomposition since ωit
(
st
∣∣ s0
)
and ω̌it

(
st
∣∣ s0
)
are identical

from the perspective of Definition 4, but for a normalization regarding the choice of units. It follows
immediately that

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1,
∑T
t=0 ω̃

i
t (s0) = 1, and

∫
ω̃i (s0) di = 1, which concludes the

proof.

Proof of Proposition 1. (Welfare assessments: aggregate additive decomposition)

Proof. Combining Equations (7) and (9), the definition of a desirable policy change for a DS-planner
can be expressed as follows:

dWDS (s0)
dθ

=
∫
ω̃i (s0) dV

DS
i (s0)
dθ

di = Ei

[
ω̃i
(
s0
) dV DS

i (s0)
dθ

]
, (35)

where
dV DS

i (s0)
dθ

=
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ
. (36)

Hence, we can first decompose dWDS(s0)
dθ as follows:

dWDS (s0)
dθ

= Ei
[
ω̃i
(
s0
)]

︸ ︷︷ ︸
=1

Ei

[
dV DS

i (s0)
dθ

]
+ Covi

[
ω̃i
(
s0
)
,
dV DS

i (s0)
dθ

]
︸ ︷︷ ︸

=ΞRD

(37)

where we use the fact that — without loss of generality, but for the choice of units — we can set
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Ei
[
ω̃i
(
s0)] =

∫
ω̃i
(
s0) di = 1, and where ΞRD satisfies

ΞRD = Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
.

Next, we can decompose Ei
[
dV DSi (s0)

dθ

]
as follows:

Ei

[
dV DS

i (s0)
dθ

]
= Ei

[
T∑

t=0
ω̃i

t (s0)
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]
Ei

[∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
+

T∑
t=0

Covi

[
ω̃i

t (s0) ,
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

(
Ei

[
ω̃i

t

(
st
∣∣ s0
)]

Ei

[
dui|c (st)

dθ

]
+ Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

])
+ ΞIS

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

Ei

[
ω̃i

t

(
st
∣∣ s0
)]

Ei

[
dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞAE

+
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

]
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=ΞRS

+ΞIS

= ΞAE + ΞRS + ΞIS . (38)

Proposition 1 follows immediately after combining Equations (37) and (38).

Proof of Proposition 2. (Properties of aggregate additive decomposition: individual-
invariant DS-weights)

Proof. a) If DS-weights ωit
(
st
∣∣ s0
)
do not vary across individuals, parts b), c), and d) below are valid.

b) If the stochastic components, ω̃it
(
st
∣∣ s0
)
, do not vary across individuals at all dates and histories,

then
Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
= 0,∀t,∀st =⇒ ΞRS = 0.

c) If the dynamic components, ω̃it (s0), do not vary across individuals at all dates, then

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= 0,∀t =⇒ ΞIS = 0.

d) If the individual components, ω̃i (s0), do not vary across individuals, then

Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= 0 =⇒ ΞRD = 0.

57



Proof of Corollaries 1 through 4

Proof. Corollary 1 follows from part a). Corollary 2 follows from part b) since ω̃it
(
st|s0

)
= 1, ∀t, ∀i

in perfect foresight economies. Corollary 3 follows from part d). Corollary 4 follows from parts b)
and c) since ω̃it

(
st|s0

)
= 1 and ω̃it (s0) = 1, ∀st, ∀t, ∀i in static economies.

Proof of Proposition 3. (Properties of aggregate additive decomposition: individual-
invariant policies)

Proof. Note that
∑T
t=0 ω̃

i
t (s0) and

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1 imply that
∑T
t=0 ω̃

i
t (s0)

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1.
a) If dui|c(s

t)
dθ = g (·), where g (·) does not depend on i, t, or st, then

Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
)] dui|c (st)

dθ
= 0 =⇒ ΞRD = 0.

And the results from parts b) and c) also apply.
b) If dui|c(s

t)
dθ = g (t), where g (t) may depend on t, but not on i or st, then

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
)] dui|c (st)

dθ
= 0 =⇒ ΞIS = 0.

And the result from part c) also applies.
c) If dui|c(s

t)
dθ = g

(
t, st

)
, where g

(
t, st

)
may depend on t and st, but not on i, then

Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
= 0 =⇒ ΞRS = 0.

Proof of Proposition 4. (Properties of aggregate additive decomposition: endowment
economies)

Proof. In an endowment economy, Equation (11) simply corresponds to

Ei

[
dui|c

(
st
)

dθ

]
=
∫
dcit
(
st
)

dθ
di = 0,

where the last equality follows from the fact that aggregate consumption is equal to the aggregate
endowment, and hence fixed and invariant to θ, that is, d

∫
cit(st)di
dθ = 0.
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B Proofs and Derivations: Section 4

Proof of Proposition 5. (Normalized welfarist planners: individual multiplicative
decomposition)

Proof. Starting from Equation (6), note that we can express dVi(s0)
dθ as follows:
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∂ci
t

(βi)t
∑

st
πt (st| s0) ∂ui(st)

∂ci
t︸ ︷︷ ︸

=ω̃i
t
( st|s0)

dui|c
(
st
)

dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
) ∂ui (st)

∂cit

T∑
t=0

ω̃it (s0)
∑
st

ω̃it
(
st
∣∣ s0
) dui|c (st)

dθ
, (39)

where we define dynamic and stochastic components of DS-weights as in Equations (13) and (14).
Hence, we can express dWW (s0)

dθ — with appropriately normalized units — as follows:

dWW (s0)
dθ∫

λi (s0)
∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

di
=
∫
ω̃i (s0)

T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ
di,

where we define the individual component as in Equation (15):

ω̃i (s0) =
λi (s0)

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit∫
λi (s0)

∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

di
.

It is straightforward to verify that
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i; that
∑T
t=0 ω̃

i
t (s0) = 1, ∀i; and that∫

ω̃i (s0) di = 1, which concludes the proof. Note that by multiplying and dividing the dynamic and
stochastic components of a given individual by his marginal utility of consumption at 0, we recover
Equations (16) and (17):

ω̃it (s0) =
(βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
/
∂ui(s0)
∂ci0∑T

t=0 (βi)t
∑
st πt (st| s0) ∂ui(s

t)
∂cit

/∂ui(s
0)

∂ci0

= qit
(
st|s0

)∑
st q

i
t (st|s0)

ω̃it

(
st
∣∣∣ s0
)

=
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit
/
∂ui(s0)
∂ci0∑

st πt (st| s0) ∂ui(s
t)

∂cit
/∂ui(s

0)
∂ci0

=
∑
st q

i
t

(
st|s0

)∑T
t=0

∑
st q

i
t (st|s0)

.
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Proof of Proposition 6. (Properties of normalized welfarist planners: complete markets)

Proof. When markets are complete, there is a unique stochastic discount factor, which implies that
qit
(
st|s0

)
= qt

(
st|s0

)
, ∀i. From Equations (16) and (17), it follows immediately that ω̃it (s0) and

ω̃it
(
st
∣∣ s0
)
are invariant across all individuals at all dates and histories. Hence, parts b) and c) of

Proposition 2 guarantee that ΞRS = ΞIS = 0.

Proof of Proposition 7. (Properties of normalized welfarist planners: riskless
borrowing/saving)

Proof. When individuals can freely borrow and save, it must be the case that the valuation of
a riskless bond is identical for all individuals, which implies that

∑
st q

i
t

(
st|s0

)
is identical across

individuals. Hence, from Equation (17), it follows immediately that ω̃it (s0) is invariant across all
individuals at all dates. Hence, Part c) Proposition 2 guarantees that ΞIS = 0.

Proof of Proposition 8. (Properties of normalized welfarist planners: welfarist planners
only disagree about redistribution)

Proof. Note that Equations (13) and (14) do not depend on W (·), while Equation (15) does. This
fact, along with Proposition 1, immediately imply that ΞAE , ΞRS , and ΞIS identical for all welfarist
planner, but ΞRD is not.

Proof of Proposition 9. (Properties of normalized welfarist planners: invariance of
efficiency components to utility transformations)

Proof. It follows immediately from Equations (13) and (14) that ω̃it (s0) and ω̃it
(
st
∣∣ s0
)
are invariant to

the transformations considered, which multiply numerator and denominator by constant factors.

Proof of Proposition 10. (Properties of normalized welfarist planners: Pareto
improvements increase efficiency)

Proof. From Equation (38), it immediately follows that

ΞAE + ΞRS + ΞIS = Ei

 dVi(s0)
dθ∑T

t=0 (βi)t
∑
st πt (st| s0) ∂ui(s

t)
∂cit

 ,
where dVi(s0)

dθ is defined in Equation (39). If a policy is a strict Pareto improvement, dVi(s0)
dθ > 0, which

implies that ΞAE + ΞRS + ΞIS must be strictly positive, since
∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
> 0.

The same logic applies to weak Pareto improvements, since at least one individual must have
dVi(s0)
dθ > 0.
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C Proofs and Derivations: Section 5

Proof of Proposition 11 (AE/AR/NR DS-planners: properties)

Proof. a) This result follows from part a) of Proposition 3, since ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0) do

not vary across individuals. Note that ΞAE is identical for the pseudo-welfarist AE DS-planner and
its associated normalized welfarist planner, since

Ei
[
ω̃i,W,AE
t (s0)

]
= Ei

[
ω̃i,Wt (s0)

]
and Ei

[
ω̃i,W,AE
t

(
st
∣∣∣ s0
)]

= Ei
[
ω̃i,Wt

(
st
∣∣∣ s0
)]
.

b) This result follows from parts c) and d) of Proposition 3, since ω̃it
(
st
∣∣ s0
)
and ω̃it (s0) do not vary

across individuals. Note that ΞAE and ΞRS are identical for the pseudo-welfarist AR DS-planner
and its associated normalized welfarist planner, since

Ei
[
ω̃i,W,AR
t (s0)

]
= Ei

[
ω̃i,Wt (s0)

]
and ω̃i,W,AR

t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
.

c) This result follows from part d) of Proposition 3, since the individual components ω̃i (s0) do not
vary across individuals. Note that ΞAE , ΞRS , and ΞIS are identical for the pseudo-welfarist NR
DS-planner and its associated normalized welfarist planner, since

ω̃i,W,NR
t (s0) = ω̃i,Wt (s0) and ω̃i,W,NR

t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
.
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Online Appendix
Section D of this Online Appendix includes proofs and derivations for Section 6. Section E includes
additional results for Application 1. Section F includes several extensions and Section G contains
additional results.

D Proofs and Derivations: Section 6

Proof of Proposition 12. (Aggregate efficiency component: stochastic decomposition)

Proof. Starting from the definition of the aggregate efficiency component in Equation (11), we can
express ΞAE as follows:

ΞAE =
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]

=
T∑
t=0

ωt
∑
st

ωt
(
st
∣∣∣ s0
) dui|c (st)

dθ
,

where we define ωt (s0) = Ei
[
ω̃it (s0)

]
, ωt

(
st
∣∣ s0
)

= Ei
[
ω̃it
(
st
∣∣ s0
)]
, and dui|c(st)

dθ = Ei
[
dui|c(st)

dθ

]
.

Multiplying and dividing by πt
(
st
∣∣ s0
)
at every history, we can express and decompose ΞAE as

follows:

ΞAE =
T∑
t=0

ωt (s0)
∑
st

πt
(
st
∣∣∣ s0
) ωt (st∣∣ s0

)
πt (st| s0)

dui|c
(
st
)

dθ
=

T∑
t=0

ωt (s0)E0

[
ωπt

(
st
∣∣∣ s0
) dui|c (st)

dθ

]

=
T∑
t=0

ωt (s0)E0
[
ωπt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞEAE

+
T∑
t=0

ωt (s0)Cov0

[
ωπt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAM

,

which corresponds to Equation (23) in the text.

Proof of Proposition 13. (Risk-sharing/intertemporal-sharing components: alternative
cross-sectional decompositions)

Proof. Here we make use of the following property of covariances (Bohrnstedt and Goldberger, 1969):

Cov [X,Y Z] = E [Y ]Cov [X,Z] + E [Z]Cov [X,Y ] + E [(X − E [X]) (Y − E [Y ]) (Z − E [Z])] ,

whereX, Y , and Z denote random variables. Applying this property to Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣ s0
) dui|c(st)

dθ

]
,
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we find that

Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= Ei

[
ω̃it

(
st
∣∣∣ s0
)]

Covi

[
ω̃it (s0) ,

dui|c
(
st
)

dθ

]
︸ ︷︷ ︸

∼ΞPIS

+Ei

[
dui|c

(
st
)

dθ

]
Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
)]

︸ ︷︷ ︸
∼ΞWC

+Ei

[(
dui|c

(
st
)

dθ
− Ei

[
dui|c

(
st
)

dθ

])(
ω̃it (s0)− Ei

[
ω̃it (s0)

]) (
ω̃it

(
st
∣∣∣ s0
)
− Ei

[
ω̃it

(
st
∣∣∣ s0
)])]

︸ ︷︷ ︸
∼ΞPC

,

which immediately yields Equation (24) in the text after adding up over dates and histories.
Equation (25) follows immediately after using once again the same property of covariances on
Covi

[
ω̃it (s0) ω̃it

(
st
∣∣ s0
)
,
dui|c(st)

dθ

]
.

Proof of Proposition 14. (Redistribution component: stochastic decomposition)

Proof. We can express dV DSi (s0)
dθ , defined in Equation (36), as follows:

dV DS
i (s0)
dθ

=
T∑
t=0

ω̃it (s0)E0

[
ω̃it
(
st
∣∣ s0
)

πt (st| s0)
dui|c

(
st
)

dθ

]

=
T∑
t=0

ω̃it (s0)E0
[
ω̃i,πt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=
dV
DS,ER
i

(s0)
dθ

+
T∑
t=0

ω̃it (s0)Cov0

[[
ω̃i,πt

(
st
∣∣∣ s0
)]
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=
dV
DS,RM
i

(s0)
dθ

.

Hence, we can express ΞRD as follows:

ΞRD = Covi

[
ω̃i
(
s0
)
,
dV DS

i (s0)
dθ

]
= Covi

[
ω̃i
(
s0
)
,
dV DS,ER

i (s0)
dθ

]
︸ ︷︷ ︸

ΞER

+Covi

[
ω̃i
(
s0
)
,
dV DS,RM

i (s0)
dθ

]
︸ ︷︷ ︸

ΞRM

,

which corresponds to Equation (15) in the text.

Proof of Proposition 15. (Cross-sectional dispersion bounds)

Proof. Equations (26) through (28) follow from applying the Cauchy-Schwarz inequality, which states
that |Cov [X,Y ]| ≤

√
Var [X]

√
Var [Y ] for any pair of square integrable random variables X and Y .
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When applied to the relevant elements of ΞRS , ΞIS , and ΞRD, we find that

Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

]
≤
√

Vari

[
ω̃i

t (st| s0)
]√

Vari

[
dui|c (st)

dθ

]

Covi

[
ω̃i

t (s0) ,
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
≤
√

Vari

[
ω̃i

t

]√√√√Vari

[∑
st

ω̃i
t (st| s0)

dui|c (st)
dθ

]

Covi

[
ω̃i
(
s0) , T∑

t=0
ω̃i

t (s0)
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
≤
√

Vari [ω̃i (s0)]

√√√√Vari

[
T∑

t=0

∑
st

ω̃i
tω̃

i
t (st| s0)

dui|c (st)
dθ

]
.

These three inequalities, when combined with the definitions of ΞRS , ΞIS , and ΞRD in Equation (11),
immediately imply Equations (26) through (28) in the text.

Proof of Proposition 16. (Recursive formulation)

Proof. Starting from Equation (35), note that we can express dWDS(s0)
dθ as follows:

dWDS (s0)
dθ

=
∫
ω̃i (s0) dV

DS
i (s0)
dθ

di

=
∫
ω̃i (s0) ω̃i0 (s0) ω̃i0

(
s0
∣∣∣ s0
)

︸ ︷︷ ︸
=ωi0( s0|s0)

dV DSi (s0)
dθ

ω̃i0 (s0) ω̃i0 (s0| s0)︸ ︷︷ ︸
=
dV̂ DS
i,0 (s0)

dθ

di

=
∫
ωi0

(
s0
∣∣∣ s0
) dV̂ DS

i,0 (s0)
dθ

di.

Note that we can also express dV̂ DSi,0 (s0)
dθ as follows:

dV̂ DS
i,0 (s0)
dθ

=
T∑
t=0

ω̃it (s0)
ω̃i0 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ

= ω̃i0 (s0)
ω̃i0 (s0)︸ ︷︷ ︸

=1

ω̃i0
(
s0∣∣ s0

)
ω̃i0 (s0| s0)︸ ︷︷ ︸

=1

dui|c (s0)
dθ

+
T∑
t=1

ω̃it (s0)
ω̃i0 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ

=
dui|c (s0)

dθ
+ ω̃i1 (s0)
ω̃i0 (s0)

 ω̃i1 (s0)
ω̃i1 (s0)︸ ︷︷ ︸

=1

∑
s1

ω̃i1
(
s1∣∣ s0

)
ω̃i0 (s0| s0)

dui|c (s1)
dθ

+
T∑
t=2

ω̃it (s0)
ω̃i1 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ



=
dui|c (s0)

dθ
+ ω̃i1 (s0)
ω̃i0 (s0)


∑
s1

ω̃i1
(
s1∣∣ s0

)
ω̃i0 (s0| s0)

dui|c (s1)
dθ

+
T∑
t=2

ω̃it (s0)
ω̃i1 (s0)

∑
st|s1

ω̃it
(
st
∣∣ s0
)

ω̃i1 (s1| s0)
dui|c (st)

dθ


︸ ︷︷ ︸

=
dV̂ DS
i,1 (s1)

dθ


,
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which immediately implies Equation (30) in the text, since this derivation is valid starting from any
state s0.

The definitions of β̂Wi,t and π̂Wi,t follow immediately after combining Equations (13) and (14) with
Equation (31). Note that the product β̂Wi (s) · π̂Wi (s′| s) corresponds to the state-price assigned at
state s by individual i to state s′:

β̂Wi,t · π̂Wi,t
(
s′
∣∣ s) = βiπ

(
s′
∣∣ s) ∂ui (s′)

∂ci
/
∂ui (s)
∂ci

,

and that this state-price is time-independent. This observation, combined with the definition of the
pseudo-utilitarian NR planner, implies the claim that Equation (30) is time invariant for welfarist
and pseudo-welfarist NR planners.

Proof of Proposition 17 (Linear instantaneous SWF formulation)

Proof. Note that, for a planner with a linear instantaneous SWF, it must be that

dI (·)
dθ

=
∫ T∑

t=0

∑
st

λit

(
st
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
di, (OA1)

where dui|c(st)
dθ is defined in Equation (3). The results for both the marginal welfare assessment and

the optimum follow immediately by comparing Equation (7) to Equation (OA1), where the following
relation must be satisfied:

λit

(
st
)

= ωit
(
st
)

∂ui(st)
∂cit

.

E Application: Additional Figures

Figures OA-1 and OA-2 are the counterparts of Figure 3 in the text when ρ = 0.999 and ρ = 0.5.
When ρ = 0.999, the components of the individual multiplicative decompositions evolve extremely
slowly. Given the extreme persistence of the shocks, all of the welfare gains from increasing θ

arise from redistribution (ΞRD). When ρ = 0.5, endowments shocks are fully transitory, and the
components of the individual multiplicative decomposition barely have any time-dependence. In this
case, the welfare gains from increasing θ arise mostly from risk-sharing. The gains from redistribution
are nonzero, but very small, since they are only driven by marginal utility differences at t = 0.
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Figure OA-1: Individual multiplicative decomposition of DS-weights (Scenario 1; ρ = 0.999)

Note: Figure OA-1 is the counterpart of Figure 3 in the text when endowment shocks are extremely persistent
(ρ = 0.999). The individual component of DS-weights in this case are ω̃1 (s0 = L) = 1.349 and ω̃2 (s0 = L) = 0.651
when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.651 and ω̃2 (s0 = H) = 1.349 when the assessment
takes place at s0 = H.
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Figure OA-2: Individual multiplicative decomposition of DS-weights (Scenario 1; ρ = 0.5)

Note: Figure OA-2 is the counterpart of Figure 3 in the text when endowment shocks are fully temporary (ρ = 0.5).
The individual component of DS-weights in this case are ω̃1 (s0 = L) = 1.018 and ω̃2 (s0 = L) = 0.928 when an
assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.982 and ω̃2 (s0 = H) = 1.018 when the assessment takes place
at s0 = H.
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F Extensions

F.1 Heterogeneous beliefs

In this section, we show how to use DS-weights to make paternalistic and non-paternalistic welfare
assessments in environments with heterogeneous beliefs.47 Note that the notion of paternalism used
here is fully consistent with the formal definition given in Footnote 32. To model heterogeneous
beliefs, instead of Equation (1), we assume instead that individual preferences take the form

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πit

(
st
∣∣∣ s0
)
ui
(
cit

(
st
)
, nit

(
st
))
, (OA2)

where πit
(
st
∣∣ s0
)
, denotes the beliefs held by individual i over histories, which are now individual-

specific.
In this case, a non-paternalistic planner would substitute πit

(
st
∣∣ s0
)
for πt

(
st
∣∣ s0
)
whenever it

appears in Equations (8) through (22). Alternatively, a paternalistic planner who imposes a single-
belief would substitute some planner’s belief, πPt

(
st
∣∣ s0
)
, which is invariant across individuals, for

πt
(
st
∣∣ s0
)
whenever it appears in Equations (8) through (22).48

F.2 Recursive utility: Epstein-Zin preferences

In this section, we show how to use DS-weights in the context of economies with recursive preferences.
In particular, we consider the widely used Epstein-Zin preferences, which we define recursively as
follows:

Vi (s) =

(1− βi)
(
ui
(
ci (s) , ni (s)

))1− 1
ψi + βi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) 1− 1
ψi

1−γi


1

1− 1
ψi

,

where γi modulates risk aversion and ψi modulates intertemporal substitution. We use s and s′ to
denote any two recursive states (Ljungqvist and Sargent, 2018).

In this case, we can recursively express the welfare effect of a policy change, measured in lifetime
47A recent literature has explored how to make normative assessments in environments with heterogeneous beliefs.

See, among others, Brunnermeier, Simsek and Xiong (2014), Gilboa, Samuelson and Schmeidler (2014), Dávila (2020),
Blume et al. (2018), Caballero and Simsek (2019), and Dávila and Walther (2021).

48At times, it makes sense to reinterpret heterogeneous beliefs as state-dependent preferences. In that case, Vi (s0)
can be expressed as

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
)
, nit
(
st
)

; st
)
.

All our results remain valid in the case of state-dependent preferences.
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utils (utility units), as follows:

dVi (s)
dθ

= ∂Vi (s)
∂ci (s)

dui|c (s)
dθ

+
∑
s′

∂Vi (s)
∂V i (s′)

dVi (s′)
dθ

, (OA3)

where

∂Vi (s)
∂ci (s) = (1− βi) (Vi (s))

1
ψ (ui (s))−

1
ψi
∂ui (s)
∂ci

∂Vi (s)
∂V i (s′) = βi (Vi (s))

1
ψ

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) γi−
1
ψi

1−γi
π
(
s′|s

) (
V i (s′))−γi ,

and where dui|c(s)
dθ is defined as in Equation (3). The structure of Equation (OA3) immediately implies

that dVi(s)
dθ can be expressed as a linear transformation of instantaneous consumption-equivalent

effects, dui|c(s)dθ , which in turn guarantees that the definition of a DS-planner in Equation (6) can also
be used in the context of economies with recursive preferences.

Note that it is straightforward to define normalized DS-weights when considering normalized
welfarist planners, as in Section 4. In particular, Equations (16), (17), and (19) remain valid, and
the one-period version of Equation (18), from which it is straightforward to compute state-prices for
any date and state, becomes

qi
(
s′|s

)
=

∂Vi(s)
∂ci(s′)
∂Vi(s)
∂ci(s)

=
∂Vi(s)
∂V i(s′)

∂V i(s′)
∂ci(s′)

∂Vi(s)
∂ci(s)

= βiπ
(
s′|s

) (Vi (s′)
H (s)

) 1
ψ
−γi

(
ci (s′)
ci (s)

)− 1
ψi

∂ui(s′)
∂ci

∂ui(s)
∂ci

,

where H (s) =
(∑

s′ π (s′|s)
(
V i (s′)

)1−γi) 1
1−γi . It is straightforward to define DS-weights for even

more general preferences, including preferences that are not time-separable or recursive, as we do
next.

F.3 General utility with multiple commodities

In the baseline model, we already illustrate how to make welfare assessments when there are multiple
goods/commodities, since we consider an environment with two commodities: consumption and
hours. Here we consider a more abstract scenario, in which i ∈ I individuals have general preferences
over a set of commodities ` ∈ L, which can also be indexed by dates t ∈ T and histories st. In this
case, the lifetime utility of individual i is given by

Vi (s0) = Ui

({
xi,`t

(
st
)}

t,st,`

)
.

At this level of generality, the different commodities can represent hours worked, as in the baseline
environment, different consumption goods, flow utility from housing, or any variable that directly
impacts instantaneous utility. Hence, we can express the lifetime utility effect of a policy change for
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individual i as follows:
dVi (s0)
dθ

=
T∑
t=0

∑
st

∑
`

∂Ui

∂xi,`t (st)
dxi,`t

(
st
)

dθ
.

Consequently, we can generalize the definition of DS-planner (in Definition 3) to a general
environment, by assuming that dWDS(s0)

dθ takes the form

dWDS (s0)
dθ

=
∫ T∑

t=0

∑
st

∑
`

ωi,`t

(
st
∣∣∣ s0
) dui|c (st)

dθ
di,

where ωi,`t
(
st
∣∣ s0
)
is a DS-weight defined for each specific commodity `, for each date t, at each

history st, and for each individual i.49

Hence, paralleling Lemma 1, we can define a multiplicative decomposition of the form

ωi,`t

(
st
∣∣∣ s0
)

= ω̃i (s0)︸ ︷︷ ︸
individual

ω̃it (s0)︸ ︷︷ ︸
dynamic

ω̃it(st|s0)︸ ︷︷ ︸
stochastic

ω̃i,`t (st|s0)︸ ︷︷ ︸
commodity

,

where the choice of ω̃i,`t (st|s0) is shaped by the choice of numeraire. Throughout the paper, we
assume that consumption is the numeraire good, so with ` ∈ {c, n}, we have that

ω̃i,ct (st|s0) = 1

ω̃i,nt (st|s0) =
∂ui(st)
∂nit

∂ui(st)
∂cit

.

By doing this, we guarantee that
∑
` ω

i,`
t

(
st
∣∣ s0
) dui|c(st)

dθ is measured in units of consumption good
at history st. These results highlight how welfare assessments also rely on the choice of numeraire.
However, more generally we can consider any bundle of goods

{
ψ`
}
`∈L

as numeraire, that is we could
set

ω̃i,`t (st|s0) =
∂Ui

∂xi,`t (st)∑
` ψ

` ∂Ui
∂xi,`t (st)

,

where by choosing a unit vector for some commodity ` we choose a single commodity as numeraire.
For the purpose of making meaningful welfare assessments, this normalization/choice of numeraire
must be consistent across all individuals. Welfare assessments are typically not invariant to the
choice of numeraire, but there are good reasons to choose some numeraires (e.g., consumption, some
particular consumption bundle, or dollars) over others.50

49In this case, the generalization of the lifetime and instantaneous Social Welfare Functions is a “commodity Social
Welfare Function”, given by

W
({
xi,`t
(
st
)}

t,st,`,i

)
.

50One could potentially pick different numeraires in different dates or histories, but it seems natural to choose a
consistent numeraire to yield easily interpretable results.
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In the case of a normalized welfarist planner, it is straightforward to characterize commodity-
DS-weights. Using the first commodity (` = 1) as numeraire, and defining λi (s0) = ∂W({Vi(s0)}i∈I)

∂Vi
,

it follows that

dWDS (s0)
dθ

=

∫
λi (s0)

T∑
t=0

∑
st

∑
`

∂Ui

∂x
i,`
t

(st)

dx
i,`
t

(
st
)

dθ
di

=

∫
λi (s0)

T∑
t=0

∑
st

∂Ui

∂x
i,1
t

(st)

∑
`

∂Ui

∂x
i,`
t

(st)
∂Ui

∂x
i,1
t

(st)

dx
i,`
t

(
st
)

dθ
di

=

∫
λi (s0)

T∑
t=0

∑
st

∂Ui

∂x
i,1
t

(st)

∑
st

∂Ui

∂x
i,1
t

(st)∑
st

∂Ui

∂x
i,1
t

(st)

∑
`

∂Ui

∂x
i,`
t

(st)
∂Ui

∂x
i,1
t

(st)

dx
i,`
t

(
st
)

dθ
di

=

∫
λi (s0)

∑
t

∑
st

∂Ui

∂x
i,1
t

(st)

T∑
t=0

∑
st

∂Ui

∂x
i,1
t

(st)∑
t

∑
st

∂Ui

∂x
i,1
t

(st)

∑
st

∂Ui

∂x
i,1
t

(st)∑
st

∂Ui

∂x
i,1
t

(st)

∑
`

∂Ui

∂x
i,`
t

(st)
∂Ui

∂x
i,1
t

(st)

dx
i,`
t

(
st
)

dθ
di

=

∫
λi (s0)

∑
t

∑
st

∂Ui

∂x
i,1
t

(st)
di

∫ λi (s0)
∑

t

∑
st

∂Ui

∂x
i,1
t

(st)∫
λi (s0)

∑
t

∑
st

∂Ui

∂x
i,1
t

(st)
di︸ ︷︷ ︸

=ω̃i(s0)

T∑
t=0

∑
st

∂Ui

∂x
i,1
t

(st)∑
t

∑
st

∂Ui

∂x
i,1
t

(st)︸ ︷︷ ︸
=ω̃i

t
(s0)

∑
st

∂Ui

∂x
i,1
t

(st)∑
st

∂Ui

∂x
i,1
t

(st)︸ ︷︷ ︸
=ω̃i

t
(st|s0)

∑
`

∂Ui

∂x
i,`
t

(st)
∂Ui

∂x
i,1
t

(st)︸ ︷︷ ︸
=ω̃i,`

t
(st|s0)

dx
i,`
t

(
st
)

dθ

︸ ︷︷ ︸
=
dui|c(st)

dθ

di.

so we can write

dWDS(s0)
dθ∫

λi (s0)
∑
t

∑
st

∂Ui
∂xi,1t (st)

di
=
∫
ω̃i (s0)

T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st|s0

) dui|c (st)
dθ

di.

This derivation highlights that once we choose a numeraire, the dynamic, stochastic, and individuals
components of DS-weights are expressed in terms of such numeraire — it is straightforward to use
a bundle-numeraire of the form

∑
` ψ

` ∂Ui
∂xi,`t (st)

. Hence, for Proposition 6 to be valid, the natural
commodity to choose as numeraire is the commodity on which financial claims are written on.

Finally, note that it is also possible to introduce multiple commodities in the baseline model with
time-separable expected utility preferences. To do so, we define a generalized version of Equation
(1), which includes multiply commodities, indexed by ` ∈ L, as follows:

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui

({
ci,`t

(
st
)}

`∈L

)
.

Without loss, we treat commodity 1 as the numeraire for the purpose of making welfare assessments,
so we can express dVi(s0)

dθ as follows:

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂ci,1t

∑
`∈L

dui|c1
(
st
)

dθ
,
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where ∂ui(st)
∂ci,`t

=
∂ui

({
ci,`t (st)

}
`∈L

)
∂ci,`t (st)

and where the instantaneous commodity-1-equivalent effect of the

policy at history st, is given by
dui|c1(st)

dθ , where

dui|c1
(
st
)

dθ
=

dui

({
ci,`t (st)

}
`∈L

)
dθ

∂ui(st)
∂ci,1t

= dci,1t
(
st
)

dθ
+
∑
`∈L

∂ui(st)
∂ci,`t
∂ui(st)
∂ci,1t

dci,`t
(
st
)

dθ
.

Once again, when there are multiple commodities, it is necessary to account for the marginal rates
of substitutions between those commodities and the commodity chosen as numeraire. Note that the
choice of numeraire will not change the directional welfare assessment of a welfarist planner, but it
can have an impact on the units of such assessment, as well as on the value of the components of the
aggregate additive decomposition.

F.4 Policy changes that affect probabilities

In this section, we describe how to use DS-weights in environments in which policy changes affect
probabilities. Starting from Equation (2), note that we can express dVi(s0)

dθ as follows

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c (st)
dθ

+ d ln πt
(
st
∣∣ s0
)

dθ

ui
(
cit
(
st
)
, nit

(
st
))

∂ui(st)
∂cit

 .
Hence, we can use the following definition of a DS-planner in this case.

Definition 6. (Desirable policy change for a DS-planner) A DS-planner, that is, a planner who
adopts DS-weights, finds a policy change desirable in an environment in which policies can also
affect probabilities if and only if dW (s0)

dθ > 0, where

dWDS (s0)
dθ

=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
)dui|c (st)

dθ
+ d ln πt

(
st
∣∣ s0
)

dθ

ui
(
cit
(
st
)
, nit

(
st
))

∂ui(st)
∂cit

 di,

where d lnπt( st|s0)
dθ =

dπt( st|s0)
dθ

πt( st|s0) .

Identical results apply in the case in which policy changes directly affect preferences. See Dávila
and Goldstein (2021) for an application of the results of this paper to an environment in which policy
changes have a discontinuous impact on payoffs.

F.5 Intergenerational considerations

In this section, we describe how to use DS-weights in environments with births, deaths, bequest
motives, and related considerations, which non-trivially affect welfare assessments — see Calvo and
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Obstfeld (1988), Farhi and Werning (2010), Heathcote, Storesletten and Violante (2017), or Phelan
and Rustichini (2018). The most direct way of extending our baseline environment, is to interpret
the set of individuals I considered in the baseline model as the set all individuals i) alive or ii)
yet-to-be-born from the perspective of s0. Under that interpretation, dui|c(st)

dθ is non-zero only for
those alive at a given history, so Definition 3 applies unchanged.51

Bequest motives, altruism, warm-glow preferences, social discounting or similar considerations
only impact welfare assessments via the choice of DS-weights. For instance, a welfarist planner who
values future generations directly placing a positive weight on their welfare and that in turn perceives
an effective social discount rate lower than the private one, can be modeled by choosing a particular
set of DS-weights. While do not explore that possibility in this paper, there is scope to use the
law of total covariance to internationally decompose the cross-sectional components of the aggregate
additive decomposition.

51An important practical consideration is that Proposition 7 will never apply to economies with births, since yet-to-
be-born individuals cannot freely trade with alive individuals. These ideas deserve further exploration.
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G Additional Results

G.1 Dimensional analysis

This paper puts great emphasis on the units in which different variables are defined. In this section,
we carefully describe the units of the different components of individual multiplicative decomposition
for a normalized welfarist planner and for a general DS-planner

Welfarist planners. As we discuss in the text, the units of our formulation of DS-weights for the
case of the normalized welfarist planner have a clear interpretation in terms of dollars at different
dates and histories. Here, we provide a systematic dimensional analysis (de Jong, 1967) of the welfare
assessments made by a normalized welfarist planner. We denote the units of a specific variable by
dim (·), where, for instance, dim

(
cit
(
st
))

= dollars at history st ,where we interchangeably use dollars
and units of the consumption good.

First, note that the units of ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0) for a welfarist planner, as defined in

Equations (13), (14), and (15), are respectively given by

dim
(
ω̃i,Wt

(
st
∣∣∣ s0
))

=
instantaneous utils at s0 for individual i

dollars at history st
instantaneous utils at s0 for individual i

dollars at date t
= dollars at date t

dollars at history st

dim
(
ω̃i,Wt (s0)

)
=

instantaneous utils at s0 for individual i
dollars at date t

instantaneous utils at s0 for individual i
dollars at all dates and histories

= dollars at all dates and histories
dollars at date t

dim
(
ω̃i,W (s0)

)
=

instantaneous utils at s0 for individual i
dollars at all dates and histories

instantaneous utils at s0
dollars at all dates and histories for all individuals

= dollars at all dates and histories for all individuals
dollars at all dates and histories ,

where the last cancellation accounts for the implicit comparability of utility units among individ-
uals.52 The term (βi)t πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
, which defines the numerator of ω̃it

(
st
∣∣ s0
)
, is measured in

instantaneous utils at s0 per dollars at history st for individual i, since

dim
(
(βi)t

)
= instantaneous utils at s0 for individual i

instantaneous utils at history st for individual i

dim
(
∂ui

(
st
)

∂cit

)
= instantaneous utils at history st for individual i

dollars at history st ,

and probabilities, like πt
(
st
∣∣ s0
)
, are unitless. The same logic applies to the remaining elements of

ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0).

52From the perspective of aggregation of lifetime utilities, which takes places through the individual component
ω̃i (s0), any welfarist planner has |I| + 1 degrees of freedom: the planner can give different weights to each of the |I|
individual assessments, and can further normalize the units of aggregate welfare.
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Consequently, it follows that

dim
(
ω̃i,Wt

(
st
∣∣∣ s0
))

= dim
(
ω̃i (s0) ω̃it (s0) ω̃it

(
st
∣∣∣ s0
))

(OA4)

= dollars at all dates and histories for all individuals
dollars at history st .

Hence, the DS-weights ω̃i,Wt
(
st
∣∣ s0
)
translates dollars at history st into λi (s0) dollars at all dates

and histories for all individuals.
Second, note that the units of dui|c(s

t)
dθ are given by

dim
(
dui|c

(
st
)

dθ

)
=

instantaneous utils at history st for individual i
unit of policy change

instantaneous utils at history st for individual i
dollars at history st

= dollars at history st

unit of policy change , (OA5)

which follows directly from Equation (14).
Finally, combining Equations (OA4) and (OA5), it follows that

dim
(
dWW (s0)

dθ

)
= dim

(
ωi

t

(
st
∣∣ s0
) dui|c (st)

dθ

)
= dollars at all dates and histories for all individuals

unit of policy change .

(OA6)
Hence, the units of WW for a normalized welfarist planner are dollars paid to all individuals at all
dates and histories. That is, if dWNU

dθ = 7, the welfare gain associated with a marginal policy change
is equivalent to paying 7 dollars to all individuals in the economy at all dates and histories.

General DS-planners. The dimensional analysis in the case of general planners is similar. In this
case, the welfare units of ω̃i,DSt

(
st
∣∣ s0
)
can be directly computed as

dim
(
ω̃i,DSt

(
st
∣∣∣ s0
))

= units of WDS

dollars at history st .

In this case, it is also possible to compute the units of each of the components of the individual
multiplicative decomposition as we just did for welfarist planners. By doing so, it becomes clear that
the units of each of the components of the individual multiplicative decomposition for any normalized
DS-planner (including those who are not welfarist) are identical.

Undesirable properties of unnormalized decompositions. As briefly explained in the text,
using unnormalized individual multiplicative decompositions of DS-weights can be problematic in the
context of the aggregate additive decomposition, since unnormalized decompositions are expressed
in utils. This is not the case for normalized decompositions since these always make tradeoffs in
dollar units.

For instance, if one were to set λi (s0) = 1, ∀i, in the decomposition presented in Equation (10),
the redistribution component of the aggregate additive decomposition would be zero, ΞRD = 0. This
result captures the fact that an unnormalized equal-weighted utilitarian planner is indifferent between
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redistribution across individuals in utility terms. Hence, by directly adding up utils, we would fail
to capture the idea that a utilitarian planner wants to redistribute resources (in consumption units)
towards individuals with low marginal utility — see e.g., Salanie (2011). Similarly, if individual
discount factors are identical, that is, βi = β, ∀i, a welfarist planner under the decomposition
presented in Equation (10) will conclude that intertemporal-sharing is zero, that is, ΞIS = 0,
regardless of the form of the policy under consideration. Equally important, the dynamic and
stochastic weights for a welfarist planner defined as in Equation (10) need not add up to 1. Hence,
according to Proposition 3, even when the instantaneous consumption-equivalent effect of a policy
change is identical across individuals at all dates and histories, an unnormalized utilitarian planner
would typically find non-zero intertemporal-sharing components and redistribution components of
the aggregate additive decomposition. This is is another undesirable property of the unnormalized
utilitarian welfare criterion.

An alternative date-0 normalization. One of the contributions of this paper is to introduce
the notion of a normalized planner — see Lemma 1 — as one for which the stochastic, dynamic, and
individual components of the multiplicative decomposition add up to 1 across specific dimensions.
However, these is an alternative normalization that seems reasonable: one may consider normalizing
the individual welfare effect of a policy change by date-0 marginal utility. In that case, it is possible
to decompose the DS-weights of a welfarist planner as follows:

ω̃i,Wt

(
st
∣∣∣ s0
)

=
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit∑
st πt (st| s0) ∂ui(s

t)
∂cit

= qit
(
st|s0

)∑
st q

i
t (st|s0)

ω̃i,Wt (s0) =
(βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
∂ui(s0)
∂cit

=
T∑
t=0

∑
st

qit

(
st|s0

)

ω̃i,W (s0) =
λi (s0) ∂ui(s

0)
∂cit∫

λi (s0) ∂ui(s
0)

∂cit
di
.

This decomposition satisfies
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i, and
∫
ω̃i (s0) di = 1, but it is clear that∑T

t=0 ω̃
i
t (s0) 6= 1. Instead, in this decomposition, ω̃i,W0 (s0) = 1, for all individuals. In terms of units,

this decomposition adds up individual welfare effects according to ω̃i,W (s0), once they are expressed
in date-0 dollars, which may seem reasonable or even desirable in some circumstances. However, in
this case Proposition 3a) will not be valid if using this normalization. In particular, the redistribution
component of the aggregate decomposition will not be zero for policies that are invariant across all
individuals at all dates and histories. In this case, the component ΞRD captures redistribution from
a date-0 perspective, note a lifetime perspective.
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G.2 α-DS-Planners

After substituting the definition of the components of the DS-weights, we can explicitly express
welfare assessments for a α-DS-planner as follows:

dWW,α (s0)
dθ

=
T∑
t=0

Ei
[(

1− αi3
)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0)

]∑
st

Ei
[
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Efficiency)

+
T∑
t=0

Ei
[(

1− αi3
)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0)

]∑
st

Covi

[
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRS (Risk-sharing)

+
T∑
t=0

Covi

[(
1− αi3

)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0) ,

∑
st

(
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS (Intertemporal-sharing)

+ Covi
[
(1− α4) ω̃i,W,AE (s0) + α4ω̃

i,W (s0) , X
]︸ ︷︷ ︸

=ΞRD (Redistribution)

, (OA7)

where

X =
T∑
t=0

(
(1− α3) ω̃i,W,AE

t (s0) + α3ω̃
i,W
t (s0)

)∑
st

(
(1− α2) ω̃i,W,AE

t

(
st
∣∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣∣ s0
)) dui|c (st)

dθ
.

Note that the notion of α-DS-planner introduced in Definition 4 is designed so that the following
properties are satisfied:

Ei
[
ω̃i,W,α
t

(
st
∣∣∣ s0
)]

= ω̃i,W,AE
t

(
st
∣∣∣ s0
)

= Ei
[
ω̃i,Wt

(
st
∣∣∣ s0
)]

Ei
[
ω̃i,W,α
t (s0)

]
= ω̃i,W,AE

t (s0) = Ei
[
ω̃i,Wt (s0)

]
Ei
[
ω̃i,W,α (s0)

]
= ω̃i,W,AE (s0) = Ei

[
ω̃i,W (s0)

]
.

Hence, Equation (OA7) implies that when α = (0, 0, 0), we have an AE pseudo-welfarist DS-planner;
when α = (1, 0, 0), we have an AR pseudo-welfarist DS-planner; when α = (1, 1, 0), we have a NR
pseudo-welfarist DS-planner; and when α = (1, 1, 1), we have a welfarist planner. We summarize
this results in Table OA-1.

Table OA-1: α-DS-planner: Special cases

(α2, α3, α4) ω̃it
(
st
∣∣ s0
)

ω̃it (s0) ω̃i
(
s0) Planner

(1, 1, 1) ω̃i,Wt
(
st
∣∣ s0
)

ω̃i,Wt (s0) ω̃i,W (s0) W
(1, 1, 0) ω̃i,Wt

(
st
∣∣ s0
)

ω̃i,Wt (s0) ω̃i,W,AE (s0) NR
(1, 0, 0) ω̃i,Wt

(
st
∣∣ s0
)

ω̃i,W,AE
t (s0) ω̃i,W,AE (s0) NS

(0, 0, 0) ω̃i,W,AE
t

(
st
∣∣ s0
)

ω̃i,W,AE
t (s0) ω̃i,W,AE (s0) AE

Note: Note that all the α-DS-planners considered in this table are pseudo-welfarist.

However, note that there are other possible extreme combinations of α that one may want to
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consider, these are the following:

{(1, 0, 1) , (0, 1, 0) , (0, 1, 1) , (0, 0, 1)} . (OA8)

The problem with the α’s in Equation (OA8) is that, as long as one of the first two elements of α are
0, the redistribution component will be different from the redistribution component of the relevant
welfarist planner. Hence, these choices of α are not pseudo-welfarist. Hence, those α-DS-planners
will not be pseudo-welfarist, despite being perfectly valid DS-planners.

G.3 Relation to existing work

G.3.1 Welfarist Social Welfare Functions

In addition to the utilitarian SWF, defined in Equation (5), there are other welfarist SWF’s that are
at times used in specific applications — see e.g., Mas-Colell, Whinston and Green (1995), Kaplow
(2011), or Adler and Fleurbaey (2016) for details. Here we briefly described those.

The isoelastic SWF, commonly traced back to Atkinson (1970), is given by

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (Vi (s0))φ di
)1/φ

,

where the (inequality) coefficient φ is typically restricted to lie in [−∞, 1], so that W (·) is concave
when Vi (s0) > 0, and where it is typically assumed that

∫
aidi = 1, and that ai ≥ 0, ∀i.53 Limiting

cases of the isoelastic SWF correspond to the other four widely used SWF’s. First, when φ→ 1, the
isoelastic SWF becomes the conventional utilitarian SWF. In that case:

W
(
{Vi (s0)}i∈I

)
=
∫
aiVi (s0) di.

Second, when φ→ 0, the isoelastic SWF becomes the Nash (Cobb-Douglas) SWF. In that case:

W
(
{Vi (s0)}i∈I

)
=
∫

(Vi (s0))ai di.

Third, when φ→ −∞, the isoelastic SWF becomes the Rawlsian/maximin (Leontief) SWF. In that
case:

W
(
{Vi (s0)}i∈I

)
= min

{
. . . ,

Vi (s0)
ai

, . . .

}
.

Finally, when the isoelastic SWF gives positive weight to a single individual, it can be interpreted

53Note that, for an isoelastic SWF, ∂W
∂Vi

= ai
(
Vi
W

)φ−1. More importantly
∂W
∂Vi
∂W
∂Vj

= ai
aj

(
Vi
Vj

)φ−1
. When lifetime utilities

are negative, it is possible to define an isoelastic SWF of the form

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

,

by considering φ ∈ [1,∞].
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as a dictatorial SWF. In that case:

W
(
{Vi (s0)}i∈I

)
= V1 (s0) .

Note that all of these SWF are Paretian, although the Rawlsian/maximin and the dictatorial SWF’s
are not strictly Paretian.54

G.3.2 Relation to Saez and Stantcheva (2016)

It is straightforward to define welfare assessments in our framework that are based on the approach
introduced by Saez and Stantcheva (2016).

Definition 7. (Desirable policy change for a planner who uses generalized social marginal welfare
weights (Saez and Stantcheva, 2016)) A planner who uses generalized social marginal welfare weights
finds a policy change desirable if and only if dWSS(s0)

dθ > 0, where

dWSS (s0)
dθ

=
∫
hi (·) dVi (s0)

dθ
di, (OA9)

where hi (·) > 0, ∀i ∈ I, are a collection of individual-specific positive functions, and where dVi(s0)
dθ is

defined in Equation (2).

By comparing Equation (OA9) with Equation (6), it is evident that the approach based on
generalized social marginal welfare weights introduced in Saez and Stantcheva (2016) is more general
than the welfarist approach. The key difference between the two approaches is that for welfarist
planners the functions hi (·) are restricted to take the form

hi (·) =
∂W

(
{Vi (s0)}i∈I

)
∂Vi

,

while hi (·) can take many other values under the Saez and Stantcheva (2016) approach. Saez
and Stantcheva (2016) show that their approach can capture alternatives to welfarism, such as
libertarianism or equality of opportunity. It is also evident from definition 7 that a planner who uses
generalized social marginal welfare weights is not paternalistic, since welfare assessments are based
on individual lifetime welfare effects, dVi(s0)

dθ .
In static economies, the individual component of the individual multiplicative decomposition of

DS-weights introduced in Lemma 1 exactly corresponds to the notion of generalized welfare weights
introduced in Saez and Stantcheva (2016). In other words, in static environments, the contribution
of our paper is only to introduce the aggregate additive decomposition of welfare assessments in
aggregate efficiency and redistribution, but not to introduce the notion of generalized individual
weights for particular individuals, which is already in Saez and Stantcheva (2016).

54A planner with an isoelastic SWF is strictly Paretian when φ > −∞ if ai > 0, ∀i.
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G.3.3 Relation to Kaldor/Hicks principle

The classic Kaldor/Hicks (Kaldor, 1939; Hicks, 1939) compensation principle can be formalized in
marginal form in static environments by equal individual generalized weights among individuals, see
e.g., Hendren (2020). This observation implies that the Kaldor/Hicks welfare criterion can also be
formalized as a particular DS-planner.

In dynamic environments, there is some ambiguity on when and how to compensate different
individuals. When the Kaldor/Hicks compensation is defined in permanent dollars (dollars across all
dates and histories), the Kaldor/Hicks welfare criterion exactly correspond to the pseudo-welfarist
NR planner introduced in Section 5, in which

ω̃i (s0) = 1, ∀i. (Kaldor-Hicks)

Intuitively, if a welfarist planner has access to permanent lump-sum transfers among individuals, an
optimality condition for such a planner is that

λi (s0)
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

must be equal across all agents, implying that ω̃i (s0) = 1.55 This is the sense in which ω̃i (s0) = 1
has the interpretation of a Kaldor-Hicks planner. However, while allowing for lump-sum transfers
implies that ω̃i (s0) = 1, the converse is not true, that is, it is possible to make welfare assessments
using ω̃i (s0) = 1 as individual weights even when no transfers at all are made in the background.
We further elaborate on the role of transfers in Section G.3.5.

G.3.4 Relation to Lucas (1987) and Alvarez and Jermann (2004)

It is common in papers that study the welfare consequences of policies in dynamic and stochastic
environments to compute welfare gains or losses of policies as in Lucas (1987), who measures the
welfare gains associated with a policy change — specifically, the welfare gains associated with
eliminating business cycles. Since our approach is built on marginal arguments, we connect instead
our results to those in Alvarez and Jermann (2004), who provide a marginal formulation of the
approach in Lucas (1987).

While the Lucas (1987) and Alvarez and Jermann (2004) approach is easily interpretable in
representative agent economies, it has the pitfall that it cannot be meaningfully aggregated when
there are heterogeneous individuals. See, for instance, how Atkeson and Phelan (1994), Krusell and
Smith (1999), or Krusell et al. (2009) carefully avoid aggregating welfare gains or losses for different
individuals.

To illustrate these arguments, here we consider a policy change for a given individual i, who

55Alternatively, as discussed in Footnote 24, a date-0 Kaldor-Hicks normalization, so that λi (s0) ∂ui(s
0)

∂ci0
= 1, is

equivalent to assigning a higher individual weight to individuals with higher willingness to pay for T -consol bonds.
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could be a representative agent or not. Formally, we consider a special case of the environment laid
out in Section 3, in which an individual i has preferences given by

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
))
.

We suppose that the consumption of individual i at date t and history st can be written as

cit

(
st
)

= (1− θ) cit
(
st
)

+ θcit

(
st
)
,

where both cit
(
st
)
and cit

(
st
)
are sequences measurable with respect to history st. The sequence

cit
(
st
)
can be interpreted as a given initial consumption path (when θ = 0) and the sequence cit

(
st
)

can be interpreted as a final consumption path (when θ = 1). In the case of Lucas (1987), θ = 1
corresponds to fully eliminating business cycles.

First, we compute the marginal gains from marginally reducing business cycles, as in Alvarez
and Jermann (2004). Next, we compute the marginal gains from marginally reducing business cycles
using an additive compensation.

Multiplicative compensation. Lucas (1987) proposes using a time-invariant equivalent varia-
tion, expressed multiplicatively as a constant fraction of consumption at each date and history as
follows

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)

(1 + λ (θ))
)

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
(1− θ) cit

(
st
)

+ θcit

(
st
))
,

(OA10)
where λ (θ) implicitly defines the welfare gains associated with a policy indexed by θ; the exact
definition in Lucas (1987) exactly corresponds to solving for λ (θ = 1).56

Following Alvarez and Jermann (2004), we can compute the derivative of the RHS of Equation
(OA10) as follows:

d
(

(βi)t∑
st πt (st| s0)ui

(
(1− θ) ci

t (st) + θci
t (st)

))
dθ

=
T∑

t=0
(βi)t

∑
st

πt

(
st
∣∣ s0
)
u′

i

(
(1− θ) ci

t

(
st
)

+ θci
t

(
st
)) dci

t (st)
dθ

(OA11)

where here dcit(st)
dθ = cit

(
st
)
− cit

(
st
)
.

56Note that one could also define an alternative compensating variation as

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
))

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui

((
cit
(
st
)

+ θ∆cit
(
st
))

(1 + λ (θ))
)
.
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Analogously, we can also compute the derivative of the LHS of Equation (OA10) as follows:

d
(∑T

t=0 (βi)t
∑

st
πt
(
st
∣∣ s0
)
ui
(
cit
(
st
)

(1 + λ (θ))
))

dθ
=

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
u′i
(
cit
(
st
)

(1 + λ (θ))
)
cit
(
st
)
λ′ (θ) .

(OA12)

Hence, combining Equations (OA11) and (OA12) and solving for dλ
dθ = λ′ (θ), yields the marginal

cost of business cycles, as defined in Alvarez and Jermann (2004). Formally, we can express dλ
dθ as

follows

dλ

dθ
= λ′ (θ) =

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) (1 + λ (θ))

)
cit (st)

=
T∑
t=0

∑
st

ωit

(
st
∣∣∣ s0
) dcit (st)

dθ
, (OA13)

where the second line shows how to reformulate dλ
dθ in terms of DS-weights given by

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
)

+ θ∆cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) (1 + λ (θ))

)
cit (st)

. (OA14)

Additive compensation. Here, we would like to contrast the approach in Lucas (1987) to one
that relies on a time-invariant compensating variation, expressed additively in terms of consumption
at each date and history as follows:

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)

+ λ (θ)
)

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
(1− θ) cit

(
st
)

+ θcit

(
st
))
.

In this case, we can follow the same steps as above to find the counterpart of Equation (OA13),
which is given by

dλ

dθ
= λ′ (θ) =

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) + λ (θ)

)
cit (st)

=
T∑
t=0

∑
st

ωit

(
st
∣∣∣ s0
) dcit (st)

dθ
, (OA15)

where the second line shows how to reformulate dλ
dθ in terms of DS-weights given by

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) + λ (θ)

) . (OA16)

Comparison and implications. We focus on comparing Equations (OA13) and (OA15) in the
case of θ = 0 — similar insights emerge when θ 6= 0. When θ = 0, Equations (OA14) and (OA16)
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become

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st)

)
cit (st)

(multiplicative⇒ Lucas/Alvarez-Jermann)

(OA17)

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st)

) . (additive⇒ normalized welfarist DS-planner)

(OA18)

Two major insights emerge from Equations (OA17) and (OA18). First, the DS-weights defined for
the additive case in Equation (OA18) exactly correspond to the dynamic and stochastic components
of DS-weights for a normalized utilitarian planner, as defined in Equations (13) and (14). Second,
note that the denominator of the DS-weights in the multiplicative case includes cit

(
st
)
at all dates

and histories. This captures the fact that the welfare assessment is computed as a fraction of
consumption at each date and history, not in units of the consumption good. The presence of cit

(
st
)

in the denominator is what complicates the aggregation of welfare assessments using the Lucas (1987)
approach.

Relation to EV, CV, and CS. Finally, note that the analysis in this section illustrates how
the marginal approach relates to the conventional approaches in classic demand theory: equivalent
variation (EV), compensating variation (CV), and consumer surplus (CS).

The approach of Lucas (1987) and Alvarez and Jermann (2004), and the alternative version
described in Footnote 56 are the dynamic counterpart of compensating and equivalent variations,
expressed in proportional terms, in a dynamic stochastic environment. Hence, the analysis of this
section shows that a DS-planner can be used to operationalize the counterpart of all three notions
— either proportionally or additively — in dynamic stochastic environments. As expected, these
considerations only matter away from the θ = 0 case. However, the consumer surplus approach
yields the most straightforward approach to making global assessments, as explained in Section G.5.

G.3.5 Relation to welfare assessments that involve transfers

Finally, it is worth discussing how having the ability to costlessly transfer resources across individuals
impact the welfare assessments of a DS-planner. To do so, we consider an environment in which a
DS-planner has access to a set of transfers T ii

(
st
)
, so that individual’s budget constraints have the

form
cit

(
st
)

= T ii

(
st
)

+ . . . .

In that case, it follows immediately that

dWDS (s0)
dT ii (st)

= ωit

(
st
∣∣∣ s0
)
.
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Hence, having transfers available will endogenously impose restrictions across the DS-weights of
different individuals. For instance, a welfarist planner who can transfer resources freely across all
individuals, at all dates and histories will equalize the DS-weights across all individuals, at all dates
and histories. Given Proposition 2, this implies that this planner will only value aggregate efficiency.
Similar conclusions can be reached when a DS-planner only has access to a subset of transfers.

G.3.6 Relation to existing welfare decompositions

Our paper is not the first to introduce a decomposition of welfare assessments in different components.
In fact, most of the existing literature that applies welfare decompositions to specific environments
follows versions of the decompositions introduced by Benabou (2002) and Floden (2001). There is
also the more recent decomposition introduced by Bhandari et al. (2021). We discussed how our
approach is related to both of these next.

Benabou (2002)/Floden (2001) The starting point for the Benabou (2002)/Floden (2001)
approach is the (incorrect) presumption that the welfarist approach cannot distinguish the effects
of policy that operate via efficiency, missing markets, and redistribution. Benabou (2002) explicitly
writes:57

“I will also compute more standard social welfare functions, which are aggregates of
(intertemporal) utilities rather than risk-adjusted consumptions. These have the clearly
desirable property that maximizing such a criterion ensures Pareto efficiency. On the
other hand, it will be seen that they cannot distinguish between the effects of policy that
operate through its role as a substitute for missing markets, and those that reflect an
implicit equity concern.”

In this paper, we have shown that it is possible to distinguish — using standard Social Welfare
Functions — the effects of policy that operate through efficiency, including in economies with missing
markets, and redistribution/equity. As Benabou (2002) points out, his non-welfarist approach may
conclude that Pareto-improving policies are undesirable. When staying within the welfarist class,
our approach is trivially Paretian. When consider DS-planners outside of the welfarist class, our
approach is precise in the way in which specific departures take place.

In terms of properties, it is evident that the Benabou (2002)/Floden (2001) approach does not
satisfy Proposition 6, in which we show that all normalized welfarist planners conclude that the risk-
sharing and intertemporal-sharing components are zero when markets are complete; Proposition 7, in
which we show that all normalized welfarist planners conclude that intertemporal-sharing component
is zero when individuals can freely trade a riskless bond; and Proposition 8, in which we show
that different normalized welfarist planners exclusively disagree on the redistribution component.
Their approach satisfies Proposition 9, in which we show that the efficiency components (aggregate

57The Benabou (2002)/Floden (2001) approach is based on first computing certainty-equivalent consumption levels
for individuals and then building measures of inequality from the distribution of such certainty-equivalents.
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efficiency, risk-sharing, and intertemporal-sharing) of the aggregate additive decomposition are
invariant to monotonically increasing transformations of individual’s lifetime utilities and positive
affine (increasing linear) transformations of individual’s instantaneous utilities. However, the
Benabou (2002)/Floden (2001) approach satisfies Proposition 9 only because it is defined for
environments in which all individuals have identical preferences, which are highly restrictive.

Bhandari et al. (2021) The approach introduced by Bhandari et al. (2021), considers the case of
a utilitarian planner with arbitrary weights αi. although it seems obvious to apply to general Social
Welfare Functions. In contrast to Benabou (2002)/Floden (2001), the approach of Bhandari et al.
(2021) is defined for a general dynamic stochastic economies in which individuals may have different
preferences.

For simplicity, we consider a scenario in which there is a single consumption good. In this
environment, Bhandari et al. (2021) propose to first decompose the consumption of a given individual
at a given date and history as

cit

(
st
)

= C × wi ×
(
1 + εit

(
st
))
, (OA19)

where C captures aggregate consumption, wi captures the share of individual i’s consumption relative
to the aggregate and 1+εit

(
st
)
captures any residual variation. While Equation (OA19) may resemble

the individual multiplicative decomposition introduced in Lemma 1, it is conceptually different. First,
and most importantly, the decomposition in Equation (OA19) decomposes consumption, cit

(
st
)
,

while the individual multiplicative decomposition introduced in Lemma 1 decomposes DS-weights,
i.e., social marginal valuations, ωit

(
st
)
. Second, the term wi in Equation (OA19) can heuristically be

mapped to the individual component of our individual multiplicative decomposition, while the term
1 + εit

(
st
)
can be heuristically mapped to both the dynamic and stochastic components.

Bhandari et al. (2021) then introduce a second-order Taylor expansion around a midpoint to
write welfare differences (partially adopting the notation in that paper) as follows:

WB −WA '
∫
φiΓdi︸ ︷︷ ︸

agg. efficiency

+
∫
φi∆idi︸ ︷︷ ︸

redistribution

+
∫
φiγiΛidi︸ ︷︷ ︸

insurance

, (OA20)

where φi = αi
∑
t

∑
st
∂ui(st)
∂cit

cit
(
st
)
denotes quasi-weights — using the terminology in Bhandari et al.

(2021) — and γi is a measure of risk-aversion, −cit
(
st
) ∂2ui(st)

∂(cit)2 /
∂ui(st)
∂cit

, and where Γ = lnCB− lnCA,

∆i = lnwBi − lnwAi , and Λi = −1
2

[
Vari

[
ln cBi

]
− Vari

[
ln cAi

]]
. It is then possible to decompose

WB −WA into three terms as follows:

1 =
∫
φiΓdi

WB −WA︸ ︷︷ ︸
agg. efficiency

+
∫
φi∆idi

WB −WA︸ ︷︷ ︸
redistribution

+
∫
φiγiΛidi
WB −WA︸ ︷︷ ︸
insurance

. (OA21)
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Bhandari et al. (2021) establish three properties of the decomposition in Equation (OA21): a) a
welfare change that affects aggregate consumption C but not {wi, εi}i is exclusively attributed to
aggregate efficiency; b) a welfare change that affects expected shares {wi}i but not C and {εi}i
is exclusively attributed to redistribution; c) a welfare change that affects {εi}i but not C and
{wi}i is exclusively attributed to insurance.58 These properties are conceptually the counterpart
of Proposition 3, since they consider properties of a decomposition for particular policy changes.
However, it should be evident that properties a), b), and c) in Bhandari et al. (2021) neither imply nor
are implied by the properties that we establish in Proposition 3. This occurs because properties a), b),
and c) consider proportional changes while Proposition 3 considers changes in levels of consumption,
with both the proportional and level approaches being different but reasonable.59

However, more importantly, the decomposition of Bhandari et al. (2021) does not satisfy the
counterparts of Proposition 6, in which we show that all normalized welfarist planners conclude
that the risk-sharing and intertemporal-sharing components are zero when markets are complete;
Proposition 7, in which we show that all normalized welfarist planners conclude that intertemporal-
sharing component is zero when individuals can freely trade a riskless bond; Proposition 8, in
which we show that different normalized welfarist planners exclusively disagree on the redistribution
component; and Proposition 9, in which we show that the efficiency components (aggregate efficiency,
risk-sharing, and intertemporal-sharing) of the aggregate additive decomposition are invariant
to monotonically increasing transformations of individual’s lifetime utilities and positive affine
(increasing linear) transformations of individual’s instantaneous utilities.

That is, it is possible to consider complete market economies in which the decomposition of
Bhandari et al. (2021) attributes welfare changes to their insurance component. Also, it should
be evident from Equation (OA21) that changing the Pareto weights αi that a utilitarian planner
assigns to an individual or simply multiplying the lifetime utility of a single individual by a constant
factor — a transformation that has no impact on allocations — will change all three elements
(aggregate efficiency, redistribution, insurance) of the decomposition introduced by Bhandari et al.
(2021).60 The are two choices that explain why the decomposition in Equation (OA21) does not

58The insurance component in Bhandari et al. (2021) is heuristically related to the risk-sharing and intertemporal-
sharing components in our paper. Bhandari et al. (2021) also establish a fourth property, reflexivity, which our approach
also satisfies.

59Formally, note that by writing cit
(
st
)

= C × wi ×
(
1 + εit

(
st
))
, we can express dui|c(st)

dθ
as follows:

dui|c
(
st
)

dθ
=
dcit
(
st
)

dθ
= dC

dθ
× wi ×

(
1 + εit

(
st
))

+ C × dwi
dθ
×
(
1 + εit

(
st
))

+ C × wi ×
d
(
1 + εit

(
st
))

dθ
.

In this case, even when dwi
dθ

= d(1+εit(st))
dθ

= 0, a change in dC
dθ

, by virtue of being proportional to existing consumption,

does not imply a uniform change in dui|c(st)
dθ

across individuals, dates, and histories, which are the changes considered

in Proposition 3a). A similar logic applies to changes in dwi
dθ

and dεit(st)
dθ

. More generally, the decompositions yield
different conclusions. For instance, the decomposition in Bhandari et al. (2021) attributes welfare gains associated
to smoothing business cycles in a representative agent economy — as in Lucas (1987) — to insurance, while our
decomposition attributes such gains to the aggregate insurance subcomponent of aggregate efficiency, as described in
Section 6.1.

60Formally, it follows from the definition of φi above that a change in αi or a linear transformation of utilities will
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satisfy Propositions 6 through 9, which are central properties of our aggregate additive decomposition.
First, the decomposition in Equation (OA19) does not ensure that the insurance component vanishes
when individuals marginal rates of substitution are equalized across dates/states. Second,WB−WA

in Equation (OA20) (as well as φi) is expressed in utils, not consumption units.61 Hence, changes
in Pareto weights or utility transformations directly affect all the components of the decomposition,
including aggregate efficiency and insurance in Equation (OA21). By introducing normalized DS-
weights for welfarist planners, our approach confines the impact of varying SWF’s or considering
utility transformation to the redistribution component. Alternatively, directly specifying the
individual component of DS-weights allows a DS-planner to directly modulate how the redistribution
component is determined.

G.4 Optimal policy problems using DS-weights

Throughout most of the paper we have focused on how to make welfare assessments. Here, we show
how it is straightforward to use DS-weights in the context of optimal policy problems, both in primal
and in dual forms. To do so, we consider an environments in which a planner chooses a set of policy
instruments τ to maximize social welfare, which depends on allocations X (τ ). We consider two
possibilities.

First, we consider a primal problem, in which a planner maximizes social welfare W (X (τ )),
subject to a set of implementability conditions, H (X, τ ).62 Consistent with Section 6.4, we assume
that W (X (τ )) corresponds to an instantaneous SWF. In this case, the planner solves

min
λ

max
X,τ

W (X) + λH (X, τ ) ,

with optimality conditions for τ given by

∂W

∂X
+ λ∂H

∂X
= 0. (OA22)

Second, we consider a dual problem, in which a planner maximizes social welfare W (X? (τ )), where
X? (τ) denotes the equilibrium mapping implicitly defined as H (X? (τ ) , τ ) = 0. In this case, the
planner solves

max
τ

W (X? (τ )) ,

with optimality conditions for τ given

∂W

∂X

dX?

dτ
= 0. (OA23)

change φi and consequently each of the three elements on the right-hand side of Equation (OA20).
61Bhandari et al. (2021) explain how WB −WA is measured in utils as follows:

“Quasi-weights {φi}i convert percent changes {Γ,∆i,Λi}i that into a welfare change WB−WA, measured
in utils.”

62While social welfare is a scalar, bold variables can be vectors/matrices.
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In both cases, it is necessary to characterize ∂W
∂X to find optimal policies. Hence, by defining ∂W

∂X

as in Definition 3, it is straightforward to find optimal policies for different DS-planners. As a final
remark, note that, consistently with Section 6.4, it is important to understand that one cannot
define a conventional SWF from the onset, DS-weights must be introduced at the marginal level in
Equations (OA22) and (OA23).

G.5 Global welfare assessments

In the body of the paper, we have focused on marginal welfare assessments because there is no
ambiguity about the welfare gains or losses of a policy when measured in units of a particular
numeraire — see Schlee (2013) for a formal proof.63 But one may still be interested in exploring the
impact of non-marginal welfare assessments. It is well understood that even for a single individual
there is no unambiguous approach to measure welfare gains or losses for non-marginal changes — see
e.g., Silberberg (1972) or Mas-Colell, Whinston and Green (1995) — with the same logic extending to
every component of the aggregate additive decomposition. This phenomenon is typically illustrated
by the discrepancy between consumer surplus, equivalent variation, and compensating variation in
classic demand theory. Despite this unavoidable hurdle, it is possible to make judicious global welfare
assessments.

In practice, the easiest approach to study global policy changes is to parameterize policies using
a line integral, as we illustrate in Scenarios 1 and 2 in Section 7. Assuming that policy changes can
be scaled by θ ∈ [0, 1], where θ = 0 corresponds to the status-quo and θ = 1 corresponds to a global
non-marginal change, it is possible to define a non-marginal welfare change as follows:

WDS (s0; θ = 1)−WDS (s0; θ = 0) =
∫ 1

0

dWDS (s0; θ)
dθ

dθ,

where θ is an explicit argument of dW
DS(s0;θ)
dθ , which is given by

dWDS (s0; θ)
dθ

=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0; θ

) dui|c (st; θ)
dθ

di. (OA24)

That is, by recomputing dWDS(s0;θ)
dθ along a particular path, it is possible to come up with a social

welfare measure that is akin to consumer surplus, with the same logic applying to each of the
components of the aggregate additive decomposition. While in principle using different paths may
yield different answers when considering multidimensional policies even for identical start and end
points, in practice it is often possible to find monotonic paths of integration, as defined by Zajac
(1979) and Stahl (1984), which guarantees that the approach laid in Equation (OA24) yields globally
consistent welfare assessments.

Two additional remarks are worth making. First, while the approach outlined here is the
63Schlee (2013) shows that the measures of consumer surplus, equivalent variation, and compensating variation are

identical for marginal changes in a classical demand setup.
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easiest to implement, it is possible to use the same methodology as Alvarez and Jermann (2004)
to consider equivalent/compensating variation-like global assessments for welfarist planners within
the DS-weights framework, although this will only be valid for aggregate assessments, not necessarily
each of the components of the aggregate additive decomposition. Second, the potential for ambiguity
of global assessments is not relevant if one is interested in using DS-planners to solve optimal policy
problems, since dWDS(s0)

dθ is unambiguously defined for any policy perturbation. Hence, if there is a
point at which dWDS(s0)

dθ = 0 given the set of policy instruments, this will be a critical point and,
under suitable second-order conditions, a local optimum. If there is single local optimum and it is
possible to establish that the optimum is interior, this optimum will be global. If there are multiple
local optima, one could use the value of the SWF to rank them in the welfarist case. So welfarist
planners can unambiguously rank any two policies globally. Outside of the welfarist case, one can
look for monotonic paths of integration (Zajac, 1979; Stahl, 1984) to rank different local optima, so
it is only when this is not possible to find such paths that there may be some global ambiguity when
ranking two particular policies.64 In general, one can choose a set of reasonable policy paths (e.g.,
linear paths or bounded paths) and compare the predictions for the associated welfare assessments
both in aggregate and for each of the elements of the aggregate additive decompositions.

G.6 Welfare assessments in economics with idiosyncratic/aggregate states

Until now, we have introduced our results in a canonical dynamic-stochastic model, following closely
the notation of Chapter 8 in Ljungqvist and Sargent (2018). However, at times — in particular in
Bewley-style economies — it is more convenient to work with a different notation that differentiates
between idiosyncratic and aggregate states. We explain how to extend our framework to these
environments, in which it is possible to derive new results. Our notation follows Krueger and Lustig
(2010) whenever possible.

Environment We consider an economy populated by individuals that can be different for
two different reasons at any point in time. First, we assume that individuals may be ex-ante
heterogeneous, and we index this heterogeneity by i.65 This form of heterogeneity is meant to
capture immutable heterogeneity, for instance in terms of preferences. Second, we assume that
individuals have different idiosyncratic states, so at a given point in time individuals that have in
principle identical preferences may be different because they have a different idiosyncratic state.

In our economy there are aggregate and idiosyncratic states. We denote aggregate states by
zt ∈ Z and idiosyncratic states byyt ∈ Y . For simplicity, both Z and Y are assumed to be finite. We
let zt = (z0, . . . , zt) and yt = (y0, . . . , yt) denote the history of aggregate and idiosyncratic states.

64Stahl (1984) proves that there always exist monotonic paths of integration in a classical demand context. While a
formal proof of existence of such paths for the general framework considered here is outside of the scope of this paper,
there is no reason to believe this result cannot be extended to natural applications.

65Importantly, the index i in this section, which indexes ex-ante heterogeneity, is completely different from the index
i in the body of the paper, in which i indexes individuals. Formally, st in the body of the paper maps to zt in this
section, while i maps to the triple

{
i, y0, y

t
}
.
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States can be exogenous, in which case we refer to them as shocks, are they can be endogenous state
variables (e.g., wealth or asset holdings). We denote the unconditional probability of transitioning
from state y0 given an initial aggregate state z0 to a state

(
yt, zt

)
for an individual of ex-ante type

i by πit
(
yt, zt

∣∣ y0, z0
)
. We assume that the economy starts at an initial aggregate state z0, which a

cross-sectional distribution of individuals represented by dG (y0, i), where
∫∫
dG (y0, i) = 1. Given

our assumptions, at a give date t, there is a single aggregate state (of any dimension), but there are
as many idiosyncratic states (of any dimension) of individuals in the economy.

The lifetime utility of an individual of type i, with initial idiosyncratic state y0, given an aggregate
state z0, is given by

Vi (y0, z0) =
T∑
t=0

(βi)t
∑
zt

∑
yt

πit

(
yt, zt

∣∣∣ y0, z0
)
ui
(
cit

(
yt, zt

)
, nit

(
yt, zt

))
,

where, for simplicity, we assume that βi and ui (·) are not functions of yt and zt. It is straightforward
to extend our results to environments in which βi and ui (·) can be directly functions of yt and zt.
Hence, we can express the change in the lifetime utility of an individual i with initial idiosyncratic
state at a given initial aggregate state z0 induced by a marginal policy change as follows:

dVi (y0, z0)
dθ

=
T∑
t=0

(βi)t
∑
zt

∑
yt

πit

(
yt, zt

∣∣∣ y0, z0
) ∂ui (yt, zt)

∂cit

dui|c
(
yt, zt

)
dθ

.

In the case of a welfarist planner, the counterpart of Equation (6) is now

dWW (z0)
dθ

=
∫∫

λi (y0, z0) dVi (y0, z0)
dθ

dG (y0, i)

=
∫∫

λi (y0, z0)
T∑
t=0

(βi)t
∑
zt

∑
yt

πt
(
yt, zt

∣∣∣ y0, z0
) ∂ui (yt, zt)

∂cit

dui|c
(
yt, zt

)
dθ

dG (y0, i) ,

where λi (y0, z0) =
∂W
(
{Vi(y0,z0)}i,y0

)
∂Vi

. Hence, a desirable policy change for a DS-planner, that is, the
counterpart of Definition 2, is now based on

dWDS (z0)
dθ

=
∫∫ T∑

t=0

∑
zt

∑
yt

ωit

(
yt, zt

∣∣∣ y0, z0
) dui|c (yt, zt)

dθ
dG (y0, i) ,

where ωit
(
yt, zt

∣∣ y0, z0
)
denotes the DS-weight assigned to an individual of type i, whose idiosyncratic

state at the time of the assessment is y0, when the aggregate state at the time of the assessments is
z0, for a date t in which the idiosyncratic state of such individual is yt and the aggregate state is zt.

In this case, note that it is possible to define an individual multiplicative decomposition — the
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counterpart of Lemma 1 — that takes the form:

ωi,y0
t

(
yt, zt

∣∣∣ z0
)

= ω̃i,y0 (z0)︸ ︷︷ ︸
individual

ω̃i,y0
t (z0)︸ ︷︷ ︸
dynamic

ω̃i,y0
t

(
yt, zt|z0

)
︸ ︷︷ ︸

stochastic

.

In this case, the individual multiplicative decomposition of a normalized welfarist planner — the
counterpart of Proposition 5 — takes the form:

ω̃i,y0,W
t

(
yt, zt|z0

)
=

(βi)t πit
(
yt, zt

∣∣ y0, z0
) ∂ui(yt,zt)

∂cit∑
zt
∑
yt (βi)t πit (yt, zt| y0, z0) ∂ui(y

t,zt)
∂cit

=
πit
(
yt, zt

∣∣ y0, z0
) ∂ui(yt,zt)

∂cit∑
zt
∑
yt π

i
t (yt, zt| y0, z0) ∂ui(y

t,zt)
∂cit

ω̃i,y0,W
t (z0) =

(βi)t
∑
zt
∑
yt π

i
t

(
yt, zt

∣∣ y0, z0
) ∂ui(yt,zt)

∂cit∑T
t=0

∑
zt
∑
yt (βi)t πit (yt, zt| y0, z0) ∂ui(y

t,zt)
∂cit

ω̃i,y0,W (z0) =
λi (y0, z0)

∑T
t=0

∑
zt
∑
yt (βi)t πit

(
yt, zt

∣∣ y0, z0
) ∂ui(yt,zt)

∂cit∫∫
λi (y0, z0)

∑T
t=0

∑
zt
∑
yt (βi)t πit (yt, zt| y0, z0) ∂ui(y

t,zt)
∂cit

dG (y0, i)
.

In this case, note that
∑
zt
∑
yt ω̃

i,y0,W
t

(
yt, zt

∣∣ z0
)

= 1, ∀i, ∀y0;
∑
t ω̃

i,y0,W
t (z0) = 1, ∀i, ∀y0; and∫∫

ω̃i,y0,W (z0) dG (y0, i) = 1. Interestingly, under mild assumptions, note that there is scope to
further decompose the individual and stochastic components as follows:

ω̃i,y0 (z0) = ω̃i (z0)︸ ︷︷ ︸
ex-ante

ω̃y0|i (z0)︸ ︷︷ ︸
state variable

(individual) (OA25)

ω̃i,y0
t

(
yt, zt|z0

)
= ω̃i,y0

t

(
zt|z0

)
︸ ︷︷ ︸

aggregate

ω̃i,y0
t

(
yt|zt, z0

)
︸ ︷︷ ︸

idiosyncratic

. (stochastic) (OA26)

The two sub-components of the individual component capture redistribution towards immutable
ex-ante heterogeneity (indexed by i) and initial idiosyncratic state-variable heterogeneity (indexed by
y0). The two sub-components of the stochastic component will allow us to decompose the risk-sharing
component into pure risk-sharing of idiosyncratic and risk-transfer of aggregate risk.

Proposition 19. (Welfare assessments: aggregate additive decomposition) The aggregate welfare
assessment of a DS-planner, dWDS(z0)

dθ , can be decomposed into four components: i) an aggregate
efficiency component, ii) a risk-sharing component, iii) an intertemporal-sharing component, and iv)
a redistribution component, as follows:
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dWDS (s0)
dθ

=
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]∑
zt

Ei,y0,yt

[
ω̃i,y0
t

(
yt, zt|z0

)
Gt (yt, zt|y0, z0, i)

]
Ei,y0,yt

[
dui|c

(
yt, zt

)
dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Efficiency)

+
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]∑
zt

Covi,y0,yt

[
ω̃i,y0
t

(
yt, zt|z0

)
Gt (yt, zt|y0, z0, i)

,
dui|c

(
yt, zt

)
dθ

]
︸ ︷︷ ︸

=ΞRS (Risk-sharing)

+
T∑
t=0

Covi,y0

ω̃i,y0
t (z0) ,

∑
zt

∑
yt

ω̃i,y0
t

(
yt, zt|z0

) dui|c (yt, zt)
dθ


︸ ︷︷ ︸

=ΞIS (Intertemporal-sharing)

+ Covi,y0

ω̃i,y0 (z0) ,
T∑
t=0

(βi)t
∑
zt

∑
yt

πit

(
yt, zt

∣∣∣ y0, z0
) ∂ui (yt, zt)

∂cit

dui|c
(
yt, zt

)
dθ


︸ ︷︷ ︸

=ΞRD (Redistribution)

,

where we denote by Gt
(
yt, zt|y0, z0, i

)
the transition likelihood with which an individual i that starts

at states y0 and z0 transitions to histories yt and zt at date t.

Typically, in applications, Gt
(
yt, zt|y0, z0, i

)
will equal πit

(
yt, zt

∣∣ y0, z0
)
, but not always, for

instance when agents have heterogeneous beliefs. The definition of intertemporal-sharing and
redistribution are exactly identical to those in Proposition 1. The definitions of risk-sharing
and aggregate efficiency, which crucially hinge on taking cross-sectional average and covariances
conditional on the values of idiosyncratic states, need to be slightly adjusted to account for the fact
that agents transition between different states.

Finally, note that by combining Equation (OA25) with the definition of ΞRD, it is possible to
provide a subdecomposition of the redistribution term into three terms:

ΞRD = Covi,y0

[
ω̃i (z0) ω̃y0|i (z0) , dV

DS
i (y0, z0)
dθ

]

= Ei,y0

[
ω̃i (z0)

]
Covi,y0

[
ω̃i (z0) , dV

DS
i (y0, z0)
dθ

]
︸ ︷︷ ︸

ex-ante redistribution

+Ei,y0

[
ω̃y0|i (z0)

]
Covi,y0

[
ω̃y0|i (z0) , dV

DS
i (y0, z0)
dθ

]
︸ ︷︷ ︸

state-variable redistribution

+ Ei,y0

[(
ω̃i (z0)− Ei,y0

[
ω̃i (z0)

]) (
ω̃y0|i (z0)− Ei,y0

[
ω̃y0|i (z0)

])(dV DS
i (y0, z0)
dθ

− Ei,y0

[
dV DS

i (y0, z0)
dθ

])]
︸ ︷︷ ︸

ex-ante/state-variable coskewness redistribution

.

A similar subdecomposition emerges combining Equation (OA26) with the definition of ΞRS . In this
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case

ΞRS =
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]∑
zt

Covi,y0,yt

[
ω̃i,y0
t

(
yt, zt|z0

)
Gt (yt, zt|y0, z0, i)

,
dui|c

(
yt, zt

)
dθ

]

=
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]∑
zt

Covi,y0,yt

[
ω̃i,y0
t

(
zt|z0

)
Gt (zt|z0) ,

dui|c
(
yt, zt

)
dθ

]
︸ ︷︷ ︸

risk transfer

+
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]∑
zt

Covi,y0,yt

[
ω̃i,y0
t

(
yt|zt, z0

)
Gt (yt|zt, z0, y0, i)

,
dui|c

(
yt, zt

)
dθ

]
︸ ︷︷ ︸

idiosyncratic risk sharing

+
T∑
t=0

Ei,y0

[
ω̃i,y0
t (z0)

]
Ei,y0,yt


(
ω̃
i,y0
t (zt|z0)
Gt(zt|z0) − Ei,y0,yt

[
ω̃
i,y0
t (zt|z0)
Gt(zt|z0)

])
×
(

ω̃
i,y0
t (yt|zt,z0)

Gt(yt|zt,z0,y0,i)
− Ei,y0,yt

[
ω̃
i,y0
t (yt|zt,z0)

Gt(yt|zt,z0,y0,i)

])
×
(
dui|c(yt,zt)

dθ
− Ei,y0,yt

[
dui|c(yt,zt)

dθ

])


︸ ︷︷ ︸
risk coskewness

.

where, under mild assumptions, we can define Gt
(
yt, zt|y0, z0, i

)
= Gt

(
zt|z0

)
Gt
(
yt|zt, z0, y0, i

)
.
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