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Abstract: Using help-wanted ad data, this paper argues that automation increases demand for 
detailed skills that are typically unobserved, but which are major determinants of pay. 
Following automation events, we find that employers request more detailed skills and they 
substantially increase pay offers (8.7%). Importantly, these increases are not limited to select 
occupational groups—they apply to both routine and non-routine jobs, to jobs requiring 
college and those that do not. To explain this phenomenon, we extend the Acemoglu-
Restrepo task-based model of automation to consider labor quality, which depends on 
workers having task-specific skills. We obtain a Remainder Effect: when automation 
displaces labor on some tasks, it raises the returns to specific skills on the remaining tasks 
performed by diverse occupational groups. Because not all firms automate, this effect can 
raise income dispersion within occupations and between firms, including the sorting of 
skilled workers to high-paying firms. In contrast, labor displacement alone tends to increase 
between-occupation pay differences. 
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Introduction 

It has long been known that only a part of the rise in income inequality can be 

explained by worker characteristics that economists typically observe such as occupation, 

education, and experience. Much of the remaining increase has been attributed to changing 

returns to unobserved skills (Juhn, Murphy, and Pierce 1993; Acemoglu 2002) as might be 

explained, for instance, by skill-biased technical change. Because these skills cannot be 

readily measured, however, analyzing the exact mechanisms behind changes in skill demand 

has been difficult.1  

Fortunately, with new data, many of the previously unobserved skills are now partly 

observable. Employers list detailed skills required for jobs in the title and text of help-wanted 

advertisements, many of these are highly specific to the tasks and technology of the job (e.g., 

“third party logistics,” “Java Message Service”), and economists have tied these skill requests 

to wages and firm performance. Marinescu and Wolthoff (2020) find that advertised job 

titles explain 90% of the variance in posted salaries. By contrast, six-digit occupation codes 

only explain a third of the variance. Bana (2021) finds that ad texts account for 87% of the 

variance in pay including salaries that are not advertised. Deming and Khan (2018) find that 

select advertised skills are related to pay and also to firm performance. Given that these 

detailed skills appear to account for much of the variation in pay, might increasing returns to 

these skills be related to technology? 

This paper presents theory and evidence to argue that technological change, 

specifically automation, increases demand for such detailed skills. Studying over five 

thousand automation events, we find that adoption of new technology is followed by a 

significant increase in the number of detailed skills demanded in job advertisements and an 

8.7% increase in the pay offered to new hires after controlling for job characteristics.  

These findings are important for two reasons: 1) they provide a new explanation of 

how automation may affect inequality that is different from accounts in the literature, and 2) 

they help explain the rise in inequality within occupations and between firms/industries. In 

the literature, the main effect of automation on income inequality is widely seen to occur 

 

1 One approach has been to use worker fixed effects in wage regressions to capture unobserved skills (Abowd, 
Kramarz, and Margolis 1999), but this misses dynamic changes. 
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through the displacement of labor.2 By definition, automation replaces human workers on 

some tasks. When automation tends to affect some tasks more than others—for example, 

routine tasks—demand for occupations that perform those tasks is adversely affected, 

leading to growing differences in equilibrium wages between occupations. Some researchers 

see these between-occupation effects as the main source of the growth in economic 

inequality over the last four decades (Acemoglu and Restrepo 2021).  

But the labor displacement story is at some tension with recent findings that most of 

the rise in wage inequality over the last several decades—as much as 86%—has occurred 

within detailed occupations, not between them (Freeman, Ganguli, and Handel 2020; Hunt 

and Nunn 2022). Moreover, within-occupation dispersion partly reflects growing pay gaps 

between firms or industries, and recent studies find that most of the growth in inequality has 

occurred between firms rather than within firms (Card, Heining, and Kline 2013; Barth, 

Davis, and Freeman 2018; Song et al. 2019; Lachowska et al. 2020).3 Our evidence shows 

that demand for detailed skills increases across educational and occupational groups, for jobs 

that require a college education as well as jobs that do not, for routine occupations as well as 

for non-routine ones. Because not all firms automate, this means that automation increases 

between-firm pay differences and within-occupation pay dispersion. We also show that 

technology accounts for a substantial part of the sorting of skilled workers to high-paying 

firms. Thus, while labor displacement might be a significant factor in growing inequality, 

increased demand for detailed skills provides an additional factor that helps explain 

important features of inequality growth. Moreover, this new story provides a broader range 

of conditions where automation positively impacts pay. 

We begin with a theoretical model that explains why automation can raise demand 

for detailed skills. Our model, based on the work of Acemoglu and Restrepo (2018a; 2018b), 

yields a Remainder Effect (Bessen 2015): automating some tasks can raise the demand for 

performance quality on the remaining non-automated tasks, in turn raising the desired level 

of specific skills on those complementary tasks. For example, sales and communication skills 

 

2 This literature begins with Autor, Levy, and Murnane (2003; see also Brynjolfsson and McAfee 2014; 
Acemoglu and Restrepo 2018a; 2018b; Benzell et al. 2016; Korinek and Stiglitz 2018; Hémous and Olsen 
2022). A related literature looks at displacement and job polarization (Autor, Katz, and Kearney 2008; Goos 
and Manning 2007; Acemoglu and Autor 2011; Goos, Manning, and Salomons 2014) 

3 Haltiwanger and Spletzer (2020) find the between-firm differences are largely accounted for by inter-industry 
differences. 
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became more important for bank tellers when ATMs (automated teller machines) automated 

many cash handling tasks. More generally, there is evidence that automation changes the 

nature of tasks performed by different occupations (Autor, Levy, and Murnane 2003; Spitz-

Oener 2006; Acemoglu et al. 2020). 

Our key insight is that detailed skills matter because the quality of task performance 

matters. Automation doesn’t just alter the relative quantity demanded of different types of 

labor; it changes the demanded quality of labor of each type; quantity does not perfectly 

substitute for quality. Considerations of product and task quality have been largely missing 

from models of automation. When production consists of many complementary tasks, the 

quality of performance on those tasks can be critical. In Kremer’s (1993) famous example, 

the failure of one part doomed the space shuttle Challenger. Even when high reliability is not 

needed, poorly performed tasks can create defects, reducing the value of output, or they can 

halt production, slowing the rate of output. This may be particularly true when the advantage 

of automation is not so much reducing costs as it is increasing product quality. Automated 

machines spin finer yarn than humans, they allow machinists and surgeons to operate at 

higher precision, and AI systems make more accurate predictions.4 Yet the quality of task 

performance often depends critically on the quality of labor, on the ability of labor to 

perform specific tasks. Clark (1987), comparing workers at highly automated textile mills 

around the world, found six-fold differences in output per worker, even comparing workers 

at similar mills using identical equipment and with similar British managers. The differences 

lay in the varied ability and willingness of these workers to perform non-automated tasks 

reliably and quickly.  

Our model extends the Acemoglu-Restrepo model of automation (2018a; 2018b) to 

include variable task quality as modeled by Kremer and Maskin (Kremer 1993; Kremer and 

Maskin 1996). When automation increases demand for task quality, firms pay more for 

workers with task-relevant skills, or they pay to train them in these skills. There are a great 

many detailed skills important to task performance (16,050 in our data) that are not 

adequately taught in general education. Many of these skills can only be learned through job 

experience (e.g., “adhesives industry knowledge”) or specialized training, and few have 

 

4 Researchers find that advanced technologies are often directed more to improving product quality or creating 
new products with better quality than they are to saving cost (Brynjolfsson and Hitt 2000; Bresnahan, 
Brynjolfsson, and Hitt 2002; Bessen et al. 2018; Hirvonen, Stenhammer, and Tuhkuri 2021; Babina et al. 2021). 
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certifications, prompting firms to screen candidates by requesting these skills in job ads. We 

argue that greater demand for task-relevant skills means that more of these skills will be 

listed in job ads. 

To validate this model, we study these skills using a difference-in-differences analysis 

to see how the number of skills requested changes after a major automation event. We study 

5,759 automation events identified by major increases in the hiring of software developers.5 

These events mostly involve business process automation technologies such as enterprise 

resource planning; these types of investments are a major form of automation that is much 

larger than investment in robots.6 Consistent with the Remainder Effect, we find significant 

increases in firm requests for all categories of detailed skills following these automation 

events, implying greater demand for quality on a wide range of non-automated tasks. 

Furthermore, we find that these increased skill demands are not limited to specific 

occupational groups. Skill requests and pay increase both for jobs that require a college 

education as well as jobs that do not, for routine occupations as well as for non-routine 

ones. Because these increases occur across most occupations, they can contribute to growing 

inequality within occupations and between firms. We also find evidence of labor 

displacement—firms hire fewer workers for routine manual jobs and jobs that don’t require 

college education. Notably, the demands for detailed skills and pay offers increase for these 

jobs, nevertheless. This implies that the demand for labor quality is orthogonal to the effects 

of labor displacement, and it may be inadequate to analyze inequality only using occupation-

based measures of skill.  

How much does this channel contribute to the overall growth in inequality? Song et 

al. (2019) find that most of the increase in inequality since 1980 is accounted for by greater 

sorting of highly skilled workers to high-paying firms. We analyze skill and pay levels for the 

universe of online help wanted ads, finding a substantial role for information technology in 

accounting for sorting. We estimate firm fixed effects in pay regressions and find that these 

 

5 Other studies have used the employment of software developers as measures of technology adoption (Tambe 
and Hitt 2012; Tambe et al. 2019; Bessen 2020; Harrigan, Reshef, and Toubal 2021). A variety of paper have 
also used technology spikes and difference-in-differences or event studies to analyze technology impacts 
(Bessen and Righi 2019; Bessen et al. 2022; Humlum 2019; Domini et al. 2021; Aghion et al. 2020; Hirvonen, 
Stenhammer, and Tuhkuri 2021; Rodrigo 2021). 

6 Although robots have featured prominently in recent economic papers, US investment in robots was only $7 
billion in 2019, while investment in software, studied here, was over $400 billion (US Census). 
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are correlated with all our skill measures, indicating sorting. However, we find that 

information technology accounts for most of these correlations between firm fixed effects 

and skill measures. In other words, the greater use of information technology and the 

associated increased demand for detailed skills plausibly account for a significant portion of 

the growth in skill sorting and hence a significant portion of rising pay inequality. 

The key contribution of this paper is that it shows theory and evidence for a largely 

unrecognized channel by which automation can affect wage inequality. First, we develop a 

model of automation that includes roles for task quality and detailed skills. The model 

generates a richer set of outcomes including an impact of automation on inequality within 

occupational and educational groups and on inequality between firms. Second, we study the 

micro-level impact of information technology automation to test key aspects of the model, 

making novel use of job ad data to measure changes in skill demand. We find that 

automation is followed by significantly increased demand for detailed skills and substantially 

increased pay across occupational groups at the automating firms, consistent with the 

Remainder Effect. Third, we explore how much of the overall sorting of skilled workers to 

high-paying firms can be accounted for by proprietary information technology systems by 

looking at the correlations between firm fixed effects and skills. We find that these 

correlations are substantially accounted for by this technology, suggesting that the increase in 

sorting may be closely related to the rise of proprietary information technology. 

Other papers find an association between information technology and between-firm 

wage differences (M. Doms, Dunne, and Troske 1997; Dunne et al. 2004; Barth et al. 2020). 

But these papers do not connect the adoption of technology with subsequent changes in pay 

and skill demand. A number of recent papers explore the effects of the adoption of 

computers or automation technology on firm wages in difference-in-differences or event 

studies, generally finding a rise in firm pay following adoption.7 Our paper finds similar 

effects on pay, but we also show the role of task specific skills. Dillender and Forsythe 

(2019), in an approach similar to ours, use Burning Glass data to identify firm computer 

 

7 Several other studies find that advanced technologies increase pay at the adopting firm (Humlum 2019; 
Rodrigo 2021; Genz et al. 2021; Domini et al. 2022). Graetz and Michaels (2018) find a similar increase at the 
industry level. Gaggl and Wright (2017) find that computers raise wages in small firms, mostly in managerial, 
professional, and technical occupations. Bessen et al. (2022) find that automation raises wages in large firms, 
but wages decline in small firms. Acemoglu, Lelarge, and Restrepo (2020) find that robots raise wages in some 
regressions.  
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technology adoption; they find greater skill demand and higher pay but their study only 

covers office and administrative support workers.  

Some researchers have explored other links between information technology and 

notions of skill that extend beyond education. Deming (2017; see also Aghion et al. 2019) 

finds an association between information technology and soft skills. This paper studies firm-

level adoption of technology and both the subsequent firm demand for a wide variety of 

detailed skills and firm pay offers. Lindenlaub (2017) argues that multi-dimensional skills are 

needed to understand the link between sorting and technology. Hakanson et al. (2020) find 

that worker sorting across firms by ability measured using standardized test scores is related 

to the rising information technology sector, but they lack firm-level measures of technology. 

Cortes et al. (2020) model sorting arising from skill-biased technical change. Another line of 

research aims to understand unobserved skills using worker fixed effects from AKM 

regressions as a proxy for skill, but these might also reflect rents arising from search frictions 

(Abowd, Kramarz, and Margolis 1999; Bagger and Lentz 2019). Firpo et al. (2011) explore 

within-occupation wage dispersion, but they do not observe skills or technology adoption 

events. 

Model 

Basic Setup 

Tasks and Automation 

Our model is a combination of automation models by Acemoglu and Restrepo 

(2018a; 2018b) and models of production quality by Kremer and Maskin (Kremer 1993; 

1996). We interpret Acemoglu and Restrepo’s model as providing a measure of potential 

output while Kremer’s model relates actual output to potential output, after accounting for 

quality-related failures.  

We use a simplified version of the Cobb-Douglas instance of Acemoglu and 

Restrepo’s model (2018a) with constant returns to scale. Let there be N tasks. We keep the 

number of tasks fixed, ignoring the creation of new tasks, which we discuss further below. 

Because the production function has constant returns to scale, we allow an indefinite 

number of firms. Let the tasks be ordered so that the first 𝐼 tasks are automated and the 
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remaining 𝑁 − 𝐼 tasks are performed by labor. The ith automated task uses 𝑘𝑖  capital and 

the jth human task uses 𝑙𝑗 labor. Letting the firm’s total capital be 𝐾 = ∑ 𝑘𝑖
𝐼
𝑖=1  and total 

labor 𝐿 = ∑ 𝑙𝑖
𝑁
𝑖=𝐼+1 , equilibrium potential output can be written, under some assumptions 

(see Acemoglu and Restrepo 2018a, equation 3), 

𝑉 = 𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ,          𝛼 ≡
𝐼

𝑁
,

𝑑𝐴

𝑑𝐼
> 0. (1) 

where 𝛼 is capital’s share of output and 𝐴(𝐼) is a measure of Hicks-neutral productivity, 

which we assume to be increasing in the number of automated tasks. We assume that 𝐼 is 

exogenously determined by the state of technology. Firms, however, pay a fixed fee to adopt 

the latest technology so that in some circumstances, only more profitable firms choose to 

adopt (for a full model of adoption see Bessen et al. 2022 Appendix). 

Quality 

However, as Kremer (1993) observes, not all potential output is realized if tasks are 

performed imperfectly. In some production functions, failure of a critical task reduces 

output to zero (O-ring); in others, imperfect task output reduces the value of output; in yet 

others, task failures delay production (weaving), reducing the rate of output. The critical 

assumption here is that quality and quantity are not perfect substitutes. If quality and 

quantity were perfect substitutes, then output could simply be measured in quality-adjusted 

units and there would be no need to account for quality separately. However, as Kremer and 

others argue, there are many important instances where this substitution is imperfect, e.g., 

two mediocre surgeons are not equivalent to one surgeon whose patients have twice the 

survival rate (Rosen 1981; Kremer 1993). 

It is standard in reliability engineering that the probability of failure or defects 

increases with the number of tasks prone to failure. Multiple tasks provide multiple 

opportunities for error. Let 𝑞𝑖 , 0 ≤ 𝑞𝑖 ≤ 1 be the quality of performance of the ith task at a 

given scale of production. Perfect performance is designated by 𝑞𝑖 = 1 and complete failure 

by 𝑞𝑖 = 0. Then the actual output can be written8 

 

8 Where q represents a probability of successful completion, then Y is expected output and we assume that 
firms are risk neutral. Note that our model does not require this particular functional form; other functions 

work as long as it is concave, task quality and quantity are not perfect substitutes, and, for sorting, 𝑞𝑖 and 𝑞𝑗 

have positive cross derivatives. 
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𝑌 = 𝑄 ∙ 𝑉,      𝑄 ≡ ∏ 𝑞𝑖 .

𝑁

𝑖=1

(2) 

To keep things simple, we assume that machines perform their tasks perfectly,  

𝑞𝑖 = 1, while humans are always at least a bit imperfect.9 For the tasks performed by labor, 

task quality will depend on worker skill. The quality of task production can vary with general 

skills of the workers performing the task, but in many cases, it will surely depend on task-

specific and technology-specific skills. Without loss of significant generality, we assume that 

workers are assigned to a single task and all workers assigned to a task have the same quality. 

This way worker skills are task specific.  

Labor Quality 

We posit that task quality on the ith task is a continuous, twice differentiable concave 

function of a number of skills, 𝑞𝑖 = 𝑞𝑖(𝑠𝑖1, 𝑠𝑖2, … ),  where 𝑠𝑖𝑗 ≥ 0 is the level of skill. Then, 

𝑞𝑖 = {
1, 𝑖 ≤ 𝐼

𝑞𝑖(𝑠𝑖1, 𝑠𝑖2, … ), 𝐼 < 𝑖 ≤ 𝑁
} . (3) 

Since we are concerned about advertised skills, we assume that these skills are “general” in 

the sense that they are valuable to multiple employers, and we assume that they are not 

covered in typical school curricula (otherwise advertisements would merely stipulate 

education required). Many of these skills are specific to the technology or the task, and many 

such specific skills are typically required for any particular job.10 For several reasons, firms 

may face significant transaction costs when attempting to hire workers with desired skill 

levels: the number of skills may be large and the local labor market for any particular skill 

might be quite thin; when firms need combinations of skills, the market will be even thinner; 

typically, few skills are certifiable; many can only be described in loose language, limiting the 

ability of firms to accurately screen for them. As a result, employers must assume that even 

 

9 A more general model could consider cases where machines have low quality but high efficiency and cases 
where inefficient machines are adopted because they have higher quality. 

10 The mean number of skills listed per ad in our data is 9.3. The variance is 44 after controlling for 6-digit SOC 
occupation codes, suggesting that many skills are not listed in advertisements and the total number of skills 
valuable to job performance is much larger than the mean. The skills in our data are overwhelmingly specific to 
technology or task. 
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experienced new hires will require some additional training to become fully productive.11 But 

this implies that wage bargaining occurs under asymmetric information. A worker’s current 

employer has better information about her skills than does a potential alternative employer.12 

We can see these challenges in a model of training that includes learning on the job. 

First, consider a firm hiring a completely unskilled worker (𝑠𝑖𝑗 = 0, ∀𝑖, 𝑗). Let the cost of 

training be  

𝑇𝑖𝑘 = 𝜃𝑘 ∑ 𝑐𝑖𝑗𝑠𝑖𝑗 ,   𝑘 = 𝐿, 𝐻,   𝜃𝐿 > 𝜃𝐻

𝑗

(4) 

where 𝑐𝑖𝑗 is the unit cost of training skill j on task i and 𝜃𝑘 is the “skill group” of worker 

type k—type L workers have higher training costs. We assume that firms can select the 

applicant skill group, for instance, by screening on education and other requirements.13 For a 

given level of quality 𝑞, cost minimization of (4) gives us (dropping the task subscript) 

optimal values 𝑠̂𝑖𝑗 and a convex minimum cost function 

𝑇̂ = ∑ 𝑐𝑖𝑗𝑠̂𝑖𝑗

𝑗

= 𝜃𝑘ℎ(𝑞),     ℎ′, ℎ′′ > 0. (5) 

We assume further assume that lim
𝑞→1

ℎ(𝑞) = ∞, so that no amount of training can achieve 

perfect quality. 

Next consider hiring an experienced worker. For the moment we will ignore 

screening for specific skills, returning to that topic below. In this case, the hiring firm does 

not know the job applicant’s actual skill levels, but it does know that on average it will need 

to spend an additional amount on training of 𝑇̂ − 𝑇∗, in order to bring the worker’s quality 

up to the level that maximizes firm profit. 𝑇∗ can be thought of as the effective level of 

training of the mean experienced job applicant. If the fully trained worker’s marginal 

productivity is 𝑦(𝑇̂), then a firm will be willing to offer a wage of  𝑦(𝑇̂) − (𝑇̂ − 𝑇∗) to 

experienced workers. 

 

11 Nor can firms infer that a worker in a given occupation is fully skilled even if they have prior experience. 
Firms likely differ in their work organizations or specific technologies so that different combinations of skills 
are optimal for different firms (Lazear 2009). Our model has a different informational structure than Lazear’s. 

12 Other papers on training under asymmetric information include Chang and Wang (1996) and Acemoglu and 
Pischke (1999). 

13 In our data the number of skills listed is correlated with years of education required with a coefficient of 
.2615 (.0000). 
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We can then model the process of training in two stages, a learning stage and a 

production stage. For an inexperienced worker, the firm offers to subsidize training by 

paying a wage of 𝑤1 in period 1 and to pay wage 𝑤2 in period 2 conditional on the worker 

realizing productivity of 𝑦(𝑇̂) in period 2, for a total wage of 𝑊 = 𝑤1 + 𝑤2. If the worker 

accepts this offer, she will pay 𝑇 for training, choosing a level to maximize her second period 

wage, 𝑤2 . We assume both firms and workers are risk neutral, neither are credit constrained, 

firms are homogenous, and we ignore discounting.  

Two conditions determine the equilibrium wage. First, in the second period, the 

worker has the option of taking her newly learned skills to another employer at a wage of  

𝑦(𝑇̂) − (𝑇̂ − 𝑇∗) as above. This gives rise to a bilateral monopoly. If the worker accepts 

this wage and switches jobs, the original employer earns nothing; alternatively, if the worker 

stays, the parties jointly earn 𝑦(𝑇). Assuming a Nash bargaining solution, 𝑤2 = 𝑦(𝑇) −

𝑇̂−𝑇∗

2
. Then the worker will choose training of 𝑇̂ that maximizes 𝑦(𝑇) − 𝑇. Second, in period 

1 the worker has the choice of forgoing training and taking an unskilled job at wage 𝑤𝑢 in 

period 2. This means that the worker will only accept the firm’s offer as along as 𝑊 − 𝑇̂ ≥

𝑤𝑢. We assume that this constraint binds at equality and there is an interior solution so that  

𝑊(𝑞) = 𝑤𝑢 + 𝑇̂(𝑞) = 𝑤𝑢 + 𝜃𝑘ℎ(𝑞). (6) 

The second term represents the skill premium over the unskilled wage. 

Screening and skill posting 

Firms have an alternative to providing additional training to experienced hires: they 

can screen for the desired skills by requesting those skills in job advertisements. This would 

eliminate the cost of training (if the screen is accurate), but it also brings a risk—screening 

reduces the size of the applicant pool (Marinescu and Wolthoff 2020), so there might not be 

qualified applicants to hire at any given moment, especially if many skills are requested. This 

problem is compounded by the limitations of verbal descriptions of skills—some candidates 

with adequate skill might not apply because they mistakenly overestimate the requested skill 

level. Let 𝑝𝑗 be the probability that no applicant applies when the firm requests skill j in the 

ad. Then a firm seeking to hire a trained worker will choose to post skill j in the ad if the 

expected benefit of screening is greater than the benefit of training (dropping the i 

subscript), 
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(1 − 𝑝𝑗) (𝑦(𝑇̂) − (𝑇̂ − 𝑇∗) + 𝑐𝑗(𝑠̂𝑗 − 𝑠𝑗
∗)) > 𝑦(𝑇̂) − (𝑇̂ − 𝑇∗) 

or 

𝑐𝑗(𝑠̂𝑗 − 𝑠𝑗
∗) >

𝑝

1 − 𝑝
(𝑤𝑢 + 𝑇∗) (7) 

that is, if savings of training cost from screening exceed the expected losses from the smaller 

applicant pool. Posted skills will tend to be those with a low probability of hiring failure, 𝑝, 

(thick markets), or the skill will be common in the applicant pool (high 𝑠𝑗
∗), or the training 

costs are high. Labor market tightness should raise 𝑝, thus reducing posting. Note that if 

automation raises the desired skill levels, 𝑠̂𝑗, the likelihood a skill will be posted increases, all 

else equal. For this reason, we expect that if automation increases the demand for labor 

quality, we should see a rise in the number of detailed skills in jobs ads. 

Homogenous Workers and Firms 

We begin by presenting our model with uniform workers and firms to establish some 

basic results. Let there be only one type of labor, 𝜃𝑖 ≡ 𝜃 for all i with otherwise identical 

firms. We introduce heterogeneity in the next section. 

Equilibrium 

There is a fixed amount of inelastically supplied labor and capital in the aggregate 

economy distributed across firms. With uniform labor and firms, firms receive proportional 

allocations of labor and capital, 𝐿 and 𝐾, in equilibrium. Taking output price as numeraire, 

firm profit is 

𝜋(𝑞𝐼+1, … , 𝑞𝑁 , 𝑘1, … 𝑘𝐼 , 𝑙𝐼+1, … , 𝑙𝑁; 𝐼)

=  𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ∏ 𝑞𝑖

𝑁

𝑖=𝐼+1

− ∑ 𝑟𝑘𝑖

𝐼

𝑖=1

− ∑ 𝑊(𝑞)𝑙𝑖

𝑁

𝑖=𝐼+1

,       

where r is the user cost of capital. By the symmetry of the problem, it is straightforward to 

show that 𝑞𝑖 = 𝑞𝑗 , 𝑘𝑖 = 𝑘𝑗 , and 𝑙𝑖 = 𝑙𝑗 in the appropriate range in equilibrium. The first 

order profit maximizing conditions for the three control variables then are 

𝑌

𝑞𝑖
− 𝜃ℎ′𝑙𝑖 =

𝑌

𝑁𝑙𝑖
− 𝑊 =

𝑌

𝑁𝑘𝑖
− 𝑟 = 0. (8) 
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A useful result can be obtained by taking the implicit derivative from the first order 

maximizing condition for 𝑞𝑖 (keeping the quality of other tasks fixed),  

𝑑𝑞̂𝑖

𝑑𝐴
=

𝑁𝑊

𝜃𝐴𝑞𝑖ℎ′′(𝑞𝑖)
> 0. (9) 

Thus, increases in productivity will increase the equilibrium quality of output. When 

potential output increases, firms increase their training subsidies, workers get more 

training/skill, and total output increases more than potential output. In other words, an 

increase in potential output increases the returns to task-related skills. 

Remainder Effect 

Now consider what happens when the frontier of automated tasks increases from 𝐼 − 1 to 𝐼 

for all firms. Let us assume that the adoption costs of the new technology are negligible so 

that all firms adopt. Productivity, A, increases and, by implication of the lemma above, this 

increase should boost labor quality. Aggregate quality also increases because the machine 

produces with greater quality on task I, that is, 1 > 𝑞𝐼(𝑠̂𝐼1, 𝑠̂𝐼2, … ). Combined, the effect of 

automation on total output per worker is 

 

∆ ln
𝑌

𝐿
= ∆ ln 𝐴 + ∆ ln 𝑄 + 𝛼∆ ln

𝐾

𝐿
 

In this setting, capital and labor will be allocated proportionately across production units in 

equilibrium, so the last term drops out. Then,  

∆ ln
𝑌

𝐿
≈ ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
 − ln 𝑞𝐼 . (10) 

The second term represents the remainder effect. Automation boosts the returns to quality, 

increasing equilibrium labor quality. Output increases not only because automation reduces 

the labor cost of production but also because it increases labor quality. The third term is 

positive (since 𝑞𝐼 < 1, − ln 𝑞𝐼 > 0) and captures the effect of improved quality in the 

newly automated task. 

There is a corresponding change in the wage. Using the first order conditions and 

𝐿 = (𝑁 − 𝐼)𝑙𝑖, the equilibrium wage is 

𝑊 =
𝑁 − 𝐼

𝑁
∙

𝑌

𝐿
.  

Following Acemoglu and Restrepo and using (10), 



 

 14 

∆ ln 𝑊 ≈
𝑑 ln(𝑁 − 𝐼)

𝑑 𝐼
+ ∆ ln

𝑌

𝐿
                                                               (11) 

≈ −
1

𝑁 − 𝐼
 + ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
− ln 𝑓(𝑒𝐼) 

Acemoglu and Restrepo call the first term the “displacement effect” The second term is an 

efficiency effect (Acemoglu and Restrepo call it the “productivity effect”). The third term 

represents the remainder effect and the fourth captures the quality improvement effect. The 

remainder effect multiplies the base productivity effect, making a positive contribution to 

wages. Also, the fourth term implies further possible wage increases. In a more general 

model, this term could possibly be negative—that is, firms might accept inferior quality 

machines if they deliver a large enough efficiency gain. Generally, the quality terms in (11) 

provide reasons beyond Acemoglu and Restrepo why wages might increase. The extent of 

these increases is an empirical matter. 

To keep things simple, we have used single continuous variables for product and 

labor quality and have kept the number of products and tasks fixed. In a more general 

setting, both new tasks and new products might be natural outcomes of a growing demand 

for greater quality. For example, as the quality of a task becomes more and more valuable 

with ongoing automation, firms might subdivide that task into two or more new tasks 

allowing workers to develop more specialized skills. Something like that appears to have 

happened during the 19th century (Atack, Margo, and Rhode 2019). And this pattern is 

consistent with the finding of Autor, Salamons, and Seegmiller (2021) that output-

augmenting innovations create new tasks. Similarly, new products might be a form of 

realizing greater product quality. 

Heterogeneous Workers and Firms 

Now let there be two types of workers: high skill, designated “H,” and low skill, 

designated “L,” where 𝜃𝐻 < 𝜃𝐿. The aggregate supply of each type is fixed. This section 

explores how these differences in the cost of learning relate to differences in pay between 

firms and the impact of automation on these pay gaps. There are two overlapping ways that 

heterogenous labor can give rise to firm heterogeneity: firms may differ in the skill level of 

the workforces they hire, and they may differ in their adoption of new technology. 

In general, there are two ways that workers can be assigned to firms: assortative 

matching, where some firms hire more high skill workers while other firms hire more low 
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skill workers, and cross-matching, where firms hire a mix of high and low skill workers. A 

theoretical literature identifies a condition under which assortative matching occurs in 

competitive markets (Becker 1981; Sattinger 1975; 1993; Kremer 1993; Kremer and Maskin 

1996), namely a positive cross derivative of output with respect to the qualities of different 

tasks. Our production function meets this criterion (see also Kremer 1993). Thus, firm 

heterogeneity emerges naturally from a model with task quality. Below we briefly consider a 

slightly different production function that gives rise, instead, to cross-matching. 

Sorting 

In a market with complete sorting, some firms, designated by an “H” subscript, hire 

only high skill workers while other firms hire only low skill workers, designated with an “L” 

subscript. We assume that both types have the same level of automation initially. The first 

order profit maximizing conditions (8) then hold separately for each firm type. Combining 

the first order conditions for quality and labor, for worker/firm type j, 

𝑊𝑗 =
𝑌𝑗

𝑁𝑙𝑖
=

𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗

𝑁
,     𝑗 = 𝐿, 𝐻. 

In the Appendix we show that in equilibrium, both 𝑞𝑗 and the term 𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗 are 

decreasing in 𝜃𝑗, all else equal. This means that 𝑊𝐻 > 𝑊𝐿 and the ratio of between-firm 

wages is 

𝜔 ≡
𝑊𝐻

𝑊𝐿
=

𝜃𝐻 ∙ ℎ′(𝑞𝐻) ∙ 𝑞𝐻

𝜃𝐿 ∙ ℎ′(𝑞𝐿) ∙ 𝑞𝐿
> 1. 

High-type firms pay more, and the between-firm wage gap corresponds directly to 

differences in skill/training. This gap also represents differences within occupations, that is, 

differences between workers performing the same task in type L and type H firms. 

Furthermore, it is straightforward to show that productivity is higher in type H firms: 
𝑊𝐻

𝑊𝐿
=

𝑌𝐻

𝐿𝐻

𝑌𝐿

𝐿𝐿
⁄ > 1. 

The difference in productivity is significant because under some common conditions 

it means that type H firms will be more likely to adopt new technology than type L firms. 

The increase in output per worker from automation is 
𝑌

𝐿
∆ ln 𝐴 and so will be larger for type 

H firms. This increase will also be greater for the remainder effect term in (10). Suppose that 

there is a fixed cost per worker needed to adopt an automation technology. Then, in some 
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cases, type H firms will find it profitable to automate while type L firms will not.14 Of course, 

there are many other well-known reasons for firms to differ in productivity. From (9), higher 

productivity firms will have stronger incentives to increase labor quality, hence stronger 

incentives to hire type H workers. That is, exogenous productivity differences can also give 

rise to both sorting and to greater adoption of technology by more productive firms. 

Generally, we might expect technology adoption to be associated with greater skills. 

We can ask what happens when type H firms automate but type L firms do not. We 

calculate the change in 𝜔 using an approach like the one used in equation (11). Here, 

however, we must account for changes in the capital to labor ratios for the two groups. As 

𝑌 𝐿⁄  increases for H firms, capital also shifts to those firms. In the Appendix we account for 

this change in the equilibrium solution to derive an approximate lower bound for the change 

in the between-firm wage ratio: 

∆ ln 𝜔 = ∆ ln 𝑊𝐻 − ∆ ln 𝑊𝐿 ≈> −
1

𝑁 − 𝐼
+

𝑁

𝑁 − 𝐼 − 1
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 

The first term represents the displacement effect. The expression in brackets captures the 

productivity and quality effects. Here the displacement effect decreases between-firm wage 

differences while the productivity and remainder effects increase between-firm wage 

differences. If the productivity and remainder effects are larger than the displacement effect, 

𝜔 increases. Thus, automation can increase pay differences between firms and within 

occupations. And because it increases the demand for task-related skills at the same time, it 

increases the magnitude of sorting. These are the key effects we explore in our empirical 

analysis. 

Cross-matching 

But firms do not always sort across employee skill groups; they often crossmatch. 

For example, Acemoglu and Restrepo’s model of automation and inequality exogenously 

assigns high skill workers to nonroutine tasks and low skill workers to routine tasks (2018a; 

2018b). Kremer and Maskin (1996) show that with a slightly different production function 

than the one above, firms will cross-match under some conditions, hiring both high and low 

 

14 Firms may make temporary profits from automating, yet competition will eventually dissipate these rents. 
There are other reasons some firms may adopt while other do not: different capabilities of managers and 
workers or different access to proprietary technologies. 
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skill workers. This occurs when productivity is more sensitive to some tasks than others. Let 

us divide tasks into two groups: tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are “routine tasks” while tasks 

in the range 𝐽 < 𝑖 ≤ 𝑁 are “nonroutine tasks.”  

Then we can specify an alternative production function where 

𝑞𝑖 = {

1, 𝑖 ≤ 𝐼
1, 𝐼 < 𝑖 ≤ 𝐽

𝑞𝑖(𝑠𝑖1, 𝑠𝑖2, … ), 𝐽 < 𝑖 ≤ 𝑁
} 

and where 𝐼 < 𝐽 < 𝑁. Routine tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are not sensitive to the quality of 

labor while nonroutine tasks in the range 𝐽 < 𝑖 ≤ 𝑁 depend on the skill and effort of 

workers. With this modification to the production function, firms will prefer to hire high 

skill workers for nonroutine tasks and low skill workers for routine tasks. Acemoglu and 

Restrepo argue that routine tasks are more likely to be automated than non-routine tasks and 

this gives rise to labor displacement. As automation reduces aggregate demand for type L 

workers relative to type H workers, pay differences between the associated occupational 

groups grow. In this case, the effect is greater wage inequality within firms, but with 

complete cross-matching, there is no difference in pay between firms.  

Of course, in the real world we see firms both sorting and cross-matching. 

Interestingly, Kremer and Maskin (1996) provide a variety of evidence that the extent of skill 

sorting has been increasing and workplaces are becoming more segregated by skill, that is, 

workers are more likely to work with other workers of similar skill or occupation (E. 

Handwerker 2015; E. W. Handwerker, Spletzer, and others 2016). Note that automation 

might contribute to this trend. To the extent that routine jobs tend to be automated more—

that is, jobs where productivity is less sensitive to skill—conditions for sorting equilibria 

rather than cross-matching tend to increase.  

Empirical Analysis 

Data 

We measure changes in the demand for detailed skills using help-wanted 

advertisements collected by Burning Glass Technologies. Burning Glass scrapes, 

deduplicates, and cleans the near universe of online job advertisements.  A previous analysis 

of the dataset showed that this accounts for 60-70% of all job openings and 80-90% of 
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openings requiring a bachelor’s degree or more. The data include the advertised salary, firm 

name, industry, occupation, required education and experience, requested skills, and 

geographic location of the job. Our sample spans from January 2014 to June 2019.15 We 

aggregate the ads by firm and calendar quarter and use this as our unit of observation.  

Changes in labor demand should be immediately reflected in help-wanted advertising 

even though these changes might take longer to appear among the group of employed 

workers. To the extent that firms demand greater quality on task-related skills, we should see 

increases in the detailed skills requested in job ads. To the extent that greater demand 

increases the firm’s willingness to pay, we should also see higher pay offered for jobs with 

comparable characteristics. And to the extent that demand changes across skill groups, we 

should see shifts in the share of job ads directed to different skill groups. We measure these 

outcomes with the following variables: 

Detailed skills. Burning Glass collects 16,050 different skills requested in ads as well as 

experience and education required. We group the specific requests into five mutually 

exclusive categories: social and cognitive skills as identified by Deming and Khan (2018), 

other soft skills, information technology and artificial intelligence, and other skills, mainly 

skills related to other technologies and industry knowledge (see Appendix). We use the mean 

number of requests per ad for each category and the mean experience and education 

requested as outcome measures. 

Pay offered. Some help wanted ads list a salary offered or a range of salaries. If a range is 

offered, we take the middle of the range for our salary calculations. The outcome variable is 

the log Mincer residual from a regression equation including experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. We 

follow Moscarini and Postel-Vinay (2016) in defining labor market tightness as the ratio 

 

15 While Burning Glass provides data prior to 2014, those years used different methods to collect, de-duplicate, 
and process the data. Because those differences might affect our analysis, we do not use that data. We omit job 
advertisements that are missing a firm name or salary, are in the public or university sector, are part time, or are 
internships. To identify ads belonging to the same firm, we cleaned names, removing standard business 
identifiers (“Inc.”, “Ltd”, “Co.”, etc.) and looking for typos in the most frequently used names in the dataset. 
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between Job Openings and Labor Turnover Survey (JOLTS) statewide openings for the 

non-farm sector and the state unemployment rate.16  

Relative employment. To measure changes in the relative hiring of skill groups, we use the 

share of job ads for each group. We divide occupations into two sets of skill groups defined 

by characteristics identified in O*NET, version 17.0. First, we identify whether a bachelor’s 

degree or higher is required for most jobs in that occupation. Second, we identify 

occupations as routine cognitive, routine manual, nonroutine cognitive, and nonroutine 

manual using the indexes for these characteristics developed by Acemoglu and Autor (2011); 

an occupation is assigned to the job characteristic skill group if its index ranks in the top 

third.17 

Finally, note that we exclude information technology jobs (SOC 15) from our skill 

and pay measures to avoid confounding effects. 

Implementation 

We seek to test the model predictions regarding the adoption of large proprietary 

information systems. Much of the literature on technology and inequality measures 

technology as predicted “exposure” to automation, or industry-level investment levels, or 

proxies such as the share of workers in routine-intensive jobs. To capture impacts on 

between-firm differences, we thought it important to use firm-level measures of actual 

technology adoption. These eliminate many potentially confounding correlates.  

We measure investment in this technology from the job ad data as the share of jobs 

going to software developer occupations.18 This captures investment in firms’ own-

developed software and it is correlated with contracted software and other IT measures 

(Tambe and Hitt 2012; Bessen 2020 fn. 12).  

To analyze adoption, we identify “spikes” in developer hiring as events where the 

share of software developers rose by one percent or more relative to the mean share over the 

 

16 Because most jobs do not list salaries, sample selection bias might affect this measure. Bessen et al. (2020) 
find that an exogenous change to salary listing does not significantly affect listed salaries, mitigating this 
concern. 

17 These groups are not mutually exclusive. 

18 Occupations in SOC 15 excluding 15-1141, 15-1142, 15-1151, and 15-1152, database, network, and computer 
administrators and support specialists. 
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previous four quarters.19 This approach leverages the finding from the capital investment 

literature that when uncertain investments are indivisible and irreversible, they will occur in 

discrete episodes of lumpy investment (Haltiwanger, Cooper, and Power 1999; M. E. Doms 

and Dunne 1998). We find that investments in own-developed software are also lumpy and 

persistent (see Appendix Figures A1 and A2), so we use these discrete events in difference-

in-differences (DID) regressions and event studies. It is possible that we fail to identify some 

lumpy investments and incorrectly identify others. For example, some firms rely on outside 

contractors to implement new systems rather than hiring their own developers. To the 

extent misidentification occurs, our results will be understated.  

Do these spike events represent automation? We note generally that most 

information technology applications involve some degree of automation—they manage 

information that was formerly managed by humans. This is strictly true for applications that 

automate business processes such as enterprise resource planning, customer relationship 

management, and electronic data interchange. In fact, the use of these systems is correlated 

with bookkeeping measures of automation expenditures (Bessen et al. 2022 Section 2.3). We 

find that 81% of our spike events involve these specific automation technologies.20 Similarly, 

31% of the spikes involve firms requesting artificial intelligence skills. Thus, our spikes 

predominately involve applications that automate tasks. 

We seek to estimate average treatment effects around these events using fixed effects 

regressions. A recent literature highlights estimation problems that arise in two-way fixed 

effects regressions when treatment effects trend over time (de Chaisemartin and 

D’Haultfœuille 2020; Callaway and Sant’Anna 2020; Goodman-Bacon 2021). To avoid these 

problems, we follow Cengiz et al. (2019, Appendix D) and construct balanced panels around 

each possible spike quarter, excluding firms that have previously spiked.21 We then run 

stacked regressions as follows (we report alternative estimates in the Appendix). Let 𝑇𝑖 be 

 

19 Also, to reduce noise, we eliminate spikes when the firm has fewer than 50 ads in quarter. A variety of 
robustness checks in the Appendix vary the threshold, finding little effect on results. 19% of firm-quarters are 
spikes, weighted by the number of job ads. While only about 1% of firms spike, these firms account for 77% of 
the hiring of software developers. 

20 These are jobs requesting skills with keywords ERP, CRM, EDI, MRP, SAP, Automat*, and Robot*. See 
appendix B for the list of skills we identify as related to Artificial Intelligence, which follows Alekseeva et al. 
2020. 

21 Our setting differs slightly from the literature in that firms can have multiple treatment events. To the extent 
that control firms may have spiked prior to our observed sample, our estimates will tend to be understated. 
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the first quarter in which firm i spikes. For each possible spike quarter, p, designating a 

different cohort, we construct a balanced panel P consisting of observations from 𝑡 = 𝑝 − 5 

to 𝑡 = 𝑝 + 5 of the treatment group, 𝑇𝑖 = 𝑝, and the control group, 𝑇𝑖 > 𝑝 + 5. Because 

firms that spike are different from firms that do not (see Table A1), we restrict the control 

group to firms that spike at some point in our data. This means that the treatment and 

control groups differ only in the timing of their adoption events.22 This gives us a degree of 

identification by removing fixed or slowly changing confounders, such as industry and firm 

size, and by distinguishing major new investments from maintenance hiring. Our DID 

specification for outcome variable Y is 

𝑌𝑖𝑝𝑡 = 𝛿 ∙ 𝟏(𝑡 ≥ 𝑝) + 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡 . (8) 

where 𝛿 is the average treatment effect, 𝜇𝑖𝑝 is the panel x firm fixed effect, 𝜏𝑡 is the time 

fixed effect, and 𝑋𝑖𝑡 is a vector of control variables. 

However, the model is still not fully identified because the timing of adoption is 

endogenous. While we test for and do not find significant pre-trends in our outcome 

variables, it is still possible that some other factor is correlated with adoption, occurring 

simultaneously, and which independently affects outcome variables. We identify and control 

for four such possible simultaneous confounders: 

1. Labor market tightness. Tight labor markets might induce firm to automate 

and might also raise wages and skills demanded (Modestino, Shoag, and Ballance 

2019 find tight labor markets lower skill requirements). We use the tightness 

measure described above to control for this confounder. 

2. Outsourcing of low wage jobs. Perhaps automation facilitates the outsourcing 

of low wage jobs, mechanically raising the average pay and skill requirements of 

remaining jobs. We control for the share of “outsourceable” jobs that should 

track these shifts.23 

 

22 Bessen et al. (2022, Appendix) provide a model for differential timing. We also duplicate our results for the 
full sample and for individually estimated cohorts (Tables A4 and A10). 

23 The outsourceable occupations are Protective Services (SOC 33), Food and Serving (SOC 35), Building, 
Grounds, Maintenance (SOC 37), and Transportation and Moving (SOC 53) outside of outsourcing industries, 
NAICS 484, Truck Transportation, NAICS 561, Administrative and Support Services, NAICS 722, Food 
Services and Drinking Places, and NAICS 811, Repair and Maintenance. 
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3. Productivity and demand shocks. Perhaps firms adopt new technology in 

response to productivity or demand shocks and these shocks are also passed 

through to wages. We control for shocks using additional variables obtained 

from Compustat for the subsample of firms matched between Burning Glass and 

Compustat.24 One variable is the growth in real sales from the quarter before the 

spike to a year earlier. The second control is a third order polynomial in log 

variable costs and log net capital stock (both deflated).25 

4. Management. Perhaps new managers prefer to adopt technology and also to 

hire more highly skilled workers. For the entire sample, we add the manager 

(SOC 11) share of hiring as a control. For the Compustat subsample, we add a 

binary variable to flag changes of CEO using data obtained from Execucomp. 

5. Acquisitions. Perhaps firms change hiring when they acquire other companies. 

For the Compustat subsample, we use a binary flag if the firm acquired another 

firm using data from the Thomson Reuters SDC Platinum database. 

We find that some of these control variables have weak correlations with the 

occurrence of spikes (see Table A2), but also, they do not substantively change our results. 

This gives us a limited form of identification; it is not equivalent to conducting a randomized 

controlled trial, but our results are identified conditional on the following assumption: there 

are no significant confounders that occur simultaneously with the adoption of these 

information technology systems other than labor market conditions, outsourcing, 

productivity and demand shocks, acquisitions, and management changes. Finally, our spiking 

results pertain to a select sample of firms. Below we also explore the broader validity of our 

model to the universe of help-wanted ads. 

 

24 Bledi Taska of Burning Glass provided a preliminary key to match to Compustat, which we supplemented 
with our own name cleaning algorithm. Further, we used a fuzzy match with distance scores, which was then 
manually reviewed for those with close distances. The match assigns approximately 63% of the firms in 
Compustat to a job posting, with 73% of the firm-years being matched to a job posting. The firms that are 
matched to a posting account for 83% of employment total in Compustat. 

25 In the style of Olley and Pakes (1996) this polynomial is a nonparametric representation of productivity 
obtained by inverting the demand equation for variable inputs (cost of goods sold). 
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Findings 

Firm Spikes 

Table 1 presents stacked difference-in-differences regressions (a balanced panel for 

each spiking year) where the dependent variables are the number of skills requested in the 

various categories.26 All skill measures show significant increases following the adoption 

event except for education. The median number of skills requested in our sample is 8, so the 

total number of skills requested increases 4% over this baseline. The top panel includes all 

jobs except for IT jobs (SOC 15).  

Panel B includes the skill measures only for jobs that do not require a college 

diploma.27 These coefficients tend to be a bit smaller, but as in the larger sample, all are 

significant and positive except for education. Skill demands appear to rise for both college 

and non-college jobs, although a bit less for the latter. 

Panel C looks at the share of skills rather than the number, that is, the number of 

skills requested in each category divided by the total number of skills requested. Following a 

spike, firms appear to place relatively greater demand on social and soft skills, suggesting 

organizational changes consistent with Deming (2017). However, these shifts in the 

composition of skills are small compared to the increases in demand seen in Panel A.28 The 

overall impact appears to be that firms request more of the kinds of detailed skills that they 

requested before the spike, that is, they demand higher labor quality. 

Table 2 examines a broader set of skill groups, namely jobs classified as 

routine/nonroutine and cognitive/manual as per Acemoglu and Autor (2011). Panel A 

shows that all groups show significant increases in the mean number of skills requested 

except for nonroutine manual jobs.  

Thus, automation is followed by significant increases in requests for a wide variety of 

task-related skills across different occupational and educational groups. Consistent with our 

 

26 Regressions are weighted by the number of ads to reduce heteroscedasticity from sampling variance and 
include time and cohort by firm fixed effects as well as controls for labor market tightness, and the shares of 
management and outsourceable jobs. 

27 That is, fewer than half the jobs require a diploma as rated by O*NET. 

28 Expressed as percentages, the increases shown in Panel A range from 3% to 13%, much larger than the 
shifts, which are less than 1%. 
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model, we interpret the greater number of skills requested as evidence of greater demand for 

these skills. When firms place greater value on “Teamwork” or on “Adhesives Industry 

Knowledge,” they will be more likely to specifically request these skills. But could the 

increase in skill requests reflect something else, instead? Perhaps it reflects just a change in 

HR practice. There are two reasons to think that the increase in skill requests reflects an 

increase in the demand for labor quality. First, there is a cost to advertising detailed skills—

they reduce the applicant pool, possibly making hiring slower and more costly (Marinescu 

and Wolthoff 2020). For this reason, firms tend to reduce requested skills when labor 

markets are tight; the number of skill requests and labor market tightness are negatively 

correlated in our data (see also Modestino, Shoag, and Ballance 2016).  

Second, the increased skill requests are accompanied by a greater willingness to pay 

for these skills, that is, firms offer to pay more. The dependent variable in Panel B is the log 

residual wage after controlling for job characteristics. These pay levels rise significantly for all 

groups except nonroutine manual workers; they rise notably more (9.1%) for nonroutine 

cognitive jobs, but the overall increase is also large (8.7%). Because these increases occur at 

some firms and not others, they contribute to greater between-firm pay gaps.29 And because 

these increases affect most occupational and educational groups, they contribute to greater 

wage dispersion within these groups.  

Table 3 tests the robustness of results to additional controls. Here the sample is 

limited to firms that are matched to Compustat. Using Compustat, Execucomp, and SDC 

data, we add a control (in columns 3 and 6) for the rate of revenue growth, a flag for change 

of CEO, one for acquisitions, and a third order polynomial in log capital and log variable 

costs to capture productivity nonparametrically. Some of these controls are statistically 

significant, but they do not meaningfully alter our estimates of the treatment effect. 

Our results are also robust to other concerns. Figures 1 and 2 show event study 

graphs corresponding to the first column in Table 2.30 The graphs show significant and 

 

29 This would not be the case if automation were negatively correlated with firm pay levels, but, in fact, 
automating firms tend to pay higher residual wages, see Appendix Table A1. 

30 These show the 𝛿𝜏 coefficients from the following modification of (8):  

𝑌𝑖𝑝𝑡 = ∑ 𝛿𝜏 ∙ 𝟏(𝜏 = 𝑡)5
𝜏=−4
𝜏≠−1

+ 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡. 
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persistent increases in the mean number of skills requested and log residual wages following 

an adoption event. Moreover, there is no evidence of pre-event trends in these outcome 

variables nor in the other outcome variables used in Table 1, lending support to the parallel 

trends assumption (see Appendix Table A9). Table A3 tests sensitivity to different spike 

thresholds and panel lengths; our results are robust to these changes. Table A4 shows 

regressions using an expanded sample that adds firms that never spike; the results are similar. 

Table A6 finds little change in our results when we exclude firms in industries that create 

software products (NAICS 50 and 54). About one third of our spiking firms use artificial 

intelligence as evidenced by requests for AI skills during the spiking quarter; 81% involve 

automation technologies. Our main results do not change significantly limiting the analysis 

to these groups of firms (Table A7). We also conduct a placebo test to support the idea that 

the effects we observe are related to software specifically and not to other technologies or to 

general hiring of higher paid workers. In Table A8, we show results from spikes in the hiring 

of engineers and technicians constructed in the same way as our software spikes. These 

personnel may tend to work on technologies that are not so much about automation. Spikes 

in the hiring of engineering-related personnel do not exhibit similar treatment effects, 

suggesting that it is something specifically about information technology—perhaps 

automation—that is driving our results. Finally, in Appendix E, we consider the robustness 

of our results to alternative ways of handling the two-way fixed effects. 

This evidence shows that these automation events increase firms’ demand for labor 

quality, for task-related skills, tending to increase pay gaps within occupations and between 

firms. But this does not rule out changes in the relative demand for the quantity of labor 

between different occupational groups arising from labor displacement. The top panel in 

Table 4 shows the share of job ads going to each skill group. Following technology 

investment, relative hiring increases for jobs requiring college degrees and for jobs with 

cognitive skills, both routine and nonroutine; relative hiring decreases for non-college jobs 

and manual jobs. Panel B displays the log level of hiring by skill groups. Job ads decrease for 

occupations that do not require a college degree and for routine manual jobs. Thus, we find 

evidence of shifts in the relative demand for the quantity of labor consistent with the prior 

literature. However, it is striking that these shifts appear to be independent of the changes in 

skill demand. For example, the quantity of labor demanded declines in non-college and 

routine manual occupations, however, at the same time greater skills are demanded in the 
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hiring that occurs in these groups and higher pay is offered. The quantity and quality of labor 

are apparently not perfect substitutes and, as a result, changing demand for detailed skills 

represents a distinct channel by which technology affects wage inequality. Labor 

displacement, by changing aggregate demand for some occupations, affects equilibrium 

market wages while demand for detailed skills directly affects firm pay offers. 

Sorting  

But how significant is the contribution of this channel to the actual change in income 

inequality? The evidence so far only pertains to a select sample of firms. This section looks 

at the entire universe of firms that advertise job openings to explore one major component 

of inequality growth, namely, skill sorting. It is well established that some firms pay more for 

workers with given characteristics; with positive assortative matching, highly skilled workers 

tend to work at high-paying firms, enhancing wage dispersion. Song et al. (2019) find that 

the sorting of highly paid workers to high-paying firms accounts for most of the increase in 

inequality since 1980. 

In our model, automation both raises firm pay levels and raises skills demanded, so 

automation should contribute to sorting. We begin exploring the magnitude of this effect by 

estimating fixed firm differences in pay. Specifically, we estimate firm pay fixed effects by 

regressing pay offered in job ads controlling for job characteristics. Using log salary as the 

dependent variable (or the mean of the salary range limits if a range is listed), we calculate 

firm fixed effects in a regression with controls for detailed occupation, industry, state, year, 

labor market “tightness,” skills requested, education required, and experience required (see 

Table A5). The R-squared for this regression is .688. The regression excludes software 

development occupations to avoid spurious correlation with our key independent variable. 

This gives us estimates of firm fixed effects for 205,306 firms that posted 85,142,065 help 

wanted ads, excluding ads for information technology occupations.31  

 

31 These firm fixed effects are different from fixed effects derived from the AKM method—our fixed effects 
reflect differences in pay in hiring, not in the pay of incumbent workers. Nevertheless, there is a close 
correspondence between average advertised salaries and average salaries actually paid as observed in the 
Current Population Survey. Weighting the job ads to match the CPS distribution across occupations, the 
median log salary range from Burning Glass is from 10.32 to 10.69. The median log CPS salary for new hires is 
10.48. 
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Next, we measure sorting by looking at the correlation between these firm fixed 

effects and actual skill levels demanded in the job ads. These correlations are shown in the 

top panel of Table 5 which reports regressions of mean skill measures for each firm against 

firm wage fixed effects. We regress skill counts 𝑠𝑖 for firm i against the firm fixed effect, 𝜇𝑖 , 

𝑠𝑖 = 𝛽𝜇𝑖 + 𝜖𝑖 ,       𝑟 = 𝛽
𝜎𝜇

𝜎𝑠
 

where 𝑟 is the standardized coefficient, which equals the correlation coefficient. The 

correlations are all significant for every skill measure, indicating sorting. These figures are 

similar to the correlation of 0.28 between worker fixed effects and firm fixed effects 

reported by Song et al. (2019) for the period from 2007-13 using the AKM method.32 

Consistent with our model, firm hiring of software developers is correlated with both 

firm fixed effects and with skill measures.33 The bottom panel adds quadratic terms in the 

mean share of software developers in hiring, 

𝑠𝑖 = 𝛽∗𝜇𝑖 + 𝛾1𝑥𝑖 + 𝛾2𝑥𝑖
2 + 𝜖𝑖 ,       𝑟

∗ = 𝛽∗
𝜎𝜇

𝜎𝑠
 

where 𝑥 is the share of software developers. The correlations between worker fixed effects 

and skill measures drop sharply. The last row shows the magnitude of the decrease in the 

standardized coefficients as a portion of the correlation coefficient in Panel A, 
𝑟−𝑟∗

𝑟
. It 

appears that information technology investments can account for the majority of the sorting 

of skills to high paying firms in hiring. Given that firm investment in own-developed 

software has increased more than ten-fold since the 1980s (according to BEA data), this shift 

can explain much of the rise in inequality due to sorting. 

Conclusion 

This paper argues that automation can increase the demand for a wide range of 

diverse skills, raising pay even as some jobs are displaced. Moreover, demand increases 

across skill groups, both for jobs requiring college and those that do not, for routine jobs as 

 

32 Calculated using their figures for 
𝑐𝑜𝑣(𝑊𝐹𝐸,𝐹𝐹𝐸)

√𝑣𝑎𝑟(𝑊𝐹𝐸)𝑣𝑎𝑟(𝐹𝐹𝐸)
. 

33 See our working paper for a more complete exploration of these relationships (Bessen, Denk, and Meng 
2021) 
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well as nonroutine jobs. These broad increases contribute to wage dispersion within 

occupations and between firms, and to the sorting of skilled workers to high paying firms. 

This analysis provides a richer and more optimistic view about the impact of 

automation than models that presume only a labor displacing effect. For instance, Acemoglu 

and Restrepo argue that wages will fall after “so-so innovations” where the productivity gain 

is small. But if automation raises the demand for quality on the remaining tasks, wages may 

rise even with modestly productive innovations. 

The matter is ultimately empirical, but here, too, a richer view of skills affects the 

analysis. Inequality is frequently measured by differences between occupational or 

educational groups. Yet it has long been known that a substantial part of inequality arises 

from “unobserved” skills within these groups. This paper shows that much of that 

previously unobserved variation in skills can be observed in help wanted advertising, 

providing a more complete analysis. Importantly, there is good reason to expect that the 

thousands of skills requested in job ads behave differently: they face thin markets, they lack 

credentials, and employers face asymmetric information. While these skills might be 

correlated with education, educational groups do not make a reliable proxy and they provide 

at best an incomplete picture of the interaction between technology and pay. 

Indeed, evidence shows that most of the rise in inequality occurs within occupations, 

within educational groups, and between firms. This suggests that labor displacement might 

not be the dominant driver of growing inequality. If so, different policies might be needed to 

combat income inequality. Researchers who assume that automation is purely labor 

displacing have proposed policies to redistribute income, to alter tax incentives to discourage 

too much automation, and to encourage engineers to not develop automation (Korinek and 

Stiglitz 2018; Benzell et al. 2016; Acemoglu 2021; Brynjolfsson 2021). But if automation 

mainly affects inequality via greater demand for detailed skills, then policy might instead 

need to focus on reducing differences between firms in the uneven adoption of technology. 

Indeed, concerns have been raised about slower diffusion of technology (Andrews, 

Criscuolo, and Gal 2016; Akcigit and Ates 2021). While policy evaluation is beyond the 

scope of this paper, our analysis highlights that policy should be based on a richer picture of 

automation and skills, one where technology affects demand for a wide array of skills.   
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Figures 

 

Figure 1. Number of skills requested increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel A, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Figure 2. Log residual pay increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel B, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Tables 

Table 1. Technology Adoption Raises Demands for Detailed Skills 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Detailed skills   

Skill measure: All IT+AI  Other Cognitive Social Soft Experience Education 

         

A. All jobs, number of skills       

Post automation  0.318*** 0.041*** 0.173*** 0.017*** 0.048*** 0.038*** 0.065*** 0.017 

event (0.071) (0.008) (0.059) (0.004) (0.010) (0.010) (0.019) (0.020) 

         

Observations 102,086 102,086 102,086 102,086 102,086 102,086 97,045 96,897 

R-squared 0.873 0.821 0.868 0.888 0.872 0.868 0.871 0.894 

         

Pre-Spike Means 10.005 0.518 7.437 0.325 0.762 0.962 3.350 14.581 

B. Jobs not requiring college diplomas, number of skills     

Post automation  0.222*** 0.031*** 0.105* 0.010** 0.040*** 0.037*** 0.041* 0.035 

event (0.070) (0.009) (0.058) (0.004) (0.010) (0.011) (0.022) (0.024) 

         

Observations 95,679 95,679 95,679 95,679 95,679 95,679 87,220 86,775 

R-squared 0.840 0.696 0.843 0.833 0.838 0.826 0.808 0.853 

         

C. All Jobs, Share of skills      

Post automation   0.002* -0.008*** 0.001 0.002*** 0.004**   

event  (0.001) (0.002) (0.000) (0.001) (0.002)   

         

Observations  102,086 102,086 102,086 102,086 102,086   

R-squared  0.854 0.847 0.853 0.857 0.755   

         

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The top panel includes 

counts of skills requested on all jobs; the bottom panel counts skills only in occupations where the majority of jobs do not 

require a college diploma. IT jobs (SOC 15) are excluded from the regressions. 
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Table 2. Adoption of Technology Raises Skill Demands and Pay Across Skill Groups 

 
 (1) (2) (3) (4) (5) (6) 

Skill group: All College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Dependent variable: number of detailed skills requested    

Post automation  0.318*** 0.222*** 0.398*** 0.376*** 0.512*** 0.153 

event (0.071) (0.070) (0.087) (0.105) (0.091) (0.144) 

       

Observations 102,086 95,679 97,117 69,798 100,449 62,967 

R-squared 0.873 0.840 0.803 0.771 0.816 0.732 

 

B. Dependent variable: Log Residual Pay    

Post automation  0.087*** 0.054** 0.067** 0.067* 0.091*** 0.023 

event (0.023) (0.024) (0.029) (0.037) (0.032) (0.031) 

       

Observations 29,437 21,073 15,617 10,820 20,092 9,345 

R-squared 0.476 0.557 0.543 0.622 0.473 0.627 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The dependent variable in 

the top panel is the total number of skills requested per ad; the dependent variable in the bottom panel is the log residual 

salary offered after controlling for experience, experience squared, education, detailed occupation, state, year, and a measure 

of labor market tightness. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 3. Skill and Pay Treatment Effects are Robust to Controls 
 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable Number of Skills Requested Log Residual Pay 

       

Post automation  0.245** 0.214* 0.219** 0.102*** 0.102*** 0.094*** 

event (0.117) (0.112) (0.108) (0.035) (0.035) (0.036) 

Labor market tightness  0.284 0.111  -0.849 -0.635 

  (1.064) (1.113)  (0.580) (0.518) 

Management jobs  6.653*** 6.557***  -0.272 -0.237 

  (0.676) (0.652)  (0.221) (0.194) 

Outsourceable jobs  -7.210*** -7.151***  0.050 -0.013 

  (1.793) (1.719)  (0.314) (0.328) 

Growth Rate of Sales   0.261*   0.069 

   (0.155)   (0.058) 

Lag CEO change   -0.972   -0.080

   (1.032)   (0.053)

Acquisition   -0.154   0.127*** 

   (0.189)   (0.037) 

3rd order productivity 

polynomial 
      

Polynomial probability value   0.018   0.030 

       

Observations 14,008 14,008 14,008 4,706 4,706 4,706 

R-squared 0.873 0.882 0.884 0.461 0.465 0.468 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. The sample in this table 

includes only firms that have been matched to Compustat in order to include additional control variables. All regressions 

include time and cohort x firm fixed effects and standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * 

p<0.1). To treat heteroscedasticity arising from sample variance, regressions are weighted by the number of help-wanted ads 

for each firm-quarter. The dependent variable in the first three columns is the total number of skills requested per ad; the 

dependent variable in columns 4-6 is the log residual salary offered after controlling for experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. The polynomial used in columns 3 and 6 

includes log real cost of goods sold and log real beginning-of-quarter capital. The probability value reported is for the F-test 

of the null hypothesis that polynomial coefficients are jointly zero. IT jobs (SOC 15) are excluded from the dependent 

variables. 
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Table 4: Technology Adoption and Changes in Hiring 
 
 (1) (2) (3) (4) (5) (6) 

Skill Group: College 

required 

College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Share of Hiring       

Post automation  0.017*** -0.017*** 0.007*** -0.008*** 0.021*** -0.006*** 

event (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) 

       

Observations 103,547 103,547 103,594 103,594 103,594 103,594 

R-squared 0.963 0.963 0.910 0.964 0.957 0.970 

       

B. Log level of Hiring 
     

Post automation  0.018 -0.083** 0.035 -0.107*** 0.029 -0.026 

event (0.030) (0.033) (0.032) (0.040) (0.030) (0.048) 

       

Observations 103,404 103,413 97,567 71,018 100,747 64,290 

R-squared 0.920 0.927 0.925 0.925 0.923 0.923 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The columns designate 

different skill groups. The dependent variable in the top panel is the group’s share of job ads; the dependent variable in the 

bottom panel is the log of the number of job ads. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 5. Information Technology Accounts for Most of the Correlation  

Between Firm Fixed Effects and Skills 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Detailed Skills   

Skill measure: All IT+AI Other Cognitive Social Soft Experience Education 

         

Panel A, simple correlation        

Firm FE 2.619*** 0.722*** 1.338*** 0.212*** 0.203*** 0.144** 1.500*** 2.912*** 

 (0.358) (0.069) (0.234) (0.024) (0.065) (0.071) (0.133) (0.353) 

         

Standardized 

coefficient 
0.176 0.246 0.125 0.207 0.111 0.067 0.284 0.203 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.031 0.060 0.016 0.043 0.012 0.004 0.081 0.041 

 

Panel B, software controls        

Firm FE 0.613** 0.075*** 0.557** 0.074*** -0.016 -0.078 0.545*** 1.330*** 

 (0.295) (0.021) (0.222) (0.019) (0.059) (0.064) (0.100) (0.323) 

         

Standardized 

coefficient 
0.041 0.026 0.052 0.072 -0.009 -0.036 0.103 0.093 

         

Software share 36.738*** 5.601*** 20.033*** 2.683*** 4.105*** 4.315*** 13.673*** 31.272*** 

 (1.436) (0.170) (1.084) (0.092) (0.223) (0.261) (0.446) (1.203) 

Software share2 -54.94*** -0.035 -37.63*** -4.21*** -6.26*** -6.79*** -15.34*** -49.85*** 

 (2.254) (0.296) (1.713) (0.146) (0.365) (0.428) (0.736) (1.887) 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.255 0.760 0.125 0.278 0.192 0.143 0.454 0.202 

         

SW share of 

sorting 
77% 89% 58% 65% 108% 154% 64% 54% 

         

Note: This table regresses firm mean levels of skill counts, experience and education required against firm wage fixed effects. 

The unit of observation is the firm. Firm fixed effects are calculated by regressing log salary offered against detailed 

occupation, industry, state, year, labor market tightness, skills requested, education required, experience required, and firm 

fixed effects. IT jobs are excluded for the estimates. The regressions are weighted by the number of job ads and errors are 

robust to heteroscedasticity. The bottom panel ads controls for the share of software developers in firm hiring. The 

standardized coefficients reflect the correlations between the dependent variables and firm fixed effects. Adding controls for 

software developers substantially reduces these correlations. The bottom row displays the magnitude of that decrease as one 

minus the standardized coefficient in Panel B over the standardized coefficient in Panel A. 
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Appendix 

A. Model 

Sorting equilibrium 

We can write the first order condition for 𝑞𝑖, holding the quality of other tasks, 𝑞𝑗, 

constant as 

𝑞𝑗
𝑁−𝐼−1𝑉 − 𝜃ℎ′(𝑞𝑖)𝑙𝑖 = 0. 

Taking the implicit derivative, 

𝑑𝑞𝑖

𝑑𝜃
= −

ℎ′(𝑞𝑖)

𝜃ℎ′′(𝑞𝑖)
< 0. 

The equilibrium value of 𝑞 decreases with 𝜃. From this it follows that  

𝑑 𝜃ℎ′(𝑞𝑖)𝑞𝑖

𝑑𝜃
= ℎ′(𝑞𝑖) − 𝜃(ℎ′′(𝑞𝑖)𝑞𝑖 + ℎ′(𝑞𝑖))

𝑑𝑞𝑖

𝑑𝜃
= −

(ℎ′(𝑞𝑖))
2

ℎ′′(𝑞𝑖)
< 0. 

Since, as in the text,  𝑤𝑗 = 𝜃𝑗ℎ′(𝑞𝑖)𝑞𝑖, the fact that 𝜃𝐻 < 𝜃𝐿 implies that 𝑤𝐻 > 𝑤𝐿  in 

equilibrium. 

Change in between-firm wage ratio 

It is convenient to express output in intensive form, 

𝑦 ≡
𝑌

𝐿
= 𝐴 ∙ 𝑄 ∙ 𝑘𝛼 ,        𝑘 ≡

𝐾

𝐿
 

so that the first order profit maximizing condition for labor and capital can be written 

𝑤 = (1 − 𝛼)𝑦,        𝑘 =
𝛼

𝑟
𝑦. 

Using these, we have34 

∆ ln 𝜔 = ∆ ln(1 − 𝛼𝐻) + ∆ ln
𝑦𝐻

𝑦𝐿
≈ −

1

𝑁 − 𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Further, 

∆ ln
𝑦𝐻

𝑦𝐿
> ∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 + 𝛼𝐿∆ ln

𝑘𝐻

𝑘𝐿
. 

 

34 𝛼𝐻 increases from 
𝐼−1

𝑁
 to 

𝐼

𝑁
. 
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The last term, which did not appear in the case of uniform workers and firms, captures the 

shift in capital from low type firms to high type firms as the productivity of the high type 

firms rises, raising the returns for capital per worker. The expression is an inequality because 

it ignores the increase in 𝛼 for high type firms. Also, using the first order condition for 

capital, 

∆ ln
𝑘𝐻

𝑘𝐿
= ∆ ln 𝛼𝐻 + ∆ ln

𝑦𝐻

𝑦𝐿
≈

1

𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Substituting this into the previous expression, 

∆ ln
𝑦𝐻

𝑦𝐿
>

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
] 

and 

∆ ln 𝜔 > −
1

𝑁 − 𝐼
+

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 
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B. Skill measures 

Burning Glass standardizes specific skills requested into 16,050 skills. For our analysis, we 

constructed 6 mutually exclusive skill categories: IT, AI, cognitive, social, other soft skills, 

and an additional “other” category. We begin with the definition of social and cognitive skills 

used by Deming and Khan (2018). We then assign IT, AI, and other soft skills using lists of 

skill terms not included in the Deming and Khan categories. This last category is the largest 

and contains many skills related to non-IT technologies and to industry knowledge. For our 

main analysis, we combine the AI and IT categories, but separate analysis indicates that 

spikes at firms that hire AI personnel perform much like firms that apparently use non-AI 

software methods (see Table A7 below). The frequencies with which ads request skills in 

each category are 

Category 

Percent of 

job ads 

Other 68.56 

IT 13.08 

Other soft 8.18 

social 6.92 

cognitive 3.18 

AI 0.08 
 

Cognitive Skills (D. Deming and Kahn 2018) 

These skills include the keywords Problem Solving, Research, Analytical, Critical Thinking, 

Math, and Statistics. 

 

Social Skills (D. Deming and Kahn 2018) 

These skills include the keywords Communication, Teamwork, Collaboration, Negotiation, 

and Presentation. 
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Other Soft Skills* Keywords (adapted from Khaouja et al. (2019) taxonomy):  

Accountability Ethic Social skills 

Active listening Flexibility Speaking 

Adaptive Goal Strategic thinking 

Argumentation Hospitality Time management 

Coaching Impartiality Trustworthy 

Commitment Influence Verbal communication 

Conceptual Initiative Writing 

Conflict management Integrity Written communication 

Coordination Interpersonal communication  

Creativity Kindness  

Curiosity Leadership  

Decision Mentoring  

Decision making Motivated  

Detail Optimism  

Diverse Passion  

Eagerness Persuasion  

Emotional intelligence Self-confidence  

Enthusiasm Self-organized   

 

* These skills also have synonyms, which were also flagged. For full list of synonyms, please refer to Table 

13 in Khaouja et al 2019. To further augment this list, the following commonly requested Burning Glass 

skills not already identified as a social skill were also flagged as soft skills: Planning, Detail-Oriented, 

Building Effective Relationships, Energetic, Positive Disposition, Listening, Team Building, Creative 

Problem Solving, Self-Motivation, Overcoming Obstacles, Multi-Tasking, People Management, Thought 

Leadership, Team Management. This list excludes skills already identified as social or cognitive skills 

above. 

 

 

Other Skills 

Skills that do not belong to one of the other five groups are designated as “other”. These 

skills tend to be industry-specific or technology-specific. A majority of skills fit in this 

category. Examples include 5G Wireless, ACL Surgery, Adhesives Industry Knowledge, and 

APA Style Guide. 
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AI Skills (Following Alekseeva et al. (2020)) 

AI ChatBot Latent Semantic Analysis OpenNLP 

AI KIBIT Lexalytics Pattern Recognition 

ANTLR Lexical Acquisition Pybrain 

Apertium  Lexical Semantics  Random Forests 

Artificial Intelligence Libsvm  Recommender Systems 

Automatic Speech 

Recognition (ASR)  Machine Learning  

Semantic Driven Subtractive 

Clustering Method (SDSCM) 

Caffe Deep Learning 

Framework Machine Translation (MT)  Semi-Supervised Learning 

Chatbot Machine Vision 

Sentiment Analysis / Opinion 

Mining 

Computational Linguistics Madlib Sentiment Classification 

Computer Vision Mahout  Speech Recognition 

Decision Trees Microsoft Cognitive Toolkit 

Supervised Learning 

(Machine Learning) 

Deep Learning MLPACK (C++ library) 

Support Vector Machines 

(SVM)  

Deeplearning4j Mlpy TensorFlow 

Distinguo 

Modular Audio Recognition 

Framework (MARF) Text Mining 

Google Cloud Machine 

Learning Platform  MoSes Text to Speech (TTS)  

Gradient boosting MXNet Tokenization 

H2O (software) Natural Language Processing  Torch (Machine Learning)  

IBM Watson 

Natural Language Toolkit 

(NLTK) Unsupervised Learning 

Image Processing  ND4J (software)  Virtual Agents  

Image Recognition Nearest Neighbor Algorithm Vowpal  

IPSoft Amelia Neural Networks Wabbit 

Ithink Object Recognition Word2Vec 

Keras Object Tracking   

Latent Dirichlet Allocation OpenCV  
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IT Skills (Following Burning Glass Technologies Skill Cluster Families) 
Microsoft Development Tools Enterprise Content Management 

(ECM) 

Productivity Software 

Document Management Systems Internet of Things (IoT) File Transfer Software 

General Networking Enterprise Management Software Project Management Software 

Software Quality Assurance Database Administration Virtual Private Networks 

Artificial Intelligence Android Development Internet Standards 

Operating Systems Mobile Development Remote Desktop Software 

JavaScript and jQuery IT Automation Data Wrangling 

Distributed Computing Configuration Management Programming Principles 

Application Programming Interface (API) Anti-Malware Software Network File System (NFS) 

Systems Administration Middleware Integrated Development Environments 

(IDEs) 

Web Development Scripting Disk Imaging 

Scripting Languages Java Microsoft Office and Productivity Tools 

Cloud Solutions Database Management Systems Content Management Systems 

Cloud Computing Web Servers Firewall Software 

Software Development Tools Version Control Firmware 

Data Storage iOS Stack Graph Databases 

Virtual Machines (VM) Basic Computer Knowledge Identity Management 

Big Data Application Development Partitioning Software 

Network Security Network Protocols Video Conferencing Software 

Data Warehousing Technical Support Computer Hardware 

Enterprise Messaging Application Security Internet Services 

Cloud Storage Typesetting Software Internet Security 

XML Markup Languages Geographic Information System 

(GIS) Software 

Help Desk Support 

Extraction, Transformation, and Loading 

(ETL) 

Data Compression Management Information System (MIS) 

System Design and Implementation Assembly Languages Intelligent Maintenance Systems 

Network Configuration Test Automation Query Languages 

Data Synchronization Telecommunications Load Balancing 

Other Programming Languages Compiling Tools Location-based Software 

Data Management Enterprise Resource Planning (ERP) Video Compression Standards 

Web Content Backup Software Microsoft SQL Extensions 

SAP Web Design Advanced Microsoft Excel 

Archiving Software Rule Engines SQL Databases and Programming 

Cybersecurity Internet Protocols Device Management 

NoSQL Databases Extensible Languages Microsoft Windows 

Software Development Principles C and C++ Augmented Reality / Virtual Reality (AR / 

VR) 

IT Management Desktop and Service Management Enterprise Information Management 

Software Development Methodologies Mainframe Technologies Oracle 

Content Delivery Network (CDN) Parallel Computing Servers 

Networking Hardware Cache (computing) Data Collection 

Information Security PHP Web Wiki 

Note: There are 1,687 unique skills that Burning Glass identifies as Information Technology skills. From 

there, they sort these skills into broader categories, which are listed in the table below. Within the category 

“Microsoft Development Tools” is the Microsoft Office suite, which we omit as an IT skill. We exclude 

skills flagged as social, cognitive or AI skills. These specific skills include Communications Protocols, 

Data Communications, Global System for Mobile Communications, Joint Worldwide Intelligence 

Communications System, Machine-To-Machine (M2M) Communications, Oracle Fusion Middleware 

Collaboration Suite, and Voice Communications. 
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C. Lumpy Investment 

Figure A1. Lumpiness of Firm Investments 

 

Note: This figure plots changes in software developer share of job advertisements from the average of the 

previous 4 quarters. The line shows a normal density distribution with the same mean and standard 

deviation. The distribution is clearly leptokurtic with a peak at zero and fat, “lumpy” tails. 
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Figure A2. Software Hiring Increases Persist After Spikes 

 

Note: This figure plots an event study of the share of software hiring around hiring spikes. There appears to 

be a slight anticipation effect, a distinct spike (the threshold is .01), and sustained hiring of software 

developers at a slightly lower level after the spike. 
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Figure A3. Skill request trends over time 

 

 

Note: This figure shows raw trends in skill requests for both spiking (orange) and non-spiking (blue) firms 

over time. Spiking firms have higher levels of skill requests throughout the sample. 
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D. Descriptive Statistics and Robustness Checks 

Table A1 Summary Statistics 

 (1) (2) (3) 

Sample: Full sample Never-Spikers Spikers 

Weighted     

Management Job Share 0.126 0.120 0.139 

 (0.190) (0.219) (0.0960) 

    

Outsourceable Job Share 0.071 0.078 0.056 

 (0.183) (0.209) (0.101) 

    

Labor Market Tightness 0.795 0.837 0.700 

 (0.319) (0.364) (0.139) 

    

IT Share 0.095 0.074 0.108 

 (0.160) (0.166) (0.155) 

    

Residual Wage 0.012 -0.002 0.023 

 (0.291) (0.336) (0.250) 

    

College Required 0.433 0.416 0.471 

 (0.279) (0.303) (0.213) 

    

Routine Cognitive 0.298 0.294 0.307 

 (0.284) (0.325) (0.157) 

    

Routine Manual 0.207 0.224 0.170 

 (0.304) (0.339) (0.201) 

    

Non-Routine Cognitive 0.444 0.423 0.490 

 (0.343) (0.377) (0.243) 

    

Non-Routine Manual 0.158 0.177 0.115 

 (0.285) (0.320) (0.177) 

    

Number of Skills 8.230 7.385 10.062 

 (4.895) (5.210) (3.484) 

Unweighted    

Number of Ads/Quarter 85.380 5.980 164.780    

 (86.637) (1.028) (47.623) 

    

Total Firms 2,147,578 2,131,972 15,606 

Note: Means given with Standard Deviation in parentheses. Weighted estimates use analytical weights by 

number of job advertisements. 
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Table A2. Correlations of Software Spikes and Possibly Correlated Variables 

 Lagged Independent Variables 

 (1) (2) (3) (4) (5) 

Panel A. All Firms       

      

Log Job Ads 0.034***    0.035*** 

 (0.001)    (0.001) 

Software share  -0.011   0.036*** 

  (0.009)   (0.008) 

Outsourceable jobs   -0.042***  -0.062*** 

   (0.013)  (0.013) 

Management jobs    0.034*** 0.056*** 

    (0.011) (0.010) 

      

Observations 89,928 89,928 89,928 89,928 89,928 

R-squared 0.023 0.000 0.000 0.000 0.025 

Panel B. Compustat      

      

Labor Productivity 0.006*    0.016*** 

 (0.003)    (0.004) 

Log COGS  0.014***    

  (0.002)    

Log Capital   0.008***  0.014*** 

   (0.002)  (0.002) 

Sales Growth    0.017 0.028** 

    (0.012) (0.012) 

      

Observations 14,122 14,122 14,122 14,122 14,122 

R-squared 0.001 0.006 0.003 0.000 0.007 

Note: This table presents simple OLS regressions between a spike and lagged key variables from both 

Burning Glass and Compustat. All standard errors are clustered at the firm level. (*** p<0.01, ** p<0.05, * 

p<0.1) 
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Table A3 Sensitivity Table 

 Panel Size Spike Threshold 

 (1) (2) (3) (4) (5) (6) 

 t  4 t  5 t  6 .005 .01 .015 

A. Dependent variable: number of detailed skills requested 

Post automation event 0.283*** 0.318*** 0.470*** 0.356*** 0.318*** 0.253*** 

 (0.076) (0.071) (0.087) (0.068) (0.071) (0.074) 

Labor market tightness -0.229 -0.176 -0.197 0.264 -0.176 -0.173 

 (0.263) (0.346) (0.444) (0.358) (0.346) (0.363) 

Management jobs 4.074*** 5.488*** 5.516*** 4.821*** 5.488*** 4.916*** 

 (0.329) (0.386) (0.576) (0.574) (0.386) (0.334) 

Outsourceable jobs -5.701*** -7.183*** -7.799*** -6.707*** -7.183*** -6.324*** 

 (0.951) (1.310) (1.655) (1.287) (1.310) (1.026) 

       

Observations 162,924 102,086 61,377 102,520 102,086 98,609 

R-squared 0.892 0.873 0.870 0.888 0.873 0.879 

 

B: Dependent variable: Log Residual Pay 

Post automation event 0.078*** 0.087*** 0.072*** 0.074*** 0.087*** 0.253*** 

 (0.022) (0.023) (0.024) (0.024) (0.023) (0.074) 

Labor market tightness -0.133 -0.279* -0.179 -0.326** -0.279* -0.173 

 (0.128) (0.147) (0.166) (0.130) (0.147) (0.363) 

Management jobs -0.091 0.016 0.198 0.055 0.016 4.916*** 

 (0.091) (0.101) (0.151) (0.107) (0.101) (0.334) 

Outsourceable jobs -0.098 0.026 0.270 -0.105 0.026 -6.324*** 

 (0.126) (0.129) (0.290) (0.149) (0.129) (1.026) 

       

Observations 42,387 29,437 19,395 28,724 29,437 28,924 

R-squared 0.522 0.476 0.411 0.462 0.476 0.450 

Note: This table shows how estimates change from changing the size of the balanced panel or threshold for 

defining a spike. Columns (2) and (5) correspond to estimates in Table 2 Column (1). Construction of 

panels and additional controls follow those described in Table 2. The unit of observation is firm by quarter. 

All firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A4 Results for Full Sample And Results for Sample Restricted to Later-Spiking Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Later-spiking Full Sample Later-spiking Full Sample 

     

Post automation event 0.318*** 0.211*** 0.087*** 0.074*** 

 (0.071) (0.068) (0.023) (0.020) 

Labor market tightness -0.176 -0.105 -0.279* -0.149*** 

 (0.346) (0.115) (0.147) (0.043) 

Management jobs 5.488*** 3.249*** 0.016 -0.159*** 

 (0.386) (0.106) (0.101) (0.036) 

Outsourceable jobs -7.183*** -2.967*** 0.026 0.010 

 (1.310) (0.270) (0.129) (0.045) 

     

Observations 102,086 1,789,706 29,437 387,844 

R-squared 0.873 0.890 0.476 0.513 

Note: Our main analysis uses panels with control firms that spike subsequently (“later-spiking”). This table 

compares this sample with a sample that also includes control firms that never spike. Columns (1) and (3) 

correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions where a 

balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of observation is 

firm by quarter. All regressions include time and cohort x firm fixed effects and standard errors are 

clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). In Columns (1) and (3) firms in the sample 

spike at some time during the sample period and only observations are included that have not spiked 

previously. In Columns (2) and (4) we remove this restriction, consequently broadening our sample size. 

The estimates are similar, but we prefer the estimates provided in the main text.  
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Table A5 Firm Fixed Effects 

 (1) 

 Log of Avg Salary 

  

Other Skill Count 0.003*** 

 (0.000) 

Cognitive Count 0.006*** 

 (0.000) 

Social Count 0.007*** 

 (0.000) 

AI Count 0.035*** 

 (0.002) 

IT Count 0.012*** 

 (0.000) 

Other Soft Count 0.005*** 

 (0.000) 

Minimum of the required experience range in years 0.098*** 

 (0.000) 

Experience Required Squared -0.005*** 

 (0.000) 

V/U Labor Market Tightness -0.001 

 (0.001) 

  

Observations 4,075,295 

R-squared 0.688 

Note: This table presents the coefficients used to estimate firm fixed effects. All regressions include 

occupation, education level, year, and state fixed effects and standard errors are heteroskedastic robust (*** 

p<0.01, ** p<0.05, * p<0.1). Observations are weighted by occupation share in the Current Population 

Survey. 
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Table A6 Non-IT Producing Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Full Non-IT Full Non-IT 

     

Post automation event 0.318*** 0.358*** 0.087*** 0.091*** 

 (0.071) (0.078) (0.023) (0.025) 

Labor market tightness -0.176 -0.094 -0.279* -0.294* 

 (0.346) (0.363) (0.147) (0.151) 

Management jobs 5.488*** 5.900*** 0.016 -0.005 

 (0.386) (0.430) (0.101) (0.107) 

Outsourceable jobs -7.183*** -7.132*** 0.026 0.025 

 (1.310) (1.392) (0.129) (0.135) 

     

Observations 102,086 84,261 29,437 25,597 

R-squared 0.873 0.879 0.476 0.480 

Note: This table compares the outcomes from Table 2 Column (1) to the same specification excluding IT-

producing industries. We defined IT-producing industries as 2-digit NAICS codes 51 and 54. To determine 

a firm’s industry from Burning Glass, we assigned the modal 2-digit industry listed in a firm-year. Columns 

(1) and (3) correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions 

where a balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of 

observation is firm by quarter. All regressions include time and cohort x firm fixed effects and standard 

errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A7. Firms Using AI and Automation Behave Similarly 

 (1) (2) (3) (4) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

Number of 

skills requested 

Log Residual 

Wage 

     

Non-AI x post automation event 0.330*** 0.074***   

 (0.089) (0.024)   

AI x post automation event 0.304*** 0.096***   

 (0.081) (0.027)   

Non-automation x post    0.040 0.100*** 

  automation event   (0.086) (0.037) 

Automation x post    0.360*** 0.086*** 

  automation event   (0.074) (0.023) 

Labor market tightness -0.177 -0.277* -0.174 -0.280* 

 (0.346) (0.146) (0.345) (0.147) 

Management jobs 5.492*** 0.012 5.467*** 0.017 

 (0.387) (0.102) (0.386) (0.101) 

Outsourceable jobs -7.179*** 0.026 -7.199*** 0.026 

 (1.308) (0.129) (1.306) (0.129) 

     

Observations 102,086 29,437 102,086 29,437 

R-squared 0.873 0.476 0.873 0.476 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions. AI and automation are identified by keywords for skills 

requested. 
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Table A8. Placebo: Spikes of engineers and technicians do not display similar effects. 
Spikes defined for engineers (SOC 17) and technicians (SOC 19) excluding electrical 
engineers (SOC 172071) 

 (1) (2) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

   

Post automation event 0.094 0.032 

 (0.065) (0.033) 

Labor market tightness -0.262 -0.129 

 (0.321) (0.127) 

Management jobs 5.136*** -0.245 

 (0.393) (0.163) 

Outsourceable jobs -6.039*** -0.299*** 

 (0.655) (0.100) 

   

Observations 97,526 28,920 

R-squared 0.884 0.464 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions.  
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Table A9. Tests of Pre-trends 
F tests of the null hypothesis that event study coefficients are jointly zero prior to the spike, 

𝛿𝑡−2 = 𝛿𝑡−3 = 𝛿𝑡−4 = 0. 
 

Outcome variable Probability value 

Log residual wage 0.723 

Skill measures 

All 0.633 

IT+AI 0.371 

Other 0.553 

Cognitive 0.359 

Social 0.196 

Soft 0.941 

Experience 0.972 

Education 0.709 

Note: These event study regressions are weighted by the number of ads per quarter and they 
include fixed effects for quarter and cohort by firm. 
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E. Two-way Fixed Effects 

Our main estimation uses the method of Cengiz et al. (2019, Appendix D) to avoid 

biases that arise in difference-in-differences regressions with heterogeneous treatment effects 

(de Chaisemartin and D’Haultfœuille 2020; Callaway and Sant’Anna 2020; Goodman-Bacon 

2021). We construct balanced panels around each possible spike quarter, including 5 years 

prior to the spike year and 5 years after, and excluding firms that have previously spiked. 

We can explore this issue further. First, Table A10 explores treatment heterogeneity 

over time by estimating each balanced panel separately for both the restricted (only including 

firms that spike at some point in the sample) and full samples. While there is noisy year-to-

year variation, there is no evidence of trends in the estimation coefficients and the means of 

the separate coefficients are close to the means from the stacked-panel regressions in Table 

2. 

This approach has the drawback of using only balanced panels. Firms that are 

entering or exiting the sample might behave differently. As an alternative, Table A11 shows 

standard two-way fixed effects regressions where the sample drops observations of treated 

firms that are more than five quarters after the automation event. The specification for firm i 

at quarter t with spikes at quarter p is 

𝑌𝑖𝑡 = 𝛿 ∙ 𝟏(𝑡 ≥ 𝑝) + 𝜇𝑖 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑡 .  

This approach has the disadvantage of dropping some data, but it limits biases arising from 

negative cell weights as in de Chaisemartin and D’Haultfœuille (2020). The coefficient 

estimates are similar to those in Table 2, although a bit smaller with larger standard errors. 

The last line of the table shows the sum of negative weights.35 All the weights sum to 1, so 

the negative weights are quite small, indicating that significant bias from heterogeneous 

treatment effects is likely small. 

Combined, these considerations suggest our results are robust regarding 

heterogeneous treatment effects. 

 

 

  

 

35 We use the Stata routine twowayfeweights developed by de Chaisemartin, D’Haultfœuille, and Deeb. 
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Table A10. Estimated Coefficients on the Post-Automation Dummy Variable for Individual 
Cohorts 
Dependent variable Number of skills requested Log residual wage 

Sample Later spikers Full sample Later spikers Full sample 

 (1) (2) (3) (4) 

Quarter         

2015q2 0.445 (0.328) 0.153 (0.181) 0.012 (0.064) 0.042 (0.063) 

2015q3 0.455 (0.143) 0.347 (0.126) 0.089 (0.042) 0.093 (0.048) 

2015q4 0.211 (0.175) 0.093 (0.170) 0.108 (0.064) 0.142 (0.063) 

2016q1 0.270 (0.202) 0.184 (0.209) -0.042 (0.040) 0.006 (0.036) 

2016q2 0.570 (0.196) 0.264 (0.326) 0.124 (0.058) 0.124 (0.067) 

2016q3 0.112 (0.090) 0.062 (0.091) 0.016 (0.046) -0.009 (0.068) 

2016q4 0.640 (0.408) 0.826 (0.507) 0.125 (0.038) 0.028 (0.049) 

2017q1 0.511 (0.183) 0.146 (0.168) 0.204 (0.101) 0.152 (0.085) 

2017q2 0.060 (0.130) 0.187 (0.129) 0.138 (0.111) 0.091 (0.072) 

2017q3 0.303 (0.163) 0.309 (0.149) -0.060 (0.052) -0.020 (0.037) 

2017q4 0.322 (0.250) 0.525 (0.215) 0.039 (0.050) 0.018 (0.048) 

2018q1 0.100 (0.226) 0.109 (0.171) 0.127 (0.058) 0.130 (0.038) 

Mean 0.333 (0.065) 0.267 (0.066) 0.073 (0.019) 0.066 (0.017) 

Total N 102086  1789706  29437  387844  

Note: these coefficients are from difference-in-differences regressions for balanced panels (t-5 to t+5) 

around each spiking year cohort. The unit of observation is firm by quarter. In Columns (1) and (3) firms in 

the estimation sample spike at some time in our data and only observations are included that have not 

spiked previously. In Columns (2) and (4) we remove this restriction, consequently broadening our sample 

size. All regressions include controls for labor market tightness, management job share, the outsourceable 

job share, and firm fixed effects and standard errors are clustered by firm. To treat heteroscedasticity 

arising from sample variance, regressions are weighted by the number of help-wanted ads for each firm-

quarter. IT jobs (SOC 15) are excluded from the regressions. The means of the cohort estimates are not 

significantly different from the stacked difference-in-differences estimates found in Table 2, Column 1. 
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Table A11. Two-way Fixed Effects OLS Regression 

 (1) (2) (3) (4) 

 Spiking firms only Full sample 

VARIABLES Number of skills 

requested 

Log residual 

wage 

Number of skills 

requested 

Log residual 

wage 

     

Post automation event 0.201* 0.067** 0.168** 0.048** 

 (0.103) (0.028) (0.075) (0.022) 

     

Observations 152,895 42,145 3,401,107 358,388 

R-squared 0.854 0.433 0.798 0.484 

     

Sum of negative weights -0.001 0.000 -0.002 0.000 

Note: these coefficients are from standard two-way fixed effects regressions. This sample drops 

observations of treated firms more than 5 quarters after they have spiked. The unit of observation is firm by 

quarter. All firms in the first sample (columns 1 and 2) spike at some time during the sample period. All 

regressions include controls for labor market tightness, management job share, the outsourceable job share, 

time and cohort x firm fixed effects and standard errors are clustered by cohort x firm (*** p<0.01, ** 

p<0.05, * p<0.1). To treat heteroscedasticity arising from sample variance, regressions are weighted by the 

number of help-wanted ads for each firm-quarter. The bottom line reports the sum of negative weights as 

described in de Chaisemartin and D’Haultfœuille (2020); the sum of all weights is 1. 
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