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Abstract

This paper develops a design-based theory of uncertainty that is suitable for analyz-
ing quasi-experimental settings, such as difference-in-differences (DiD). A key feature
of our framework is that each unit has an idiosyncratic treatment probability that is
unknown to the researcher and may be related to the potential outcomes. We derive
formulas for the bias of common estimators (including DiD), and provide conditions
under which they are unbiased for an intrepretable causal estimand (e.g., analogs to the
ATE or ATT). We further show that when the finite population is large, conventional
standard errors are valid but typically conservative estimates of the variance of the
estimator over the randomization distribution. An interesting feature of our framework
is that conventional standard errors tend to become more conservative when treatment
probabilities vary across units. This conservativeness helps to (partially) mitigate the
undercoverage of confidence intervals when the estimator is biased. Thus, for example,
confidence intervals for the DiD estimator can have correct coverage for the average
treatment effect on the treated even if the parallel trends assumption does not hold ex-
actly. We show that these dynamics can be important in simulations calibrated to real
labor-market data. Our results also have implications for the appropriate level to clus-
ter standard errors, and for the analysis of linear covariate adjustment and instrumental
variables.
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1 Introduction

Standard econometric approaches to inference are based on repeated sampling from an in-
finite super-population, yet this perspective may be unnatural in settings when the entire
population of interest is observed, such as when the researcher has data on aggregate out-
comes for all 50 U.S. states (Manski and Pepper, 2018). In such settings, it may be attractive
to instead view uncertainty in the data as design-based, i.e. arising solely from the stochastic
assignment of units to treatment (e.g. Abadie, Athey, Imbens and Wooldridge, 2020). A
celebrated literature on design-based inference, dating to Neyman (1923) and Fisher (1935),
has therefore received substantial recent attention in both statistics and econometrics.1

Existing work in the design-based literature has focused mainly on settings where treat-
ment probabilities are known to the researcher, as in a randomized experiment (Imbens and
Rubin, 2015), or where treatment probabilities are determined independently of potential
outcomes, possibly conditional on some observable characteristics (Abadie et al., 2020; Xu,
2021; Abadie et al., 2022).2 In these settings, it is typically possible to obtain unbiased
estimates and (asymptotically) valid confidence intervals for causal estimands, such as the
average treatment effect (ATE).

In practice, however, social scientists often study settings where the exact treatment
assignment mechanism is unknown, and the assumption that treatment probabilities depend
only on observable characteristics may be questionable. In these settings, it is common
to instead adopt alternative, quasi-experimental strategies such as difference-in-differences
(DiD) or instrumental variables (IV). From the super-population perspective, much attention
has been paid to the conditions under which these estimators and their confidence intervals
are valid for causal estimands — such as the average treatment effect on the treated (ATT)
or local average treatment effect (LATE) — and the bias and undercoverage that result if
these assumptions are violated.

In this paper, we develop a theory of uncertainty to analyze the properties of these
quasi-experimental estimators from a design-based perspective. We introduce a design-based
data-generating process where the treatment assignment is stochastic, but each unit has an
idiosyncratic marginal probability πi of receiving the treatment. This reflects the fact that
in quasi-experimental contexts, researchers often argue that treatment status is determined
by idiosyncratic factors — e.g. delays in the court system (Jackson, Johnson and Persico,

1See, for example, Imbens and Rubin (2015); Aronow and Middleton (2015); Li and Ding (2017); Savje
and Delevoye (2020) in statistics and Abadie et al. (2020); Xu (2021); Bojinov, Rambachan and Shephard
(2021); Roth and Sant’Anna (2021); Abadie, Athey, Imbens and Wooldridge (2022) in econometrics, among
many others.

2See, also, Borusyak and Hull (2020), who study a setting where treatment is determined by non-
experimentally-assigned shocks with a known distribution.
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2016; Lafortune, Rothstein and Schanzenbach, 2018) or fluctuations in local weather patterns
(Deryugina, Heutel, Miller, Molitor and Reif, 2019) — that might reasonably be thought of
as stochastic. The repeated sampling thought experiment in our framework is then over the
realization of these idiosyncratic factors that determine treatment, holding fixed the units
in the population and their potential outcomes. We do not assume that the treatment prob-
abilities πi are known to the econometrician, and allow them to be related to the potential
outcomes. This reflects that, for example, the researcher may not know the exact distribu-
tion of possible court delays, and the propensity to realize a court delay may be related to
a state’s potential outcomes.

We begin by analyzing the properties of the simple difference-in-means (SDIM) estimator
under this DGP. This allows us to directly connect our results to existing work in the design-
based literature, which has often focused on this estimator. Our results for the SDIM are
also a useful building block for analyzing other estimators. Indeed, the DiD estimator can
be viewed as an SDIM for a first-differenced outcome, and thus our results for the SDIM are
immediately applicable to the DiD estimator. In Section 6, we show that our results for the
SDIM can also be extended to regression adjustment with covariates – which can be viewed
as an SDIM with a covariate-adjusted outcome – as well as the IV estimator, which can be
viewed as the ratio of two SDIMs (for the reduced-form and first-stage).

In Section 3, we derive design-based analogs to the familiar omitted variables bias formula
for the SDIM. These formulas imply that the SDIM will be unbiased for a design-based analog
to the ATT if the idiosyncratic treatment probabilities πi are orthogonal to the untreated
potential outcomes Yip0q. The SDIM is further unbiased for the average treatment effect
(ATE) if the πi are orthogonal to Yip1q as well. Since the DiD estimator can be viewed as an
SDIM estimator for a first-differenced outcome, our results imply that the DiD estimator is
unbiased for a design-based analog to the ATT under a design-based analog to parallel trends,
which imposes that the πi are orthogonal to trends in the untreated potential outcomes.

We then analyze the distribution of the SDIM and the properties of conventional CIs in
Section 4. Our results imply that when the finite population is large, the SDIM is approxi-
mately normally distributed with a particular variance that depends on the finite-population
variances of the potential outcomes and the treatment effects. More formally, we establish
the approximate normality of the SDIM under finite-population asymptotics similar to those
in Li and Ding (2017) and Abadie et al. (2020, 2022). We also establish a Berry-Esseen type
result that bounds how far the distribution can deviate from normality in a finite population
of fixed size. We then show that the usual heteroskedasticity-robust variance estimator for
the SDIM is consistent for an upper bound on the variance of the SDIM estimator.

When the finite population is large, the usual t-based confidence intervals therefore yield
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valid but potentially conservative inference for the expectation of the SDIM estimator (which
corresponds with a causal estimand under the orthogonality conditions described above).
Applying these results to the DiD estimator, we obtain that the usual cluster-robust standard
errors (Bertrand, Duflo and Mullainathan, 2004) yield valid but potentially conservative
inference for a design-based analog to the ATT under a design-based analog to the parallel
trends assumption.

An interesting feature of our setting is that conventional standard errors tend to overstate
the variance of the SDIM estimator when the treatment probabilities πi are heterogeneous
across units. For example, when treatment effects are constant, the conventional standard
errors are strictly conservative when the πi differ across units, except in knife-edge cases (see
Corollary 4.1). Thus, conventional standard errors may overstate the variance of the SDIM
from the design-based perspective even under constant treatment effects. This contrasts
with the well-known result from Neyman (1923) for completely randomized experiments
that conventional standard errors are strictly conservative if and only if treatment effects are
heterogeneous.

An important implication of this variance conservativeness result is that conventional
confidence intervals for the ATT or ATE need not necessarily undercover even when the
SDIM is biased. Rather, there is a tradeoff between two forces: as the treatment probabilities
πi differ across units, this (i) may induce bias if the πi covary with the potential outcomes,
but (ii) induces the usual standard errors to become more conservative. Depending on which
effect dominates, coverage of conventional confidence intervals can be either above or below
the nominal level even when the estimator is biased for the ATT or ATE (see Proposition
4.5). Thus, for example, conventional confidence intervals for the DiD estimator can have
correct coverage for the ATT under certain violations of the design-based analog to the
parallel trends assumption.

We highlight these tradeoffs in Monte Carlo simulations in Section 5, where we consider
DiD analyses of simulated treatments using state-level data from the LEHD, and allow the
state-level πi to depend on a state’s voting results in the 2016 presidential election. Remark-
ably, for log employment as the outcome, we find that strengthening the relationship between
the πi and state-level voting patterns increases the coverage rate of conventional confidence
intervals, despite the fact that doing so leads to more severe violations of the design-based
analog to the parallel trends assumption. This is because the induced conservativeness of
conventional confidence intervals dominates the bias from the violation of parallel trends. By
contrast, when log earnings is the outcome, the bias effect dominates, and so the comparative
static is reversed, although undercoverage is substantially less severe than it would be with
a consistent estimate of the variance (e.g. coverage of 89% vs. 52% in one specification).
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In Section 6, we present three extensions that illustrate the usefulness of our design-based
framework. We first extend our results on inference to the setting of clustered treatment
assignment where, for example, we observe individual-level data but treatment is determined
at the regional level (e.g. states or counties). We show that when the number of regions
in the finite population is large, the cluster-robust variance estimator at the region level is
valid but potentially conservative from the design-based perspective. These results provide
formal justification for the heuristic that in quasi-experimental settings, standard errors
should be clustered at the level at which treatment assignment is determined. This echoes
the recommendation in Abadie et al. (2022), although the variance calculations in that paper
are for a setting in which units have the same probability of receiving treatment marginalized
over a two-stage assignment process; thus treatment probabilities in Abadie et al. (2022) are
not related to potential outcomes, and so their calculations are not directly applicable to
quasi-experimental settings like DiD, where treatment probabilities may differ across units
and the target parameter is typically the ATT rather than ATE.3

We next extend our results to analyze the properties of the ordinary least squares es-
timator that linearly adjusts for observed, pretreatment covariates. We show that the es-
timand of the OLS estimator equals a design-based analog to the ATT plus a bias term
that now depends on the finite-population covariance between the treatment probabilities
and a covariate-adjusted untreated potential outcome. We also characterize the estimand
of the OLS estimator in terms of the relationship between the treatment probabilities and
the covariates, nesting as a special case the known result that the OLS estimand provides a
variance-weighted average of treatment effects when the propensity is linear in the covariates
(see, e.g., Angrist (1998) in a super-population setting and Abadie et al. (2020) in a design-
based setting). As before, conventional standard errors are valid but potentially conservative
estimates of the variance of the estimator.

Finally, we show that our results can be used to analyze instrumental variables (IV) esti-
mators from a design-based perspective, where the stochastic nature of the data arises from
the assignment of the instrument. We derive an intuitive expression for the IV estimand
allowing for an arbitrary relationship between the probability that Zi “ 1 and the potential
outcomes. In the case where the instrument is completely randomly assigned, our expression
reduces to a local average treatment effect (LATE), as in Angrist and Imbens (1994) and
Angrist, Imbens and Rubin (1996) from the sampling perspective, and Kang, Peck and Keele
(2018) from the design-based view. Our results imply, however, that the IV estimand has
an interpretation as an instrument-propensity reweighted LATE under weaker orthogonality

3In contrast to our results, however, Abadie et al. (2022) allow for both sampling- and design-based
uncertainty simultaneously, whereas we only consider the case of design-based uncertainty.

4



conditions that do not impose that the instrument be completely randomly assigned. Our
results also imply that standard inference methods yield asymptotically conservative infer-
ence for this estimand in large finite populations where the instrument is strong, provided
that standard errors are clustered at the level at which the instrument is determined.

2 Data-generating process

There is a finite population of N units. Each unit is associated with potential outcomes
Yip¨q :“ pYip0q, Yip1qq, which correspond with their outcomes under the control and treatment
conditions. The observed outcome is Yi “ DiYip1q` p1´DiqYip0q, where Di P t0, 1u denotes
the treatment status of unit i. Both the N units and their collection of potential outcomes
Y p¨q :“ tYip¨q : i “ 1, . . . , Nu are fixed (or conditioned on).

The stochastic nature of the data arises from the vector of treatment assignments, D “

pD1, ..., DNq
1. To build intuition for the general assignment mechanism we analyze, first

consider an important special case from Neyman (1923). Neyman considered a completely
randomized experiment, where the number of treated units (N1 :“

ř

iDi) is fixed, and any
treatment assignment with N1 treated units is assumed to be equally likely. If each unit is
independently assigned to treatment according to Di „ Bernoullipp̄q for some constant p̄ P
p0, 1q, then the assignment mechanism studied by Neyman corresponds with the distribution
of D conditional on N1 units being treated.4

We consider a generalization, where each unit is independently assigned to treatment
according to Di „ Bernoullippiq, where pi is an individual-specific probability of treatment
that can potentially be arbitrarily related to the potential outcomes or other fixed covariates.
This nests the special case where pi “ p̄ for all i. We then analyze the distribution of D
conditional on the number of treated units N1 and the potential outcomes, yielding the
following data-generating process:

P

˜

D “ d
ˇ

ˇ

ˇ

ÿ

i

Di “ N1, Y p¨q

¸

9
ź

i

pdii p1´ piq
1´di (1)

for all d P t0, 1uN such that
ř

i di “ N1, and zero otherwise.
The stochastic assignment of treatment in our model reflects the fact that in “quasi-

experimental” settings, researchers often argue that treatment status is determined by id-
iosyncratic factors, e.g. delays in the court system. If we view these factors as stochastic,
then each unit has some probability of being treated based on the realization of these id-

4Note that once we condition on N1, Di and Dj are no longer independent for i ‰ j. The same is true
under our generalization of Neyman’s model described below.
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iosyncratic factors. The individual-specific probabilities pi corresponds with the probability
that the idiosyncratic factors are such that unit i is treated (before conditioning on N1).

We place no restrictions on how the pi are related to the potential outcomes (or other
fixed covariates), allowing for very rich forms of selection. For example, our data-generating
process nests a Heckman (1976)-style selection model in which

Di “ 1 rgpWi, Yip1q, Yip0qq ` εi ě 0s ,

where Wi are fixed individual characteristics and gp¨q is a possibly unknown link function.
The random variable εi is a stochastic idiosyncratic error (independent across i) that could
correspond with preference shocks, expectational errors, or other exogenous choice shifters.5

We would then have that pi “ P pεi ě ´gpWi, Yip1q, Yip0qq | Yip¨q,Wiq.

Remark 1 (Comparison to other design-based models). The existing design-based literature
has mainly focused on settings where the marginal probabilities of treatment are known to
the researcher, as in randomized experiments (e.g., Imbens and Rubin, 2015; Li and Ding,
2017), or settings in which treatment probabilities are determined independently of potential
outcomes (possibly conditional on some observable characteristics). For example, Section 3
of Abadie et al. (2020) provides asymptotic results for large finite populations in a setting
where treatment probabilities can differ across units; however, for parameters with a causal
interpretation, Abadie et al. (2020) require that treatment probabilities are a linear function
of observable characteristics, whereas we allow the pi to be arbitrary. See, also, Xu (2021)
for an extension of these results to non-linear estimators.6 �

Remark 2 (Connection to sampling literature). Hajek (1964) studied the problem of draw-
ing a sample of size N1 from a finite population of size N with unequal probabilities. He
considered a data-generating process where D follows (1), where in his model Di “ 1 cor-
responds with the event that unit i is included in the sample (rather than treated). Hajek
(1964) referred to this scheme as rejective sampling, and so by analogy we refer to treatment
assignment following (1) as a rejective assignment mechanism. Many of our technical results
exploit connections between rejective sampling and rejective assignment. �

5The εi could also be thought of as a “trembling,” as in the game theory literature on quantal response
equilibrium (McKelvey and Palfrey, 1995). We thank Chuck Manski for noting this connection.

6The results in Abadie et al. (2020) and Xu (2021) allow for both sampling- and design-based uncertainty,
whereas we focus on design-based uncertainty only. The setting in Section 3 of Abadie et al. (2020) also differs
from ours in that it does not condition on the number of treated units (although Section 2 of Abadie et al.
(2020) does condition on N1). Abadie et al. (2022) consider a two-step process where cluster-level treatment
probabilities are initially drawn from a distribution (independent of potential outcomes) and units are then
assigned to treatment based on the probability for their cluster; see Section 6 for additional discussion.
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Remark 3 (Conditioning on N1). We follow standard practice in the design-based literature
in statistics and conduct our analysis conditional on the number of treated units N1. As
described in Pashley, Basse and Miratrix (2021), it is often desirable to conduct inference as-if
the number of treated units is fixed (i.e. conditional on N1) even if this is not guaranteed by
the assignment mechanism. Intuitively, the precision of treatment effect estimates typically
depends on the number of treated units — for example, we would expect less precise estimates
if we have 1 treated unit and 99 untreated units than if there are 50 treated units and 50
controls — and so conditioning on N1 yields inference more relevant to the observed data.7

Conducting inference conditional on ancillary statistics has a long history in statistics and
econometrics dating to at least Fisher (1959), who argued that doing so guarantees valid
inference on “recognizable subset[s]” of the sample space.8 �

Notation. We refer to the distribution of D given in (1) as the “randomization distribu-
tion”, and denote probabilities of random variables (i.e. functions of D) over the randomiza-
tion distribution by PR p¨q :“ P p¨ |

ř

iDi “ N1, Y p¨qq. We define expectations and variances,
ER r¨s and VR r¨s, analogously. A particularly important definition will be

πi :“ PR pDi “ 1q ,

which is the idiosyncratic (marginal) probability that Di “ 1 conditional on N1 units being
treated. We note that the πi are a function of the unconditional probabilities pi introduced
above. When the finite population is large, Hajek (1964, Theorem 5) showed that the πi are
approximately equal to the pi; for our results, however, it will typically be more useful to
work with the idiosyncratic (marginal) probabilities πi directly rather than the pi.9

For non-stochastic weights wi and a non-stochastic attribute Xi (such as a potential
outcome), we define

Ew rXis :“
1

ř

iwi

ÿ

i

wiXi and Varw rXis :“
1

ř

iwi

ÿ

i

wi pXi ´ Ew rXisq
2

to be the finite-population weighted expectation and variance respectively. The finite-
population weighted covariance Covw r¨, ¨s is defined analogously. It is worth emphasizing

7Pashley et al. (2021) show, for example, that a confidence interval that is valid unconditionally, but not
conditional on N1, will fail to be “bet-proof” in the sense considered by, e.g., Buehler (1959) and Müller and
Norets (2016).

8In a Bernoulli randomized experiment with equal probabilities, the statistic N1 is ancillary. In our
generalization, N1 is a specific ancillary (Basu, 1977), in the sense that its distribution depends on the pi
but not on the potential outcomes.

9Hajek imposes a normalization so that
ř

i pi “ N1.
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that Ew rXis is not the expectation of a random variable, but rather a weighted average
of a fixed attribute over the finite population. So, for example, E1 rYip0qs “

1
N

ř

i Yip0q is
the finite-population average untreated potential outcome. Finally, we denote by N0 :“
ř

ip1´Diq the number of untreated units.

3 The SDIM estimator and its expectation

We begin by analyzing the properties of the simple difference in means (SDIM) estimator
over the randomization distribution. By the SDIM, we mean

τ̂ :“
1

N1

ÿ

i

DiYi ´
1

N0

ÿ

i

p1´DiqYi, (2)

which compares the mean outcome for the treated and untreated units in the data. The SDIM
has been studied in detail in the context of completely randomized experiments, beginning
with Neyman (1923), and so by focusing on the SDIM we nest many existing results in the
design-based literature as special cases of our results. Our results are also relevant for other
estimators commonly used in quasi-experimental contexts.

Special case: difference-in-differences. The commonly-used difference-in-differences
(DiD) estimator can be cast as an SDIM for a first-differenced outcome. Specifically, suppose
we have balanced panel data for two periods t P t1, 2u.10 Suppose that some units (Di “ 1)
are treated beginning in period 2, whereas the remaining units (Di “ 0) are untreated in
both periods. The observed outcome for unit i in period t is Yit “ DiYitp1q ` p1´DiqYitp0q.
The SDIM estimator for the first-differenced outcome Yi :“ Yi2 ´ Yi1 is then equivalent to
the DiD estimator,

τ̂DiD “
1

N1

ÿ

i:Di“1

pYi2 ´ Yi1q ´
1

N0

ÿ

i:Di“0

pYi2 ´ Yi1q.

Our results for the SDIM thus have immediate implications for the DiD estimator, and we
return to this special case throughout the paper. N

In Section 6 below, we extend our results for the SDIM to ordinary least squares estima-
tors that adjust for observable characteristics, as well as instrumental variable estimators.

10Appendix B.1 extends our results in the two-period running example to non-staggered DiD settings with
multiple time periods.
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3.1 Expectation of the SDIM

Our first result gives the expectation of the SDIM over the randomization distribution.

Proposition 3.1.

ERrτ̂ s “ τATE `
N

N0

Cov1 rπi, Yip0qs `
N

N1

Cov1 rπi, Yip1qs (3)

“ τEATT `
N

N0

N

N1

Cov1 rπi, Yip0qs (4)

where, for τi “ Yip1q ´ Yip0q, τATE “ 1
N

ř

i τi and τEATT “
1
N1

ř

i πiτi “ ER
”

1
N1

ř

iDiτi

ı

.

The first line of Proposition 3.1 shows that the expectation of the SDIM is equal to
the finite-population ATE, τATE, plus a bias term that depends on the finite-population
covariances between the idiosyncratic treatment probabilities πi and the potential outcomes.
The second line of Proposition 3.1 gives an alternative expression for ER rτ̂ s in terms of a
design-based analog to the average treatment effect on the treated, which we refer to as the
expected ATT (EATT). In particular, τEATT is the expected value of what Imbens (2004) and
Sekhon and Shem-Tov (2020) refer to as the sample average treatment effect on the treated
(SATT) — i.e., the average treatment effect for the treated units in the sample — where
the expectation is taken over the stochastic realization of which units are treated. This is
equivalent to a convex weighted average of the treatment effects τi, where the weights are
proportional to the idiosyncratic treatment probabilities πi.

From Proposition 3.1, it is immediate that the SDIM will be unbiased over the random-
ization distribution for the EATT if the finite-population covariance between idiosyncratic
treatment probabilities πi and the untreated potential outcomes Yip0q is equal to zero, i.e.
ř

ipπi ´
N1

N
qYip0q “ 0. This is satisfied under complete randomization of the treatment,

in which case πi ” N1

N
. It can also be satisfied if the idiosyncratic treatment probabilities

vary across units but in a way that is not systematically related to the untreated potential
outcomes on average in the finite population. Proposition 3.1 further implies the SDIM will
be unbiased for the finite-population ATE if the finite-population covariance between πi and
both potential outcomes is zero.

Special case: DiD (continued). Consider the DiD example introduced above. Suppose
the “no-anticipation” assumption is satisfied, i.e. Yi1p0q “ Yi1p1q, so that treatment status in
period 2 has no impact on the outcome in period 1. Proposition 3.1 then implies that

9



ER rτ̂DiDs “
1

N1

ÿ

i

πiτi2
looooomooooon

τEATT,2

`
N

N1

N

N0

Cov1 rπi, Yi2p0q ´ Yi1p0qs
looooooooooooooooooomooooooooooooooooooon

δ

, (5)

where τi2 “ Yi2p1q ´ Yi2p0q is unit i’s treatment effect in period 2. The previous display
shows that the expectation of the DiD estimator is the sum of two terms. The first is a
design-based analog to the ATT in period 2, τEATT,2. The second term, δ, is proportional to
the finite-population covariance between idiosyncratic treatment probabilities πi and trends
in the untreated potential outcomes. Thus, the DiD estimator is unbiased for τEATT under
the assumption that δ “ 0, which can be viewed as a design-based analog to the parallel
trends assumption — i.e., if idiosyncratic treatment probabilities πi are uncorrelated in the
finite-population with changes in potential outcomes Yi2p0q ´ Yi1p0q. N

Remark 4 (Sensitivity analysis). The characterization of the SDIM’s bias in (3) and (4) may
be useful for conducting sensitivity analyses. For example, researchers could report how large
Cov1 rπi, Yip0qs would need to be to produce a bias of a magnitude large enough to change
a particular conclusion (e.g. the EATT is positive). Such a sensitivity analysis is related
to, but different from existing design-based sensitivity analyses. For example, Rosenbaum
(1987, 2002, 2005) places bounds on the relative odds ratio of treatment between two units
(i.e., πip1´πjq

πjp1´πiq
for i ‰ j) and examines the extent to which the relative odds ratio must vary

across units such that we no longer reject a particular sharp (Fisher) null of interest. In
contrast, (3) and (4) suggest a simple approach for examining how the bias of the SDIM
for the average treatment effect (on the treated) varies with the finite population covariance
between idiosyncratic treatment probabilities πi and the potential outcomes.11 Likewise,
equation (5) could be used for sensitivity analysis or partial identification of the EATT in
DiD designs, as in Manski and Pepper (2018) and Rambachan and Roth (Forthcoming). �

4 Distribution of the SDIM

We next turn our attention to the behavior of τ̂ over the randomization distribution. We
will show that when the finite population is large, τ̂ is approximately normally distributed
with a particular variance, and that the usual variance estimator is a conservative estima-
tor for this variance. Our results have immediate implications for the distribution of the
DiD estimator; we discuss extensions to general regression estimators with covariates and

11This approach is related to Aronow and Lee (2013) and Miratrix, Wager and Zubizarreta (2018), who
consider sensitivity analysis for the finite-population mean under unequal-probability sampling where the
sampling probabilities (analogous to pi) are restricted to an interval rplb, pubs.
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instrumental variables in Section 6.

4.1 Connection to unequal probability sampling

To analyze the behavior of τ̂ over the randomization distribution, it will be useful to connect
the problem of estimating treatment effects to that of sampling from a finite population
with unequal probabilities, which was previously studied by Hajek (1964) (among others).
Specifically, note that τ̂ may be re-written as

τ̂ “
ÿ

i

Di

πi
pπiỸiq ´

1

N0

ÿ

i

Yip0q, (6)

where Ỹi :“ 1
N1
Yip1q `

1
N0
Yip0q.12 The second term, 1

N0

ř

i Yip0q, is non-stochastic, and
therefore does not affect the variance (or higher-order moments) of the distribution of τ̂ . The
first term,

ř

i
Di
πi
pπiỸiq, is a Horvitz-Thompson estimator for the population total

ř

ipπiỸiq

under what Hajek (1964) refers to as rejective sampling. We can therefore make use of results
from Hajek (1964) on the distribution of the Horvitz-Thompson estimator under rejective
sampling to analyze the behavior of the SDIM over the randomization distribution.

4.2 Variance of the SDIM

As described in Hajek (1964), the exact variance of τ̂ depends on the second-order treatment
probabilities, πij “ PR pDi “ 1, Dj “ 1q, which in general are complicated functions of the
pi. Fortunately, simple approximations to the variance are available which become accurate
when

ř

iVR rDis “
ř

i πip1 ´ πiq is large — that is, when the sum of the variances of the
individual treatment indicators is large. The approximation we derive for the variance should
therefore be accurate when the finite population is large and the treatment probabilities πi
are not too close to 0 or 1 for all units.13 We evaluate the quality of this approximation in
more detail below (see Proposition 4.4 and the simulations in Section 5).

Proposition 4.1 (Variance of the SDIM).

VR rτ̂ s r1` op1qs “ C

„

1

N1

Varπ̃ rYip1qs `
1

N0

Varπ̃ rYip0qs ´
1

N
Varπ̃ rτis



, (7)

12The theory that follows can accommodate the case where πi “ 0 for some i, if Di

πi
is defined to be 0

whenever πi “ 0.
13Under a strict overlap condition of the form πi P rη, 1´ ηs for some η ą 0 for all units i, we would have

that
ř

iVR rDis “ OpNq. However, our results remain valid even if strict overlap fails and πi is arbitrarily
close to 0 or 1 for some units.
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where op1q Ñ 0 as
ř

i πip1´ πiq Ñ 8, π̃i :“ πip1´ πiq, and C :“
1
N

řN
k“1 πkp1´ πkq

N0

N
N1

N

ď 1.

Proposition 4.1 shows that the variance of τ̂ depends on the weighted finite-population
variances of the potential outcomes and the treatment effects, where unit i is weighted
proportionally to the variance of their treatment status, VR rDis “ πip1 ´ πiq. The leading
constant term is less than or equal to one by Jensen’s inequality, with equality when πi is
constant across units.14 Thus, in the special case of a completely randomize experiment,
the right-hand side of (7) reduces to

´

1
N1

Var1 rYip1qs `
1
N0

Var1 rYip0qs ´
1
N
Var1 rτis

¯

, which
matches Neyman (1923)’s formula for completely randomized experiments up to a degrees-
of-freedom correction.15

4.3 Estimated variance of the SDIM

Let ŝ2 be the heteroskedasticity-robust variance estimator for τ̂ if the units are assumed to
be sampled independently from an infinite super-population. That is, ŝ2 “ 1

N1
ŝ2

1 `
1
N0
ŝ2

0,
where

ŝ2
1 :“

1

N1

ÿ

i

DipYi ´ Ȳ1q
2, ŝ2

0 :“
1

N0

ÿ

i

p1´DiqpYi ´ Ȳ0q
2,

and Ȳ1 :“ 1
N1

ř

iDiYi, Ȳ0 :“ 1
N0

ř

ip1´DiqYi. Our next result gives an approximate expression
for the expectation of ŝ2 over the randomization distribution, where again the approximation
is good when

ř

iVR rDis is large.

Lemma 4.1.

ER
“

ŝ2
‰

p1` op1qq “
1

N1

Varπ rYip1qs `
1

N0

Var1´π rYip0qs , (8)

where op1q is as defined in Proposition 4.1.

4.4 Comparison of actual and estimated variance

How does the usual estimated variance ŝ2 compare to the variance of the SDIM over the
randomization distribution? The following result shows that ŝ2 is a (weakly) conservative
estimator of the variance of the SDIM, up to the approximation errors described above.

14Specifically, ifX is uniformly distributed on tπ1, ..., πNu and gpxq “ xp1´xq, then ErgpXqs “ 1
N

ř

i πip1´

πiq ď gpErXsq “ N1

N
N0

N .
15Note that Var1 rYipdqs “ 1

N

ř

ipYipdq ´ E1 rYipdqsq
2, which differs from the finite population variance

used in Neyman (1923) by the degrees-of-freedom correction factor N
N´1 “ 1` op1q.
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Proposition 4.2. Let Vapprox
R rτ̂ s denote the expression on the right-hand side of (7), and

EapproxR rŝ2s the expression on the right-hand side of (8). We have that

EapproxR

“

ŝ2
‰

ě Vapprox
R rτ̂ s .

Moreover, the inequality holds with equality if and only if

Yip1q ´ Eπ rYip1qs “
p1´ πiq{πi
N0{N1

pYip0q ´ E1´π rYip0qsq for all i. (9)

In the case of a completely randomized experiment pπi ” N1

N
q, equation (9) is satisfied if and

only if treatment effects are constant, and thus Proposition 4.2 nests the well-known result
from Neyman (1923) that in a completely randomized experiment, the usual variance estima-
tor is weakly conservative, and is strictly conservative if and only if there are heterogeneous
treatment effects (i.e. Var1 rτis ą 0).

Interestingly, Proposition 4.2 implies that ŝ2 will generally be strictly conservative when
the πi differ across units, except in knife-edge cases. For example, the following corollary
shows that when treatment effects are constant and the SDIM is unbiased, the estimated
variance is strictly conservative if πi ‰ N1

N
for any unit i with Yip0q ‰ E1´π rYip0qs.16

Corollary 4.1. If treatment effects are constant, i.e. Yip1q “ τ ` Yip0q for all i, and
ER rτ̂ s “ τ , then the inequality in Proposition 4.2 holds with equality if and only if πi “ N1

N

for all i such that Yip0q ‰ E1´π rYip0qs.

Thus, in contrast to the special case of a completely randomized experiment, the usual
variance estimator may be conservative even under constant treatment effects. To develop
intuition for this result, consider two data-generating processes (DGPs) where half of the
units are treated. In the first DGP, we have a completely randomized experiment so that
πi “ 0.5 for all i, whereas in the second DGP πi “ 0.1 for half of the units and 0.9 for
the remaining half. In the first DGP, VR rDis “ 0.52 for all i, whereas in the second DGP,
VR rDis “ 0.1 ¨ 0.9 ă 0.52 for all i. Hence, the variance of the treatment indicators is
strictly smaller in the second experiment. It is thus intuitive that the variance of τ̂ should
be smaller under the second DGP, since the stochastic nature of the data only arises from
the distribution of Di, and Di has strictly smaller variance for all i in the latter DGP. Since

16If treatment effects are not constant, then it is possible that the estimated variance is non-conservative
with heterogeneous πi. However, this requires the knife-edge scenario where equation (9) holds for all i, i.e.
for all units, the distance between Yip1q and its finite-population mean is exactly equal to the product of a
term capturing the deviation of πi from N1

N (i.e. p1´πiq{πi

N1{N0
) and the deviation of Yip0q from its finite-population

mean.
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ŝ2 is non-conservative for the variance of τ̂ under constant treatment effects in the first
experiment, it will therefore tend to over-estimate the variance in the second experiment.

The proof of Proposition 4.2 suggests that the conservativeness of ŝ2 will tend to be
larger when there is more heterogeneity in πi. For example, under the setting in Corollary
4.1, EapproxR rŝ2s ´ Vapprox

R rτ̂ s is bounded below by a term proportional to Var1rpπi ´
N1

N
q ¨

pYip0q ´ E1´π rYip0qsqs. Thus, ŝ2 will tend to be quite conservative when the heterogeneity
in πi is large, especially if πi ´ N1

N
is large for units with extreme values of Yip0q. The

fact that conventional variance estimates tend to become more conservative when the πi are
more heterogeneous has important implications for the coverage of conventional confidence
intervals, as we explore in our Monte Carlo simulations in Section 5 below.

Special case: DiD (continued) In the running DiD example, the variance estimator ŝ2

is equivalent to the cluster-robust (at the unit level) variance estimator for τ̂DiD from the
OLS panel regression

Yit “ αi ` λt `Di ¨ 1rt “ 2sτDiD ` εit. (10)

Therefore, Proposition 4.2 implies that the cluster-robust variance estimator for τ̂DiD is
weakly conservative for the variance of the DiD estimator over the randomization distribu-
tion. N

4.5 Normality and Variance Consistency

Our results so far imply that the typical variance estimator will be conservative in the sense
that its expectation is weakly larger than the true variance of τ̂ (up to an op1q approximation
error). This suggests that standard confidence intervals based on ŝ will be conservative for
ER rτ̂ s if (i) τ̂ is approximately normally distributed, and (ii) ŝ2 is close to its expectation
with high probability. Our next results show that both will be true in large finite populations
satisfying certain regularity conditions.

To formalize this intuition, we follow Hajek (1964) for sampling from a finite population
and Freedman (2008), Lin (2013), and Li and Ding (2017) for randomized experiments,
and consider a sequence of finite populations of increasing size. More precisely, we consider
sequences of finite populations indexed by m of size Nm, with N1m treated units, potential
outcomes tYimp¨q : i “ 1, ..., Nmu, and assignment probabilities π1m, ..., πNm . For brevity,
we leave the subscript m implicit in our notation; all limits are implicitly taken as mÑ 8.
We then establish a central limit theorem (CLT) and variance consistency result under
mild regularity conditions on the sequence of finite populations. These results provide an
approximation to the properties of τ̂ for finite populations with a sufficiently large number
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of units. Indeed, as we show in Proposition 4.4 below, these asymptotic results translate to
Berry-Esseen type bounds on the approximation quality of the CLT in any finite population
of fixed size.

We impose the following assumptions on the sequence of populations.

Assumption 4.1. The sequence of populations satisfies
řN
i“1 πip1´ πiq Ñ 8.

Recall that πip1´πiq is the variance of the Bernoulli random variable Di, so Assumption 4.1
implies that the sum of the variances of the Di grows large. Assumption 4.1 also implies that
both N1 and N0 go to infinity, since

řN
i“1 πip1´πiq ď mint

ř

i πi,
ř

ip1´πiqu “ mintN1, N0u.
Our next assumption is similar to the condition for the Lindeberg central limit theorem,

and imposes that the weighted finite-population variance of Ỹi is not dominated by a small
number of observations.

Assumption 4.2. Let Ỹi “ 1
N1
Yip1q `

1
N0
Yip0q, and assume σ2

π̃ “ Varπ̃
”

Ỹi

ı

ą 0. Suppose
that for all ε ą 0,

1

σ2
π̃

Eπ̃

«

´

Ỹi ´ Eπ̃
”

Ỹi

ı¯2

1

«

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ
ą

c

ÿ

i

πip1´ πiq ¨ σπ̃ε

ffff

Ñ 0.

Our final assumption bounds the influence that any single observation has on the π- and
(1 ´ π)-weighted variances of the potential outcomes. This generalizes the assumptions in
Theorem 1 in Li and Ding (2017), which establishes consistency of the Neyman variance
under equal-probability sampling from a finite population.

Assumption 4.3. DefinemNp1q :“ max1ďiďN pYip1q ´ Eπ rYip1qsq2, and analogouslymNp0q :“

max1ďiďN pYip0q ´ E1´π rYip0qsq
2. Assume that,

1

N1

mNp1q

Varπ rYip1qs
Ñ 0 and

1

N0

mNp0q

Var1´π rYip0qs
Ñ 0.

Central limit theorem and variance consistency. Under the conditions introduced
above, we can formally establish a CLT and variance consistency result.

Proposition 4.3. Suppose Assumptions 4.1 and 4.2 hold. Then,

τ̂ ´ ER rτ̂ s
a

Vapprox
R rτ̂ s

d
ÝÑ N p0, 1q .
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Further, under Assumptions 4.1 and 4.3,

ŝ2

1
N1

Varπ rYip1qs ` 1
N0

Var1´π rYip0qs

p
ÝÑ 1.

Non-asymptotic bounds. In addition to the asymptotic results shown above, we can
also obtain Berry-Esseen type bounds on the quality of the normal approximation (using the
approximate variance Vapprox

R rτ̂ sq for a fixed finite population.

Proposition 4.4. Let b1, b2 be positive constants, and define t “ pτ̂ ´ ER rτ̂ sq{
a

Vapprox
R rτ̂ s.

Then there exist constants k and N̄ such that

sup
y
|P pt ď yq ´ Φpyq| ď

k
?
N

for any finite population of size N ě N̄ such that Vapprox
R rτ̂ s “ Nb1 and E1

„

´

1
N1
Yip1q `

1
N0
Yip0q

¯4


ă

b2.

Proposition 4.4 is attractive in the sense that it shows that the distribution of τ̂ will be
approximately normally distributed in finite populations that are sufficiently large (relative
to the fourth moment of the potential outcomes), without appealing to arguments involving
a sequence of finite populations of increasing size.

4.6 Implications for coverage of confidence intervals

The results in the previous subsection allow us to formalize the conditions under which
confidence intervals of the form τ̂ ˘ 1.96 ¨ ŝ will be valid for τEATT (or τATE) when the finite
population is large.

Proposition 4.5. Suppose Assumptions 4.1-4.3 hold, and that

(i) b?
VapproxR rτ̂ s

Ñ b˚ P R, where b “ N
N1

N
N0

Cov1 rπi, Yip0qs is the bias of τ̂ for the EATT.

(ii)

d

Vapprox
R rτ̂ s

EapproxR rŝ2s
Ñ r P p0, 1s.

Then,
τ̂ ´ τEATT

ŝ
d
ÝÑ N

`

b˚ ¨ r, r2
˘

,

and the confidence interval τ̂ ˘ 1.96 ¨ ŝ has asymptotic coverage for τEATT approaching
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Φ

ˆ

1.96

r
´ b˚

˙

´ Φ

ˆ

´1.96

r
´ b˚

˙

. (11)

The analogous result holds for τATE, replacing b with N
N1

Cov1 rπi, Yip1qs `
N
N0

Cov1 rπi, Yip0qs.

Part (i) of Proposition 4.5 imposes that the sequence of finite populations is such that the bias
of τ̂ is of the same order of magnitude as its standard deviation over the randomization dis-
tribution (i.e. local to zero). Part (ii) of the proposition imposes that the conservativeness of
the typical variance estimator stabilizes asymptotically (recall that EapproxR rŝ2s ě Vapprox

R rŝ2s

by Proposition 4.2).
When τ̂ is unbiased, so that b˚ “ 0, Proposition 4.5 shows that typical confidence intervals

will have correct but generally conservative coverage. Indeed, coverage will be strictly above
the nominal level when the variance estimator is strictly conservative, i.e. when r ă 1, as
will typically be the case when the πi are heterogeneous (see Section 4.4). Thus, in the
running DiD example, confidence intervals based on cluster-robust standard-errors for the
OLS specification (10) will have asymptotically correct but typically conservative coverage
for τEATT,2 under the design-based analog to the parallel trends assumption pδ “ 0q discussed
in Section 3.

Proposition 4.5 also implies that conventional confidence intervals will have correct cov-
erage when the bias of τ̂ is sufficiently small relative to the conservativeness of the variance
estimator. Specifically, since the expression for coverage in (11) is continuous in b˚ and is
strictly above the nominal level when r ă 1 and b˚ “ 0, it follows that coverage will still be
correct when b˚ is non-zero but sufficiently small. A sufficient condition to ensure at least
95% coverage is that |b˚| ď 1.96

`

1
r
´ 1

˘

. Thus, we see that conventional confidence intervals
can accommodate some bias owing to the fact that heterogeneity in treatment probabilities
πi or heterogeneous effects τi typically induces conservativeness of the variance estimator.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations based on the Quarterly Workforce
Indicators (QWI) from the Longitudinal Household-Employer Dynamics (LEHD) Program
at the U.S. Census (United States Bureau of the Census, 2022). These simulations allow us
to illustrate our main results and investigate the quality of the asymptotic approximations
in Section 4 in a realistic empirical setting. The QWI provides aggregate statistics from the
LEHD linked employer-employee microdata, which covers over 95% of U.S. private sector
jobs. It is thus natural to view the uncertainty in policy analyses using the QWI as arising
from the stochastic realization of treatment status rather than sampling from an infinite
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super-population.17

Simulation design: Our simulation design mimics a state-level DiD analysis. We use
aggregate data on the 50 U.S. states and Washington D.C. from the QWI (indexed by
i “ 1, ..., N) for the years 2012 and 2016 (indexed by t “ 1, 2).18 For each state and year,
we set the potential outcomes Yitp1q and Yitp0q equal to the state’s observed outcome in the
QWI (Yit). This imposes that our simulated treatments have no effect for any state, and so
τEATT,2 “ τATE,2 “ 0. We discuss extensions that incorporate heterogeneous treatment ef-
fects below. In line with the design-based model described above, the potential outcomes are
held fixed throughout our simulations; the simulation draws differ in that each corresponds
with a different realization of the generated placebo laws D “ pD1, ..., DNq

1. We simulate
D from the rejective assignment mechanism (1). For each draw of the assignment vec-
tor, we calculate the DiD estimator τ̂DiD and a nominal 95% confidence interval of the form
τ̂DiD˘1.96 ¨ ŝ, where ŝ is the heteroskedasticity-robust standard error for the first-differenced
outcome (equivalently, the cluster-robust standard error for specification (10)).

To simulate D from the rejective assignment mechanism (1), we draw D1, . . . , DN as inde-
pendent Bernoulli random variables with (unconditional) state-level treatment probabilities
pi, discarding any draws where

ř

iDi ‰ N1. The state-level treatment probabilities pi are
chosen such that, for some p1 P r0, 1s, states that voted for Clinton in the 2016 presidential
election have pi “ p1, and states that voted for Trump have pi “ 1 ´ p1.19 Thus, when
p1 “ 0.5, all states have the same probability of adopting treatment, as in a randomized ex-
periment, whereas when p1 ą 0.5, Democratic states are more likely to adopt the treatment.
We report results as p1 varies over p1 P t0.50, 0.75, 0.90u and fix the number of treated and
untreated states at N1 “ 25 and N0 “ 26, respectively (Washington D.C. is included in the
data).

We report results for two choices of the outcome Yit. The first outcome is when Yit

corresponds with the log employment level for state i in period t. The second is when Yit is
the log of state-level average monthly earnings for state i in year t.20

Simulation results: We first report the bias of the DiD estimator. While the placebo
law has no treatment effect for any state, the change in untreated potential outcomes

17The LEHD program even writes, “Because the estimates are not derived from a probability-based sample,
no sampling error measures are applicable” (United States Bureau of the Census, 2022).

18Specifically, we use the QWI data for the first quarter of each of these years.
19We collect the state-level results from the 2016 presidential election from the MIT Election Data and

Science Lab (MIT Election Data and Science Lab, 2022).
20Specifically, this is the log of earnS in the QWI, which corresponds with the average monthly earnings

of individuals employed at the same firm throughout the relevant quarter.
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Yi2p0q ´ Yi1p0q varies across states in a way that is related to state-level voting patterns
in the 2016 presidential election. As a result, the design-based parallel trends assumption,
Cov1 rπi, Yi2p0q ´ Yi1p0qs “ 0, is violated when p1 ‰ 0.5, and hence the DiD estimator is
biased for the EATT over the randomization distribution in these simulations. The first row
of Table 1 reports the normalized bias of the DiD estimator (i.e., ER rτ̂DiDs {

a

VarR rτ̂DiDs)
as p1 varies for both of these two outcomes. Recall that p1 “ 0.5 corresponds with the case
of a completely randomized experiment, and thus the bias is 0 (up to simulation error) in
this case. The magnitude of the bias increases as we increase p1, since the average value of
Yi2p0q ´ Yi1p0q differs between Democratic and Republican states for both of our outcomes.
Note that the magnitude of the bias (relative to the standard deviation of the DiD estimator)
is smaller for the log employment outcome than for the log earnings outcome.

(a) Log employment (b) Log earnings

Table 1: Normalized bias, variance conservativeness, and coverage in Monte Carlo simula-
tions.

Notes: Row 1 reports the normalized bias of the DiD estimator (ER rτ̂DiDs {
a

VarR rτ̂DiDs) for the EATT

over the randomization distribution. Row 2 reports the estimated ratio
ERrŝ2s

VarRrτ̂DiDs
across simulations, which

measures the conservativeness of the heteroskedasticity-robust variance estimator. Row 3 reports the cover-
age rate of a nominal 95% confidence interval of the form τ̂DiD ˘ 1.96 ŝ. The columns report results as the
idiosyncratic treatment probability for Democratic states, p1, varies over t0.5, 0.75, 0.9u. Row 4 reports the
coverage rate of an “oracle” 95% confidence interval that uses the true variance rather than an estimated
one, τ̂DiD ˘ 1.96

a

VR rτ̂DiDs. The results are computed over 5,000 simulations with N1 “ 25.

Figure 1 plots the distribution of the DiD estimator over the randomization distribution.
The figure illustrates that as we increase p1, (i) the DiD estimator becomes more biased, but
(ii) the distribution of the DiD estimator is less-dispersed, which leads the usual variance
estimator to be conservative. The figure also shows that the distributions are approximately
normally distributed, illustrating the CLT / Berry-Esseen result from Section 4.

The conservativeness of the usual heteroskedasticity-robust variance estimator is captured
more directly in the second row of Table 1, which shows the ratio of the average estimated

variance for τ̂ to the actual variance of the estimator,
ERrŝ2s
VarRrτ̂ s

. Recall that Proposition 4.2 and

19



Figure 1: Behavior of DiD estimator τ̂DiD over the randomization distribution.

(a) Log employment (b) Log earnings

Notes: This figure plots the behavior of the DiD estimator τ̂DiD over the randomization distribution. The
idiosyncratic treatment probability for Democratic states, p1, varies over t0.5, 0.75, 0.9u (colors), holding
fixed the number of treated units N1 “ 25. The results are computed over 5,000 simulations. The vertical
dashed lines show the mean of the t-statistic for the relevant parameter values.

Corollary 4.1 established that ŝ2 will typically be conservative for the true variance of the

DiD estimator over the randomization distribution (in the sense that
EapproxR rŝ2s
VapproxR rτ̂ s

ą 1q when
there is heterogeneity in the idiosyncratic treatment probabilities. Indeed, this is exactly
what we observe. For simulations with p1 “ 0.5 (i.e., no heterogeneity in idiosyncratic
treatment probabilities), ŝ2 is, on average, approximately equal to the true variance of the
DiD estimator. As p1 increases, however, it becomes more conservative — in the most
extreme case when p1 “ 0.9, the average estimated variance is approximately 2.5 times as
large as the true variance. Recall that in our baseline specification, treatment effects are zero
for all units, and thus this conservativeness is the result of heterogeneity in the πi rather
than in treatment effects.

The third row of Table 1 reports the coverage of a standard 95% confidence interval (i.e.,
the fraction of simulations in which the confidence interval covers the true EATT of zero).
For the case with p1 “ 0.5, which corresponds with a completely randomized experiment,
the standard confidence intervals have approximately 95% coverage for both outcomes (up to
simulation error). As we increase p1, there is a tradeoff between the fact that the estimator is
biased (which leads to lower coverage) and the fact that the variance estimator is conservative
(which leads to higher coverage), as formalized in Proposition 4.5. For log earnings as
the outcome, the bias dominates and coverage decreases in p1 — coverage of the EATT is
only about 88.8% when p1 “ 0.9. By contrast, for the state-level log average employment
outcome, the bias is smaller, and so the conservativeness of the variance estimator dominates.
Remarkably, when p1 “ 0.9, the coverage rate is 99.1% owing to the conservativeness of the
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variance estimator, despite the fact that the design-based analog to parallel trends does not
hold exactly.

Finally, the last row of Table 1 reports the coverage of an “oracle” 95% confidence interval
that uses the true variance of the DiD estimator over the randomization distribution instead
of the estimated variance ŝ2, which enables us to examine the impact of the conservative
variance estimator on coverage. When p1 “ 0.9 for log-earnings, for example, coverage would
be only 51.6% using the oracle variance, but is 88.8% using the conventional conservative
variance estimator. The conservativeness of the variance estimator thus greatly mitigates
the bias induced by the heterogeneity in πi in this example.

Extensions: Appendix Section D presents several extensions to these simulations. We
consider simulation designs that vary the number of treated units, with similar results. We
also consider designs with treatment effect heterogeneity, which we find leads conventional
confidence intervals to be even more conservative. Finally, we consider designs with varying
population sizes, and find that the normal approximation works fairly well with as few as 26
states, but becomes less accurate with only 10.

6 Extensions

In this section, we develop three extensions that illustrate the usefulness of our design-
based framework. First, we consider settings where treatment is assigned at the cluster
level, and show that the cluster-robust variance estimator (clustered at the level at which
treatment is assigned) is valid but potentially conservative from the design-based perspective
when the number of clusters is large. The heteroskedasticity-robust variance estimator, in
contrast, can now be invalid. Second, we consider conditions under which linear covariate
adjustment can address the bias of the SDIM estimator derived in Section 3, providing two
characterizations of the covariate-adjusted difference-in-means estimand: one in terms of the
EATT plus a bias that depends on the finite-population covariance between the treatment
probabilities and a covariate-adjusted untreated potential outcome, and another directly in
terms of the relationship between the treatment probabilities and the covariates. Third, we
analyze instrumental variable estimators, where the stochastic nature of the data now arises
from the assignment of the instrument, and show that the IV estimand can has a causal
interpretation as an instrument-propensity weighted LATE under orthogonality conditions
that are weaker than complete randomly assignment of the instrument.
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6.1 Clustered treatment assignment

Suppose each unit i “ 1, . . . , N belongs to one of C clusters, where cpiq denotes the cluster
membership of unit i and Nc is the number of units in cluster c. We assume treatment is as-
signed at the cluster level, where the cluster level treatment assignments D :“ pD1, . . . , DCq

1

follow a rejective assignment mechanism. For example, units i may be individuals living
in states cpiq, while policy is determined at the state level. Formally, letting C1 :“

ř

cDc

and C0 :“
ř

cp1´Dcq denote the number of treated and untreated clusters respectively, we
assume the clustered treatment assignments follows the data-generating process

P

˜

D “ d |
ÿ

c

Dc “ NC
1 , Y p¨q

¸

9
ź

c

pdcc p1´ pcq
dc . (12)

Let πc :“ PR pDc “ 1q denote the marginal treatment probability for cluster c under (12).
Let Di “ Dcpiq denote unit i’s treatment assignment. The total number of treated units
N1 “

ř

iDi is now stochastic as the number of units varies across clusters.
Suppose the researcher estimates the SDIM estimator τ̂ based on individual-level data on

outcomes and treatments. We analyze the behavior of τ̂ over the randomization distribution
of the clustered treatment assignments (12). Since the regularity conditions for many of our
results are natural extensions of those in Section 4 to the clustered design, we defer them to
Appendix C in the interest of brevity. Appendix C also provides more general results that
apply to any OLS estimator, which nests the SDIM studied in the main text as a special
case.

Our first result describes the distribution of τ̂ under finite-population asymptotics where
the number of clusters grows large, analogous to those in Section 4.

Proposition 6.1.

1. If Assumption C.1(i)-(iii) holds with Xipdq “ p1, dq1, and
ř

c πcp1 ´ πcq Ñ 8, then
τ̂ ´ pτ clusterEATT ` δclusterq

p
ÝÑ 0, where

τ clusterEATT “ Eπcpiq rτis and δcluster “
N

N ´
ř

i πcpiq

N
ř

i πcpiq
Cov1

“

πcpiq, Yip0q
‰

.

2. If Assumption C.1 holds with Xipdq “ p1, dq
1, and

ř

c πcp1´ πcq Ñ 8, then

?
Cpτ̂ ´ τ clusterEATT ´ δclusterq

a

Ωclusterp2, 2q

d
ÝÑ N p0, 1q ,
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where Ωclusterp2, 2q is the p2, 2q-th element of the matrix

Ωcluster :“ ER

«

1

C

ÿ

i

XiX
1
i

ff´1

Vcluster ER

«

1

C

ÿ

i

XiX
1
i

ff´1

,

for Xi :“ p1, Diq
1 and Vcluster as defined in Proposition C.1.

The first part of the proposition shows that τ̂ is consistent for τ clusterEATT ` δcluster, where τ clusterEATT

is an analog to the EATT (i.e. a weighted average of τi, with weights proportional to the
probability that an individual’s cluster is treated), and δcluster is a bias term related to the
covariance between treatment probabilities and potential outcomes. The second part of the
theorem shows that τ̂ is also asymptotically normally distributed as the number of clusters
grows large.

If all of the clusters are the same size (i.e. Nc is constant), then analogous to the results in
Proposition 3.1, we have that ER rτ̂ s “ τ clusterEATT ` δcluster. However, if cluster sizes vary across
clusters, then the total number of treated units (i.e. the denominator in the SDIM) is now
stochastic, and thus it need not be the case that τ̂ is exactly unbiased for τEATTcluster ` δcluster,
although Proposition 6.1 shows that it will be consistent as the number of clusters grows
large. This is analogous to well-known results for the OLS estimator from the sampling-
based perspective, where OLS is unbiased only if one conditions on the design-matrix but is
consistent when the covariates are stochastic.

Cluster robust variance estimator: Let Ω̂cluster be the cluster-robust variance estimator
(Liang and Zeger, 1986) for the coefficients from the regression of Yi on Xi “ p1, Diq

1 (see
Appendix C for a formal definition). Our next result establishes that the cluster-robust
variance estimator is weakly conservative for the true variance of the SDIM estimator over
the clustered treatment assignment mechanism in finite-populations with a large number of
populations.

Proposition 6.2. If Assumption C.1(i)-(iii) and Assumption C.2 hold with Xipdq “ p1, dq
1,

and
ř

c πcp1´ πcq Ñ 8, then Ω̂cluster ´Ωest
cluster

p
ÝÑ 0, for a matrix Ωest

cluster such that Ωest
cluster ´

Ωcluster ě 0 (i.e., Ωest
cluster ´ Ωcluster is positive semi-definite).

Propositions 6.1 and 6.2 together imply that standard confidence intervals based on the
cluster-robust variance estimator will have asymptotically correct but possibly conserva-
tive coverage for τ clusterEATT ` δcluster. In Appendix C, we further characterize the probabil-
ity limit of the heteroskedasticity-robust variance estimator that ignores clustering (see
Proposition C.3). An immediate implication is that the sign of the asymptotic bias of the
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heteroskedasticity-robust variance estimator is ambiguous, and so confidence intervals based
on the conventional heteroskedasticity-robust variance estimator may not be valid even in
finite populations with a large number of clusters.

Altogether, these results imply that if the need for clustering arises from the stochastic
assignment of treatment, then the researcher should cluster at the level at which treatment
is assigned. This recommendation is similar to that in Abadie et al. (2022), although they
study a two-step data-generating process in which cluster-level treatment probabilities are
initially drawn according to some fixed distribution that is unrelated to potential outcomes.
Each cluster therefore has the same treatment probability marginalized over the two-step
process, and hence the ATE is consistently estimable in their framework. Consequently, their
variance calculations are not directly applicable to quasi-experimental settings, such as DiD,
where units may have different treatment probabilities and the causal estimand may be the
ATT rather than the ATE.21

6.2 Linear covariate adjustment

Suppose each unit i “ 1, . . . , N is associated with a vector of fixed covariatesWi P Rk that are
unaffected by the treatment. We consider the ordinary least squares estimator that adjusts
for these fixed covariates, i.e. the OLS regression of the observed outcome on a constant,
the treatment indicator Di, and the fixed covariates Wi. Our next result characterizes the
causal interpretation of the estimand associated with the OLS coefficient on the treatment
indicator in such a regression. This is sometimes referred to as the “covariate-adjusted”
difference-in-means, and was studied in the case of completely randomized experiments by
Freedman (2008) and Lin (2013), among others; our results extend the study of this estimator
to settings where treatment probabilities may differ across units.

Proposition 6.3. Assume ER
”

1
N

řN
i“1p1, Di,W

1
i q
1p1, Di,W

1
i q

ı

is invertible. Let βD denote
the coefficient on Di in the best linear projection of Yi on p1, Di, X

1
iq
1 over the randomization

distribution, as defined formally in equation (19) in the Appendix. Then,

βD “ τEATT `
N

N1

N

N0

Cov1 rπi, Yip0q ´ γ
1Wis ,

where γ “ θγp1q ` p1 ´ θqγp0q for θ “
`

N1

N
Varπ rWis `

N0

N
Var1´π rWis

˘´1 `N1

N
Varπ rWis

˘

,
21Abadie et al. (2022) allow for both sampling- and design-based uncertainty simultaneously, whereas we

only consider the case of design-based uncertainty. Xu (2021) and Xu and Wooldridge (2022) study clustered
standard errors for non-linear estimators from a design-based perspective. Their results cover inference on a
finite-population argmin that is well-defined if units have varying treatment probabilities, although existing
results require the propensity score to be linear in observable covariates to give a causal interpretation to
this parameter.
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γp1q “ Varπ rWis
´1 Covπ rWi, Yip1qs, and γp0q “ Var1´π rWis

´1 Cov1´π rWi, Yip0qs.

The proposition establishes that the estimand associated with the adjusted difference-
in-means estimator can be decomposed into the EATT plus a bias term that now depends
on the finite-population covariance between the treatment probabilities πi and a covariate-
adjusted untreated potential outcome Yip0q ´ γ1Wi. The coefficient γ is a weighted average
of the (π-weighted) projection of Yip1q onto Wi and the corresponding (p1 ´ πq-weighted)
projection of Yip0q on Wi.

Alternatively, we can characterize the OLS estimand in terms of the relationship between
the treatment probabilities πi and the covariates Wi.

Proposition 6.4. Let W̄i “ p1,W
1
i q
1. Under the conditions of Proposition 6.3,

βD “ τOLS ` E1 rπip1´ π̂iqs
´1 Cov1 rπi ´ π̂i, Yip0qs

where π̂i “ ω1W̄i for ω “ E1

“

W̄iW̄
1
i

‰´1 E1

“

W̄iπi
‰

, and τOLS “ E1 rπip1´ π̂iqs
´1 E1 rπip1´ π̂iqτis .

Proposition 6.4 shows that βD is the sum of two terms. The first, τOLS, is a weighted
average of treatment effects with weights proportional to πip1´π̂iq, where π̂i is the prediction
of the best linear predictor of πi given the covariates W̄i. The second term is a bias term
that depends on the covariance between Yip0q and πi ´ π̂i, i.e. the difference between the
actual treatment probability πi and the best linear prediction given the covariates π̂i. In the
special case where the πi are linear in observed covariates, we have that π̂i “ πi, in which case
Proposition 6.4 implies that βD “ Eπ̃ rτis. This is a weighted average of treatment effects with
weights proportional to the variance of the treatment indicator, π̃i “ πip1 ´ πiq “ VR rDis.
Proposition 6.4 thus nests as a special case the finding that when the propensity score
is linear, OLS gives a variance-weighted average of treatment effects; see Angrist (1998)
and Abadie et al. (2020) for similar results in a super-population and design-based setting,
respectively. Proposition 6.4 generalizes this finding to the case where the propensity score
may not be linear in covariates.

In Appendix C, we provide regularity conditions under which
?
Npβ̂D ´ βDq is asymp-

totically normally distributed, and show that the typical heteroskedasticity-robust standard
errors are consistent for an upper bound on the asymptotic variance.22

22Although OLS is consistent in an experiment (i.e., when πi “ N1

N for all i), Freedman (2008) and Lin
(2013) showed that the OLS estimator is biased for the ATE over the randomization distribution. This bias,
however, is OpN´1q, and thus is second-order under conventional asymptotics.
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6.3 Instrumental variables

We now analyze the properties of two-stage least squares instrumental variables (IV) estima-
tors from a design-based perspective. Let Zi P t0, 1u be an instrument, Dipzq P t0, 1u be the
potential treatment status for z P t0, 1u, and Yipdq be the potential outcome for d P t0, 1u.
The notation Yipdq encodes the exclusion restriction that the instrument Zi only causally
affects the outcome through the treatment Di. We also maintain the typical monotonocity
assumption: Dip1q ě Dip0q for all units i “ 1, . . . , N . The observed data is pYi, Di, Ziq,
where Yi “ YipDipZiqq and Di “ DipZiq for each unit.

In a slight change from our previous analysis, we now view the instrument as stochastic,
holding fixed (i.e. conditioning on) the potential treatments Dp¨q “ tDip¨q : i “ 1, . . . , Nu

and potential outcomes Y p¨q “ tYip¨q : i “ 1, . . . , Nu. This is sensible, since in IV settings
researchers often discuss how the instrument is determined by idiosyncratic factors. We
define NZ

1 to be the number of units with Zi “ 1 and NZ
0 be the number of units with

Zi “ 0, and conduct our analysis conditional on NZ
1 .

In canonical IV frameworks, the instrument is typically assumed to be independent of
the potential treatments and outcomes (see, e.g., Angrist and Imbens (1994) for a sampling-
based setting, and Kang et al. (2018) for a design-based setting).23 We instead allow the
probability that Zi “ 1 to vary across units and to be arbitrarily related to the potential
treatments and outcomes. The assignment of the instrument Zi mimics the assignment
mechanism in (1) and satisfies

P

˜

Z “ z
ˇ

ˇ

ˇ

ÿ

i

Zi “ NZ
1 , Dp¨q, Y p¨q

¸

9
ź

i

pzii p1´ piq
1´zi (13)

for all Z P t0, 1uN such that
ř

i zi “ NZ
1 , and zero otherwise. To avoid additional notation,

let PR p¨q, ER r¨s, VR r¨s now denote probabilities, expectations, and variances respectively
under the randomization distribution (13). Denote the marginal assignment probability as
πZi :“ PR pZi “ 1q.

Consider the popular two-stage least-squares (2SLS) estimator, defined as β̂2SLS :“

τ̂RF {τ̂FS with

τ̂RF “
1

NZ
1

ÿ

i

ZiYi ´
1

NZ
0

ÿ

i

p1´ ZiqYi and τ̂FS :“
1

NZ
1

ÿ

i

ZiDi ´
1

NZ
0

ÿ

i

p1´ ZiqDi.

In order to analyze the behavior of β̂2SLS over the randomization distribution, observe that
23Hong, Leung and Li (2020) consider a design-based IV setting where the instrument is randomly assigned

within strata defined by observable characteristics.
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τ̂RF is a SDIM estimator for the “reduced-form” effect of Zi on Yi, whereas τ̂FS is a SDIM
estimator for the “first-stage” effect of Zi on Di. Proposition 3.1 and the monotonicity
assumption therefore together imply that

ER rτ̂RF s “
1

NZ
1

ÿ

iPC
πZi pYip1q ´ Yip0qq `

N

NZ
1

N

NZ
0

Cov1

“

πZi , YipDip0qq
‰

ER rτ̂FSs “
1

NZ
1

ÿ

iPC
πZi `

N

NZ
1

N

NZ
0

Cov1

“

πZi , Dip0q
‰

,

where C :“ ti : Dip1q ą Dip0qu is the set of complier units. Define the 2SLS estimand as
β2SLS :“ ERrτ̂RF s

ERrτ̂FSs
.

The generalization of our results to vector-valued outcomes in Appendix B implies that
β̂2SLS is normally distributed around β2SLS in large finite-populations. Concretely, if the
sequence of finite-populations satisfies the assumptions in Proposition B.1(4), then

?
N

˜

τ̂RF ´ ER rτ̂RF s
τ̂FS ´ ER rτ̂FSs

¸

Ñd N p0, Στ q ,

where Στ “ limNÑ8NVRZ

«˜

τ̂RF

τ̂FS

¸ff

. Assuming further that the sequence of finite-

populations satisfies pER rτ̂RF s ,ER rτ̂FSsq Ñ pτ˚RF , τ
˚
FSq with τ˚FS ą 0, then the uniform

delta method (e.g., Theorem 3.8 in van der Vaart (2000)) implies that24

?
Npβ̂2SLS ´ β2SLSq Ñd Np0, g

1Στgq,

where g is the gradient of hpx, yq “ x{y evaluated at pτ˚RF , τ˚FSq. Typical standard errors for
IV will therefore be correct for β2SLS but potentially conservative from the design-based view
in large finite-populations with a strong first-stage. If the instrument were instead assigned
at a cluster-level, then the results in Section 6.1 would likewise imply that standard errors
should be clustered at the level at which the instrument is determined.

What is the causal interpretation of the estimand β2SLS? Notice that if πZi ”
NZ

1

N
, so that

all units receive Z “ 1 with equal probability, then β2SLS “
1
|C|

ř

iPCpYip1q ´ Yip0qq, which is
a design-based analog to the canonical local average treatment effect (LATE) for compliers

24It is well-known in sampling-based instrumental variables settings that the delta method fails under
“weak-instrument asymptotics” in which ER rτ̂FSs drifts towards zero (Staiger and Stock, 1997). Similar
issues apply here. However, the test static used to form Anderson-Rubin confidence intervals, which are
robust to weak identification, can be written as a quadratic form in a SDIM statistic (see, e.g., Li and Ding
(2017)). Our results could thus also be applied to analyze the properties of Anderson-Rubin based CIs under
weak identification asymptotics.
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(Angrist et al., 1996; Kang et al., 2018). Our results also imply that β2SLS maintains a causal
interpretation under the weaker restriction Cov1

“

πZi , YipDip0qq
‰

“ Cov1

“

πZi , Dip0q
‰

“ 0,
which only requires the probability that Zi “ 1 to be orthogonal to the potential outcomes
and potential treatments associated with Zi “ 0. Under this assumption,

β2SLS “
1

ř

iPC π
Z
i

ÿ

iPC
πZi pYip1q ´ Yip0qq ,

and thus the parameter β2SLS is a weighted average treatment effect among the compliers.
The weights given to each complier are proportional to πZi , the probability that Zi “ 1 under
the assignment mechanism (13).

7 Conclusion

This paper develops a design-based framework of uncertainty suitable for quasi-experimental
settings. We derive formulas for the bias of common estimators such as DiD as a function
of the idiosyncratic treatment probabilities. We show further that common estimators of
the variance tend to be conservative when there is heterogeneity in the treatment proba-
bilities πi (even under constant treatment effects). This conservativeness helps to mitigate
undercoverage of conventional confidence intervals when the estimator is biased. Thus, for
example, confidence intervals for DiD may have correct coverage of the EATT even if the
design-based analog to parallel trends does not hold exactly. Our framework also has useful
implications for the choice of the appropriate level of clustering and the interpretation of IV
estimators when the instrument is not completely randomly assigned.

The analysis in this paper could be extended in a variety of directions. First, the analysis
might be extended to settings where the stochastic nature of the data arises both from
the assignment of treatment and from sampling a subset of units from a finite population,
as in Abadie et al. (2020). Second, our results suggest that a variety of mis-specification
robust tools and sensitivity analyses which have been developed under the assumption of
asymptotic normality from a sampling-based perspective could also potentially be applied in
finite population contexts as well (e.g., Andrews, Gentzkow and Shapiro, 2017; Armstrong
and Kolesár, 2018, 2020; Andrews, Gentzkow and Shapiro, 2020; Bonhomme and Weidner,
2022). However, the finite population setting studied here differs from the usual sampling-
based approach in that the variance matrix is only conservatively estimated, and the degree
to which it is conservative may depend on the extent to which the baseline model is violated.
It would be useful to study which of the theoretical guarantees in the aforementioned papers
(e.g., size control, optimality) are robust to this modification.
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A Proofs for results in main text
Proof of Proposition 3.1

Proof. Recall ER rDis “ πi and τi “ Yip1q ´ Yip0q. Hence, we have that

ER rτ̂ s “ ER

«

1

N1

ÿ

i

DiYip1q `
1

N0

ÿ

i

DiYip0q

ff

“
1

N1

ÿ

i

πi pYip0q ` τiq
looooomooooon

“Yip1q

´
1

N0

ÿ

i

p1´ πiqYip0q

“
1

N1

ÿ

i

πiτi
loooomoooon

“:τEATT

`
N

N0

N

N1

˜

1

N

ÿ

i

ˆ

πi ´
N1

N

˙

Yip0q

¸

loooooooooooooooomoooooooooooooooon

“Cov1rπi,Yip0qs

, (14)

which yields the second expression in the Proposition. To derive the first expression, note
that

τEATT “
1

N1

ÿ

i

pπi ´
N1

N
qτi `

1

N

ÿ

i

τi “
N

N1

Cov1 rπi, τis ` τATE.

Further, since τi “ Yip1q´Yip0q, we have that Cov1 rπi, τis “ Cov1 rπi, Yip1qs´Cov1 rπi, Yip0qs,
and hence

τEATT “ τATE `
N

N1

Cov1 rπi, Yip1qs ´
N

N1

Cov1 rπi, Yip0qs .

Substituting this expression into (14) and simplifying then yields

ER rτ̂ s “ τATE `
N

N1

Cov1 rπi, Yip1qs `
N

N0

Cov1 rπi, Yip0qs ,

as needed.

Proof of Proposition 4.1

Proof. Since τ̂ can be represented as a Horvitz-Thompson estimator under rejective sampling,
Theorem 6.1 in Hajek (1964) implies

VR rτ̂ s r1`op1qs “

«

N
ÿ

k“1

πkp1´ πkq

ff

Varπ̃
”

Ỹi

ı

“

«

N
ÿ

k“1

πkp1´ πkq

ff

Varπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



.

(15)
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Standard decomposition arguments for completely randomized experiments (e.g. Imbens
and Rubin (2015)), modified to replace unweighted variances with weighted variances, yield

Varπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



“
N

N1N0

ˆ

1

N1

Varπ̃ rYip1qs `
1

N0

Varπ̃ rYip0qs ´
1

N
Varπ̃ rτis

˙

,

which together with the previous display yields the desired result.

Proof of Lemma 4.1

Proof. We will show that ER rŝ2
1s p1` op1qq “ Varπ rYip1qs. The equality ER rŝ2

0s p1` op1qq “
Var1´π rYip0qs can be obtained analogously, from which the result is immediate. Observe
that

ER
“

ŝ2
1

‰

“ ER

«

1

N1

ÿ

i

DiY
2
i ´ Ȳ

2
1

ff

“ ER

«

1

N1

ÿ

i

DiY
2
i ´ pȲ1 ´ Eπ rYip1qs ` Eπ rYip1qsq2

ff

“ ER

«

1

N1

ÿ

i

DiY
2
i

ff

´ Eπ rYip1qs2 ´ 2Eπ rYip1qsER
“

Ȳ1 ´ Eπ rYip1qs
‰

´ ER
“

pȲ1 ´ Eπ rYip1qsq2
‰

“ Varπ rYip1qs ´ VR

“

Ȳ1

‰

,

where the last equality is obtained using the fact that ER rDis “ πi, and hence ER
”

1
N1

ř

iDiY
2
i

ı

“

Eπ rYip1q2s and ER
“

Ȳ1 ´ Eπ rYip1qs
‰

“ 0. Applying Theorem 6.1 in Hajek (1964) as in the
proof to Proposition 4.1, we see that

VR

“

Ȳ1

‰

p1` op1qq “

«

ÿ

k

πkp1´ πkq

ff

Varπ̃ rYip1q{N1s .

Next, observe that
«

ÿ

k

πkp1´ πkq

ff

Varπ̃ rYip1q{N1s “
1

N2
1

ÿ

i

πip1´ πiqpYip1q ´ Eπ̃ rYip1qsq2

ď
1

N2
1

ÿ

i

πip1´ πiqpYip1q ´ Eπ rYip1qsq2

ď
1

N2
1

ÿ

i

πipYip1q ´ Eπ rYip1qsq2 “
1

N1

Varπ rYip1qs

ď

«

ÿ

k

πkp1´ πkq

ff´1

Varπ rYip1qs “ op1qVarπ rYip1qs

where the first inequality uses the fact that Eπ̃ rYip1qs “ arg minu
ř

i πip1 ´ πiqpYip1q ´ uq2,
the second inequality uses the fact that πip1 ´ πiq ď πi, and the third inequality uses the
fact that N1 “

ř

i πi ě
ř

i πip1 ´ πiq. Combining the previous three displays, we see that
ER rŝ2

1s “ p1` op1qqVarπ rYip1qs , as we wished to show.

34



Proof of Proposition 4.2

Proof. From (15), we see that the right-hand side of (7) is equivalent to

N
ÿ

i“1

πip1´ πiq

ˆ

1

N1

Yip1q `
1

N0

Yip0q ´ Eπ̃
„

1

N1

Yip1q `
1

N0

Yip0q

˙2

.

Since for any X, Eπ̃ rXis “ arg minµ
řN
i“1 πip1´ πiqpXi´ µq

2, it follows that this is bounded
above by

N
ÿ

i“1

πip1´ πiq

ˆ

1

N1

Yip1q `
1

N0

Yip0q ´

ˆ

Eπ
„

1

N1

Yip1q



` E1´π

„

1

N0

Yip0q

˙˙2

, (16)

and the bound holds with equality if and only if

Eπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



“
1

N1

Eπ rYip1qs `
1

N0

E1´π rYip0qs . (17)

Let 9Yip1q “ Yip1q ´ Eπ rYip1qs and 9Yip0q “ Yip0q ´ E1´π rYip0qs . Then the expression in (16)
can be written as

N
ÿ

i“1

πip1´ πiq

ˆ

1

N1

9Yip1q `
1

N0

9Yip0q

˙2

“

«

1

N2
1

N
ÿ

i“1

πi 9Yip1q
2
`

1

N2
0

N
ÿ

i“1

p1´ πiq 9Yip0q
2
´

1

N2
1

N
ÿ

i“1

π2
i

9Yip1q
2
´

1

N2
0

N
ÿ

i“1

p1´ πiq
2 9Yip0q

2
`

2

N1N0

N
ÿ

i“1

πip1´ πiq 9Yip1q 9Yip0q

ff

“

«

1

N1

Varπ rYip1qs `
1

N0

Var1´π rYip0qs ´
1

N2

N
ÿ

i“1

ˆ

πi
N1{N

9Yip1q ´
1´ πi
N0{N

9Yip0q

˙2
ff

,

from which the first claim is immediate. Furthermore, we immediately observe that VapproxR rτ̂ s

EapproxR rŝ2s
“

1 if and only if both (17) holds and

πi
N1{N

Yip1q ´
1´ πi
N0{N

Yip0q “
πi

N1{N
Eπ rYip1qs ´

1´ πi
N0{N

E1´π rYip0qs for all i. (18)

Note that equation (9) is just a re-arrangement of the terms in (18). To complete the proof,
it thus suffices to show that (18) actually implies (17). To do this, we multiply both sides of
(18) by p1´ πiq{N and sum across i to obtain that

s ¨ Eπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



´ E1´π rYip0qs “
s

N1

Eπ rYip1qs ´
1

N0

ÿ

i

p1´ πiq
2E1´π rYip0qs ,
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where s “
ř

i πip1´ πiq. Re-arranging terms, we obtain that

Eπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



“
1

N1

Eπ rYip1qs `
1

N0

1

s

˜

N0 ´
ÿ

i

p1´ πiq
2

¸

E1´π rYip0qs .

Note, however, that

N0 ´
ÿ

i

p1´ πiq
2
“ N0 ´

ÿ

i

p1´ πiq `
ÿ

i

πip1´ πiq “ s,

and thus,

Eπ̃
„

1

N1

Yip1q `
1

N0

Yip0q



“
1

N1

Eπ rYip1qs `
1

N0

E1´π rYip0qs ,

as needed.

Proof of Corollary 4.1

Proof. Note that we can re-write (18) as

πi
N1

pYip1q ´ Eπ rYip1qsq ´
1´ πi
N0

pYip0q ´ E1´π rYip0qsq “ 0 for all i.

Under constant effects, τEATT “ τ . Further, from display (14), we see that ER rτ̂ s “
τEATT `Eπ rYip0qs´E1´π rYip0qs, and thus if ER rτ̂ s “ τEATT , then Eπ rYip0qs “ E1´π rYip0qs.
Additionally, under the constant effects assumption, Yip1q ´ Eπ rYip1qs “ Yip0q ´ Eπ rYip0qs,
and hence Yip1q ´ Eπ rYip1qs “ Yip0q ´ E1´π rYip0qs. Substituting into the previous display
and re-arranging terms, we obtain that

ˆ

πi
N1

´
1´ πi
N0

˙

pYip0q ´ E1´π rYip0qsq “ 0 for all i,

from which the result follows.

Proof of Proposition 4.3

Proof. First, viewing τ̂ as a Horwitz-Thompson estimator under rejective sampling as in (6),
the central limit theorem follows immediately from Theorem 1 in Berger (1998).25

Second, to show convergence of ŝ2{EapproxR rŝ2s, it suffices to show that
ŝ2

1

Varπ rYip1qs
Ñp 1

and
ŝ2

0

Var1´π rYip0qs
Ñp 1. We provide a proof for the former; the latter proof is analogous.

25Hajek (1964) states a similar result where the Horvitz-Thompson estimator uses an approximation to
the marginal probabilities πi “ ER rDis in terms of the underlying idiosyncratic probabilities pi.
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For notational convenience, let v1 “ Varπ rYip1qs . From the definition of ŝ2
1, we can write

ŝ2
1

v1

“
1

v1

˜˜

1

N1

ÿ

i

DipYip1q ´ Eπ rYip1qsq2
¸

´ pȲ1 ´ Eπ rYip1qsq2
¸

.

Now, 1
N1

ř

iDipYip1q ´ Eπ rYip1qsq2 can be viewed as a Horvitz-Thompson estimator of
1
N1

ř

i πipYip1q ´ Eπ rYip1qsq2 “ v1, and thus by Theorem 6.1 in Hajek (1964), its variance is
equal to

p1` op1qq

˜

1

N2
1

ÿ

i

πip1´ πiq

¸

¨ Varπ̃
“

pYip1q ´ Eπ rYip1qsq2
‰

.

Note further that
˜

1

N2
1

ÿ

i

πip1´ πiq

¸

¨ Varπ̃
“

pYip1q ´ Eπ rYip1qsq2
‰

ď
1

N2
1

ÿ

i

πip1´ πiqpYip1q ´ Eπ rYip1qsq4

ď
1

N2
1

mNp1q
ÿ

i

πipYip1q ´ Eπ rpYip1qsq2

“
1

N1

mNp1qVarπ rYip1qs .

Applying Chebychev’s inequality, we have

1

N1

ÿ

i

pDipYip1q ´ Eπ rYip1qsq2 ´ v1 “ Op

ˆ

c

1

N1

mNp1qVarπ rYip1qs
˙

.

Next, viewing Ȳ1 as a Horvitz-Thomson estimator, we see that its variance is p1 `
op1qq

´

1
N2

1

ř

i πip1´ πiq
¯

¨Varπ̃ rYip1qs, which by similar logic to that above is bounded above
by p1` op1qq 1

N1
Varπ rYip1qs. Thus, by Chebychev’s inequality,

Ȳ1 ´ Eπ rYip1qs “ Op

ˆ

c

1

N1

Varπ rYip1qs
˙

.

Combining the results above, it follows that

ŝ2
1

v1

“
1

v1

˜

v1 `Op

˜

d

mNp1qv1

N1

¸

`Op

ˆ

1

N1

v1

˙

¸

“ 1`Op

˜

d

mNp1q

v1N1

¸

`Op

ˆ

1

N1

˙

.

However, the first Op term converges to 0 by assumption, and since Assumption 4.1 implies
that N1 Ñ 8, the second Op term converges to 0 as well.

Proof of Proposition 4.4

Proof. Viewing τ̂ as a Horvitz-Thompson estimator under rejective sampling once again, the
result follows immediately from Theorem 3 in Berger (1998).
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Proof of Proposition 4.5

Proof. From Proposition 4.3, we have that τ̂´ERrτ̂ s?
VapproxR rτ̂ s

d
ÝÑ N p0, 1q. Observe that we can

write

τ̂ ´ τEATT
ŝ

“

a

EapproxR rŝ2s

ŝ

d

Vapprox
R rτ̂ s

EapproxR rŝ2s

˜

τ̂ ´ ER rτ̂ s
a

Vapprox
R rτ̂ s

`
b

a

Vapprox
R rτ̂ s

¸

,

where ER rτ̂ s “ τEATT`b by Proposition 3.1. However, by Proposition 4.3 and the continuous
mapping theorem,

a

EapproxR rŝ2s

ŝ

p
ÝÑ 1.

It then follows from Slutky’s lemma and the assumptions of the proposition that

τ̂ ´ τEATT
ŝ

d
ÝÑ r ¨ pN p0, 1q ` b˚q “ N

`

b˚ ¨ r, r2
˘

.

Proof of Proposition 6.1

Proof. To prove these results, we will show that the second-element of βcluster defined in
Proposition C.1 equals τEATTcluster ` δcluster when Xipdq “ p1, dq1. The stated claims then
immediately follow by applying Proposition C.1. Defining NC

1 “
ř

c πcNc “
ř

i πcpiq,
NC

0 “ N ´NC
1 “

ř

ip1´ πcpiqq, observe that

ˆ

C1

C
Eπc

”

ĆXX 1
cp1q

ı

`
C0

C
E1´πc

”

ĆXX 1
cp0q

ı

˙´1

“
C

NC
0 N

C
1

ˆ

NC
1 ´NC

1

´NC
1 N

˙

,

C1

C
Eπc

”

ĄXYcp1q
ı

`
C0

C
E1´πc

”

ĄXYcp0q
ı

“ C´1
ÿ

i

ˆ

Yip0q ` πcpiqτi
πcpiqpYip0q ` τiq

˙

.

Multiplying out, we therefore arrive at

βcluster “

ˆ

C1

C
Eπc

”

ĆXX 1
cp1q

ı

`
C0

C
E1´πc

”

ĆXX 1
cp0q

ı

˙´1 ˆ
C1

C
Eπc

”

ĄXYcp1q
ı

`
C0

C
E1´πc

”

ĄXYcp0q
ı

˙

“

1

NC
0 N

C
1

ˆ

NC
1 ´NC

1

´NC
1 N

˙

ÿ

i

ˆ

Yip0q ` πcpiqτi
πcpiqpYip0q ` τiq

˙

“

˜ 1
NC

0

ř

ip1´ πcpiqqYip0q

1
NC

1

ř

i πcpiqτi `
ř

i

´

πcpiq
NC

1
´

1´πcpiq
NC

0

¯

Yip0q

¸

.

Re-arranging the second element then yields

βcluster,2 “ Eπcpiq rτis `
N

ř

i πcpiq

N

N ´
ř

i πcpiq
Cov1

“

πcpiq, Yip0q
‰

as desired.
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Proof of Proposition 6.2

Proof. This is a special case of Proposition C.2 below with Xipdq “ p1, dq
1.

Proof of Proposition 6.3

Proof. Let E˚Rr¨ | ¨s denote the best linear projection under the randomization distribution
with covariates. That is, for unit-level variables Ai P R, Bi P Rp, E˚RrAi | Bis “ β1BBi for

βB :“ arg min
β

ER

«

1

N

N
ÿ

i“1

pAi ´ β
1Biq

2

ff

.

Define β “ pβ0, βD, β
1
W q

1 as the coefficients in the best linear projection of Yi on p1, Di,W
1
i q
1

β :“ arg min
βPRk`2

ER

«

1

N

N
ÿ

i“1

pYi ´ p1, Di,W
1
i qβ

1
q
2

ff

. (19)

To prove the first claim, observe that

E˚RrWi|1, Dis “ DiEπ rWis ` p1´DiqE1´π rWis .

By the Frisch-Waugh-Lovell Theorem,

βW “ ER

«

1

N

ÿ

i

pWi ´ E
˚
rWi|1, DisqpWi ´ E

˚
rWi|1, Disq

1

ff´1

ER

«

1

N

ÿ

i

pWi ´ E
˚
rWi|1, DisqYi

ff

“

ER

«

1

N

ÿ

i

DipWi ´ Eπ rWisqpWi ´ Eπ rWisq
1
`

1

N

ÿ

i

p1´DiqpWi ´ E1´π rWisqpWi ´ E1´π rWisq
1

ff´1

ˆ

ER

«

1

N

ÿ

i

DipWi ´ Eπ rWisqYip1q `
1

N

ÿ

i

p1´DiqpWi ´ E1´π rWisqYip0q

ff

“

ˆ

N1

N
Varπ rWis `

N0

N
Var1´π rWis

˙´1 ˆ
N1

N
Eπ rpWi ´ Eπ rWisqYip1qs `

N0

N
E1´π rpWi ´ E1´π rWisqYip0qs

˙

“

θγp1q ` p1´ θqγp0q “ γ.

Note, however, that E˚RrYi | 1, D,W s “ E˚RrYi ´ β
1
WWi | 1, Ds. It follows that

βD “ ER

«

1

N1

ÿ

i

DipYi ´ γ
1Wiq ´

1

N0

ÿ

i

p1´DiqpYi ´ γ
1Wiq

ff

“ τEATT `
N1

N

N0

N
Cov1 rπi, Yip0q ´ γ

1Wis ,

where the last equality is obtained from applying Proposition 3.1 to the transformed outcome
Yi ´ γ

1Wi.
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Proof of Proposition 6.4

Proof. By the Frisch-Waugh-Lovell Theorem,

E˚RrYi|Di ´ π̂is “ βDpDi ´ π̂iq,

and so

βD “ ER

«

1

N

ÿ

i

pDi ´ π̂iq
2

ff´1

ER

«

1

N

ÿ

i

pDi ´ π̂iqYi

ff

.

Writing pDi ´ π̂iq
2 “ Di ´ 2Diπ̂i ` π̂

2
i and Yi “ Yip0q `Diτi and evaluating the expectation

over the randomization distribution yields

βD “ E1

“

πi ´ 2πiπ̂i ` π̂
2
i

‰´1 ER

«

1

N

ÿ

i

pDi ´ π̂iqYip0q

ff

`

E1

“

πi ´ 2πiπ̂i ` π̂
2
i

‰´1 ER

«

1

N

ÿ

i

Dip1´ π̂iqτi

ff

“ E1

“

πi ´ 2πiπ̂i ` π̂
2
i

‰´1 E1 rpπi ´ π̂iqYip0qs`

E1

“

πi ´ 2πiπ̂i ` π̂
2
i

‰´1 E1 rπip1´ π̂iqτis . (20)

Note, however, that E1 rπi ´ π̂is “ 0, since a constant is included in Wi and thus the regres-
sion residuals average to 0, and hence E1 rpπi ´ π̂iqYip0qs “ Cov1 rπi ´ π̂i, Yip0qs. Addition-
ally,

E1

“

πi ´ 2πiπ̂i ` π̂
2
i

‰

“ E1 rπip1´ π̂iqs ` E1 rπ̂ipπ̂i ´ πiqs “ E1 rπip1´ π̂iqs ,

where E1 rπ̂ipπ̂i ´ πiqs “ 0 since by construction regression residuals are orthogonal to the
regressors. Substituting these expressions into (20) yields the desired result.
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This appendix contains additional results and additional Monte Carlo simulations for
the paper “Design-Based Uncertainty for Quasi-Experiments” by Ashesh Rambachan and
Jonathan Roth. Section B generalizes our analysis of the SDIM estimator under the rejective
assignment mechanism to vector-valued outcomes. Section C provides more general analysis
of OLS estimators under clustered treatment assignments. Section D contains additional
results from our Monte Carlo simulations.

B Extension to vector-valued outcomes
In this appendix, we generalize our results for the SDIM estimator in Sections 3-4 to the
vector-valued outcomes case. We apply these results to analyze IV estimators from a design-
based perspective in Section 6.3 of the main text, and non-staggered DiD estimators with
multiple time periods below.

We extend our notation from the main text, so that Yi P RK is the vector-valued out-
come. For a fixed vector-valued characteristic Xi, Ew rXis :“ 1

ř

i wi

ř

iwiXi and Varw rXis “

1
ř

i wi

ř

i pXi ´ Ew rXisq pXi ´ Ew rXisq
1. Further, as shorthand, define S1,w :“ Varw rYip1qs,

S0,w :“ Varw rYip0qs, S10,w :“ Ew rpYip1q ´ Ew rYip1qsqpYip0q ´ Ew rYip0qsq
1s to be the

weighted finite-population variances and covariance of Yip1q and Yip0q. Finally, the vector-
valued ATE is τATE :“ 1

N

ř

ipYip1q ´ Yip0qq, and the vector-valued EATT is τEATT :“
1
N1

ř

i πipYip1q ´Yip0qq.
We analyze the behavior over the randomization distribution (1) of the vector-valued

SDIM estimator τ̂ “ 1
N1

ř

iDiYi ´
1
N0

ř

ip1´DiqYi and associated variance estimators

ŝ :“
1

N1

ŝ1 `
1

N0

ŝ0,

ŝ1 :“
1

N1

ÿ

i

DipYi ´ Ȳ1qpYi ´ Ȳ1q
1, ŝ0 :“

1

N0

ÿ

i

p1´DiqpYi ´ Ȳ0qpYi ´ Ȳ0q
1,

where Ȳ1 :“ 1
N1

ř

iDiYi and Ȳ0 :“ 1
N0

ř

ip1´DiqYi.
We introduce the following regularity conditions on the sequence of finite populations.

Assumption B.1. Suppose N1{N Ñ p1 P p0, 1q, and S1,w, S0,w, S10,w have finite limits for
w P tπ, 1´ π, π̃u.

Assumption B.2. max1ďiďN ||Yip1q´Eπ rYip1qs ||
2{N Ñ 0 and max1ďiďN ||Yip0q´E1´π rYip0qs ||

2{N Ñ

0, where || ¨ || is the Euclidean norm.
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Assumption B.3. Let Ỹi “
1
N1

Yip1q `
1
N0

Yip0q, and let λmin be the minimal eigenvalue of

Σπ̃ “ Varπ̃
”

Ỹi

ı

. Assume λmin ą 0 and for all ε ą 0,

1

λmin
Eπ̃

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ı
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ 1

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ı
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ą

c

ÿ

i

πip1´ πiq ¨ λmin ¨ ε

ffff

Ñ 0.

Assumption B.1 requires that the fraction of treated units and the (weighted) variance and
covariances of the potential outcomes have finite limits along the sequence of finite popula-
tions. Assumption B.2 is a multivariate analog of Assumption 4.3 in that it requires that no
single observation dominate the π or p1´πq-weighted variance of the potential outcomes. As-
sumption B.3 is a multivariate generalization of the Lindeberg-type condition in Assumption
4.2.

Proposition B.1 (Results for vector-valued outcomes).

(1)

ER rτ̂ s “ τATE `
N

N0

˜

1

N

ÿ

i

ˆ

πi ´
N1

N

˙

Yip0q

¸

`
N

N1

˜

1

N

ÿ

i

ˆ

πi ´
N1

N

˙

Yip1q

¸

,

“ τEATT `
N

N0

N

N1

˜

1

N

ÿ

i

ˆ

πi ´
N1

N

˙

Yip0q

¸

.

(2) Under Assumptions 4.1 and B.1,

VR rτ̂ s ` opN
´1
q “

1
N

řN
k“1 πkp1´ πkq

N0

N
N1

N

„

1

N1

Varπ̃ rYip1qs `
1

N0

Varπ̃ rYip0qs ´
1

N
Varπ̃ rτ is



ď
1

N1

Varπ rYip1qs `
1

N0

Var1´π rYip0qs ,

where A ď B if B ´ A is positive semi-definite.

(3) Under Assumptions 4.1, B.1, and B.2,

ŝ1 ´ Varπ rYip1qs
p
ÝÑ 0, ŝ0 ´ Var1´π rYip0qs

p
ÝÑ 0.

(4) Under Assumptions 4.1, B.1, and B.3,

VR rτ̂ s
´ 1

2 pτ̂ ´ τ q
d
ÝÑ N p0, Iq .

Assumption B.1 implies Στ “ limNÑ8NVR rτ̂ s exists, so the previous display can alter-
natively be written as

?
Npτ̂ ´ τ q

d
ÝÑ N p0, Στ q .

Proof. The proof of claim (1) is analogous to the proof of Proposition 3.1 in the scalar case.

42



We next prove claim (2). For simplicity, let An “ VR rτ̂ s, let Bn be the right-hand-side
of the first equality in claim (2), and let Cn be the right-hand side of the inequality in claim
(2). We first prove the inequality. Note that by the definition of a semi-definite matrix,
it suffices to show that l1Bnl ď l1Cnl for all l P RK . However, letting Yipdq “ l1Yipdq, the
desired inequality follows from Proposition 4.2. Next, observe that An ´ Bn “ opN´1q if
and only if Dn :“ NAn ´ NBn “ op1q, which holds if and only if l1Dnl “ op1q for all
l P L :“ tej | 1 ď j ď Ku Y tej ´ ej1 | 1 ď j, j1 ď Ku, where ej is the jth basis vector in RK .
To obtain the last equivalence, note that e1jDnej “ rDnsjj (the pj, jq element of Dn), whereas
exploiting the fact that Dn is symmetric, pej´ej1q1Dnpej´ej1q “ rDnsjj`rDnsj1j1´2rDnsjj1 ,
and so convergence of l1Dnl to zero for all l P L is equivalent to convergence of each of the
elements of Dn. Next, note that if Yipdq “ l1Yipdq, then τ̂ as defined in (2) is equal to l1τ̂
and Varπ̃ rYipdqs “ l1Varπ̃ rYipdqs l. It follows from Proposition 4.1 that

N ¨l1VR rτ̂ s lr1`op1qs “
1
N

řN
k“1 πkp1´ πkq

N0

N
N1

N

l1
„

N

N1

Varπ̃ rYip1qs `
N

N0

Varπ̃ rYip0qs ´ Varπ̃ rτis


l,

(21)
which implies that l1Dnl “ l1pNAnql ¨ op1q. However, Assumption B.1, together with the
inequality in claim (2), implies that the right-hand side of the previous display is Op1q, and
thus l1pNAnql “ Op1q, from which the desired result follows.

The proof of claim (3) is similar to the proof of Lemma A3 in Li and Ding (2017), which
gives a similar result in the case of completely randomized experiments. We provide a proof
for the convergence of ŝ1; the convergence of ŝ0 is similar. As in the proof to claim (2), it
suffices to show that l1ŝ1l ´ l

1Varπ rYip1qs l Ñp 0 for all l P L. Let Yipdq “ l1Yip1q. Then

l1ŝ1l “
1

N1

ÿ

i

Dipl
1Yip1q ´

1

N1

ÿ

j

Djl
1Yjp1qq

2

“

˜

1

N1

ÿ

i

Dipl
1Yip1q ´ l

1Eπ rYip1qsq
2

¸

`

˜

1

N1

ÿ

i

Dil
1Yip1q ´ Eπ rl1Yip1qs

¸2

, (22)

where the second line uses the bias variance decomposition. The first term can be viewed
as a Horvitz-Thompson estimator of 1

N1

ř

i πipl
1Yip1q´Eπ rl1Yip1qsq

2 “ Varπ rl1Yip1qs under
rejective sampling, and thus has variance equal to

p1` op1qq
1

N2
1

˜

ÿ

i

πip1´ πiq

¸

Varπ̃
“

pl1Yip1q ´ Eπ rl1Yip1qsq
2
‰

.
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Further, observe that

1

N2
1

˜

ÿ

i

πip1´ πiq

¸

Varπ̃
“

pl1Yip1q ´ Eπ rl1Yip1qsq
2
‰

ď

1

N1

Eπ
“

pl1Yip1q ´ Eπ rl1Yip1qsq
4
‰

ď

1

N1

max
i

 

pl1Yip1q ´ Eπ rl1Yip1qsq
2
(

¨ Varπ rl1Yip1qs ď
„

||l||2
N

N1



”

max
i
||Yip1q ´ Eπ rYip1qs ||

2
{N

ı

¨ rl1Varπ rYip1qs ls “ op1q

where the first inequality is obtained using the fact that Varπ̃ rXs ď Eπ̃ rX2s, expanding the
definition of Eπ̃ r¨s, and using the inequality πip1 ´ πiq ď πi, analogous to the argument in
the proof to Proposition 4.3 in the scalar case; the final inequality uses the Cauchy-Schwarz
inequality and factors out l; and we obtain that the final term is op1q by noting that the
first and final bracketed terms are Op1q by Assumption B.1 and the middle term is op1q by
Assumption B.2. Applying Chebychev’s inequality, it follows that the first term in (22) is
equal to Varπ rl1Yip1qs ` op1q.

To complete the proof of the claim, we show that the second term in (22) is op1q. Note
that we can view 1

N1

ř

iDil
1Yip1q as a Horvitz-Thompson estimator of Eπ rl1Yis. Following

similar arguments to that in the proceeding paragraph, we have that its variance is bounded
above by 1

N1
l1Varπ rYip1qs l, which is op1q by Assumption B.1 combined with the fact that

Assumption 4.1 implies N1 Ñ 8. Applying Chebychev’s inequality again, we obtain that
the second term in (22) is op1q, as needed.

To prove claim (4), appealing to the Cramer-Wold device, it suffices to show that for
any l P RKzt0u, Yi “ l1Yi, and τ̂ as defined in (2), VR rτ̂ s

´ 1
2 pτ̂ ´ τq Ñd N p0, 1q. This

follows from Proposition 4.3, provided that we can show that Assumption B.3 implies that
Assumption 4.2 holds when Yi “ l1Yi for any conformable vector l. Indeed, recall that
σ2
π̃ “ l1Σπ̃l ě λmin||l||

2, and hence 1
λmin

ě 1
||l||2

1
σ2
π̃
. From the Cauchy-Schwarz inequality

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ ||l||2 ě pỸi ´ Eπ̃
”

Ỹi

ı

q
2.

Together with the previous inequality, this implies that

1

λmin
Eπ̃

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ 1

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ě

c

ÿ

i

πip1´ πiq ¨ λmin ¨ ε

ffff

ě

1

σ2
π̃

Eπ̃

«

pỸi ´ Eπ̃
”

Ỹi

ı

q
2
¨ 1

«

ˇ

ˇ

ˇ
pỸi ´ Eπ̃

”

Ỹi

ı

q

ˇ

ˇ

ˇ
ě

c

ÿ

i

πip1´ πiq ¨ σπ̃ε

ffff

,

from which the result follows.
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B.1 Non-staggered difference-in-differences

We apply the multiple outcomes results to provide a design-based analysis of non-staggered
difference-in-differences (DiD) estimators with more than two periods (e.g., Chapter 5 of
Angrist and Pischke (2009)), extending those for the two-period DiD model in the main
text.

Set-up: Suppose we observe panel data for a finite-population of N units for periods
t “ ´

¯
T, . . . , T̄ . Units with Di “ 1 receive a treatment of interest beginning at period t “ 1.26

The observed outcome for unit i at period t is Yit “ YitpDiq. We assume the treatment has
no effect prior to implementation, so that Yitp1q “ Yitp0q for all t ă 1 (i.e., “no-anticipation”).
It is common to estimate the ATT in period t by the difference-in-differences estimator

β̂t “ τ̂t ´ τ̂0 where τ̂t “
1

N1

ÿ

i

DiYit ´
1

N0

ÿ

i

p1´DiqYit. (23)

The DiD estimators tβ̂t : t “ 1, . . . , T̄ u correspond with the coefficients from the dynamic
two-way fixed effects (TWFE) or “event-study” regression specification

Yit “ αi ` φt `
ÿ

s‰0

Di ˆ 1rs “ ts ˆ βs ` εit. (24)

From equation (23), we see that β̂t is the difference in the SDIM estimators for the outcome
in period t and period 0. Letting Yi “ pYi,´

¯
T , ..., Yi,T̄ q

1, claim (1) of Proposition B.1 implies

ER
”

β̂t

ı

“ τEATT,t `
N

N0

N

N1

Cov1 rπi, Yitp0q ´ Yi0p0qs ,

where τEATT,t “ 1
N1

ř

i πipYitp1q ´ Yitp0qq is the EATT in period t, and we use the fact
that τ0 “ 0 by the no-anticipation assumption. Thus, the bias in β̂t is proportional to
the finite population covariance between πi and trends in the untreated potential outcomes,
Yitp0q ´ Yi0p0q. It follows that β̂t is unbiased for τt over the randomization distribution if
Cov1 rπi, Yitp0q ´ Yi0p0qs “ 0, or equivalently, if

ER

«

1

N1

ÿ

i

DipYitp0q ´ Yi0p0qq

ff

“ ER

«

1

N0

ÿ

i

p1´DiqpYitp0q ´ Yi0p0qq

ff

,

which mimics the familiar “parallel trends” assumption from the sampling-based model.
Additionally, if the sequence of populations satisfies the assumptions in claim (4) of

26We focus on the case with non-staggered treatment timing since it may be difficult to causally interpret
the estimand of standard two-way fixed effects models under treatment effect heterogeneity and staggered
treatment timing (Borusyak and Jaravel, 2016; de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon,
2021; Athey and Imbens, 2022). Nonetheless, the results discussed in this section could potentially be
extended to other estimators with a more sensible causal interpretation under staggered timing e.g. Callaway
and Sant’Anna (2021); Sun and Abraham (2021).
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Proposition B.1, then ?
Npβ̂ ´ pτEATT ` δqq Ñd N p0, Σq , (25)

where β̂ is the vector that stacks the period-specific estimators β̂t, Σ “ limNÑ8NVR

”

β̂t

ı

,

and τEATT , δ are the vectors that stack τEATT,t and δt “
N
N0

N
N1

Cov1 rπi, Yitp0q ´ Yi0p0qs.
Claim (3) implies that the variance estimator ŝ is asymptotically conservative for β̂. It is
easily verified that ŝ corresponds with the cluster-robust variance estimator for (24) that
clusters at level i (up to degrees of freedom corrections). The resulting normal limiting
model in (25) has been studied by Roth (2022) and Rambachan and Roth (Forthcoming)
from a sampling-based perspective in which parallel trends may fail.27 These results show
that it also has a sensible interpretation from a design-based perspective.

C Extension to general OLS estimators with clustered
assignment

This section extends our analysis of the SDIM estimator under the rejective assignment
mechanism in two ways. First, we consider general regression estimators beyond the simple
difference-in-means. Second, we allow for clustered treatment assignment. This nests our
results in the main text on the SDIM under individual-level treatment assignment as a special
case where (i) the regression estimator is the SDIM, and (ii) each cluster corresponds with
exactly 1 unit.

As in Section 6.1, suppose each unit i “ 1, . . . , N belongs to one of c “ 1, . . . , C clusters,
where cpiq denotes the cluster membership of unit i. The treatment is assigned at the cluster
level, where the cluster level treatment assignments D :“ pD1, . . . , DCq

1 follow a rejective
assignment mechanism (12). Suppose that the researcher estimates the ordinary least squares
(OLS) coefficients β̂ from the regression Yi “ X 1

iβ ` εi, where Xi “ DiXip1q ` p1´DiqXip0q
is a vector of covariates potentially depending on Di. Note that if Xipdq “ p1, dq

1, then the
second element of β̂ corresponds with the SDIM.

We analyze the properties of the OLS estimator along a sequence of finite-populations
along which the number of clusters C grows large, similar to the asymptotics in Section 4.
Before stating our results, we introduce some notation. Let ĆXX 1

cpdq “
ř

i:cpiq“cXipdqXipdq
1

and ĄXYcpdq “
ř

i:cpiq“cXipdqYipdq. Analogous to the notation in the main text, for a cluster-
level function of the potential outcome Acpdq, we will write, Ewc rAcpdqs to denote the sum

27One difference from the design-based view is that Σ is only conservatively estimable.
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1
ř

c wc

ř

cAcpdq. Using this notation, β̂ can be written as

β̂ “

˜

ÿ

i

XiX
1
i

¸´1 ˜
ÿ

i

XiYi

¸

“

˜

C1

C

1

C1

ÿ

c

Dc
ĆXX 1

cp1q `
C0

C

1

C0

ÿ

c

p1´DcqĆXX 1
cp0q

¸´1

ˆ

˜

C1

C

1

C1

ÿ

c

Dc
ĄXYcp1q `

C0

C

1

C0

ÿ

c

p1´DcqĄXYcp0q

¸

We provide the proofs of all results in Section C.1.
Our first result shows β̂ is consistent for

βcluster :“

ˆ

C1

C
Eπc

”

ĆXX 1
cp1q

ı

`
C0

C
E1´πc

”

ĆXX 1
cp0q

ı

˙´1 ˆ
C1

C
Eπc

”

ĄXYcp1q
ı

`
C0

C
E1´πc

”

ĄXYcp0q
ı

˙

,

and asymptotically normally distributed under the clustered randomization distribution.

Assumption C.1.

(i) (Moments have limits) Eπc
”

ĄXYcp1q
ı

, E1´πc

”

ĄXYcp0q
ı

, Eπc
”

ĆXX 1
cp1q

ı

, E1´πc

”

ĆXX 1
cp0q

ı

,

and C1

C
have finite limits, with lim C1

C
P p0, 1q.

(ii) (Full-rank regressors) C1

C
Eπ

”

ĆXX 1
cp1q

ı

` C0

C
E1´π

”

ĆXX 1
cp0q

ı

has a full-rank limit.

(iii) (Bounded variances) There exists M ă 8 such that Varπ̃c
”

pĆXX 1
cpdqqjk

ı

ă M and

Varπ̃c
”

pĄXYcpdqqj

ı

ăM for d “ 0, 1 and j, k “ 1, ..., dimpXiq.

(iv) (Lindeberg condition) Assumption B.3 is satisfied for Yi “ ĂXεcp1q´ĂXεcp0q´Eπc
”

ĂXεcp1q ´ ĂXεcp0q
ı

,

where εipdq “ Yipdq ´Xipdq
1βcluster and ĂXεcpdq “

ř

i:cpiq“cXipdqεipdq.

Proposition C.1 (Consistency and asymptotic normality).

(1) If
ř

c πcp1´ πcq Ñ 8 and Assumption C.1 parts (i)-(iii) hold, β̂ ´ βcluster
p
ÝÑ 0.

(2) Define Vcluster :“ C´1 p
ř

c π̃cqVarπ̃c
”

ř

i : cpiq“cXip1qεip1q ´Xip0qεip0q
ı

. If
ř

c πcp1 ´

πcq Ñ 8 and Assumption C.1 holds,

Ω
´1{2
cluster

?
C
´

β̂ ´ βcluster

¯

d
ÝÑ N p0, Iq ,

where Ωcluster :“ ER
“

1
C

ř

iXiX
1
i

‰´1
VclusterER

“

1
C

ř

iXiX
1
i

‰´1.
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We next analyze the cluster-robust variance estimator (Liang and Zeger, 1986),

Ω̂cluster :“

˜

1

C

ÿ

i

XiX
1
i

¸´1

V̂cluster

˜

1

C

ÿ

i

XiX
1
i

¸´1

, (26)

where
V̂cluster :“

1

C

ÿ

c

ĄXε̂cĄXε̂c
1

(27)

for ε̂i “ Yi ´ X 1
iβ̂ and ĄXε̂c “

ř

i : cpiq“cXiε̂i. In the case with an individual-level treatment
assignment (i.e., C “ N), the cluster-robust variance estimator is equivalent to the Eicker-
Huber-White heteroskedasticity-robust variance estimator. Our next result establishes that
V̂cluster is consistent for an upper bound of Vcluster defined in Proposition C.1 in finite popu-
lations with a large number of clusters.

Assumption C.2.

(i) Eπc
”

ĄXεcp1qĄXεcp1q
1

ı

and E1´πc

”

ĄXεcp0qĄXεcp0q
1

ı

have limits.

(ii) There exists M̃1 ą 0 such that }Varπ̃c
”

ĄXεcpdqĄXεcpdq
1

ı

} ă M̃1 for d “ 0, 1, where }A}
denotes the Frobenius norm of a matrix A.

(iii) There exists M̃2 ą 0 such that E1

”

}ĄXεcpdq}
2
ı

ă M̃2 and E1

”

}ĆXX 1
cpdq}

2
ı

ă M̃2 for
d “ 0, 1.

Proposition C.2 (Variance consistency). If Assumption C.1(i)-(iii) and Assumption C.2
hold, and

ř

c πcp1´ πcq Ñ 8, then V̂cluster ´ V est
cluster

p
ÝÑ 0 for

V est
cluster :“

C1

C
Eπc

”

ĂXεcp1qĂXεcp1q
1
ı

`
C0

C
E1´πc

”

ĂXεcp0qĂXεcp0q
1
ı

Furthermore, V est
cluster ě Vcluster (i.e., V est

cluster ´ Vcluster is positive semi-definite).

Corollary C.1. Define Ωest
cluster :“ ER r

ř

iXiXis
´1 V est

clusterER r
ř

iXiXis
´1. Under the same

conditions as Proposition C.2, Ω̂cluster ´ Ωest
cluster

p
ÝÑ 0, and Ωest

cluster ě Ωcluster.

Finally, we show that the Eicker-Huber-White (EHW) covariance estimator need not be
valid under the clustered treatment assignment mechanism considered here. Specifically, con-
sider the Eicker-Huber-White variance estimator V̂EHW “ 1

N

ř

iXiX
1
i ε̂

2
i . Under the clustered

treatment assignment mechanism, it can be equivalently rewritten as

V̂EHW “
C1

N

1

C1

ÿ

c

Dc

´

ČXX 1ε̂2cp1q
¯

`
C0

N

1

C0

ÿ

c

p1´Dcq

´

ČXX 1ε̂2cp0q
¯

,

where ČXX 1ε̂2cpdq “
ř

i : cpiq“cXipdqXipdq
1ε̂2i . Define ČXX 1ε2cpdq “

ř

i : cpiq“cXipdqXipdq
1εipdq

2

analogously. Our next result characterizes the probability limit of V̂EHW .
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Assumption C.3.

(i) Eπc
”

ČXX 1ε2cp1q
ı

, E1´πc

”

ČXX 1ε2cp0q
ı

, N{C, C1{C have finite limits with limC1{C P

p0, 1q and limN{C ă 8.

(ii) There exists M̃3 such that }Varπ̃c
”

ČXX 1ε2cpdq
ı

} ď M̃3 for d “ 0, 1.

(iii) There exists M̃4 such that E1

”

ĆW pdqc

ı

ă M̃4 and E1

”

ĆV pdqc

ı

ă M̃4 for d “ 0, 1, where
ĆW pdqc “

ř

i : cpiq“c }Xip1qεipdq}
2 and ĆV pdqc “

ř

i : cpiq“c }XipdqXipdq
1}2.

Proposition C.3. If Assumptions C.1 and C.3(i)-(iii) hold, and
ř

c πcp1 ´ πcq Ñ 8, then
V̂EHW ´ V

EHW
cluster

p
ÝÑ 0 for

V EHW
cluster :“

C1

N
Eπc

”

ČXX 1ε2cp1q
ı

`
C0

N
E1´πc

”

ČXX 1ε2cp0q
ı

.

Furthermore, Vcluster ´ N
C
V EHW
cluster equals

C1

C
Eπc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip1qηjp1q
1

fi

fl`
C0

C
E1´πc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip0qηjp0q
1

fi

fl´

E1 rpπcηcp1q ` p1´ πcqηcp0qqpπcηcp1q ` p1´ πcqηcp0qq
1
s´E1 rπ̃csEπ̃c rηcp1q ´ ηcp0qsEπ̃c rηcp1q ´ ηcp0qs

1

where ηipdq “ Xipdqεipdq and ηcpdq “
ř

i : cpiq“c ηipdq.

Proposition C.3 implies that the usual heteroskedasticity-robust variance estimator can be
invalid in large populations if there is clustered treatment assignment (i.e. if N ‰ C). To see
this, consider the SDIM, which corresponds with Xi “ p1, Diq

1. Suppose there is no within-
cluster heterogeneity in potential outcomes (i.e., Yipdq “ Ycpiqpdq for all i and d P t0, 1u)
and all clusters are the same size (i.e., Nc “ N{C). In this case, V est

cluster “
N
C
V EHW
cluster. If

further there is no across-cluster treatment effect heterogeneity nor heterogeneity in cluster-
specific treatment probabilities, Vcluster “ V est

cluster by the same logic as Corollary 4.1 in the
main text for the non-clustered case, and the heteroskedasticity-robust variance estimator
is thus too small whenever N{C ą 1. If there is either treatment effect heterogeneity or
heterogeneity in cluster-specific treatment probabilities, then Vcluster ď V est

cluster (generally
with strict inequality), in which case the heteroskedasticity-robust variance estimator is
valid whenever C{N ě Vcluster{V

est
cluster. Abadie et al. (2022) establish a similar result for a

setting in which units have the same probability of receiving treatment marginalized over
a two-stage assignment process; thus treatment probabilities in Abadie et al. (2022) are
not related to potential outcomes, and so their calculations are not directly applicable to
quasi-experimental settings.

C.1 Proofs of results for general OLS estimators under clustering

Proof of Proposition C.1
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Proof. To establish claim (1), let p˚c be the limit of C1

C
, let µπc

”

ĆXX 1
cp1q

ı

be the limit of

Eπc
”

ĆXX 1
cp1q

ı

, and define µπc r¨s and µ1´πc r¨s of other variables analogously. Let

β˚cluster “
´

p˚cµπc

”

ĆXX 1
cp1q

1
ı

` p1´ p˚c qµ1´πc

”

ĆXX 1
cp0q

1
ı¯´1 ´

p˚cµπc

”

ĄXYcp1q
ı

` p1´ p˚c qµ1´πc

”

ĄXYcp0q
ı¯

.

It is immediate from Assumption C.1(i)-(ii) that βcluster Ñ β˚cluster, so it suffices to show that
β̂

p
ÝÑ β˚cluster. Note that we can write β̂ as

˜

C1

C

1

C1

ÿ

c

Dc
ĆXX 1p1q `

C0

C

1

C0

ÿ

c

p1´DcqĆXX 1
cp0q

¸´1 ˜

C1

C

1

C1

ÿ

c

Dc
ĄXYcp1q `

C0

C

1

C0

ÿ

c

p1´DcqĄXYcp0q

¸

.

Using Theorem 6.1 in Hajek (1964) as in the proof to Proposition 4.1, we have that

VarR

«

1

C1

ÿ

c

DcpĆXX 1
cp1qqjk

ff

“ p1` op1qqC´2
1

˜

ÿ

c

π̃c

¸

Varπ̃c
”

pĆXX 1
cp1qqjk

ı

ď p1` op1qqC´1
1 M Ñ 0,

where we obtain the inequality from Assumption C.1(iii) combined with the fact that π̃c ď πc
for all c and thus

ř

c π̃c ď
ř

c πc “ C1. Combining the previous display with Chebychev’s in-
equality, we obtain that 1

C1

ř

cDc
ĆXX 1

cp1q´ER
”

1
C1

ř

cDc
ĆXX 1

cp1q
ı

p
ÝÑ 0. But ER

”

1
C1

ř

cDc
ĆXX 1

cp1q
ı

“

Eπc
”

ĆXX 1
cp1q

ı

Ñ µπc

”

ĆXX 1
cp1q

ı

, and hence 1
C1

ř

cDc
ĆXX 1

cp1q
p
ÝÑ µπc

”

ĆXX 1
cp1q

ı

. An analo-

gous argument yields that 1
C0

ř

cp1 ´ DcqĆXX 1
cp0q

p
ÝÑ µ1´πc

”

ĆXX 1
cp0q

ı

, 1
C1

ř

cDc
ĄXYcp1q

p
ÝÑ

µπc

”

ĄXYcp1q
ı

, and 1
C0

ř

cp1 ´ DcqĄXYcp0q
p
ÝÑ µ1´πc

”

ĄXYcp0q
ı

. These convergences together

with the continuous mapping theorem yield that β̂ p
ÝÑ β˚cluster, as we wished to show.

To show the second claim, define εi “ Diεip1q ` p1 ´ Diqεip0q (and recall that εipdq “
Yipdq ´Xipdq

1βcluster), so that

β̂ “ βcluster `

˜

1

C

ÿ

i

XiX
1
i

¸´1 ˜

1

C

ÿ

i

Xiεi

¸

.

and
?
Cpβ̂ ´ βclusterq “

˜

1

C

ÿ

i

XiX
1
i

¸´1 ˜

1
?
C

ÿ

i

Xiεi

¸

.

In the proof of claim (1), we established that
`

1
C

ř

iXiX
1
i

˘´1 is consistent for ER
“

1
C

ř

iXiX
1
i

‰´1.
We therefore focus on establishing the asymptotic normality of 1?

C

ř

iXiεi. Towards this,
notice that standard arguments for linear projections imply that

ER

«

1

C

ÿ

i

Xiεi

ff

“
C1

C
Eπc

”

ĄXεcp1q
ı

`
C0

C
E1´πc

”

ĄXεcp0q
ı

“ 0, (28)
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where ĄXεcpdq “
ř

i : cpiq“cXipdqεipdq as before. By adding/subtracting C1Eπc
”

ĄXεcp0q
ı

from
the previous display and applying the identity C1Eπc rvcs ` C0E1´πc rvcs “ CE1 rvcs for any
cluster-level attribute vc, we obtain that

C1Eπc
”

ĄXεcp1q ´ĄXεcp0q
ı

`
ÿ

c

ĄXεcp0q “ 0.

It therefore follows that
ÿ

i

Xiεi “
ÿ

c

Dc
ĄXεcp1q `

ÿ

c

p1´DcqĄXεcp0q

“
ÿ

c

Dc

´´

ĄXεcp1q ´ĄXεcp0q
¯

´ Eπc
”

ĄXεcp1q ´ĄXεcp0q
ı¯

Therefore,
ř

iXiεi can be represented as Horvitz-Thompson estimator under clustered re-
jective sampling. Applying the multivariate generalization of Theorem 1 in Berger (1998) as
in the proof to Proposition 4, we therefore conclude that

V
´1{2
cluster

1
?
C

ÿ

i

Xiεi
d
ÝÑ N p0, Iq ,

where Vcluster is defined in the statement of claim (2). Claim (2) follows by applying Slutsky’s
lemma.

Proof of Proposition C.2

Proof. To show the first claim, observe that

V̂cluster “
C1

C

1

C1

ÿ

c

Dc
ĄXε̂cp1qĄXε̂cp1q

1
`
C0

C

1

C0

ÿ

c

p1´Dcq
ĄXε̂cp0qĄXε̂cp0q

1.

Furthermore, ĄXε̂cpdq “ ĄXεcpdq ´ĆXX 1
cpdqpβ̂ ´ βclusterq. It follows that

1

C1

ÿ

c

Dc
ĄXε̂cp1qĄXε̂cp1q

1
“

1

C1

ÿ

c

Dc
ĄXεcp1qĄXεcp1q

1

loooooooooooooomoooooooooooooon

“pAq

´

1

C1

ÿ

c

Dc
ĂXεcp1qpβ̂ ´ βclusterq

1
ĆXX 1

cp1q
1

loooooooooooooooooooooooomoooooooooooooooooooooooon

“pBq

´
1

C1

ÿ

c

Dc

´

ĂXεcp1qpβ̂ ´ βclusterq
1
ĆXX 1

cp1q
1
¯1

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“pB1q

`

1

C1

ÿ

c

Dc
ĆXX 1

cp1qpβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
ĆXX 1

cp1q
1

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

“pCq

(29)
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Consider the term labeled (A) in (29) and observe that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

VR

«

1

C1

ÿ

c

Dc
ĄXεcp1qĄXεcp1q

1

ffˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p1` op1qqC´2
1 p

ÿ

c

π̃cq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Varπ̃c

”

ĄXεcp1qĄXεcp1q
1
ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď p1` op1qqC´1
1 M̃1 Ñ 0,

where we use Assumption C.2(ii) to bound ||Varπ̃c
”

ĄXεcp1qĄXεcp1q
1

ı

||. Hence, by Chebychev’s

inequality, 1
C1

ř

cDc
ĄXεcp1qĄXεcp1q

1 p
ÝÑ µπc

”

ĄXεcp1qĄXεcp1q
1

ı

, where we define µπcr¨s as in the
proof to Proposition C.1. Next, consider the term labeled pCq in (29). Recall that the
Frobenius norm is sub-multiplicative, so that }QR} ď }Q}}R} for any matrices Q,R. Hence,
we have that

}pCq} ď
1

C1

ÿ

c

Dc||ĆXX 1
cp1qpβ̂ ´ βclusterqpβ̂ ´ βclusterq

1
ĆXX 1

cp1q
1
||

ď ||pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
||

1

C1

ÿ

c

Dc||ĆXX 1
cp1q||

2

ď ||pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
||
C

C1

1

C

ÿ

c

||ĆXX 1
cp1q||

2

ď ||pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
||
C

C1

M̃2
p
ÝÑ 0

where the last inequality uses Assumption C.2(iii), and we use the fact that C{C1 has a
finite limit by Assumption C.1(i) and β̂ ´ βcluster

p
ÝÑ 0 by Proposition C.1. Finally,

}pBq} ď
1

C1

ÿ

c

Dc||ĂXεcp1qpβ̂ ´ βclusterq
1
ĆXX 1

cp1q
1
||

ď
1

C1

ÿ

c

Dc||ĂXεcp1q|| ¨ ||ĆXX 1
cp1q|| ¨ ||pβ̂ ´ βclusterq||

ď
C

C1

1

C

ÿ

c

||ĂXεcp1q|| ¨ ||ĆXX 1
cp1q|| ¨ ||pβ̂ ´ βclusterq||

ď
C1

C

d

1

C

ÿ

c

||ĂXεcp1q||2 ¨

d

1

C

ÿ

c

||ĆXX 1
cp1q||

2 ¨ ||pβ̂ ´ βclusterq||

ď
C1

C
M̃2||β̂ ´ βcluster||

p
ÝÑ 0,

where the fourth inequality uses Cauchy-Schwarz, the fifth inequality uses Assumption
C.2(iii) and we use the fact that β̂ ´ βcluster

p
ÝÑ 0 as shown above. We have thus shown

that 1
C1

ř

cDc
ĄXε̂cp1qĄXε̂cp1q

1 p
ÝÑ µπc

”

ĄXεcp1qĄXεcp1q
1

ı

. By analogous argument, we can show

that 1
C0

ř

cp1´Dcq
ĄXε̂cp0qĄXε̂cp0q

1 p
ÝÑ µ1´πc

”

ĄXεcp0qĄXεcp0q
1

ı

. The first part of the result then
follows from the continuous mapping theorem.
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To show the second claim, let ηcpdq “
ř

i:cpiq“cXipdqεipdq, 9ηcp1q “ 9ηcp1q´Eπc rηcp1qs, and
9ηcp0q “ 9ηcp0q ´ E1´πc rηcp0qs. Then,

Vcluster “
1

C

ÿ

c

πcp1´ πcq pηcp1q ´ ηcp0q ´ Eπ̃c rηcp1q ´ ηcp0qsq pηcp1q ´ ηcp0q ´ Eπ̃c rηcp1q ´ ηcp0qsq
1

ď
1

C

ÿ

c

πcp1´ πcq p 9ηcp1q ´ 9ηcp0qq p 9ηcp1q ´ 9ηcp0qq
1

“
1

C

˜

ÿ

c

πc 9ηcp1q 9ηcp1q
1
`
ÿ

c

p1´ πcq 9ηcp0q 9ηcp0q
1
´

˜

ÿ

c

π2
c 9ηcp1q 9ηcp1q

1
`
ÿ

c

p1´ πcq
2 9ηcp0q 9ηcp0q

1
`
ÿ

c

πcp1´ πcqp 9ηcp1q 9ηcp0q
1
` 9ηcp0q 9ηcp1q

1
q

¸¸

“
C1

C
Varπc rηcp1qs `

C0

C
Var1´πc rηcp0qs ´

1

C

ÿ

c

pπc 9ηcp1q ` p1´ πcq 9ηcp0qqpπc 9ηcp1q ` p1´ πcq 9ηcp0qq
1

ď
C1

C
Eπc rηcp1qηcp1q1s `

C0

C
E1´πc rηcp0qηcp0q

1
s “ V est

cluster.

Proof of Corollary C.1

Proof. The proof is immediate from Proposition C.2 combined with the fact that 1
C

ř

iXiX
1
i´

ER
“

1
C

ř

iXiX
1
i

‰ p
ÝÑ 0 as shown in the proof to Proposition C.1.

Proof of Proposition C.3

Proof. To show the first claim, it is immediate from Assumption C.3(i) that V EHW
cluster converges

to
p1{n˚c qp

˚
cµπcr

ČXX 1ε2cp1qs ` p1{n
˚
c qp1´ p

˚
c qµ1´πcr

ČXX 1ε2cp0qs,

where n˚c “ limN{C, p˚c “ limC1{C, and µπcr¨s is defined as in the proof to Proposi-
tion C.1. It therefore suffices to show that V̂EHW converges in probability to the same
limit. To show this, recall that ε̂i “ Diε̂ip1q ` p1 ´ Diqε̂ip0q for ε̂ipdq “ εipdq ´ Xipdq

1pβ̂ ´
βclusterq and Xipdqε̂ipdq “ Xipdqεipdq ´ XipdqXipdq

1pβ̂ ´ βclusterq. Therefore, we can write
C1

N
1
C1

ř

cDc

´

ČXX 1ε̂2cp1q
¯

as

C

N

C1

C

1

C1

ÿ

c

Dc
ČXX 1ε2cp1q

looooooooooomooooooooooon

pAq

`
C

N

1

C

ÿ

c

Dc

ÿ

i : cpiq“c

Xip1qεip1qpβ̂ ´ βclusterq
1Xip1qXip1q

1

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

pBq

`

C

N

1

C

ÿ

c

Dc

ÿ

i : cpiq“c

Xip1qXip1q
1
pβ̂ ´ βclusterqX

1
ip1qεip1q

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

pB1q

`
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C

N

1

C

ÿ

c

Dc

¨

˝

ÿ

i : cpiq“c

Xip1qX
1
ip1qpβ̂ ´ βclusterqpβ̂ ´ βclusterq

1Xip1qX
1
ip1q

˛

‚

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

pCq

.

First, consider the term (A), and observe that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

VR

«

1

C1

ÿ

c

Dc
ČXX 1ε2cp1q

ffˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p1` op1qqC´2
1

˜

ÿ

c

π̃c

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Varπ̃c

”

ČXX 1ε2cp1q
ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď p1` op1qqC´1
1 M̃3 Ñ 0,

where we use Assumption C.3(ii) to bound
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Varπ̃c

”

ČXX 1ε2cp1q
ı
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
. Hence, 1

C1

ř

cDc
ČXX 1ε2cp1q

p
ÝÑ

µπc

”

ČXX 1ε2c

ı

by Chebyshev’s Inequality. Next, consider term (B) and observe that

}pBq} ď
1

C

ÿ

c

Dc

ÿ

i : cpiq“c

}Xip1qεip1qpβ̂ ´ βclusterq
1Xip1qXip1q

1
}

ď }β̂ ´ βcluster}

¨

˝

1

C

ÿ

c

Dc

ÿ

i : cpiq“c

}Xip1qεip1q}}Xip1qXip1q
1
}

˛

‚

ď }β̂ ´ βcluster}

˜

C´1
ÿ

c

ĆW p1qc
ĆV p1qc

¸

ď }β̂ ´ βcluster}

d

C´1
ÿ

c

ĆW p1qc

d

C´1
ÿ

c

ĆV p1qc

ď }β̂ ´ βcluster}M̃4

where the first inequality applies the triangle inequality, the second inequality applies the
submultiplicative property of the Frobenius norm, the third inequality uses the positivity of
the norm, and the fourth inequality uses the Cauchy-Schwarz inequality. Since β̂´βcluster

0
ÝÑ,

it follows that }pBq} p
ÝÑ 0 by Assumption C.3(iii). The analogous argument gives that (B’)
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converges in probability to zero. Finally, consider term (C) and observe that

}pCq} ď
1

C1

ÿ

c

Dc

ÿ

i : cpiq“c

}Xip1qX
1
ip1qpβ̂ ´ βclusterqpβ̂ ´ βclusterq

1Xip1qX
1
ip1q}

ď }pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
}

¨

˝

1

C1

ÿ

c

Dc

ÿ

i : cpiq“c

}Xip1qX
1
ip1q}

2

˛

‚

“ }pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
}

˜

1

C1

ÿ

c

Dc
ĆV pdqc

¸

ď }pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
}
C

C1

˜

1

C

ÿ

c

ĆV pdqc

¸

ď }pβ̂ ´ βclusterqpβ̂ ´ βclusterq
1
}
C

C1

M̃4,

which converges in probability to zero since β̂ ´ βcluster
p
ÝÑ 0 and C1

C
has a finite limit.

Putting this together, it follows that C
N
C1

C
1
C1

ř

cDc

´

ČXX 1ε̂2cp1q
¯

p
ÝÑ p1{n˚c qp

˚
cµπcr

ČXX 1ε2cp1qs

by the continuous mapping theorem. By the same argument, we can show C
N
C0

C
1
C0

ř

cp1 ´

Dcq

´

ČXX 1ε̂2cp0q
¯

p
ÝÑ p1{n˚c qp1´p

˚
c qµ1´πcr

ČXX 1ε2cp0qs. The first claim then follows by another
application of the continuous mapping theorem.

To show the second claim, we first observe that Vcluster can be expanded into

C´1
ÿ

c

πcp1´ πcq pηcp1q ´ ηcp0q ´ Eπ̃c rηcp1q ´ ηcp0qsq pηcp1q ´ ηcp0q ´ Eπ̃c rηcp1q ´ ηcp0qsq
1
“

C´1
ÿ

c

πcp1´ πcqpηcp1q ´ ηcp0qqpηcp1q ´ ηcp0qq
1

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

paq

´

˜

C´1
ÿ

c

π̃c

¸

Eπ̃c rηcp1q ´ ηcp0qsEπ̃c rηcp1q ´ ηcp0qs
1 .

Further expanding out, notice that (a) equals

C´1
ÿ

c

πcp1´ πcq pηcp1qηcp1q
1
` ηcp0qηcp0q

1
´ ηcp1qηcp0q

1
´ ηcp0qηcp1q

1
q “

C´1
ÿ

c

πcηcp1qηcp1q
1
` C´1

ÿ

c

p1´ πcqηcp0qηcp0q
1
´

C´1
ÿ

c

`

π2
cηcp1qηcp1q

1
` p1´ πcq

2ηcp0qηcp0q
1
` πcp1´ πcqpηcp1qηcp0q

1
` ηcp0qηcp1q

1
q
˘

“

C´1
ÿ

c

πcηcp1qηcp1q
1
` C´1

ÿ

c

p1´ πcqηcp0qηcp0q
1

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

pbq

´C´1
ÿ

c

pπcηcp1q`p1´πcqηcp0qqpπcηcp1q`p1´πcqηcp0qq
1.

Then, using the identity ηcpdqηcpdq1 “
ř

i : cpiq“c

ř

j : cpjq“c ηipdqηjpdq
1 “

ř

i : cpiq“c ηipdqηipdq
1 `
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ř

i‰j:cpiq,cpjq“c ηipdqηjpdq
1, we further expand out (b) as

C´1
ÿ

c

πcηcp1qηcp1q
1
` C´1

ÿ

c

p1´ πcqηcp0qηcp0q
1
“

C´1
ÿ

c

πc
ÿ

i : cpiq“c

ηip1qηip1q
1
` C´1

ÿ

c

p1´ πcq
ÿ

i : cpiq“c

ηip0qηip0q
1
`

C´1
ÿ

c

πc
ÿ

i‰j : cpiq,cpjq“c

ηip1qηjp1q
1
` C´1

ÿ

c

p1´ πcq
ÿ

i‰j : cpiq,cpjq“c

ηip0qηjp0q
1
“

N

C
V EHW
cluster `

C1

C
Eπc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip1qηjp1q
1

fi

fl`
C0

C
E1´πc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip0qηjp0q
1

fi

fl .

Putting this altogether, we therefore have shown that Vcluster equals

N

C
V EHW
cluster `

C1

C
Eπc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip1qηjp1q
1

fi

fl`
C0

C
E1´πc

»

–

ÿ

i‰j : cpiq,cpjq“c

ηip0qηjp0q
1

fi

fl´

E1 rpπcηcp1q ` p1´ πcqηcp0qqpπcηcp1q ` p1´ πcqηcp0qq
1
s´E1 rπ̃csEπ̃c rηcp1q ´ ηcp0qsEπ̃c rηcp1q ´ ηcp0qs

1 .

D Additional Monte Carlo simulations
This appendix considers extensions to the simulations in Section 5, where (i) the number of
treated units varies, (ii) there is treatment effect heterogeneity, and (iii) the size of the finite
population varies.

D.1 Varying the number of treated units

In Section 5 of the main text, we report Monte Carlo simulations that documented the be-
havior of DiD estimates for the effect of a placebo law on state-level log average employment
and state-level log average monthly earnings from the QWI when the number of treated and
untreated units was approximately equal (N1

N
“ 25

51
). We now report the same results for the

fraction of treated units varying over N1 P tt0.4N u, t0.6N uu in Table 2, where t¨u is the floor
function. The results are qualitatively similar as the case with N1 “ t0.5N u in the main
text.

D.2 Treatment effect heterogeneity

In Section 5 of the main text, we report Monte Carlo simulations that documented the behav-
ior of DiD estimators for the effect of a placebo law on state-level average employment and
state-level log average monthly earnings from the QWI. These simulations were conducted
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(a) Log employment with N1 “ t0.4N u (b) Log earnings with N1 “ t0.4N u

(c) Log employment with N1 “ t0.6N u (d) Log earnings with N1 “ t0.6N u

Table 2: Normalized bias, variance conservativeness, and coverage in Monte Carlo simula-
tions with N1 P tt0.4N u, t0.6N u}.

Notes: Row 1 reports the normalized bias of the DiD estimator (ER rτ̂DiDs {
a

VarR rτ̂DiDs) for the EATT

over the randomization distribution. Row 2 reports the estimated ratio
ERrŝ2s

VarRrτ̂DiDs
across simulations, which

measures the conservativeness of the heteroskedasticity-robust variance estimator. Row 3 reports the esti-
mated coverage rate of a 95% confidence interval for the EATT based on the limiting normal approximation of
the randomization distribution of the DiD estimator and the heteroskedasticity-robust variance estimator ŝ2.
Row 4 reports the coverage rate of an “oracle” 95% confidence interval of the form τ̂DiD ˘ 1.96

a

VR rτ̂DiDs.
The columns report results as the idiosyncratic treatment probability p1 varies over t0.5, 0.75, 0.9u. The
results are computed over 5,000 simulations with N “ 51.
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without treatment effect heterogeneity, setting Yitp1q “ Yitp0q both to equal the observed
state-level outcomes Yit.

We now report results from Monte Carlo simulations that incorporate treatment ef-
fect heterogeneity. As in the main text, we use aggregate data on the 50 U.S. states and
Washington D.C. from the QWI (indexed by i “ 1, . . . , N) for the years 2012 and 2016
(indexed by t “ 1, 2). For each state and year, we set the untreated potential outcome
Yitp0q equal to the state’s observed outcome in the QWI. We impose “no-anticipation” by
setting Yi1p1q “ Yi1p0q. We draw the treated potential outcome at t “ 2 as Yi2p1q “
Yi1p0q ` λ

a

Var1 rYi2p0q ´ Yi1p0qsZi, where Zi is drawn from a standard normal distribu-
tion and λ P t0.5, 1u. We draw the Zi once and hold them fixed throughout the simula-
tions. To ease interpretation, we recenter the draws of the unit-specific treatment effects
λ
a

Var1 rYi2p0q ´ Yi1p0qsZi so that the EATT τEATT,2 equals zero.
We simulate D from the rejective assignment mechanism using the state-level results in

the 2016 presidential election as in the main text, and we fix the number of treated states at
N1 “ t0.5N u. We again report results for two choices of the outcome Yit: the log employment
level for state i in period t, and the log of state-level average quarterly earnings for state i
in year t.

Simulation results: Table 3 summarizes the normalized bias, variance conservativeness,
and coverage in the Monte Carlo simulations. The first row reproduces the results in Table
1 without treatment effect heterogeneity (i.e., λ “ 0). For a particular choice of the idiosyn-
cratic treatment probabilities p1, the bias of the DiD estimator for the EATT is fixed as the
standard deviation of unit-specific treatment effects varies in these simulations. But, as the
standard deviation of unit-specific treatment effects increases, the standard errors become
noticeably more conservative. For example, for the log earnings outcome and p1 “ 0.75,
the variance estimator is approximately 1.4 times too large when λ “ 0, approximately 1.5
times too large when λ “ 0.5, and approximately 2 times too large when λ “ 1. As a result
of this conservativeness, coverage rates increase for both outcomes as λ increases: e.g., for
log-earnings with p1 “ 0.75, coverage is 91.7% with λ “ 0, 93.5% with λ “ 0.5, and 97.4%
with λ “ 1.

In Figure 2, we plot how the randomization distribution of the DiD estimator varies as
we vary both the idiosyncratic treatment probabilities and the standard deviation of unit-
specific treatment effects.

D.3 Varying Population Sizes

In Section 5, we reported results where the finite population was the 50 U.S. states and
Washington D.C. We now report simulations where the size of the finite population varies.
Specifically, we consider simulations designs with N P t10, 26, 51u, where the smaller popula-
tions are obtained by choosing a subset of the 51 units in ascending order of their associated
FIPS codes.

In Figure 3, we fix the standard deviation of unit-specific treatment effects to be λ “ 0,
and plot how the randomization distribution of the DiD estimator varies as we vary both
the idiosyncratic treatment probabilities p1 and the total number of states N . For N “ 10,
the distributions appear to be symmetric, but have oscillations that are not characteristic
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(a) Log employment with λ “ 0 (b) Log earnings with λ “ 0

(c) Log employment with λ “ 0.5 (d) Log earnings with λ “ 0.5

(e) Log employment with λ “ 1 (f) Log earnings with λ “ 1

Table 3: Normalized bias, variance conservativeness, and coverage in Monte Carlo simula-
tions.

Notes: Within a particular table, Row 1 reports the normalized bias of the DiD estimator
(ER rτ̂DiDs {

a

VarR rτ̂DiDs) for the EATT over the randomization distribution; Row 2 reports the estimated

ratio
ERrŝ2s

VarRrτ̂DiDs
across simulations, which measures the conservativeness of the heteroskedasticity-robust

variance estimator; Row 3 reports the coverage rate of a nominal 95% confidence interval of the form
τ̂DiD ˘ 1.96 ŝ; and Row 4 reports coverage of an oracle confidence interval that uses the true variance rather
than an estimated one. The columns report results as the idiosyncratic treatment probability p1 varies over
t0.5, 0.75, 0.9u. The results are computed over 5,000 simulations with N1 “ t0.5N u and N “ 51. Panels
(a)-(f) vary the outcome and the degree of treatment heterogeneity (λ).
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Figure 2: Behavior of DiD estimator τ̂DiD over the randomization distribution with treatment
effect heterogeneity.

(a) Log employment (b) Log earnings

Notes: This figure plots the behavior of the DiD estimator τ̂DiD over the randomization distribution. The
idiosyncratic treatment probabilities p1 varies over t0.5, 0.75, 0.9u (colors), and the standard deviation of unit-
specific treatment effects λ varies over t0.5, 1u (columns). The results are computed over 5, 000 simulations
with N1 “ t0.5N u and N “ 51.

of a normal distribution (particularly for p1 “ 0.9). But, as N is increased to 26 (or 51),
the distributions appear to be approximately normally distributed, illustrating the finite-
population central limit theorem in Proposition 4.3. Table 4 summarizes how the coverage
rate of a nominal 95% confidence interval of the form τ̂DiD ˘ 1.96 ŝ varies. Interestingly, for
Nc “ 10, despite the non-normal distribution we find that the coverage rate never drops below
91.9% for the log employment outcome and 92.3% for the log earnings outcome, although of
course this finding may not generalize beyond the specific data-generating process studied
here.
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Figure 3: Behavior of DiD estimator τ̂DiD over the randomization distribution varying the
size of the finite population.

(a) Log employment (b) Log earnings

Notes: This figure plots the behavior of the DiD estimator τ̂DiD over the randomization distribution. The
idiosyncratic treatment probabilities p1 varies over t0.5, 0.75, 0.9u (colors), and the total number of units N
varies over t10, 26, 51u (columns). The results are computed over 5, 000 simulations with N1 “ t0.5N u and
λ “ 0.

(a) Log employment with λ “ 0 (b) Log earnings with λ “ 0

Table 4: Coverage in Monte Carlo simulations varying the size of the finite population.

Notes: This table reports the coverage rate of a nominal 95% confidence interval of the form τ̂DiD˘1.96 ŝ as
the size of the finite populationN varies over t10, 26, 51u (rows) and the idiosyncratic treatment probability p1
varies over t0.5, 0.75, 0.9u (columns) The results are computed over 5,000 simulations with with N1 “ t0.5N u

and λ “ 0.
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