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Abstract

This paper studies the optimal dynamic communication strategy of central banks

using a Bayesian persuasion game framework. In a dynamic environment, finan-

cial market participants and the general public have misaligned interests because the

present and future have different relevance in their optimization problems, leading to

a novel tradeoff for the monetary authority. Compared to the static benchmark, I show

that the central bank’s optimal dynamic communication policy should put a higher

weight on talking about the present state than the future. In addition, the central bank

should strategically send more noisy signals than in the static benchmark.
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1 INTRODUCTION

While financial market participants listen intently to central bank announcements,

this cannot be said of the general public. As Coibion et al. (2020), Binder and Kim

(Forthcoming) and many others show, most firms and households do not incorporate

information provided by the central bank into their expectations. A dynamic eco-

nomic environment, however, introduces a discrepancy between the interests of Wall

Street and Main Street: the future economy is relevant for the returns of the former,

while financial constraints and discounting of the future limit the latter’s focus to the

present. Talking over time thus presents a central bank with a novel tradeoff: how

should it communicate so as to serve the interest of the general public while knowing

that its messages only get through to investors?

The novelty of this paper is to characterize a dynamic central bank communcia-

tion policy that responds optimally to this tradeoff. To highlight the novel tradeoffs

coming from dynamics, I contrast a dynamic communication problem with its static

analogue. The static and dynamic models involve a Bayesian persuasion-type com-

munication game between a central bank (CB) and the financial market (FM) about

two economic fundamentals that represent the current and future stance of the busi-

ness cycle. Main Street cares about current employment and is thus concerned with

today’s business cycle, while Wall Street sets today’s investment choices with an eye

toward future profits. Capturing the idea that the central bank has a mandate to sta-

bilize current inflation and employment, I assume that the central bank is concerned

with the current business cycle, as opposed to the financial market that is maximizing

future profits. At the same time, the monetary authority takes into account that a only

subset of the public listens to its messages - Wall Street.
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In this environment, the central bank sends the financial market a noisy signal

which is a weighted sum of the present and the future stance of the business cycle.

Importantly, the static and dynamic models are identical up to the correlation struc-

ture between the two states. This allows me to isolate the role of dynamics for optimal

communication design. In particular, I investigate two ways in which the central bank

can address the tradeoff between the interests of Wall Street and Main Street. I first

ask how strongly the central bank should weight the current against the future in

its signal - a dimension of communication I refer to as “targetedness.” Secondly, I

explore whether the optimal precision of the dynamic signal differs from that of the

static one. In other words, does dynamic communication involve a different amount

of noise than static communication?

There are two key findings. First, the central bank’s signal is always more targeted

toward current conditions in the dynamic model than in the static one. In other words,

in a dynamic world, the central bank prefers to talk more about the present than the

future relative to the static environment. On the one hand, this is because a temporal

correlation between output today and output tomorrow renders the two states more

distinct than variables that are correlated in the cross-section. On the other, in a dy-

namic world, the financial market uses all the available information to learn about the

evolution of the business cycle. Therefore the central bank has to weight the signal

more heavily towards the present to skew the available information over time in the

right direction.

Second, in the dynamic model, the central bank optimally communicates more

noisily than in the static model. The reason behind this is that because information is

carried over from one period to the next, providing too much information today low-
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ers the central bank’s ability to persuade the financial market tomorrow. Intuitively,

communicating very precisely today makes the financial market too confident in its

beliefs the next period, making it very hard for the central bank to convince it other-

wise. Optimal precision is thus lower in the dynamic problem than in the static one as

the central bank smoothes the information it provides the financial market over time.

The dynamic communication policy studied in this paper yields testable implica-

tions regarding the everyday communication decisions central bankers make. First,

the paper provides conditions for when the central bank should give investors pre-

cise information, and when it is preferable to communicate in noisy “Fedspeak” that

leaves some residual uncertainty around the current and future economic outlook.

Second, it also suggests that it is in the interest of the general public that the central

bank should talk more about the current business cycle in order to align the actions of

Wall Street more closely with the needs of Main Street.

The paper is outlined as follows. Section 2 develops the dynamic communication

game, while Section 3 outlines the static analogue. Sections 4 and 5 describe the target-

edness and precision dimensions of the optimal communication policy respectively.

Section 6 concludes.

1.1 Related literature

The paper is related to three strands of literature. First, my main point of reference

is the global games literature in the vein of Morris and Shin (2002), Svensson (2006),

Angeletos and Pavan (2007) and Hellwig and Veldkamp (2009). Several papers have

used this literature as a starting point to study particular dimensions of communica-

tion. Chahrour (2014), for example, uses the rational inattention literature à la Sims
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(2003) to investigate the optimal amount of central bank communication.

To my knowledge, only few papers consider the time dimension in some form.

One is Gaballo (2016), who analyzes Delphic forward guidance, the communication of

the central bank about its own information set, in an overlapping generations (OLG)

global games model. However, Gaballo only introduces dynamics in the evolution

of the fundamental; central bank communication in his model is simply revealing in-

formation about the central bank’s one-period-ahead forecast. In this sense, central

bank communication in Gaballo (2016) maps one-to-one to the standard static prob-

lem of Morris and Shin (2002). Reis (2011) analyzes the optimal timing decision of an

authority that knows about a future policy change the public is unaware of. The prob-

lem of the authority is to decide when to publicly announce the future policy change.

Hansen and McMahon (2016) instead examine how the voting behavior of monetary

policy members changes over time as a result of dynamically changing signaling in-

centives.

Secondly, my work is related to the Bayesian persuasion literature in the wake

of Kamenica and Gentzkow (2011). Bayesian persuasion is a signaling game where

a sender designs his communication so as to persuade a receiver to take a sender-

preferred action. Such a setting has been widely adopted in many applications such

as stress tests (Goldstein and Leitner 2018 and Inostroza and Pavan 2022) or even

central bank communication (Ko 2019 and Herbert 2021). Importantly, the sender has

access to a full-commitment technology, and thus persuasion in this setting works

through signal design, not through untruthfulness. To the best of my knowledge, my

paper is the first to present a dynamic extension of the Bayesian persuasion setting,

applied to central bank communication.
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Viewed from the lens of commitment, my work ties in closer with the Bayesian

persuasion literature than with the macroeconomic literature on discretionary mon-

etary policy and cheap talk such as Barro and Gordon (1983), Moscarini (2007) and

Frankel and Kartik (2018). While the discretionary monetary policy literature has an

explicit concern for dynamics, the central question in this literature is not how to pro-

vide information to the public, but how to design central bank action over time.

My paper highlights the fact that dynamics introduces a distinction between var-

ious subsets of the private sector: those who listen to central bank announcements

versus those whose welfare monetary policy is mandated to support. This is a point

of connection with a third literature: the literature on whether firms and households

pay attention to monetary policy communication. In most empirical papers, the an-

swer is in general no (Binder 2017, Coibion et al. 2018, Candia et al. 2021 and Pfäuti

2021). In emphasizing the varying levels of attentiveness among the public, both this

literature and my paper motivate the question whether it is desirable from a welfare

perspective to increase the public’s attentiveness to central bank statements. Put more

starkly, this raises the possibility that in recent decades, central banks might have been

too successful at anchoring the private sector’s expectations.

Lastly, I focus on central bank communication about economic fundamentals, not

about future policy. To use the terminology of Campbell et al. (2012), I thus model

Delphic, and not Odyssean, forward guidance. This way I can isolate the effect of

pure communication instead of considering the implications of the central bank tying

its hands concerning the evolution of future policy.
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2 THE DYNAMIC MODEL

Consider an economy where an economic fundamental, θ, evolves dynamically over

time. Suppose the fundamental evolves according to

θt+1 = ρθt + εt+1, with εt+1 ∼ N (0, σ2
ε), and σ2

ε = 1− ρ2. (1)

The interpretation for the fundamental I have in mind is the stance of the business

cycle. For example, think of θt as the output gap today, and of θt+1 as the output gap

tomorrow. To keep things simple, I will thus refer to θ as “output.” Thus ρ captures

temporal correlation between today’s output and tomorrow’s output, and I have set

the variance of the innovation, σ2
ε , so that output has unit variance.

In this setting, consider the problem of a central bank that seeks to communicate

with the public about the current and future business cycle. First of all, the central

bank needs to come to terms with the idea that its communication will be received by

financial market participants only (Wall Street), as households living on Main Street

tend not to participate in financial markets and not to pay attention to central bank

communication (Van Rooij et al. 2011, Kumar et al. 2015, Candia et al. 2021, Binder

2017, Coibion et al. 2018). Second, the central bank needs to communicate with the

financial market, while keeping its mandate of price stability and full employment in

mind. In other words, the central bank faces the problem of talking to Wall Street, yet

representing Main Street.

The key point of the paper is to suggest that in a dynamic environment, this creates

a novel tradeoff for the central bank. This tradeoff stems from the fact that while the

central bank’s mandate leads it to want to stabilize the current business cycle, financial

market participants are inherently concerned with the future business cycle, as that is
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what is relevant for their profits.

To appreciate the latter point, think of an investor’s optimal choice of investment.

As spelled out in detail in Appendix A, a standard Q-theory of optimal investment

à la Tobin (1969) suggests that current investment is chosen to maximize the future

stream of profits. To select the right level of investment, investors thus need to glean

information about future profitability.

The central bank, instead, manages demand to stabilize the current business cy-

cle. Since investment is a component of aggregate demand, high current investment

boosts demand, leading to higher production and thus higher employment today.

The dynamic nature of the problem thus introduces a misalignment in preferences

between the central bank and the financial sector.

I model this dynamic communication problem as a dynamic extension to a Bayesian

persuasion game à la Kamenica and Gentzkow (2011). In particular, this is a commu-

nication game between a central bank (CB) and the financial market (FM) in which

the FM chooses an action that I will think of as investment, It, and the CB provides

information about the current and future business cycle to the FM. Like Kamenica and

Gentzkow (2011), I assume that lying is not allowed, so that all signals are truthful.1

To capture the preference misalignment inherent to the dynamic setup, the payoffs

of the two players are

LFM,dynamic = EFMt (It − θt+1)2, (2)

LCB,dynamic = ECB0

∞∑
t=0

βt(It − bθt)2, (3)

with b ∈ [0,∞) denoting the weight which the CB places on tracking θt, and β ∈ (0, 1)

being the central bank’s discount factor.
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The “persuasion” element of the model, following Kamenica and Gentzkow (2011),

is that the CB designs its signals in a way to induce the FM to choose the action that

maximizes the CB’s expected payoff. This is the “talk to Wall Street, represent Main

Street” element of the model. It captures the idea that the CB needs to communicate

with the FM so as to make it choose investment to the benefit of the general public,

that is, to stabilize the current business cycle. At the same time, the CB talks to the FM

with the understanding that the FM cares about future profitability.

For simplicity, I assume the CB observes the full history of states perfectly, in-

cluding the one-period-ahead state, while the FM’s information set only includes the

history of the signal. Formally, the information sets of the two players in a particular

period are

ICBt = {θt+1, θt, . . . , θ0}, IFMt = {st, st−1, . . . , s0}. (4)

To capture communication simultaneously about the present and the future, I as-

sume that the central bank sends a signal to the financial market of the following form

st = θt +
1

ψ
θt+1 + vt, vt ∼ N (0, σ2

v), (5)

where v is a noise term with variance σ2
v , and ψ is a weight on current output.

There are two dimensions to the CB’s communication problem embedded in this

signal structure. The first one, ψ, represents how strongly the CB weights today’s

output relative to tomorrow’s. I refer to this dimension of dynamic communication

as “targetedness.” When ψ > 1, the signal is targeted toward current output, with the

limit of ψ →∞. By contrast, when ψ < 1, the signal is targeted toward future output,

with a limiting case of ψ → 0. In the intermediate case, when ψ = 1, the weight on

both states is equal and thus the signal is not targeted.
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The second dimension is σv, corresponding to the precision of communication. A

low σv renders a signal with given targetedness more precise, while a high σv ren-

ders it more noisy. Most papers in the central bank communication literature focus

on this dimension of communication, because asking how precisely the CB should

communicate is a well-defined question also in a static communication setting. The

targetedness dimension, instead, is a fundamentally new dimension to dynamic com-

munication.2

Admittedly, the signal structure in Equation (5) is somewhat restrictive: it says that

the CB makes statements about the economy that mix information about current and

future conditions, and that such statements can be anywhere between very concrete

and relatively vague. In fact, this signal structure is designed to mimic the way central

bank statements about the economic outlook are set up. Consider for example the

following excerpt from the Federal Open Market Committee (FOMC) Statement of

the Federal Reserve from December 15, 2021:

With progress on vaccinations and strong policy support, indicators of eco-

nomic activity and employment have continued to strengthen. The sectors

most adversely affected by the pandemic have improved in recent months

but continue to be affected by COVID-19. Job gains have been solid in re-

cent months, and the unemployment rate has declined substantially. Sup-

ply and demand imbalances related to the pandemic and the reopening of

the economy have continued to contribute to elevated levels of inflation.

Overall financial conditions remain accommodative, in part reflecting pol-

icy measures to support the economy and the flow of credit to U.S. house-

holds and businesses.
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The path of the economy continues to depend on the course of the virus.

Progress on vaccinations and an easing of supply constraints are expected

to support continued gains in economic activity and employment as well

as a reduction in inflation. Risks to the economic outlook remain, including

from new variants of the virus. (Federal Reserve, December 15, 2021)

The first paragraph is dedicated mainly to the current economic stance, while the

second focuses first and foremost on the future outlook. Thus the statement contains

information about both present and future. With four long sentences in the first para-

graph compared to three shorter ones in the second, the statement also appears to

place a higher weight on the current circumstances. In the language of Equation (5),

the statement is more targeted toward the present.

The boundaries between present and future are blurred, however. For many of the

sentences, it is not straightforward to make out what time horizon they pertain to. A

good example of this is the second sentence of the second paragraph. Are “[progress]

on vaccinations and easing of supply constraints” happening now, leading to “contin-

ued gains in economic activity” in the future? Or is the FOMC expecting “[progress]

on vaccinations and easing of supply constraints” moving forward? Similarly, the last

sentence of the paragraph is also somewhat ambiguous as to whether the current or

the future economic outlook is risky (or both).

Thus Equation (5) offers a simple, reduced-form way of capturing the way central

bank statements provide information about the current and future stance of the econ-

omy. Furthermore, it also aligns with the form of the signal that Main Street would

choose if it were selecting the signal subject to rational inattention.3

In this setting, the communication policy of the CB consists of choosing at the
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beginning of time the form of the signal to be sent to the FM in each period. In other

words, in period 0, the CB chooses ψ and σv and sticks to this communication policy

forever.

Noting that the FM’s problem implies that the FM’s investment choice corresponds

to its expectation of tomorrow’s output, the CB’s problem can be stated as minimiz-

ing its loss function subject to optimal FM inference. Since the signal is linear with

Gaussian noise, the optimal FM forecast is given by the Kalman filter formula

θt+1|t = m1θt|t−1 +m2θt +m3θt+1 +m4vt, (6)

where θt+1|t := Et[θt+1|IFMt ], and mi, i = 1, . . . , 4 are given by the Kalman filter, as

derived in Appendix B. Then the CB’s problem is

min
ψ,σv

ECB0

∞∑
t=0

βt(θt+1|t − bθt)2 s.t. θt+1|t = m1θt|t−1 +m2θt +m3θt+1 +m4vt. (7)

DEFINITION 1. Let µX(x) be the probability distribution of a variable X induced by the

FM’s beliefs. A Perfect Bayesian Equilibrium is an action rule It, belief system µ and a com-

munication policy (ψ∗, σ∗v) such that

• It = arg minLFMt (It, θt+1) s.t. EFMt (θt+1|st),

• (ψ∗, σ∗v) = arg minLCB({It, θt}∞t=0) s.t. EFMt (θt+1|st) and

st = θt + 1
ψθt+1 + vt with vt ∼ N (0, σ2

v),

• FM beliefs EFMt come from µ ∀t, and for the dynamic model, µ is consistent with Bayes’

rule:

µΘ|S=s(θ) =
µS|Θ=θ(s)µΘ(θ)

µS(s)
.
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3 THE STATIC BENCHMARK

I now provide a static model that is as close of an analogue to the dynamic model as

possible. Let θ1, θ2 denote two fundamentals that are correlated in the cross-section

with the following properties:

(θ1, θ2) ∼ N (0,V), with V =

1 ρ

ρ 1

 . (8)

Like in the dynamic world, the two states have unit variance and their correlation

is given by the parameter ρ. The only difference to the dynamic model is that here

ρ is not a temporal correlation, but a cross-sectional one. Thus, stricly speaking, the

interpretation of “current output” and “future output” is no longer valid. Therefore

the temporal misalignment in preferences between the FM and the CB is also gone. In

order to have the same payoff structure as in the dynamic model, then, let us imagine

a situation in which for some reason, the CB targets some other aspect of the economic

environment than the FM does. That gives rise to analogous payoffs as in the dynamic

setting, where

LFM,static = EFM (I − θ2)2, (9)

LCB,static = ECB(I − bθ1)2. (10)

For ease of comparison with the dynamic model, I will abuse terminology a little and

refer to θ1 as “current output,” and to θ2 as “future output.”

Again in analogy with the dynamic setting, I assume the CB knows more than the

FM does

ICB = {θ1, θ2}, IFM = {s}, (11)
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and, finally, I constrain the CB’s signal to be identical to that in the dynamic model:

s = θ1 +
1

ψ
θ2 + v v ∼ N (0, σ2

v). (12)

Setting up the CB’s problem follows the same steps as in the dynamic model. The

optimal FM forecast in the static model is given by

θ2|s = φs, (13)

where θ2|s := EFM [θ2|s], while the optimal projection is given by the ordinary-least-

squares formula φ = Cov(θ2,s)
V ar(s) . Then the statement of the CB’s problem is

min
ψ,σv

ECB(θ2|s − bθ1)2 s.t. θ2|s = φs. (14)

4 OPTIMAL TARGETEDNESS

Integrating out the states from the central bank’s loss function, one obtains V , the CB’s

expected loss function. In the static model, this takes the following form

Vstatic = V ar(θ2|s)− 2bCov(θ2|s, θ1) + b2, (15)

where I have utilized the fact that V ar(θ1) = 1. Analogously, the expected loss func-

tion in the dynamic model is given by

Vdynamic =
1

1− β

(
V ar(θt+1|t)− 2bCov(θt+1|t, θt) + b2

)
, (16)

where I have similarly made use of the fact that V ar(θt) = 1. Since Equation (16) is

quite involved, I now present the analytical solution for ψ in the static model, and

contrast it with a numerical solution for the dynamic model. (See Appendix C for the

full analytical expressions.)
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PROPOSITION 1. In the static model, optimal targetedness is given by

ψ∗static =

√
γ − ρ

(
2bσ2

v + ρ
)

+ σ2
v + 1

2 (bρ2 + b− ρ)σ2
v − 2 (ρ2 − 1) (b− ρ)

, (17)

γ :=
(
−ρ2 + σ2

v + 1
) (

(1− 2bρ)2σ2
v −

(
ρ2 − 1

)
(4b(b− ρ) + 1)

)
. (18)

Figure 1 illustrates the optimal ψ as a function of ρ for a benchmark calibration of

b = 1 and β = 0.99. I also set σv = 1 throughout this section. The solid line pertains to

the static, the dotted line to the dynamic model. Before turning to the differences in

optimal targetedness between the static and dynamic models, let me first characterize

the commonalities between the two. This is formalized in the following proposition.

PROPOSITION 2. Shared features of the optimal targetedness policy

Both in the static and dynamic model, ψ∗(ρ) has the following properties:

• ψ∗ ≥ 0 ∀ρ.

• When ρ→ −1, ψ∗ → 1 from above.

• When ρ→ 1, ψ∗ → 0 from above.

• ∃ ρa such that for ρ < ρa, ψ∗ is increasing in ρ, but for ρ > ρa, ψ∗ is decreasing in ρ.

• ∃ ρs > ρa such that ψ∗(ρs) = 1, and for a small ε > 0, ψ∗(ρs − ε) > 1 > ψ∗(ρs + ε).

I refer to ρa and ρs as the alignment and switching threshold respectively.

Figure 2 explains Proposition 2 by replotting Figure 1 schematically, splitting the ρ-

space into four different regions. In Region I, shown in gray shading, ρ < 0, rendering

the preferences of the FM and the CB severely misaligned. This means that while the

CB would like the signal to be targeted toward today’s output, it cannot make ψ too

15



large, because a negative correlation between today’s and tomorrow’s output means

that the FM would set investment exactly the opposite way. One can see this on Figure

3, which plots the FM’s responsiveness to the CB’s signal for various values of ρ. For

example when ρ = −0.99, as in the leftmost panel of Figure 3, the response coefficient

of the FM (κ in the dynamic, φ in the static model) has the opposite sign to ψ. In

the limit, when ρ = −1, the best the CB can do is to send a perfectly confounding

signal, ψ = 1, resulting in the FM ignoring the signal completely. As ρ approaches

zero from below, however, the constraint on how strongly the CB can target current

output loosens. Therefore, throughout Region I, ψ∗ is increasing in ρ.

Once ρ ≥ 0, we enter Region II, the region on Figure 2 shaded with diagonal lines.

Here, since ρ ≥ 0, there is no constraint on the CB in raising ψ and thus targeting

current output more strongly. And it is desirable to raise ψ for the CB because ρ is

sufficiently close to zero that the CB’s and the FM’s preferences are still misaligned.

However, the CB cannot raise ψ indefinitely, since responsiveness falls the higher ψ

is. For example, when ρ = 0, the middle panel of Figure 3 shows that ∂κ/∂ψ < 0 for

any ψ > 1.

The region shaded with dots, Region III, begins once ρ > ρa. At this point, ρ is

high enough for the two players’ preferences to become more aligned. Thus the CB

becomes interested in raising the FM’s responsiveness to tomorrow’s output instead

of today’s. As shown in Appendix B, the FM’s responsiveness to tomorrow’s output

is κ/ψ in the dynamic, while it is φ/ψ in the static model. Thus in both models the

CB can raise this by lowering ψ. A lower ψ not only lowers the denominator, but also

raises the numerator, as κ and φ are decreasing in ψ if ψ > 1 and ρ is positive and

not too close to 1 (see third and fourth panels of Figure 3). Thus in this region, the CB
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maximizes responsiveness to a weighted average of current and future output.

Once ρ > ρs, the two states are so strongly correlated that the CB’s and the FM’s

preferences are strongly aligned. In this region, held in white and marked Region IV

on Figure 2, the CB’s primary concern is the noise in the signal. Since ρ is approaching

1, the CB is indifferent to whether the FM responds to today’s or tomorrow’s output,

and the only thing that can get in the way of that is the noise. This way, the FM’s

responsiveness to future output increases, while its responsiveness to the signal in

general, and thus to noise, decreases. Thus for a sufficiently high ρ, the CB switches

the targetedness of the signal from today’s to tomorrow’s output.

In this manner, ρ, the correlation between the two states, determines the optimal

choice of targetedness in both the static and the dynamic model. In the limit, severe

misalignment results in a signal that does not target any of the two states, while the

opposite extreme of perfect alignment leads the CB to target the FM’s preferred state

infinitely. Between the limiting cases, the CB balances the need for a high level of

targeting current output if alignment is low against the shrinking responsiveness of

the FM to the signal if it is too targeted toward today’s output.

4.1 More targeted toward the present

As Figure 1 indicates, ψ∗ is quantitatively different across the two models. Moreover,

the threshold ρs after which the CB only aims to drive down the responsiveness to

noise arrives later in the dynamic model than in the static one. The next proposition

states these results.

PROPOSITION 3. Higher weight on the central bank’s target in the dynamic model
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ψ∗dynamic ≥ ψ∗static ∀ ρ. (19)

In the dynamic model, the central bank finds it optimal to target today’s state more than it

would in the static model for any level of alignment.

COROLLARY 3.1.

ρsdynamic > ρsstatic. (20)

The switching threshold is higher in the dynamic model than in the static model.

Figure 4 illustrates Proposition 3. It plots expected payoffs of the CB as a function

of targetedness across the static (solid line) and dynamic models (dotted line). One

notices that for any value of ρ, that is on all panels of the figure, ψ∗ is weakly larger in

the dynamic model than in the static one.

Why is it optimal for the central bank to target current output more in the dynamic

model? To understand the reason, it is helpful to consider some measure of how

informative a given signal is about current and future output. To do so, let π(θT ) and

p(θT , st) denote prior and posterior variances of θT , where T = t, t+ 1,

π(θT ) := E[(θT − θT |t−1)2], (21)

p(θT , st) := E[(θT − θT |t)2]. (22)

Let us also define

I(θT , st) := π(θT )− p(θT , st), (23)

as the decrease in uncertainty in θT given st. I will refer to I(θT , st) as the “infor-

mativeness” of signal st about θT , as it captures how much the signal contributed to

reducing the FM’s uncertainty about output at time T .4
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Figure 5 plots the informativeness of today’s signal about today’s output (solid

line) and tomorrow’s (dotted line), both as a function of targetedness, ψ.5 The first

thing one observes is that in general, the solid and dotted lines go in opposite ways.

This is an intuitive feature which comes from the fact that higher targetedness toward

current output (higher ψ) renders a signal more informative about today’s output,

and less informative about tomorrow’s.

Notice, however, that for the static model, this pattern disappears when the two

states are highly correlated, so that ρ is close to -1 or 1 (the far left and right panels).

This makes sense, given that a high targetedness in either direction is informative

about both current and future output when the two are very closely related. For ex-

ample, when ρ = 1, this means that in the static model, the two states are exactly

equal. Because the output process is an AR(1) in the dynamic model, however, a per-

fect correlation of ρ = 1 does not render today’s and tomorrow’s output exactly equal.

Therefore, in the dynamic setting, this introduces the need for the CB to always target

current output more in the signal, because even in a ρ = 1 situation, there is some-

thing to lose for the CB if the FM focuses on the future. This explains why for low

ρ-values, the central bank’s loss is higher in the dynamic than in the static model (see

the left panels of Figure 4).

But the fact that the AR(1) process for output always introduces a meaningful dis-

tinction between today and tomorrow also shows up in another way. For example,

look at the solid lines on the second from the right panel of Figure 5, when ρ = 0.5.

What becomes apparent is that the informativeness of the signal about today’s out-

put is nonmonotonic in the static model, but stays monotonic in the dynamic model.

In other words, for any correlation, in the static model there comes a point at which
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increasing the targetedness of the signal further toward current output decreases the

informativeness of the signal about current output.

In the dynamic model, this feature is absent because the additional distinction be-

tween present and future gives the CB the opportunity to provide information about

today’s output that is not relevant for tomorrow’s. A cross-sectional correlation, as

in the static model, precludes this possibility because any information about today

is by construction relevant for tomorrow. Therefore, in a dynamic world, the CB ex-

ploits this possibility to provide more information about current conditions to push

the FM’s investment choice in the right direction. This also explains why the dynamic

expected loss in Figure 4 is lower for sufficiently high (ψ, ρ) pairs.

4.2 More information in the dynamic world

Is the autoregressive process for output the only explanation for a stronger targeting of

current output in the dynamic model? The answer is no: one also needs the financial

market to understand the dynamic environment. To see this, let us examine how the

financial market’s beliefs affect the central bank’s loss function across the two models.

As stated in Equations (15) and (16), the expected loss function of the CB consists of

the variance of the FM’s beliefs about tomorrow’s output and the covariance of the

FM’s beliefs of tomorrow’s output with today’s output:

Vstatic = V ar(θ2|s)− 2bCov(θ2|s, θ1) + b2, (24)

Vdynamic =
1

1− β

(
V ar(θt+1|t)− 2bCov(θt+1|t, θt) + b2

)
. (25)

For the static and dynamic loss functions to coincide, one thus needs that the co-

variances of beliefs are identical across the two models. One can compute the covari-
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ances from manipulating the expressions for the evolution of beliefs. Those, in turn,

are computed by substituting in the signal in the optimal forecast in the static model

from Equation (14), and writing out the Kalman filter equation in the dynamic model,

Equation (7), with the help of Appendix B:

Static: θ2|s = φθ1 +
φ

ψ
θ2 + φv, (26)

Dynamic: θt+1|t = m1θt|t−1+κθt +
κ

ψ
θt+1 + κvt, (27)

where

φ =
ρ+ 1

ψ

1 + 1
ψ2 + 2 ρψ + σ2

v

, κ =
ρp4 + 1

ψp1

p4 + 1
ψ2 p1 + 2 ρψp4 + σ2

v

, (28)

and p1 = π(θt+1) and p4 = π(θt) are the two diagonal elements of the 2 × 2 forecast-

error-variance matrix P , corresponding to the prior variances of tomorrow’s output

and today’s, respectively.

One immediately notices that there is more information in the dynamic model.

This is captured by two sources: the presence of the prior mean θt|t−1 in Equation (27)

and the presence of the prior variances p1 and p4 in κ, which render κ distinct from φ.

Both allow the FM to carry over information from the past to the present.

One can shut off the flow of information from the past by constraining the FM to

hold prior beliefs with mean 0 and variance 1, equal to the priors in the static setting.

In this case, the response coefficients to incoming information become equal (κ = φ),

and the prior mean drops out of Equation (27), so that beliefs in the dynamic model

evolve exactly as in the static model. Now, in each period of the dynamic model, the

FM no longer uses any past information and thus has exactly as much information as

in the static setting.
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The crucial point is that even in this case of equal information, the CB’s loss func-

tions do not coincide as long as m1 6= 0. The reason is that the covariances that enter

the loss functions are a function of m1 (see Appendix B). What this is saying is that as

long as the FM understands the dynamic nature of the problem, even if it were to mis-

takenly hold the wrong prior beliefs in every period, and therefore make erroneous

point forecasts, the unconditional variance of the FM’s beliefs would still reflect the

knowledge that output is correlated over time. In order for dynamics not to matter at

all, one thus needs to set m1 = 0 as well, implying that the FM thinks that ρ = 0. In

other words, one also needs to assume that the FM thinks that output is uncorrelated

over time.

5 OPTIMAL PRECISION

Now I turn to the question of how precise the central bank’s signal should be for a

given targetedness. Noting that the precision of the signal is the inverse of the vari-

ance of the noise, I will use the terms “precision” and “noise” interchangeably when

talking about σv. Thus, holding ψ fixed, the central bank now chooses σv to minimize

the loss function in Equation (16). The next proposition gives an analytical character-

ization of the solution in the static and dynamic models.

PROPOSITION 4. Corner versus interior solutions

In the static model, optimal precision is a corner solution: σ∗v is either 0 or∞. In the dynamic
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model, the roots of the first order condition are

0

±
√

1−ρ2
√
ρ
√
ψ

±
√

ϕ1+ϕ2

ϕ3

±
√

ϕ1−ϕ2

ϕ3


, (29)

where ϕi, i = 1, 2, 3 are provided in Appendix F, and both corner and interior solutions exist.

This result suggests a qualitative difference between optimal precision in the static

and dynamic models: whereas in the static model, the solution for σv is bang-bang,

this is not necessarily the case in the dynamic model. Figure 6 provides a visual il-

lustration of this point by showing σ∗v as a function of ψ and ρ in the top panel, while

the bottom panel depicts the cross-section with ψ set to 0.2, 1 and 1.8. The ψ-values

are selected to encompass a case where the CB’s signal is targeted toward tomorrow’s

output (ψ < 1), when the signal is not targeted (ψ = 1), and lastly when it is tar-

geted toward today’s output (ψ > 1). Also, I continue to use the calibration with

b = 1 and β = 0.99 throughout the section.

5.1 Corner solutions in the static model

Focusing first on the solid line on the bottom panel of Figure 6, which corresponds to

σ∗v in the static model, one observes the bang-bang nature of optimal static precision.

When ψ = 0.2 < 1, so that the CB targets future output in its signal (bottom left

column of Figure 6), the CB sets σ∗v = 0 only if ρ ≥ ρb(ψ), that is, if ρ is higher than

a particular threshold which I will refer to as the bang-bang threshold, and which

is a function of ψ. Note that if ψ < 1 and σv = 0, the CB’s signal in Equation (5)
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is an invertible moving average process, so in this case sending an infinitely precise

signal (σv = 0) would mean that the CB reveals the output process fully. Therefore, in

this case, when preference alignment is high enough (ρ ≥ ρb(ψ)), the CB in the static

model prefers to fully reveal the current and future output, and otherwise, it sends an

infinitely imprecise signal.

A similar situation arises in the static model when ψ > 1, so that the signal is

targeting current output. Again, there exists a bang-bang threshold ρb(ψ) such that for

ρ > ρb(ψ), the CB’s signal becomes infinitely precise, and is infintely noisy otherwise.

Since in this case the signal weights the CB’s preferred state (current output) more

strongly, the bang-bang threshold is lower than it is when the signal is targeted toward

future output. This reflects that the CB reverts to communicating infinitely precisely

already for a lower level of alignment if it gets to skew its signal towards the present.

The only ψ for which the CB chooses σ∗v = 0 for any ρ is ψ = 1. The reason is that

in this case, the signal is not targeted at all. Therefore the information provided by

the CB improves the FM’s expectations without pushing them in the wrong direction,

even if ρ→ −1.

5.2 Tightness of prior beliefs in the dynamic model

Let us now examine the optimal precision σ∗v in the dynamic model, shown by the

dotted line in the bottom panel of Figure 6. The main qualitative difference is that, in

contrast to the static model, the solution is not generally bang-bang. While there exist

(ρ, ψ) pairs for which σ∗v is corner (0 or∞), for many (ρ, ψ) pairs the optimal precision

is interior.

When ψ = 0.2 (bottom left panel of Figure 6), so that the CB’s signal is targeted
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toward future output, the FM’s preferred state, σ∗v shifts from∞ to an interior value

when ρ exceeds ρi(ψ), a threshold value I will call interiority threshold. Optimal noise

only shrinks to zero when ρ = 1. When ψ = 1 (bottom middle panel of Figure 6), so

that the weight on the two states in the CB’s signal is equal, the same pattern obtains.

For ρ < ρi(ψ), optimal noise is infinity, and as ρ > ρi(ψ), σ∗v drops below infinity,

converging to zero for ρ → 1. The only difference between the future-targeted and

the untargeted signal is that for the untargeted signal, the interiority threshold arrives

earlier. This resembles the intuition in the static model that for a signal that is more

targeted towards today’s output (has a higher value of ψ), the CB pivots away from

infinite imprecision already for a lower level of ρ.

Something entirely different happens when the CB’s signal is strongly targeted to-

wards current output, the CB’s preferred state. This situation, depicted on the bottom

right panel of Figure 6, involves an initial bang-bang as σ∗v transitions from ∞ to 0

when ρ hits a particular bang-bang threshold ρb(ψ) < 1. Afterwards, σ∗v remains 0 as

ρ increases, until ρ exceeds an interiority threshold. Here, σ∗v becomes interior from

below, surprisingly increasing as alignment between the two states grows. Finally,

once alignment becomes very strong, σ∗v reverses course and decreases back down to

asymptote to 0 as ρ→ 1.

What is going on? Why is optimal precision often interior in the dynamic model,

while it never is in the static model? And if σ∗v passes from ∞ to 0 through an inte-

riority region when ψ ≤ 1, why does this interiority region disappear when ψ > 1,

only to reappear for much higher ρ-values? To understand why all of this happens, it

is helpful to investigate the tightness of prior and posterior beliefs in the two models.

Recall the notation of π(θT ) for prior and p(θT , st) for posterior variances of θT , intro-
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duced in Equation (22), and also recall the measure of the informativeness of a signal

st from Equation (23)

I(θT , st) := π(θT )− p(θT , st), (30)

which captures the decrease in uncertainty in θT given st. As demonstrated in Ap-

pendix D, the FM’s prior on current or future output in the static model is equal to the

unconditional variance of output, 1. In the dynamic model, instead, in any period,

the posterior variance p(θt+1, st) is carried over to the next period, becoming the en-

dogenous prior π(θt) in the following period. On the one hand, this has the important

consequence that in the static model

I(θT , s) = V ar(θT |s), T = 1, 2, (31)

implying that informativeness is a monotonically decreasing function in σv. It is easy

to verify that this is true for informativeness about θt+1 in the dynamic model as well,

as

I(θt+1, st) = (1− ρ2)V ar(θt+1|t). (32)

On the other hand, it clearly does not always hold for θt:

I(θt, st) = V ar(θt|t)− V ar(θt|t−1). (33)

In other words, the dynamic model has the property that informativeness about θt is

nonmonotonic in σv. The following proposition and corollary summarize this insight,

together with its implications for the optimal precision choice.

PROPOSITION 5. Tight priors dampen informativeness in the dynamic model

Informativeness about θt is nonmonotonic in σv because the endogenous prior carries over

information from period t−1 to period t. Let sh denote a high-precision signal, while sl a low-

precision one. If a precise signal in the previous period, sht−1, tightens the prior in t sufficiently,
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then the reduction in uncertainty at time t due to the signal pair {st, sht−1} is lower than for

the pair {st, slt−1}.

COROLLARY 5.1. Information smoothing in the dynamic model

In the dynamic model, a lower degree of precision serves to keep priors from getting too tight;

the optimal precision choice involves the smoothing of information provision.

The nonmonotonicity of I(θt, st) comes from the signal structure in Equation (5),

which implies that in any given period t, the current signal st is not the first to pro-

vide the FM with information about θt (see also the discussion in Section 4.2). If all

signals have sufficiently high precision, then by the time period t arrives, the FM has

already learned enough about θt from st−1, and will therefore find the current signal

less informative than if it had acquired less information in the past.

Figure 7 illustrates Proposition 5, plotting the reduction in uncertainty in θt+1 (dot-

ted line) against that in θt (solid line), both as a function of σv for various (ρ, ψ) pairs.

The dash-dotted line corresponds to the optimal precision σ∗v . Just like Equation

(32) suggests, I(θt+1, st) indeed decreases monotonically in σv. I(θt, st), instead, is

hump-shaped in the majority of cases, assuming a maximum at an “informativeness-

maximizing” precision level I will denote by σIv :

σIv := arg max I(θt, st). (34)

The optimal precision, σ∗v , shown in the dash-dotted line on Figure 7, lends sup-

port to Corollary 5.1. The interior solutions for σv are visible as situations where the

dash-dotted line is not stuck at the numerical bounds I impose on the figure. When-

ever the optimal precision is interior, σ∗v is in the neighborhood of σIv . In other words,

the CB finds it optimal not to shrink the signal noise to zero because this allows it
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to push I(θt, st) up, that is, increase the informativeness of the signal about current

output. This lets the CB ensure that in any period t, the current signal contributes to

the FM’s information set and thus exerts persuasion. Thus the CB wants the FM to

receive approximately equal amounts of information in each period, a phenomenon I

refer to as the smoothing of information provision.

Thus it is the nonmonotonicity of informativeness about θt that is behind the inte-

rior solutions in σv in the dynamic model. Intuitively, this nonmonotonicity captures

the effect of the tightness of the FM’s priors on the CB’s communication problem.

Clearly, there are parameter configurations for which it is optimal to communicate

infinitely precisely. But for many (ρ, ψ) pairs, precise communication in period t − 1

would tighten the FM’s prior in period t too much, making it hard for the CB to in-

fluence the FM’s beliefs. Therefore the key driver of the difference between static and

dynamic optimal precision is the varying tightness of the prior.

But it is not quite the only driver. If it were, then the CB would find it optimal to

set precision exactly so as to always maximize informativeness about current output

(σ∗v = σIv). This is however clearly not the case, as one can see by comparing the dash-

dotted line (σ∗v) with the informativeness-maximizing precision level (σIv) on Figure

7. More often than not, the two are not equal. So to find out what other forces are

behind the optimal precision choice, let us now investigate how σ∗v depends on first ρ

and then ψ.

Fixing ψ and increasing ρmeans that for a fixed column, one moves down through

the rows of Figure 7. When ρ � 0, σ∗v = ∞. This tells us that when preference mis-

alignment is strong, the CB wishes to minimize both I(θt+1, st) and I(θt, st), because

in this case, any information in the signal will be misused by the FM in the sense
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that its investment choice will be of opposite sign to θt. When alignment rises above

the interiority threshold, ρi(ψ), for example when ρ rises from -0.9 to 0 in the middle

column of Figure 7, the CB seeks to maximize I(θt, st), i.e. to provide as much in-

formation about current output as possible. This requires both σv < ∞ and σv > 0

because of the nonmonotonicity of I(θt, st).

At the same time, depending on the extent of alignment, the CB sometimes sees it

necessary to also minimize the information it reveals about future output. This is the

case in the (ρ, ψ) = (0, 1) panel of the figure, pushing σ∗v above σIv . As alignment be-

comes near perfect, for instance in the last row of the figure, where ρ = 0.9, the CB no

longer simply maximizes I(θt, st), because providing information about tomorrow’s

output pushes the FM in the same direction as information about today’s. Now in-

stead it is optimal to maximize a weighted sum of information provision about both

states. This pushes σ∗v below σIv toward zero.

Let us now hold alignment fixed and investigate how targetedness affects the op-

timal precision choice. For a fixed ρ, increase ψ by moving right along any row of

Figure 7. Except for the first row, where ρ � 0 and thus σ∗v = ∞ ∀ψ, a higher ψ leads

to a strictly lower σ∗v . For example, in the middle row of the figure, where ρ = 0,

optimal noise is infinity when ψ = 0.2. As ψ increases to 1, σ∗v takes on an interior

value around 1.4. Finally, when ψ rises to 1.8, σ∗v drops to zero. Intuitively, what is

happening here is that the CB renders those signals precise that target its favored state

strongly.

There is something special about ψ > 1, however, i.e. when the CB’s signal is

targeted towards current output. As the bottom right panel of Figure 6 recalls, not

only does this involve the only bang-bang σ∗v-behavior in the dynamic model, so that
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σ∗v switches from ∞ to 0 once ρ exceeds the bang-bang threshold ρb(ψ), but σ∗v rises

above 0 again for ρ high enough. We can read off why this happens from the right

column of Figure 7. The cases of ρ = −0.9 or 0 are the only instances on the figure

where I(θt, st) > I(θt+1, st). This is because for a combination of sufficiently low

alignment and sufficiently high targetedness towards the present, the CB’s signal is

very informative about current output, but this informativeness does not carry over to

future output. In this case, the CB can max out informativeness about today’s output

by setting σ∗v = 0.

If alignment is too low, however, as in the top right panel of Figure 7, where ρ =

−0.9, the informativeness of the signal about current output is misused by the FM

to deduce clues about the future, and thus the CB can do no better than to shut off

precision and set σ∗v =∞. If alignment is instead too high, then it is no longer the case

that the signal is more informative about the present than the future, and therefore

adding a little noise is optimal to push I(θt, st) up and I(θt+1, st) down a bit.

The optimal precision choice of the CB is thus a much more complicated object

in the dynamic model than in the static one. It is mainly driven by the tightness of

the financial market’s prior, which, in the dynamic world, is endogenous to central

bank communication. A too tight prior is a constraint to the CB as it renders current

communication ineffective. Therefore adding noise to the signal serves the function

of loosening up the prior and distributing the information provided to the FM evenly

across time.6
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6 CONCLUSION

Central bank communication is a dynamic problem: in a world where economic fun-

damentals evolve over time and the monetary authority communicates repeatedly,

central bankers have to provide information about both the present and the future.

This introduces a novel tradeoff for central bankers, as their statements reach only the

subset of the public that is concerned with the future business cycle. At the same time,

the central bank has a mandate to maximize welfare of the entire public, rendering

preferences misaligned between sender and receiver of central bank communication.

This paper is the first to investigate the implications of dynamics for central bank

communication. Analyzing two models identical up to the interpretation of the cor-

relation between two states allows me to isolate the effect of temporal dependence

between the states on the communication problem. It turns out that the fact that the

financial market’s prior beliefs become endogenous in the dynamic model drives a

wedge between the static and dynamic communication policies, dampening the per-

suasiveness of the central bank’s signal.

In terms of optimal targetedness, the dynamic model involves a higher weight on

today’s state in the signal than the static model for any correlation. This is because,

as opposed to cross-sectional correlation, temporal dependence renders the two states

sufficiently distinct that the central bank needs to exert additional persuasion to push

the financial market’s beliefs in the right direction.

Optimal precision is always weakly lower in the dynamic model than in the static

one. This is driven by the central bank’s desire to loosen the financial market’s priors,

which, if too tight, render the central bank’s signal less persuasive. Adding noise to

the signal flattens the information profile of the financial market in the sense that it
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does not receive too much information too early. The optimal precision choice thus

involves the smoothing of information provision.
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A A STYLIZED MODEL OF INVESTMENT

Consider a firm problem in partial equilibrium (gross interest rate R is fixed). The

firm chooses the inputs to production: hours worked, ht, and capital, kt+1. Since the

firm inherits yesterday’s capital level today, it chooses current investment, it, to select

tomorrow’s capital level. The problem can be stated as

max
it,kt+1,ht

V = E0

∞∑
t=0

(
1

R

)t(
f(kt, ht)− wtht − it − Φ

( it
kt

)
kt

)
, (A.1)

s.t. kt+1 = (1− δ)kt + it, (A.2)

where f(kt, ht) is the production function, and Φ
(
it
kt

)
are convex capital adjustment

costs. Setting up a Lagrangian with a multiplier qt on the law of motion of capital,

taking the first order condition for capital, and iterating it forward gives

qt =
1

1− δ
Et
∞∑
s=1

(1− δ
R

)s(
fk(kt+s, ht+s) + Φ′

( it+s
kt+s

) it+s
kt+s

− Φ
( it+s
kt+s

))
. (A.3)

This equation is the key Q-theory relation of optimal investment choice. What it

is saying is that “little-q,” the marginal value of capital, is the determinant of invest-

ment. This, in turn, is determined by the discounted future stream of profits. Thus,

when selecting today’s investment, firms first and foremost need to know what future

economic conditions will be like, so that they can accurately forecast future profits.

Contrast this forward-looking optimization choice with the demand side of the

GDP accounting identity

Y = C + I, (A.4)

where I assume a closed economy and abstract from government expenditures. This

relation instead implies that high current investment raises demand for goods and

services, leading firms to produce more today and thus hire more workers, raising
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current employment. For those who reside on Main Street, it is thus clearly the present

production and thus employment conditions which are relevant. The central bank’s

mandate of stabilizing current inflation and employment thus pitches it against Wall

Street, who seeks to set investment with the future in mind.

B THE KALMAN FILTER FOR THE DYNAMIC MODEL

Denoting θ
′
t := θt+1, set up the state-space system as:

xt+1 = hxt + ηεt+1 state equation, (B.1)

yt = gxt + vt observation equation, (B.2)

with the observation vector given by yt = st, and the state vector xt and transition

matrices are

xt =

θ
′
t

θt

 , h =

ρ 0

1 0

 , g =

[
1
ψ 1

]
, η =

σε 0

0 0

 , εt =

εt
0

 , Q = ηη′ =

σ2
ε 0

0 0

 ,
R = σ2

v .

The optimal forecast of the state vector at t+ 1 is:

xt+1|t = hxt|t−1 + hκ(yt − gxt|t−1), (B.3)

where κ = Pg′Ω−1 and the steady-state forecast-error-variance matrix P solves

hPh′ − hPg′Ω−1gPh′ +Q = P, (B.4)

Ω = gPg′ +R. (B.5)
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Given the analytical solution to the 2× 2 matrix P =

p1 p2

p2 p4

, suppressed here, one

obtains the law of motion of beliefs

θt+1|t = m1θt|t−1 +m2θt +m3θt+1 +m4vt, (B.6)

θt|t = n1θt|t−1 + n2θt + n3θt+1 + n4vt. (B.7)

The mi, ni i = 1, . . . , 4 coefficients are

m1 = ρ− κ1

( ρ
ψ

+ 1
)
, (B.8)

m2 = m4 = κ1, (B.9)

m3 =
κ1

ψ
, (B.10)

n1 = 1− κ2

( ρ
ψ

+ 1
)
, (B.11)

n2 = n4 = κ2, (B.12)

n3 =
κ2

ψ
, (B.13)

where κ1 is the first element of the 2× 1 Kalman gain and is given by

κ1 =
ψ(p1 + ρp4ψ)

p1 + ψ (2ρp4 + ψ (p4 + σ2
v))

, (B.14)

and κ2 is the second element, given by

κ2 =
ψ(ρp4 + p4ψ)

p1 + ψ (2ρp4 + ψ (p4 + σ2
v))

. (B.15)

For simplicity, I refer to κ1 as κ in the main text.

C EXPECTED LOSS FUNCTIONS

The expected loss function in the static model is given by

Vstatic =
b2
(
ψ
(
2ρ+ ψσ2

v + ψ
)

+ 1
)
− 2b(ρ+ ψ)(ρψ + 1) + (ρψ + 1)2

ψ (2ρ+ ψσ2
v + ψ) + 1

, (C.1)
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with an associated first order condition with respect to ψ of

2
(
b
(
ρ2 + ψ2

(
ρ2
(
σ2
v − 1

)
+ σ2

v + 1
)

+ 2ρψσ2
v − 1

)
+ ψ(ρψ + 1)

(
ρ2 − σ2

v − 1
))

(ψ (2ρ+ ψσ2
v + ψ) + 1) 2

= 0.

(C.2)

As Equation (16) in the main text recalls, the expected loss function in the dynamic

model is

Vdynamic =
1

1− β

(
V ar(θt+1|t)− 2bCov(θt+1|t, θt) + b2

)
.

The expressions for the covariances in the above are

V ar(θt+1|t) =
ρm2 +m3

1− ρm1
, (C.3)

Cov(θt+1|t, θt) = m1V ar(θt+1|t) +m2 + ρm3, (C.4)

where the mi, i = 1, 2, 3, coefficients are given in Appendix B, and the first order

condition is suppressed.

D PRIOR AND POSTERIOR VARIANCES IN THE TWO MODELS

Using the definitions of prior and posterior variances from the main text, in the static

model these are given by

π(θ2) = 1, (D.1)

p(θ2) = 1− V ar(θ2|s), (D.2)

π(θ1) = 1, (D.3)

p(θ1) = 1− V ar(θ1|s). (D.4)
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In the dynamic model, instead, they are

π(θt+1) = 1− ρ2V ar(θt+1|t), (D.5)

p(θt+1) = 1− V ar(θt+1|t), (D.6)

π(θt) = 1− V ar(θt|t−1) = p(θt+1), (D.7)

p(θt) = 1− V ar(θt|t), (D.8)

where the equivalence between (D.6) and (D.7) uses covariance stationarity of steady-

state beliefs.

E INFORMATIVENESS IN THE TWO MODELS

Using the expressions for prior and posterior variances from Appendix D, the notions

of informativeness of today’s signal in the static model are given by

I(θ2, s) = V ar(θ2|s) =
ρ2 + 2ρ

ψ + 1
ψ2

2ρ
ψ + σ2

v + 1
ψ2 + 1

, (E.1)

I(θ1, s) = V ar(θ1|s) =

ρ2

ψ2 + 2ρ
ψ + 1

2ρ
ψ + σ2

v + 1
ψ2 + 1

. (E.2)

In the dynamic model, instead, they are

I(θt+1, st) = (1− ρ2)V ar(θt+1|t), (E.3)

I(θt, st) = V ar(θt|t)− V ar(θt+1|t). (E.4)

The relevant variances are

V ar(θt+1|t) =
ρm2 +m3

1− ρm1
, (E.5)

V ar(θt|t) = n1V ar(θt+1|t) + n2 + ρn3, (E.6)

where the mi, ni, i = 1, 2, 3, coefficients are given in Appendix B.
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F OPTIMAL PRECISION

The first order condition in the static model is

− 2ψ2(ρψ + 1)σv(−2b(ρ+ ψ) + ρψ + 1)

(ψ (2ρ+ ψσ2
v + ψ) + 1) 2

= 0, (F.1)

which is solved by σv = 0. That this is either a minimum or a maximum can be

verified by considering the second order condition, which is given by

2ψ2(ρψ + 1)(2b(ρ+ ψ)− ρψ − 1)
(
ψ
(
2ρ− 3ψσ2

v + ψ
)

+ 1
)

(ψ (2ρ+ ψσ2
v + ψ) + 1) 3

. (F.2)

The first and second order conditions in the dynamic model are too large and are

thus suppressed. The expressions for ϕi, i = 1, 2, 3 from the main text are

ϕ1 := (ρ− 1)(ρ+ 1)ψ2(ρ− 2b)
(
2b
(
ρ2
(
ψ2 + 1

)
+ 3ρψ + ψ2

)
− ψ(ρψ + 1)

)
, (F.3)

ϕ2 :=
√

2

√
b (ρ2 − 1)2 ψ4(2b− ρ)(ρ+ ψ)2(ρψ + 1)(−2b(ρ+ ψ) + ρψ + 1)2, (F.4)

ϕ3 := ρψ4(ρ− 2b)
(
2b
(
ρ3 − 2ρ− ψ

)
+ ρψ + 1

)
. (F.5)
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NOTES

1. This is not a binding constraint as lying turns out to never be optimal in equilibrium.

2. Online Appendix A considers an alternative formalization of the targetedness dimension via

a signal structure comprising two independent signals, where the choice variables of the CB

are the variances of the noise terms in each signal.

3. This follows from a direct application of Maćkowiak et al. (2018)’s Propositions 1 and 2, noting

that Main Street internalizes that what is tomorrow’s output today will become today’s output

tomorrow.

4. This concept is related to the notion of mutual information, the expected difference between

the log posterior and the log prior distribution. My “informativeness” concept simply com-

pares the level difference between the second moments of the prior and posterior.

5. For analytical expressions for prior and posterior variances and informativeness, see Appen-

dices D and E.

6. I provide an algorithm for choosing the optimal precision through an indirect utility formula-

tion in Online Appendix B.
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Figure 1: Optimal targetedness and FM responsiveness as a function of ρ

The figure shows the optimal targetedness, ψ∗, as a function of ρ, for σv normalized to 1. The solid line corresponds to the static, and

the dotted line to the dynamic model, while the dashed line indicates the no-targetedness case of ψ = 1.
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Figure 2: Optimal targetedness policy across the two models
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Figure 3: FM responsiveness to the signal as a function of ψ for various values of ρ

The figure shows the FM’s responsiveness to the signal, φ in the static model (solid line) and κ in the dynamic model (dotted line), as

a function of targetedness, ψ, for various levels of correlation between the states (ρ).
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Figure 4: Expected losses as a function of ψ for various ρ

The figure plots expected losses in the static model (solid line), and in the dynamic model (dotted line), both as a function of targeted-

ness, and for various values of ρ. Since the expected loss in the dynamic model is a discounted sum of period losses, I normalize it by

1-β (see Equations (15) and (16)).
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Figure 5: Informativeness of the current signal as a function of ψ for various ρ

(a) Static model

(b) Dynamic model

The figure plots the informativeness of today’s signal about tomorrow’s state (dotted line), and about today’s state (solid line). The

top panel refers to the static, and the bottom to the dynamic model. For both models, the dash-dotted line indicates the optimal

targetedness ψ∗. Recall that I define informativeness as I(θT , st) := π(θT )− p(θT , st), so that it is the level difference between prior

and posterior variances.
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Figure 6: Optimal precision σ∗
v

(a) 3D plot

(b) Cross-section for various values of ψ

The top panel shows optimal precision σ∗v as a function of ψ and ρ. The bottom panel shows cross-sections for various values of ψ,

with the solid line pertaining to the static, and the dotted line to the dynamic model.
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Figure 7: Informativeness of today’s signal as a function of σv for various (ρ, ψ) pairs

The figure plots the informativeness of signal st about θt+1 (dotted line) and about θt (solid line). The dash-dotted line indicates the

optimal precision σ∗v . Recall that I define informativeness as I(θT , st) := π(θT ) − p(θT , st), so that it is the level difference between

prior and posterior variances.
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