Turbulent Business Cycles

Ding Dong*, Zheng Liu and Pengfei Wang

*Department of Economics, HKUST Business School. Email: ding.dong@connect.ust.hk; Web: dingdonghome.weebly.com

Highlight

Increases in risk of firms' productivity reshuffle ("turbulence") generate recession through a misallocation channel.

- Turbulence is associated synchronized and persistent declines in aggregate activity
- Turbulence is associated with resource reallocation from highto low-productivity firms
- Misallocation effect of turbulence is amplified by credit frictions
- A RBC model with hetero. firm and credit friction shows underlying transmission mechanism and quantifies the impact of turbulence shock

What Is Turbulence?

Turbulence measures time-varying risk of reshuffle in firms' productivity ranking.

*Tied in 2019 †Tied in 2020 ‡Tied in 2021 Sources: Anuvu; Transportation Department

Figure 1:Example: Turbulent Airline Industry

Measuring Turbulence

Turbulence is measured as the (inverse of) Spearman correlations of firms' productivity rankings between adjacent years.

• Consider firm-level TFP process

$$z_{j,t+1} = \begin{cases} z_{j,t} & \text{with prob} & \rho_t, \\ \tilde{z} & \text{with prob} & 1 - \rho_t, \end{cases}$$

where $\tilde{z} \in \{z_1, \dots, z_J\}$ is i.i.d. drawn from $\tilde{G}(z)$

- ullet ρ_t does NOT affect cross-section distribution of productivity (z)
- 2 steps to measure turbulence
- 1 Estimate firm-level total factor productivity (TFP) of U.S. public firms following Syverson (2004), Bloom et al. (2018) etc.
- 2 Sort the firm-level TFP within industry in each year and estimate the Spearman rank correlations between adjacent years (ρ_t) .
- Turbulence measured as $1 \rho_t$
- $1 \rho_t = 0 \Rightarrow$ no turbulence
- $1 \rho_t = 1 \Rightarrow \text{high turbulence}$
- $1 \rho_t$ \uparrow : more churning in productivity \Rightarrow high- prod. firm less likely to remain productive \Rightarrow low- prod. firm less likely to remain unproductive
- Turbulence vs. Uncertainty

	Turbulence		Uncertainty	
Firm productivity	(High)	(Low)	(High)	(Low)
Con. Variance	†		†	\uparrow
Uncon. Variance			\uparrow	\uparrow
Con. Mean	+	\uparrow		_
Uncon. Mean				

Turbulence is Counter-cyclical

High prod. firms are less likely to remain productive in recessions.

Figure 2:Micro-level Turbulence.(Data: Compustat-NBERCES)

Turbulence Associated with Recession

Figure 3:Estimated Response to Turbulence Shock using Local Projection

$$x_{t+h} - x_{t-1} = \beta_0^h + \beta_1^h turb_t + \beta_2^h turb_{t-1} + \beta_3^h Z_{t-1} + \epsilon_{t+h},$$

- $\mathbf{1} x_t$: log level of GDP, C, I, H, firm value, and TFP;
- $2turb_t$: turbulence in log units $(log(1-\rho_t))$;
- $3Z_t$: vector of controls (Δ GDP, inflation, interest rate)

(Mis-)allocation Effect of Turbulence

Adverse effects of turbulence are stronger on high-productivity firms. $x_{jt} = \beta_0 + \beta_1 High_TFP_{jt} + \underbrace{\beta_2}_{<0***} Turb_t * High_TFP_{jt} + \mu_j + \eta_t + \epsilon_{jt},$

- $\mathbf{1} x_{jt}$: YoY growth of employment, capital, value-added, or market value of firm j in year t
- $2High_TFP_{jt} = 1$ if firm TFP above median
- **3** $Turb_t$: turbulence measured by $1 \rho_t$
- μ_i and η_t : firm fixed effects and year fixed effects

\mathbf{Credit} $\mathbf{Friction} \rightarrow \mathbf{Reallocation}$ \mathbf{Effect}

Misallocation effects of turbulence are stronger in industries with higher external finance dependence.

 $x_{it} = \beta_0 + \beta_1 High_FF_{it} + \underbrace{\beta_2}_{<0***} Turb_t * High_FF_{it} + \mu_i + \eta_t + \epsilon_{it},$

- $\mathbf{1} x_{it}$: IQR of employment (or capital) in industry i and year t;
- $2High_FF_{it} = 1$ iff industry's external financing dependence (KZ index) above median
- $\mathfrak{g}\mu_i$ and η_t : industry and year fixed effects

RBC Model w. Turbulence Shock

Intuition is simple ...

- Heterogeneous firms facing idiosyncratic productivity
- Financial frictions: Firms finance working capital against expected equity value (Jermann-Quadrini 2012; Lian-Ma, 2021)
- Misallocation channel of turbulence
 - Turbulence $\uparrow \Rightarrow$ expected value of high-productivity firms \downarrow
 - Tightened borrowing constraints for high-productivity firms \Rightarrow reallocation toward low-productivity firms \Rightarrow TFP \downarrow \Rightarrow recession

Key equations to deliver the intuition...

Production function

$$y_{jt} = A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha} \tag{1}$$

• Idiosyncratic productivity z_{it} follows process

$$z_{j,t+1} = \begin{cases} z_{jt} & \text{with prob} & \rho_t, \\ \tilde{z} & \text{with prob} & 1 - \rho_t, \end{cases}$$
 (2)

where ρ_t is turbulence shock

• Bellman equation:

 $V_t(z_{jt}, \tau_{jt}) = \max_{k_{jt}, n_{jt}} \tau_{jt} A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha} - R_t k_{jt} - W_t n_{jt} + \mathbb{E} M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1})$ s.t. credit constraint

 $R_t k_{jt} + W_t n_{jt} \le \theta \mathbb{E} M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1}) \equiv \theta B_{jt}$ (3) where $\tau_j \sim F(\tau)$: i.i.d. distortion (Hsieh-Klenow 2009; Buera-Shin 2013)

Impact of turbulence shock

Figure 4:Impulse responses to one std turbulence shock

Credit frictions crucial for amplifying turbulence...

Figure 5:Counterfactual: "Quasi-fixed" borrowing limit (red lines): If borrowing limit is insensitive to firm value, impact of turbulence shock is greatly mitigated.