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Abstract

Higher education is a source of skill acquisition for many middle- and high-skilled jobs.

But what specific skills do universities impart on students to prepare them for desirable
careers? In this study, we analyze a large novel corpora of over one million syllabi from
over eight hundred bachelors’ granting US educational institutions to connect material
taught in higher education to the detailed work activities in the US economy as reported
by the US Department of Labor. First, we show how differences in taught skills both

within and between college majors correspond to earnings differences of recent graduates.

Further, we use the co-occurrence of taught skills across all of academia to predict the
skills that will be taught in a major moving forward. Our unified information system
connecting workplace skills to the skills taught during higher education can improve the
workforce development of high-skilled workers, inform educational programs of future
trends, and enable employers to quantify the skills of potential workers.

1 Introduction

Education plays a critical role in economic growth and social progress. College degrees
are generally associated with higher potential lifetime earnings, larger professional
networks, and more adaptable careers |1,/2]. Higher education is a major part of US
workforce development but information on the skills and expertise taught during higher
education remain absent—even as recent research highlights the critical role of skills in
shaping labor trends [3H5]. However, most empirical work relies on coarse labor
distinctions, such as college major and institutional information (e.g., school brands), to
explain these occupational trends [6H9]. While useful, these coarse educational and
labor categories may hide further insights into the skills of “high-skilled” workers that
contribute to positive career outcomes |10].

Many workers acquire skills through higher education that shape their careers.
Studies have shown that social-cognitive skills and sensory-physical skills are correlated
to high- and low-wage occupations, respectively, and that skill polarization divides
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workers with and without higher education [11]. Discrepancies between skills demanded,
taught, and researched have been identified by applying textual matching techniques to
job advertisements, course syllabi, and research publications in Computer Science [12].
These analyses of skills reveal gaps between the workforce and educational/training
systems. Understanding the sources of these gaps, across all fields of study, may
improve curriculum design, inform educational policy, and improve student outcomes
when they enter the workforce.

In this work, we analyze the recently-available Open Syllabus Project (OSP) dataset,
which contains over 1.4 million course syllabi from more than 3,000 US colleges and
universities from 2008 to 2017. While relatively new, this data source has proven useful
for modeling higher education. For example, one study quantified the skill
(mis-)alignment between academic research, industry, and educational offerings in data
science and data engineering [12]. They used Burning Glass (BG) skill taxonomy and
applied matching techniques to extract skills appearing in job titles and descriptions,
course syllabi, and publication titles and abstracts. Another study proposed a new
measure for the “education-innovation gap” using the textual similarity between course
syllabi and academic journals to model the dissemination of frontier knowledge into
college classrooms while relating these dynamics to students’ graduation rates and
incomes [13].

Our work is the first attempt to connect workplace activities to higher education
through course syllabi; here, we use the granular workplace activities designed and
produced by the U.S. Department of Labor (i.e., O¥NET Detailed Work Activity
(DWA) taxonomy described in Section [2)) to explain the underlying knowledge
structures across college majors (i.e., fields of study (FOS)) and among US universities.
We use word embeddings to represent textual documents |14,/15], and explore different
distance metrics to measure the similarity of two embedded skill vectors. Consequently,
we are able to apply agglomerative hierarchical clustering techniques to the DWA-based
vector representations of FOS and universities to discover their clusters. Hierarchical
clustering |16] produces a nested sequence of cluster, and the hierarchy of clusters
enables us to explore clusters at any level of detail without the need of identifying a
specific number of topics as would be the case with K-means clustering techniques.
Motivated by the principle of relatedness [17], we model the relationships between pairs
of skills across academia to forecast how skills change over time. Based on our
out-of-sample earnings prediction evaluation with 5-fold cross validation, we also
discover that differences in acquired skills help to explain the variance of graduates’

earnings. Our results offer an approach that connects college education to future careers.

These insights may enable educational policy and academic programs to adapt to the
skill dynamics in the labor market. For example, information systems that bridge
between higher education and workforce skill data may inform updates to course design
that prepare students with the necessary skills for their desired careers.

In summary, this paper attempts to answer these following research questions:

e Q1. Can the granular workplace activities used by the Department of Labor to
describe the US workforce also distinguish between different college majors and
institutions?

e Q2. How do the DWAs taught in a curriculum or field of study evolve over time?
Can the relationships between pairs of skills across all of academia help to predict
the skill evolution?

e Q3. Do the differences in taught skills during higher education predict graduates’
earnings? Similarly, do differences in taught skills within college majors
correspond to earnings differences of recent graduates?
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In the next section, we describe multiple datasets that enable us to answer
aforementioned research questions. We then describe our methodology in detail, present
our analysis and discuss its implications and potential weaknesses to conclude the paper.

2 Materials and methods

Open Syllabus Project Datasetﬂ is one of the largest corpora of syllabi in the world.
As of October of 2019, it contains over eight million syllabi, collected from 5,381 colleges
and universities, including over three million syllabi taught at 3,186 US institutions.
OSP’s fields-of-study classifier draws heavily from the Classification of Instructional
Programs (CIP) taxonomy used by the National Center for Education Statistics to
determine the academic field of study (e.g., Economics, Business, Computer Science)
best associated with each syllabus. It includes 62 fields of study. Each syllabus has a
unique identifier and the text assignment data including a description of its content, a
list of references and recommended readings, and course requirements (such as
assignments and exams). Syllabi can be directly mapped to graduation and enrollment
statistics from the US Department of Education’s Integrated Postsecondary Education
Data System (IPEDS). Syllabi are annotated with metadata including the institution,
department, and academic year associated with the course. We extract and concatenate
course titles, course descriptions and learning objectives from syllabi’s textual data to
create “course descriptions.” More details can be found in SI Section [I] We limit the
data from 2008 and 2017 (the ten most recent years in OSP), resulting in roughly 1.4
million syllabi representing college courses from 1,481 institutions. More about courses
statistics per year and/or per field of study (FOS) can be found in SI Fig. and

O*NET Detailed Work Activity (DWA) TaxonomyEl O*NET is designed and
produced by the U.S. Department of Labor/Employment and Training Administration.
The O*NET database allows snapshots of the relationships between occupations and
skills. It has 2070 DWAs (e.g., “develop methods of social or economic research.”,
“design integrated computer systems.”, “design public or employee health programs.”)
representing specific work activities performed across a small to moderate number of
occupations within a job family. For example, the occupations with related activities to
DWA “design public or employee health programs.” include “Preventive Medicine
Physicians”, “Occupational Health and Safety Specialists”, “Occupational Health and
Safety Technicians”, “Dietitians and Nutritionists”, and “Dentists, General”.

Integrated Postsecondary Education Data Systenﬂ (IPEDS) is the core
postsecondary education data collection program of the U.S. Department of Education’s
National Center For Education Statistics (NCES). It annually collects information from
all providers of postsecondary education, including public institutions, private nonprofit
institutions, and private for-profit institutions, in fundamental areas such as enrollment,
program completion and graduation rates. Providing data is required for any institution
that applies for or participates in any Federal financial assistance program. IPEDS also
includes a wide range of information about institution and institution groups, such as
Degree-granting status, Institutional category, and Carnegie classifications. The
Carnegie Classification, or more formally, the Carnegie Classification of Institutions of
Higher Educationﬂ is a framework for categorizing all accredited, degree-granting
institutions in the United States. It is designed to group colleges and universities based
on their research activities.

Thttps://opensyllabus.org (OSP)
2https://www.onetonline.org/help/online/dwa
Shttps://nces.ed.gov/ipeds/
4https://carnegieclassifications.iu.edu/
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College Scorecardﬂ is a U.S. Department of Education data initiative providing
transparency and consumer information related to individual institutions of higher
education and individual fields of study (e.g., majors) within those institutions. College
Scorecard provides information about post-college earnings including median earnings of
graduates working and not enrolled after completing highest credential in their first and
second years for the two graduation cohorts of years 2016 and 2017. We only use the
first year earnings of graduates. We process the data for Baccalaureate colleges and
universities, and create the mapping between College Scorecard CIP code and OSP CIP
code (the mapping can be found in this GitHub foldeIED. As a result, we obtain 9007
earnings records for 832 institutions in 54 fields-of-study.

3 Results

3.1 Modeling course syllabi with workplace skills

Are the workplace activities tracked by the US Department of Labor robust and
effective to describe the knowledge in higher education? The O*NET database is
produced by the US Bureau of Labor Statistics and details the labor market trends of
workplace skills and activities by occupation. Specifically, detailed work activities
(DWAS) are elements in the O*NET database that provide information about
occupations’ labor requirements. This data has been used to analyze several labor
market dynamics including job polarization [11}|18] and the economic resilience of
cities [3,/19]. Although O*NET relates occupations to skills in the workforce, similar
data is not reported for educational programs even though many high-skilled workers
obtain skills in college before entering the workforce.

We bridge this gap by detecting O*NET’s detailed work activities from syllabus
course descriptions. Each syllabus in the OSP data contains a description of the course
content, a list of references and recommended readings, and course requirements, such
as assignments and exams. Given a syllabus, we extract the course’s title, description,
and learning objectives from the text and concatenate them to form the course
descriptions (details are in SI Section [[JA]). We apply word embeddings [20] and
document similarity techniques from natural language processing to represent each
DWA and syllabus as continuous vectors distributed in the same pre-trained language
embedding space. Language embedding models enable us to describe the semantic
similarity between two textual documents or sentences; here, we compare syllabus
course descriptions to DWAs. We choose pre-trained fastText word embeddings
from [21], which is constructed from all Wikipedia pages in 2017, the UMBC webbase
corpus, and the statmt.org news data. We choose these word embeddings because the
semantic diversity of Wikipedia and news articles should capture the semantic diversity
of topics taught across FOS. This model has been used in several applications [22-24],
and achieves better performance than simple bag-of-words and TF-IDF [25]. We
compute the relationship (0 <= rs(dwa) <= 1) between a syllabus s and a DWA by
comparing their word embedding vector representations with soft cosine measure [26)|
(details are in SI Section . As a result, syllabi are represented based on their
relationships with the DWAs (called the DWA-based syllabus representation). We
provide an example of the most and least prevalent DWAs detected for a political
science syllabus at Harvard University in 2013 (see Figure [JA).

In addition to course descriptions, syllabi are annotated with metadata about where
and when the course was taught. Metadata includes the institution,
department /major/FOS, and academic year. OSP’s field classifier is trained and tested

Shttps://data.ed.gov/
Shttps://github.com/HungChau/OSP-connect-higher-education/tree/main/cip_code mapping
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Fig 1. The work activities inferred syllabi reveal key differences among universities and
fields of study. (A) An example political science syllabus from Harvard University and
the activities that are most and least strongly associated with its course description.
DWA-syllabus similarity scores range from 0 (not detected) to 1 (strongly detected).
(B) The DWAs that most significantly distinguish Accounting syllabi from Medicine
syllabi. (C) The DWAs that most strongly separate MIT syllabi from Harvard syllabi.
(D) The DWAs that most strongly separate Special Focus 4-Year Medical Schools
syllabi from Engineering Schools syllabi. More examples can be found in SI Figures [S1}
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on the IPEDS 2010 CIP taxonomy to determine the academic field (i.e., FOS) best
associated with each syllabus. This enables us to calculate the relationship between
each pair of DWAs based on the co-occurrence of dwa; and dwas in any set of course
syllabi S; for example, the set of all syllabi within a given FOS, sims(dwai, dwas) for
f € FOS, or across all of academia, sim(dwa, dwas). We experiment with various
semantic distance metrics to compute DWA relationships through syllabi including
Jaccard similarity, Cosine similarity, Euclidean distance, and Manhattan distance (see
SI Section . We find Jaccard similarity to be the most predictive and we present those
results in the main text. It is worth noting that relationships between two DWAs can be
directly computed by measuring the cosine similarity of their embedding vectors.
However, this approach measuring a static relationship between DWAs fails to
distinguish the dynamics of how one DWA relates to another locally (i.e., within a FOS
or a university) and globally (i.e., across all of academia) overtime, which will be
discussed in Section [3.3] For example, social skills and computer programming skills
may be semantically different but co-taught as complementary skills across syllabi (e.g.,
computational social science, social network analysis, or econometrics).

The syllabus-DWA relationships (rs(dwa)) also enable us to model a FOS f and a
university u in terms of their relationship to each of the DWAs according to,
respectively,

Z Z afy - Ts(dwa)

FEFOS s€Sy .,

(1)

7ﬂf(dwa) =17 Z Ts(dwa) and Tu(dwa) =

e, > a8l
fEFOS

While 7¢(dwa) (the dwa propensity score of FOS f) is the average over the similarity
scores of that DWA across s € Sy, r,(dwa) (the dwa propensity score of university u) is
the mean similarity score of that DWA across syllabi weighted by the estimated
graduation rates (ay,,) of the syllabus’s field of study at that university. In the absence
of course enrollment data, we use graduation rates for each FOS at each university to
approximate the number of students who learn from each syllabus. Sy represents all of
the syllabi within a given FOS f, and S, represents all of the syllabi within a given
FOS at a university w.

These tools enable us to compare pairs of syllabi, FOS, or universities based on their
most common DWAs. We publish the DWA similarities by different metrics, DWA
scores for each FOS and for each university by year from 2008 to 2017 in a Github
repositorym Specifically, we compare entities of the same type (e.g., one FOS to
another) by subtracting its DWA vector representation from the other’s and rank the
resulting vector in descending order. We visualize the top 15 DWAs of each entity that
contribute most to the difference of the pair in Figures [IB, [[IC & [ID. For example, the
DWAs “refer patients to other healthcare practitioners or health resources” and
“administer basic health care or medical treatments” most strongly distinguish Medicine
from Accounting, while “analyze budgetary or accounting data” and “analyze business or
financial data” identify Accounting from Medicine (see Fig. [IB). Similarly, we compare
pairs of universities based on their taught DWAs. As an example, “design integrated
computer systems” and “design alternative energy systems” most strongly distinguish
Massachusetts Institute of Technology (MIT) from Harvard University, while “forecast
economic, political, or social trends” and “develop financial or business plans” more
strongly identify Harvard from MIT (see Fig. ) These results match our intuition as
MIT is the world-leading engineering university and Harvard is in the top ten
universities in each social science area according to U.S. News rankings. Building on

"https://github.com/HungChau/OSP-connect-higher-education
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this, we can group universities based on their Carnegie classification to identify the
major differences in taught DWAs. We compare Medical Schools to Engineering Schools
in Fig. [[[D. More examples can be found in SI Figures[S1] [S2} [S3] & [S4}

3.2 Identifying Field-of-Study and university clusters

Do DWAs capture the focal knowledge offered by an academic field or a university? To
further compare education among FOS, we use agglomerative hierarchical clustering on
DWA-based vector representations of each FOS. Hierarchical clustering produces a
nested sequence of clusters like a tree (also called a dendrogram). Agglomerative
clustering builds the dendrogram from the bottom level, and merges the most similar
(or nearest) pair of clusters at each level to go one level up. Hierarchical clustering can
take any form of distance or similarity function, and the hierarchy of clusters enables us
to explore clusters at any level of detail without the need of picking a number of topics
k as would be the case with K-means clustering. Pairs of FOS are similar if they are
associated with similar types of work activities. For instance, Accounting is clustered
together with Business and Marketing; Medicine is clustered together with Nursing,
Nutrition, Health Technician, Dentistry and Veterinary Medicine; the STEM cluster
includes Mathematics, Physics, Astronomy, Biology, Earth Sciences, Atmospheric
Sciences and Chemistry; and the Social Science cluster includes Social Work, Political
Science, History, Sociology, Women Studies, Anthropology and Religion (see Fig. [2).

Fig 2. The similarity of FOS based on the prevalence of DWAs in syllabi from within
those fields. The dendrogram and heatmap show similar FOS clustered together based
on their DWA-vector representations.
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Similarly, we compare all US universities in our data set using agglomerative
hierarchical clustering performed on the weighted DWA-based vector representation of
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each institution in Figure |3} We see that similar universities are clustered together. For
example, The University of Texas Medical Branch, The University of Texas Health
Science Center, and Oregon Health and Science University are clustered together.
Although our dataset contains a large number of universities, we select a subset of Ivy
Plus universities and universities from various IPEDS Carnegie Classifications to
visualize in Figure [3] We filter out universities that have less than 100 syllabi or were
missing syllabi in any year from 2008 to 2017. Carnegie classifications are mostly
recovered by the clusters (see colors in Fig. . Additionally, engineering schools like
California Institute of Technology, Massachusetts Institute of Technology, and Carnegie
Mellon University, are clustered together. Similarly, liberal arts schools including
Cornell University, Harvard University, and University of Pennsylvania are clustered
together.

Fig 3. The similarity of universities based on the graduation-weighted prevalence of
DWaAs offered in their course syllabi. The dendrogram and heatmap reveals the
hierarchical clustering of the Ivy Plus group and Special Focus Four-Year groups from
the Carnegie Classification 2018 based on DWA vector representations.
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3.3 Predicting the change in taught skills

How do the DWAs taught in a field of study evolve over time? In particular, which new
skills or topics will emerge in a field’s syllabi? Forecasting these educational trends
enables proactive course design by educators and could inform educational incentives
from policy makers. Here, we use the principle of relatedness to hypothesize that
DWASs that occur together across all of higher education are more likely to be co-taught
within a given FOS in the future. If correct, then modeling the relationships between
pairs of DWAs across all of academia should forecast the introduction of new topics
within a FOS even if that topic has not been part of that FOS historically. As an
illustrative example, although largely absent from Economics syllabi today, machine
learning may become more common in Economics because Economics already teaches
linear regression which is commonly taught as an example of machine learning in
Computer Science courses. As a more specific example from our data, DWAs that relate
to machine learning, such as “analyze website or related online data to track trends or
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usage” may become more prevalent in Economics syllabi moving forward (e.g., in studies
of online job postings [12[27]).

We test our hypothesis using OSP data to predict which DWAs become important in
a FOS (f). We use DWA propensity scores (r¢(dwa)) calculated from the syllabi of
each FOS in two different years (i.e., 2008 and 2017). We recast this problem as
predicting the score difference (Ar) of a DWA between the two years:

Argua,; = 3" (dwa) — r3** (dwa) (2)

We also perform classification analysis for predicting DWAs becoming important in
future, which can be found in SI Section We run several ordinary least squares
(OLS) regressions to predict Argyq, s using the DWA propensity scores of FOS f
(rf(dwa)) and various models of inter-DWA relationships (described in Section [.1). As
a baseline, we first consider Model 1 using only the current DWA propensity scores
within each FOS with FOS fixed effects (denoted Af) according to

ATdwa,; = Bo + B1r7*% (dwa) + Ay (3)

Next, we additionally include a variable representing the co-occurrence of DWAs across
syllabi within a FOS (denoted Ry) to create Model 2
Awaa’f =B+ ﬂlrfcoog(dwa)vL
Z simy(dwa, dwa’)r7*% (dwa’)

dwa’eDW A
A 4
B2 DA +Afr (4)

Ry
and yet another similar Model 3 using DWA pair co-occurrences across syllabi from
every FOS (denoted R)
Awaaz,f = 60 + BITJ%OOS (dwa)+
Z sim(dwa, dwa’)ri**® (dwa')

dwa’€ DW A 5
B2 ‘DWA| —|—)\f. ( )

R

Model 4 includes an interaction term between DWA’s propensity score within a FOS
(i.e., Ry) and DWA pair co-occurrences within that FOS according to

Argya,f = Bo + 517“]2r008(dwa) + B2Rs + B3 (choog(dwa) * Rf) + s (6)
and, in Model 5, using DWA pair co-occurrence across all FOS
Argua,r = Bo + B1r7"% (dwa) + B2 R + B3 (r7°%(dwa) - R) + Ay (7)

As robustness checks, we run Models 2, 3, 4 & 5 with the two different methods and
four distance metrics aforementioned in Section for computing the DWA
relationships. Although we could compare DWA pairs based solely on their semantic
similarity using their word embedding vectors, this approach would miss DWA pairs
that capture complementary topics. For example, Models 2 and 3 would be identical to
Models 4 and 5, respectively. The results (see SI Section BEI) show that modeling DWA
relationships based on their co-occurrence in syllabi with Jaccard similarity yields the
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best performances across all the models involving inter-DWA relationships. We discuss
these results in the main text.

We compare model performance using root mean squared error (RMSE) with 5-fold
cross validation in Figure 4| (R-squared metric is reported in SI Figure ) First,
including variables representing DWA relationships decreases RMSE (i.e., Model 2
(R? = 0.231) & Model 3 (R? = 0.239) are statistically significantly better than Model 1
(R? = 0.191)). Second, measuring DWA co-occurrences across all of academia (i.e.,

using R) instead of only within a single FOS (i.e., using Ry) improves model predictions.

Specifically, Model 3 (R? = 0.239) outperforms Model 2 (R? = 0.231) and Model 5
(R? = 0.244) outperforms Model 4 (R? = 0.231).

Fig 4. Workplace activities detected from syllabi predicting teaching
dynamics within a field of study. We perform 5-fold cross validation and repeat 40
times (i.e., 200 trials in total) for each model and measure RMSE by the resulting
model applied to the test set. Asterisks indicate the statistically significant difference
between two models’ performances with Bonferroni correction. Predicting the
importance of DWAs changing in nine years (2008 vs. 2017). As a baseline, model 1
only considers the current DWA score and FOS fixed effects. The other models consider
the relationships between DWAs, how they interact with each other to predict how they
may change in future.

Dependent Variable: DWA Score Difference
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These results suggest that FOS educational trends within a FOS correspond to
global educational trends across all of academia. In particular, this evidence supports
our hypothesis that DWAs tend to be co-taught more within a given FOS if they are
bundled together across all of higher education. (e.g., Computer Science may
increasingly teach “analyze green technology design requirements” since it is commonly
taught with “identify information technology project resource requirements” in other
FOS including Engineering). Although Model 4 does not outperform Model 2, including
the interactions between current DWA propensity scores and the average of the
proximity of global DWA relationships does yield a significant improvement (i.e., Model
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5 outperforms Model 3). In conclusion, the best performing model is Model 5 which
leverages the information about the current score of the DWA, their relationships with
other DWASs across academia, and the interaction of these two variables. Model 5
improves 3.3 percent (27.5 percent) in terms of RMSE (R-squared) over Model 1, which
only uses the 2008 DWA propensity scores. Therefore, we train Model 5 using the
entire data, and use it to predict the propensity scores of DWAs in a FOS nine years
later. Table [I] shows some examples of DWAs that became important within a FOS —in
terms of ranking DWAs—in nine years. The full list of DWAs that are predicted to
increase their ranks by at least five units and ranked in the top 50 in 9 years can be
found in the aforementioned Github repository.

Table 1. Examples of DWAs that are predicted to increase their ranks in 9 years in
particular fields. We only select DWAs that are ranked in top 50 in future. The full list
of predicted DWAs can be found in the same Github folder.

Field-of-Study Detailed Work Activity Rank (2017) | Rank (2026)
\ .| analyze green technology design requirements. 40 33
Computer Science apply information technology to solve business or other applied problems. 46 40
Economics evaluate plans or specifications to (lete.rmine technological or environmental implications. | 37 27
develop marketing plans or strategies for environmental initiatives. 58 50
Journalism gather information about work conditions or locations. 37 24
prepare scientific or technical reports or presentations. 48 42
Medicine develop healthcare quality and safety procedures. 28 23
operate laboratory equipment to analyze medical samples. 65 50
Physics develop procedures for data entry or processing. 43 33
N develop performance metrics or standards related to information technology. 41 34

3.4 Predicting graduate earnings

Do detected DWAs predict the variation in graduates’ earnings? Most—if not
all—educational programs aim to provide students with the skills and abilities to
successfully enter the workforce (e.g., to gain employment and maximize earnings).
Most empirical work relies on coarse labor distinctions such as college major and
institutional information (e.g., school brands) to correlate to graduate

earnings [71/9,28,/29], but none have provided insights into the skills students learn that
could contribute to their future earnings. Our analysis of DWAs in university course
syllabi provides the first data set connecting taught skills to students’ earnings after
graduation. We collect earnings of graduates from the College Scorecard earnings data
from the U.S. Department of Education. Though large, the OSP course syllabus data is
not distributed evenly across fields-of-study and institutions. Some fields and
institutions have much less course syllabi. Thus, to sufficiently estimate work activities
taught in a FOS at a university, we limit earnings records for FOS (in an institute) that
have at least 10 course syllabi; and perform Kolmogorov-Smirnov statistical test to
make sure the remaining earnings records representative for the entire population of the
field at the institute (more details on the selection process and criteria are in SI Section
. We build several OLS regression models to predict average graduate earnings across
FOS (f) at a university (u) based on the propensity scores of the DWAs across fields
(DWA) and within field (FOS*DWA), FOS fixed effects (FOS), school brands (i.e.,
school rankﬁ if available) fixed effects (RANK), and geography fix effects (GEO). Due
to the limited availability of earnings data, we use groups of 10 ranks (i.e., 1-10, 10-20)
for national universities and 15 ranks (i.e., 1-15, 15-30) for liberal arts colleges. For
geographical features, we group universities together based on their divisionsﬂ (e.g., New

8Historical U.S. News and World report rankings are compiled by Andy Reiter and available at
https://andyreiter.com/datasets/

9U.S. Geographic Levels are available at https://www.census.gov/programs-surveys,/economic-
census/guidance-geographies/levels.html
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England Division, West North Central Division). These groups are represented using
indicator variables in the regression analyses.

To avoid model over-fitting, we perform 5-fold cross validation and LASSO feature
selection on the models that include DWA features. LASSO [30] is one of the most
popular methods for feature selection; it minimizes the residual sum of squares subject
to the sum of the absolute value of coefficients being less than a constant. This
constraint tends to “regularize” large models by producing some 0 coefficients when
variables are co-linear. In other words, the penalty factor determines how many features
are retained; using cross-validation to choose the penalty factor helps assure that the
model will generalize well to future data samples. As a result, we find that DWAs
improve predictions of graduate incomes (see Fig. [5{ for RMSE metric and SI Figure
for R-squared metric according to 5-fold cross validation). Including DWAs
improves predictions of earnings compared to FOS fixed effects (i.e., smaller RMSE).
Also, R? = 0.684 of the DWA model is significantly better than that of FOS model
R? = 0.677). Controlling for university rankings and geography further improves the
FOS model (i.e., FOS+RANK+GEO (R* = 0.757) model is significantly better than
FOS (R? = 0.677) model). But combining DWA variables with RANK and GEO
variables and FOS fixed effects yields even further improvement
(FOS+RANK+GEO+DWA model (R? = 0.761) is statistically significantly better than
that of FOS+RANK+GEO model). This evidence suggests that some of the
information about graduate earnings represented in university rankings is also encoded
the DWA variables (e.g., a LASSO regression model containing DWA variables accounts
for 48% of the variation in college rankings; year and FOS fixed effects account for
7.9%). Finally, the best model (FOS+RANK+FOS*DWA) is found when we allow
DWA variables to interact with FOS fixed effects which suggests that different DWAs
correspond to earnings variation in different FOS (R? = 0.779). The geographic
variables also help to improve the best model’s performance but not significant
(R? = 0.782).

3.5 Within Field-of-Study skill variation and the earnings of
recent college graduates

Do differences in taught skills within college majors correspond to earnings differences
of recent graduates? To study how DWAs relate to earnings of graduates of a specific
field of study, we perform separate regression analyses for each FOS with at least 100
institution-year observations. We employ LASSO feature selection for DWAs and report
model performance using 40 independent trials of 5-fold cross-validation to mitigate
over-fitting. The remaining DWAs are used to predict earnings. As can be seen from
Figure [6] the DWA+GEO models perform significantly better than the baseline GEO
models in terms of RMSE. Due to the limited earnings data within FOS to perform
cross validation, the school ranking is omitted; the baseline models only include
geographic variables (GEQO). We obtain similar performance when alternatively using
the model variance explained (R?) (see SI Figure ) This result again shows that
the DWAs complement the FOS information by increasing the share of the earnings
explained by the model and improving the model’s predictions. However, DWA+GEO
model performance varies across FOS. For example, the DWA+GEO model improves
27.2% RMSE over the GEO model for Business compared to a more modest
improvement of 4.2% for Psychology. Although O*NET DWAs improve predictions in
general, this varied performance across FOS could be because DWAs represent key skills
and activities better in some FOS than in others. Nevertheless, our methodology shows
that using granular workplace skills helps to identify important features contributing to
earnings of graduates beyond course educational and labor categories.
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Fig 5. Workplace activities detected from syllabi predicting median
first-year earnings of college graduates across fields of study. We perform
5-fold cross validation and repeat 40 times (i.e., 200 trials in total) for each model and
measure RMSE by the resulting model applied to the test set. Asterisks indicate the
statistically significant difference between two models’ performances with Bonferroni
correction. As a baseline, we consider the FOS, school ranking, and geographic fixed
effects to predict earnings.
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Fig 6. Workplace activities detected from syllabi predicting median
first-year earnings of college graduates within a field of study. We perform
5-fold cross validation and repeat 40 times (i.e., 200 trials in total) for each model and
measure RMSE by the resulting model applied to the test set. The baseline GEO model
only includes geographic variables. The performances of the DWA+GEO models are
statistically significantly better than the GEO models with the p-values < 0.05 for all of
the reported FOS (the school ranking is omitted due to the limited earnings data).
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Identifying DWAs that correspond to increased earnings after graduation could
inform students’ course selection based on the demand for skills in the labor market. To
demonstrate this, we analyze the regression of FOS Business as an example. After
performing 5-fold cross validation on the model determined by LASSO feature selection,
there are 57 DWAs remaining. Based on our statistical regression analysis, the 57 DWA
features are able to explain 69.2% of the variance of the earnings in Business. Among
those, 10 DWAs have significant coefficients with the p-values below 0.05. DWAs
“complete documentation required by programs or requlations,” “evalutate program
effectiveness,” and “advise others on career or personal development” are positively
associated with earnings while “conduct health or safety training programs” is negatively
associated with earnings (regression coefficients estimated with pyarue < 0.01 in each
case). The list of DWAs have significant coefficients for all the 10 FOS can be found in
SI Table The full list of all the selected DWAs including the coefficients and
statistics can be found in this GitHub folder™]

4 Discussion

Knowledge, skills, and abilities shape workers’ careers, and so, quantifying their sources
may impact workforce development and our understanding of the labor market. Largely,
higher education is a source of skill acquisition for many middle and high-skilled jobs in
America. However, there is a disconnect between work and learning in the US; higher
education can fail to meet the skill demands of the labor market thus creating “skill
gaps” across the country. A labor market information system where work skills are
shared across entities, connecting education to work, could help students know what
skills they need, educators know what skills to instruct for, employers know what skills

10https://github.com/HungChau/OSP-connect-higher-education /tree/main/selected  DWAs
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workers have, and policy makers more effectively impact workforce development. This
study demonstrates a methodology to bridge material taught in U.S. colleges and
universities with the detailed work activities (DWAs) used by the Department of Labor
to describe the US workforce. This creates new opportunities to track changes in the
evolution of higher education and workforce development; for example, the emergence of
DWASs within the syllabi of a field of study (FOS), or major, corresponds to the
co-occurrence of DWA pairs across all of academia (see Fig.[d]). As an illustrative
example, discussions of green technology design requirements may become more
prominent in Computer Science programs because they go hand-in-hand with
information technology project resource requirements, commonly taught in courses
across academia. Educators, educational policy, and course recommendation systems
could use these insights to design educational programs and to advise students towards
the classes offering the experience that will be most valuable for their career goals.
Following our example, proactive curriculum design might include green technology
topics to prepare students for jobs in Computer Science.

However, it is likely not the case that every FOS will teach every skill or ability, in
part, because labor market incentives for specific DWAs vary by industry, region, and
employer. Thus, insights into the course topics that correspond to increased, or
decreased, earnings after graduation (see Fig. |§| for example) may increase the relevance
of an educational program or policy and increase students’ success when they enter the
workforce. For example, academic programs might grow to include new high-demand
skills while decreasing emphasis on outdated topics. Such insights could inform
goal-based learning |31] in course recommendation systems while improving explanations
of recommendations. Increasingly-personalized course recommendations can identify
relevant topics based on students’ predefined goals (e.g., maximizing job earnings). For
example, recommending Business courses that include “complete documentation required
by programs or requlations” work activities might proactively prepare today’s students
to meet the growing demand for Business Analytics in the labor market.

This study has a few limitations. This study demonstrates how novel syllabus data
and natural language processing (NLP) techniques can connect labor market data to
higher education by predicting the change in taught skills within a FOS and linking
DWAs to graduate earnings. Future work might build on our study by analyzing the
causal implications of skill-level adjustments to course content. In particular, our
study’s approach is unable to address selection bias when students choose a university
in which to enroll. But future work may study natural experiments that overcome this
barrier. Potential examples include the hiring, firing, or retirement of new faculty, the
creation of a new school or department, the emergence of a large employer (e.g.,
resulting from new tax credit), or large donations focused on specific learning outcomes.
For example, future work might augment our analysis of graduate’s recent earnings with
other career outcome measures. Our analysis of the College Scorecard earnings data is
limited to only two graduation cohorts and similar Post-Secondary Employment
Outcomes data is limited to only a few institutions. Furthermore, we only consider

earnings one year after graduation, which may not capture the full career trajectory [32].

However, future analysis involving workers’ resumes will enable direct connections
between workers’ educational foundations during college and their career dynamics (e.g.,
worker adaptability, tenure, and mobility) in addition to earnings. Similarly, job
postings analysis might compare employer demands to the DWAs detected in our study
thus identifying the most or least adaptive educational programs (e.g., [12]). Future
research along this dimension will offer new insights into the sources and sinks of the
high-skilled workers that shape job polarization [11] and urbanization today [4}/19].
We have demonstrated, using mean cohort level graduate earnings, that there is
already detectable variation in earnings based on skills taught in courses offered. Our
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approach has focused on outcomes for groups of graduates (e.g., by major or university).

Future work with alternative data might investigate variations in labor market
outcomes for individuals. For example, students studying the same major could take
different courses offered, thus learning different skills. Whether the course selection by
individual students leads to different occupations and different earnings, and how much
learned skills could explain individual career variation are interesting questions left to
be discovered. One challenge in undertaking such research is the availability and
accessibility of this type of datasets at scale due to privacy concerns. Further, our
analyses focused on students with bachelor’s degrees, but future work might study the
skills of graduate education or the undergraduate education that lead to graduate school
admission.

Our study relied on simple off-the-shelf techniques in combination with novel data

sources, but future work might expand our methods with more sophisticated approaches.

For example, this study used pre-trained static word embeddings and standard
document similarity techniques to detect work activities from syllabi, but more complex
NLP techniques could yield further insights. Static word embeddings are a powerful tool
for capturing syntactic and semantic regularities in language, but each word is
represented by a single vector regardless of context. That is, all senses of a polysemous
word have to share the same representation. Contextualized word representations, such
as Transformer-based embeddings, overcome those issues and have yielded significant
improvements on many NLP tasks. Additionally, our study relies on the O*NET
taxonomy used by US Department of Labor to describe labor market trends. These
granular DWAs reveal core differences between courses, fields and universities. For
example, DWA propensity scores improved predictions of graduate earnings within
many fields of study, but not all. This suggests that “skill” differences may impact the
effectiveness of college education (in terms of earnings) but O*NET DWAs may not be
the most precise taxonomy to describe the granular level of knowledge expressed in
courses. This is in part because O*NET data is not designed to describe higher
education, but to describe workers. There is no standard knowledge base describing
more granular concepts and skills in higher education and the labor market. This
highlights an urgent need for future educational research that builds a knowledge base
that could standardize and advance insights into how educational foundations shape
workforce development and the skills of workers. With the advances of text mining
methods, one could extract skills described in course syllabi and job postings, and align
those skills to connect educational contents with the demands of the labor market.
There are some existing job skill taxonomies to describe job postings’ requirements such
as BG’s or LinkedIn’s proprietary skill taxonomies. Borner et al. (2018) analyze course
syllabi and BG’s job postings focusing on areas of Data Science and Data Engineering.
They use BG’s skill taxonomy instead of the one used by the U.S. Bureau of Labor
Statistics to analyze skill discrepancies between research, education and jobs. Modeling
job postings with NLP techniques has also been shown to be useful in understanding
wage premia [33]. Although our study focuses on the work side of job seeking, we
acknowledge that the demand from the employer side is also important to understand
the holistic picture from skill offerings in higher education to skill demands in the labor
market; which could benefit many applications such as identifying potential curricular
gaps or recommending courses to meet jobs’ requirements.

Increasingly, researchers and policy makers use workers’ skills and abilities to
describe labor market outcomes in addition to workers’ educational attainment based on
their occupation [5]. But, similar data and methods are only just being developed and
applied to workforce development and, in particular, to higher education. This study
offers an approach and a methodology to connect higher education to workplace skills
thus enabling new strategies for course recommendation, curriculum design, and
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education policy that prepare students to meet their career goals.
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