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Abstract
Higher education is a source of skill acquisition for many middle- and high-skilled jobs.
But what specific skills do universities impart on students to prepare them for desirable
careers? In this study, we analyze a large novel corpora of over one million syllabi from
over eight hundred bachelors’ granting US educational institutions to connect material
taught in higher education to the detailed work activities in the US economy as reported
by the US Department of Labor. First, we show how differences in taught skills both
within and between college majors correspond to earnings differences of recent graduates.
Further, we use the co-occurrence of taught skills across all of academia to predict the
skills that will be taught in a major moving forward. Our unified information system
connecting workplace skills to the skills taught during higher education can improve the
workforce development of high-skilled workers, inform educational programs of future
trends, and enable employers to quantify the skills of potential workers.

1 Introduction 1

Education plays a critical role in economic growth and social progress. College degrees 2

are generally associated with higher potential lifetime earnings, larger professional 3

networks, and more adaptable careers [1, 2]. Higher education is a major part of US 4

workforce development but information on the skills and expertise taught during higher 5

education remain absent—even as recent research highlights the critical role of skills in 6

shaping labor trends [3–5]. However, most empirical work relies on coarse labor 7

distinctions, such as college major and institutional information (e.g., school brands), to 8

explain these occupational trends [6–9]. While useful, these coarse educational and 9

labor categories may hide further insights into the skills of “high-skilled” workers that 10

contribute to positive career outcomes [10]. 11

Many workers acquire skills through higher education that shape their careers. 12

Studies have shown that social-cognitive skills and sensory-physical skills are correlated 13

to high- and low-wage occupations, respectively, and that skill polarization divides 14
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workers with and without higher education [11]. Discrepancies between skills demanded, 15

taught, and researched have been identified by applying textual matching techniques to 16

job advertisements, course syllabi, and research publications in Computer Science [12]. 17

These analyses of skills reveal gaps between the workforce and educational/training 18

systems. Understanding the sources of these gaps, across all fields of study, may 19

improve curriculum design, inform educational policy, and improve student outcomes 20

when they enter the workforce. 21

In this work, we analyze the recently-available Open Syllabus Project (OSP) dataset, 22

which contains over 1.4 million course syllabi from more than 3,000 US colleges and 23

universities from 2008 to 2017. While relatively new, this data source has proven useful 24

for modeling higher education. For example, one study quantified the skill 25

(mis-)alignment between academic research, industry, and educational offerings in data 26

science and data engineering [12]. They used Burning Glass (BG) skill taxonomy and 27

applied matching techniques to extract skills appearing in job titles and descriptions, 28

course syllabi, and publication titles and abstracts. Another study proposed a new 29

measure for the “education-innovation gap” using the textual similarity between course 30

syllabi and academic journals to model the dissemination of frontier knowledge into 31

college classrooms while relating these dynamics to students’ graduation rates and 32

incomes [13]. 33

Our work is the first attempt to connect workplace activities to higher education 34

through course syllabi; here, we use the granular workplace activities designed and 35

produced by the U.S. Department of Labor (i.e., O*NET Detailed Work Activity 36

(DWA) taxonomy described in Section 2) to explain the underlying knowledge 37

structures across college majors (i.e., fields of study (FOS)) and among US universities. 38

We use word embeddings to represent textual documents [14,15], and explore different 39

distance metrics to measure the similarity of two embedded skill vectors. Consequently, 40

we are able to apply agglomerative hierarchical clustering techniques to the DWA-based 41

vector representations of FOS and universities to discover their clusters. Hierarchical 42

clustering [16] produces a nested sequence of cluster, and the hierarchy of clusters 43

enables us to explore clusters at any level of detail without the need of identifying a 44

specific number of topics as would be the case with K-means clustering techniques. 45

Motivated by the principle of relatedness [17], we model the relationships between pairs 46

of skills across academia to forecast how skills change over time. Based on our 47

out-of-sample earnings prediction evaluation with 5-fold cross validation, we also 48

discover that differences in acquired skills help to explain the variance of graduates’ 49

earnings. Our results offer an approach that connects college education to future careers. 50

These insights may enable educational policy and academic programs to adapt to the 51

skill dynamics in the labor market. For example, information systems that bridge 52

between higher education and workforce skill data may inform updates to course design 53

that prepare students with the necessary skills for their desired careers. 54

In summary, this paper attempts to answer these following research questions: 55

• Q1. Can the granular workplace activities used by the Department of Labor to 56

describe the US workforce also distinguish between different college majors and 57

institutions? 58

• Q2. How do the DWAs taught in a curriculum or field of study evolve over time? 59

Can the relationships between pairs of skills across all of academia help to predict 60

the skill evolution? 61

• Q3. Do the differences in taught skills during higher education predict graduates’ 62

earnings? Similarly, do differences in taught skills within college majors 63

correspond to earnings differences of recent graduates? 64
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In the next section, we describe multiple datasets that enable us to answer 65

aforementioned research questions. We then describe our methodology in detail, present 66

our analysis and discuss its implications and potential weaknesses to conclude the paper. 67

2 Materials and methods 68

Open Syllabus Project Dataset1 is one of the largest corpora of syllabi in the world. 69

As of October of 2019, it contains over eight million syllabi, collected from 5,381 colleges 70

and universities, including over three million syllabi taught at 3,186 US institutions. 71

OSP’s fields-of-study classifier draws heavily from the Classification of Instructional 72

Programs (CIP) taxonomy used by the National Center for Education Statistics to 73

determine the academic field of study (e.g., Economics, Business, Computer Science) 74

best associated with each syllabus. It includes 62 fields of study. Each syllabus has a 75

unique identifier and the text assignment data including a description of its content, a 76

list of references and recommended readings, and course requirements (such as 77

assignments and exams). Syllabi can be directly mapped to graduation and enrollment 78

statistics from the US Department of Education’s Integrated Postsecondary Education 79

Data System (IPEDS). Syllabi are annotated with metadata including the institution, 80

department, and academic year associated with the course. We extract and concatenate 81

course titles, course descriptions and learning objectives from syllabi’s textual data to 82

create “course descriptions.” More details can be found in SI Section 1. We limit the 83

data from 2008 and 2017 (the ten most recent years in OSP), resulting in roughly 1.4 84

million syllabi representing college courses from 1,481 institutions. More about courses 85

statistics per year and/or per field of study (FOS) can be found in SI Fig. S12 and S13. 86

O*NET Detailed Work Activity (DWA) Taxonomy2. O*NET is designed and 87

produced by the U.S. Department of Labor/Employment and Training Administration. 88

The O*NET database allows snapshots of the relationships between occupations and 89

skills. It has 2070 DWAs (e.g., “develop methods of social or economic research.”, 90

“design integrated computer systems.”, “design public or employee health programs.”) 91

representing specific work activities performed across a small to moderate number of 92

occupations within a job family. For example, the occupations with related activities to 93

DWA “design public or employee health programs.” include “Preventive Medicine 94

Physicians”, “Occupational Health and Safety Specialists”, “Occupational Health and 95

Safety Technicians”, “Dietitians and Nutritionists”, and “Dentists, General”. 96

Integrated Postsecondary Education Data System3 (IPEDS) is the core 97

postsecondary education data collection program of the U.S. Department of Education’s 98

National Center For Education Statistics (NCES). It annually collects information from 99

all providers of postsecondary education, including public institutions, private nonprofit 100

institutions, and private for-profit institutions, in fundamental areas such as enrollment, 101

program completion and graduation rates. Providing data is required for any institution 102

that applies for or participates in any Federal financial assistance program. IPEDS also 103

includes a wide range of information about institution and institution groups, such as 104

Degree-granting status, Institutional category, and Carnegie classifications. The 105

Carnegie Classification, or more formally, the Carnegie Classification of Institutions of 106

Higher Education,4 is a framework for categorizing all accredited, degree-granting 107

institutions in the United States. It is designed to group colleges and universities based 108

on their research activities. 109

1https://opensyllabus.org (OSP)
2https://www.onetonline.org/help/online/dwa
3https://nces.ed.gov/ipeds/
4https://carnegieclassifications.iu.edu/
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College Scorecard5 is a U.S. Department of Education data initiative providing 110

transparency and consumer information related to individual institutions of higher 111

education and individual fields of study (e.g., majors) within those institutions. College 112

Scorecard provides information about post-college earnings including median earnings of 113

graduates working and not enrolled after completing highest credential in their first and 114

second years for the two graduation cohorts of years 2016 and 2017. We only use the 115

first year earnings of graduates. We process the data for Baccalaureate colleges and 116

universities, and create the mapping between College Scorecard CIP code and OSP CIP 117

code (the mapping can be found in this GitHub folder6). As a result, we obtain 9007 118

earnings records for 832 institutions in 54 fields-of-study. 119

3 Results 120

3.1 Modeling course syllabi with workplace skills 121

Are the workplace activities tracked by the US Department of Labor robust and 122

effective to describe the knowledge in higher education? The O*NET database is 123

produced by the US Bureau of Labor Statistics and details the labor market trends of 124

workplace skills and activities by occupation. Specifically, detailed work activities 125

(DWAs) are elements in the O*NET database that provide information about 126

occupations’ labor requirements. This data has been used to analyze several labor 127

market dynamics including job polarization [11,18] and the economic resilience of 128

cities [3, 19]. Although O*NET relates occupations to skills in the workforce, similar 129

data is not reported for educational programs even though many high-skilled workers 130

obtain skills in college before entering the workforce. 131

We bridge this gap by detecting O*NET’s detailed work activities from syllabus 132

course descriptions. Each syllabus in the OSP data contains a description of the course 133

content, a list of references and recommended readings, and course requirements, such 134

as assignments and exams. Given a syllabus, we extract the course’s title, description, 135

and learning objectives from the text and concatenate them to form the course 136

descriptions (details are in SI Section 1A). We apply word embeddings [20] and 137

document similarity techniques from natural language processing to represent each 138

DWA and syllabus as continuous vectors distributed in the same pre-trained language 139

embedding space. Language embedding models enable us to describe the semantic 140

similarity between two textual documents or sentences; here, we compare syllabus 141

course descriptions to DWAs. We choose pre-trained fastText word embeddings 142

from [21], which is constructed from all Wikipedia pages in 2017, the UMBC webbase 143

corpus, and the statmt.org news data. We choose these word embeddings because the 144

semantic diversity of Wikipedia and news articles should capture the semantic diversity 145

of topics taught across FOS. This model has been used in several applications [22–24], 146

and achieves better performance than simple bag-of-words and TF-IDF [25]. We 147

compute the relationship (0 <= rs(dwa) <= 1) between a syllabus s and a DWA by 148

comparing their word embedding vector representations with soft cosine measure [26] 149

(details are in SI Section 1B). As a result, syllabi are represented based on their 150

relationships with the DWAs (called the DWA-based syllabus representation). We 151

provide an example of the most and least prevalent DWAs detected for a political 152

science syllabus at Harvard University in 2013 (see Figure 1A). 153

In addition to course descriptions, syllabi are annotated with metadata about where 154

and when the course was taught. Metadata includes the institution, 155

department/major/FOS, and academic year. OSP’s field classifier is trained and tested 156

5https://data.ed.gov/
6https://github.com/HungChau/OSP-connect-higher-education/tree/main/cip_code_mapping
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Fig 1. The work activities inferred syllabi reveal key differences among universities and
fields of study. (A) An example political science syllabus from Harvard University and
the activities that are most and least strongly associated with its course description.
DWA-syllabus similarity scores range from 0 (not detected) to 1 (strongly detected).
(B) The DWAs that most significantly distinguish Accounting syllabi from Medicine
syllabi. (C) The DWAs that most strongly separate MIT syllabi from Harvard syllabi.
(D) The DWAs that most strongly separate Special Focus 4-Year Medical Schools
syllabi from Engineering Schools syllabi. More examples can be found in SI Figures S1,
S2, S3, & S4.

(1) to analyze the politics of 
major health policy developments 
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on the IPEDS 2010 CIP taxonomy to determine the academic field (i.e., FOS) best 157

associated with each syllabus. This enables us to calculate the relationship between 158

each pair of DWAs based on the co-occurrence of dwa1 and dwa2 in any set of course 159

syllabi S; for example, the set of all syllabi within a given FOS, simf (dwa1, dwa2) for 160

f ∈ FOS, or across all of academia, sim(dwa1, dwa2). We experiment with various 161

semantic distance metrics to compute DWA relationships through syllabi including 162

Jaccard similarity, Cosine similarity, Euclidean distance, and Manhattan distance (see 163

SI Section 2). We find Jaccard similarity to be the most predictive and we present those 164

results in the main text. It is worth noting that relationships between two DWAs can be 165

directly computed by measuring the cosine similarity of their embedding vectors. 166

However, this approach measuring a static relationship between DWAs fails to 167

distinguish the dynamics of how one DWA relates to another locally (i.e., within a FOS 168

or a university) and globally (i.e., across all of academia) overtime, which will be 169

discussed in Section 3.3. For example, social skills and computer programming skills 170

may be semantically different but co-taught as complementary skills across syllabi (e.g., 171

computational social science, social network analysis, or econometrics). 172

The syllabus-DWA relationships (rs(dwa)) also enable us to model a FOS f and a 173

university u in terms of their relationship to each of the DWAs according to, 174

respectively, 175

rf (dwa) =
1

|Sf |
∑
s∈Sf

rs(dwa) and ru(dwa) =

∑
f∈FOS

∑
s∈Sf,u

αf,u · rs(dwa)∑
f∈FOS

αf,u · |Sf,u|
. (1)

While rf (dwa) (the dwa propensity score of FOS f ) is the average over the similarity 176

scores of that DWA across s ∈ Sf , ru(dwa) (the dwa propensity score of university u) is 177

the mean similarity score of that DWA across syllabi weighted by the estimated 178

graduation rates (αf,u) of the syllabus’s field of study at that university. In the absence 179

of course enrollment data, we use graduation rates for each FOS at each university to 180

approximate the number of students who learn from each syllabus. Sf represents all of 181

the syllabi within a given FOS f , and Sf,u represents all of the syllabi within a given 182

FOS at a university u. 183

These tools enable us to compare pairs of syllabi, FOS, or universities based on their 184

most common DWAs. We publish the DWA similarities by different metrics, DWA 185

scores for each FOS and for each university by year from 2008 to 2017 in a Github 186

repository.7 Specifically, we compare entities of the same type (e.g., one FOS to 187

another) by subtracting its DWA vector representation from the other’s and rank the 188

resulting vector in descending order. We visualize the top 15 DWAs of each entity that 189

contribute most to the difference of the pair in Figures 1B, 1C & 1D. For example, the 190

DWAs “refer patients to other healthcare practitioners or health resources” and 191

“administer basic health care or medical treatments” most strongly distinguish Medicine 192

from Accounting, while “analyze budgetary or accounting data” and “analyze business or 193

financial data” identify Accounting from Medicine (see Fig. 1B). Similarly, we compare 194

pairs of universities based on their taught DWAs. As an example, “design integrated 195

computer systems” and “design alternative energy systems” most strongly distinguish 196

Massachusetts Institute of Technology (MIT) from Harvard University, while “forecast 197

economic, political, or social trends” and “develop financial or business plans” more 198

strongly identify Harvard from MIT (see Fig. 1C). These results match our intuition as 199

MIT is the world-leading engineering university and Harvard is in the top ten 200

universities in each social science area according to U.S. News rankings. Building on 201

7https://github.com/HungChau/OSP-connect-higher-education
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this, we can group universities based on their Carnegie classification to identify the 202

major differences in taught DWAs. We compare Medical Schools to Engineering Schools 203

in Fig. 1D. More examples can be found in SI Figures S1, S2, S3, & S4. 204

3.2 Identifying Field-of-Study and university clusters 205

Do DWAs capture the focal knowledge offered by an academic field or a university? To 206

further compare education among FOS, we use agglomerative hierarchical clustering on 207

DWA-based vector representations of each FOS. Hierarchical clustering [16] produces a 208

nested sequence of clusters like a tree (also called a dendrogram). Agglomerative 209

clustering builds the dendrogram from the bottom level, and merges the most similar 210

(or nearest) pair of clusters at each level to go one level up. Hierarchical clustering can 211

take any form of distance or similarity function, and the hierarchy of clusters enables us 212

to explore clusters at any level of detail without the need of picking a number of topics 213

k as would be the case with K-means clustering. Pairs of FOS are similar if they are 214

associated with similar types of work activities. For instance, Accounting is clustered 215

together with Business and Marketing ; Medicine is clustered together with Nursing, 216

Nutrition, Health Technician, Dentistry and Veterinary Medicine; the STEM cluster 217

includes Mathematics, Physics, Astronomy, Biology, Earth Sciences, Atmospheric 218

Sciences and Chemistry ; and the Social Science cluster includes Social Work, Political 219

Science, History, Sociology, Women Studies, Anthropology and Religion (see Fig. 2). 220

Fig 2. The similarity of FOS based on the prevalence of DWAs in syllabi from within
those fields. The dendrogram and heatmap show similar FOS clustered together based
on their DWA-vector representations.

Similarly, we compare all US universities in our data set using agglomerative 221

hierarchical clustering performed on the weighted DWA-based vector representation of 222
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each institution in Figure 3. We see that similar universities are clustered together. For 223

example, The University of Texas Medical Branch, The University of Texas Health 224

Science Center, and Oregon Health and Science University are clustered together. 225

Although our dataset contains a large number of universities, we select a subset of Ivy 226

Plus universities and universities from various IPEDS Carnegie Classifications to 227

visualize in Figure 3. We filter out universities that have less than 100 syllabi or were 228

missing syllabi in any year from 2008 to 2017. Carnegie classifications are mostly 229

recovered by the clusters (see colors in Fig. 3). Additionally, engineering schools like 230

California Institute of Technology, Massachusetts Institute of Technology, and Carnegie 231

Mellon University, are clustered together. Similarly, liberal arts schools including 232

Cornell University, Harvard University, and University of Pennsylvania are clustered 233

together. 234

Fig 3. The similarity of universities based on the graduation-weighted prevalence of
DWAs offered in their course syllabi. The dendrogram and heatmap reveals the
hierarchical clustering of the Ivy Plus group and Special Focus Four-Year groups from
the Carnegie Classification 2018 based on DWA vector representations.

Special Focus Four-Year: Arts, Music & Design Schools
Ivy Plus
Special Focus Four-Year: Medical Schools & Centers
Special Focus Four-Year: Faith-Related Institutions
Special Focus Four-Year: Engineering Schools

Ivy Universities + Special Focus Four-Year Groups

Hebrew College
Calvary Bible College
St. Louis Christian College
Baptist Missionary Association Theological Seminary
Austin Graduate School of Theology
Cornell University
Georgetown University
Northwestern University
University of Pennsylvania
Columbia University
University of Southern California
University of Virginia
Harvard University
New York University
University of California Los Angeles
University of Michigan Ann Arbor
Emory University
University of Wisconsin Madison
Tufts University
Dartmouth College
Yale University
The University of Texas Medical Branch
The University of Texas Health Science Center at San Antonio
Oregon Health & Science University
University of the Arts
Berklee College of Music
Pratt Institute-Main
Duke University
Brown University
University of Chicago
University of California, Berkeley
Johns Hopkins University
Princeton University
California Institute of Technology
Georgia Institute of Technology
Stanford University
Rose Hulman Institute of Technology
Carnegie Mellon University
South Dakota School of Mines and Technology
Boston University
Massachusetts Institute of Technology
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3.3 Predicting the change in taught skills 235

How do the DWAs taught in a field of study evolve over time? In particular, which new 236

skills or topics will emerge in a field’s syllabi? Forecasting these educational trends 237

enables proactive course design by educators and could inform educational incentives 238

from policy makers. Here, we use the principle of relatedness [17] to hypothesize that 239

DWAs that occur together across all of higher education are more likely to be co-taught 240

within a given FOS in the future. If correct, then modeling the relationships between 241

pairs of DWAs across all of academia should forecast the introduction of new topics 242

within a FOS even if that topic has not been part of that FOS historically. As an 243

illustrative example, although largely absent from Economics syllabi today, machine 244

learning may become more common in Economics because Economics already teaches 245

linear regression which is commonly taught as an example of machine learning in 246

Computer Science courses. As a more specific example from our data, DWAs that relate 247

to machine learning, such as “analyze website or related online data to track trends or 248
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usage” may become more prevalent in Economics syllabi moving forward (e.g., in studies 249

of online job postings [12,27]). 250

We test our hypothesis using OSP data to predict which DWAs become important in 251

a FOS (f). We use DWA propensity scores (rf (dwa)) calculated from the syllabi of 252

each FOS in two different years (i.e., 2008 and 2017). We recast this problem as 253

predicting the score difference (∆r) of a DWA between the two years: 254

∆rdwa,f = r2017f (dwa)− r2008f (dwa) (2)

We also perform classification analysis for predicting DWAs becoming important in 255

future, which can be found in SI Section 3B. We run several ordinary least squares 256

(OLS) regressions to predict ∆rdwa,f using the DWA propensity scores of FOS f 257

(rf (dwa)) and various models of inter-DWA relationships (described in Section 3.1). As 258

a baseline, we first consider Model 1 using only the current DWA propensity scores 259

within each FOS with FOS fixed effects (denoted λf ) according to 260

∆rdwa,f = β0 + β1r
2008
f (dwa) + λf . (3)

Next, we additionally include a variable representing the co-occurrence of DWAs across
syllabi within a FOS (denoted Rf ) to create Model 2

∆rdwa,f = β0 + β1r
2008
f (dwa)+

β2


∑

dwa′∈DWA

simf (dwa, dwa
′)r2008f (dwa′)

|DWA|


︸ ︷︷ ︸

Rf

+λf (4)

and yet another similar Model 3 using DWA pair co-occurrences across syllabi from
every FOS (denoted R)

∆rdwa,f = β0 + β1r
2008
f (dwa)+

β2


∑

dwa′∈DWA

sim(dwa, dwa′)r2008f (dwa′)

|DWA|


︸ ︷︷ ︸

R

+λf . (5)

Model 4 includes an interaction term between DWA’s propensity score within a FOS
(i.e., Rf ) and DWA pair co-occurrences within that FOS according to

∆rdwa,f = β0 + β1r
2008
f (dwa) + β2Rf + β3

(
r2008f (dwa) ∗Rf

)
+ λf (6)

and, in Model 5, using DWA pair co-occurrence across all FOS

∆rdwa,f = β0 + β1r
2008
f (dwa) + β2R+ β3

(
r2008f (dwa) ·R

)
+ λf (7)

As robustness checks, we run Models 2, 3, 4 & 5 with the two different methods and 261

four distance metrics aforementioned in Section 3.1 for computing the DWA 262

relationships. Although we could compare DWA pairs based solely on their semantic 263

similarity using their word embedding vectors, this approach would miss DWA pairs 264

that capture complementary topics. For example, Models 2 and 3 would be identical to 265

Models 4 and 5, respectively. The results (see SI Section 3A) show that modeling DWA 266

relationships based on their co-occurrence in syllabi with Jaccard similarity yields the 267
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best performances across all the models involving inter-DWA relationships. We discuss 268

these results in the main text. 269

We compare model performance using root mean squared error (RMSE) with 5-fold 270

cross validation in Figure 4 (R-squared metric is reported in SI Figure S11A). First, 271

including variables representing DWA relationships decreases RMSE (i.e., Model 2 272

(R2 = 0.231) & Model 3 (R2 = 0.239) are statistically significantly better than Model 1 273

(R2 = 0.191)). Second, measuring DWA co-occurrences across all of academia (i.e., 274

using R) instead of only within a single FOS (i.e., using Rf ) improves model predictions. 275

Specifically, Model 3 (R2 = 0.239) outperforms Model 2 (R2 = 0.231) and Model 5 276

(R2 = 0.244) outperforms Model 4 (R2 = 0.231). 277

Fig 4. Workplace activities detected from syllabi predicting teaching
dynamics within a field of study. We perform 5-fold cross validation and repeat 40
times (i.e., 200 trials in total) for each model and measure RMSE by the resulting
model applied to the test set. Asterisks indicate the statistically significant difference
between two models’ performances with Bonferroni correction. Predicting the
importance of DWAs changing in nine years (2008 vs. 2017). As a baseline, model 1
only considers the current DWA score and FOS fixed effects. The other models consider
the relationships between DWAs, how they interact with each other to predict how they
may change in future.
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These results suggest that FOS educational trends within a FOS correspond to 278

global educational trends across all of academia. In particular, this evidence supports 279

our hypothesis that DWAs tend to be co-taught more within a given FOS if they are 280

bundled together across all of higher education. (e.g., Computer Science may 281

increasingly teach “analyze green technology design requirements” since it is commonly 282

taught with “identify information technology project resource requirements” in other 283

FOS including Engineering). Although Model 4 does not outperform Model 2, including 284

the interactions between current DWA propensity scores and the average of the 285

proximity of global DWA relationships does yield a significant improvement (i.e., Model 286
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5 outperforms Model 3). In conclusion, the best performing model is Model 5 which 287

leverages the information about the current score of the DWA, their relationships with 288

other DWAs across academia, and the interaction of these two variables. Model 5 289

improves 3.3 percent (27.5 percent) in terms of RMSE (R-squared) over Model 1, which 290

only uses the 2008 DWA propensity scores. Therefore, we train Model 5 using the 291

entire data, and use it to predict the propensity scores of DWAs in a FOS nine years 292

later. Table 1 shows some examples of DWAs that became important within a FOS —in 293

terms of ranking DWAs—in nine years. The full list of DWAs that are predicted to 294

increase their ranks by at least five units and ranked in the top 50 in 9 years can be 295

found in the aforementioned Github repository. 296

Table 1. Examples of DWAs that are predicted to increase their ranks in 9 years in
particular fields. We only select DWAs that are ranked in top 50 in future. The full list
of predicted DWAs can be found in the same Github folder.

Field-of-Study Detailed Work Activity Rank (2017) Rank (2026)

Computer Science analyze green technology design requirements. 40 33
apply information technology to solve business or other applied problems. 46 40

Economics evaluate plans or specifications to determine technological or environmental implications. 37 27
develop marketing plans or strategies for environmental initiatives. 58 50

Journalism gather information about work conditions or locations. 37 24
prepare scientific or technical reports or presentations. 48 42

Medicine develop healthcare quality and safety procedures. 28 23
operate laboratory equipment to analyze medical samples. 65 50

Physics develop procedures for data entry or processing. 43 33
develop performance metrics or standards related to information technology. 41 34

3.4 Predicting graduate earnings 297

Do detected DWAs predict the variation in graduates’ earnings? Most—if not 298

all—educational programs aim to provide students with the skills and abilities to 299

successfully enter the workforce (e.g., to gain employment and maximize earnings). 300

Most empirical work relies on coarse labor distinctions such as college major and 301

institutional information (e.g., school brands) to correlate to graduate 302

earnings [7, 9, 28,29], but none have provided insights into the skills students learn that 303

could contribute to their future earnings. Our analysis of DWAs in university course 304

syllabi provides the first data set connecting taught skills to students’ earnings after 305

graduation. We collect earnings of graduates from the College Scorecard earnings data 306

from the U.S. Department of Education. Though large, the OSP course syllabus data is 307

not distributed evenly across fields-of-study and institutions. Some fields and 308

institutions have much less course syllabi. Thus, to sufficiently estimate work activities 309

taught in a FOS at a university, we limit earnings records for FOS (in an institute) that 310

have at least 10 course syllabi; and perform Kolmogorov-Smirnov statistical test to 311

make sure the remaining earnings records representative for the entire population of the 312

field at the institute (more details on the selection process and criteria are in SI Section 313

4). We build several OLS regression models to predict average graduate earnings across 314

FOS (f) at a university (u) based on the propensity scores of the DWAs across fields 315

(DWA) and within field (FOS*DWA), FOS fixed effects (FOS ), school brands (i.e., 316

school ranks8 if available) fixed effects (RANK), and geography fix effects (GEO). Due 317

to the limited availability of earnings data, we use groups of 10 ranks (i.e., 1-10, 10-20) 318

for national universities and 15 ranks (i.e., 1-15, 15-30) for liberal arts colleges. For 319

geographical features, we group universities together based on their divisions9 (e.g., New 320

8Historical U.S. News and World report rankings are compiled by Andy Reiter and available at
https://andyreiter.com/datasets/

9U.S. Geographic Levels are available at https://www.census.gov/programs-surveys/economic-
census/guidance-geographies/levels.html
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England Division, West North Central Division). These groups are represented using 321

indicator variables in the regression analyses. 322

To avoid model over-fitting, we perform 5-fold cross validation and LASSO feature 323

selection on the models that include DWA features. LASSO [30] is one of the most 324

popular methods for feature selection; it minimizes the residual sum of squares subject 325

to the sum of the absolute value of coefficients being less than a constant. This 326

constraint tends to “regularize” large models by producing some 0 coefficients when 327

variables are co-linear. In other words, the penalty factor determines how many features 328

are retained; using cross-validation to choose the penalty factor helps assure that the 329

model will generalize well to future data samples. As a result, we find that DWAs 330

improve predictions of graduate incomes (see Fig. 5 for RMSE metric and SI Figure 331

S11B for R-squared metric according to 5-fold cross validation). Including DWAs 332

improves predictions of earnings compared to FOS fixed effects (i.e., smaller RMSE). 333

Also, R2 = 0.684 of the DWA model is significantly better than that of FOS model 334

R2 = 0.677). Controlling for university rankings and geography further improves the 335

FOS model (i.e., FOS+RANK+GEO (R2 = 0.757) model is significantly better than 336

FOS (R2 = 0.677) model). But combining DWA variables with RANK and GEO 337

variables and FOS fixed effects yields even further improvement 338

(FOS+RANK+GEO+DWA model (R2 = 0.761) is statistically significantly better than 339

that of FOS+RANK+GEO model). This evidence suggests that some of the 340

information about graduate earnings represented in university rankings is also encoded 341

the DWA variables (e.g., a LASSO regression model containing DWA variables accounts 342

for 48% of the variation in college rankings; year and FOS fixed effects account for 343

7.9%). Finally, the best model (FOS+RANK+FOS*DWA) is found when we allow 344

DWA variables to interact with FOS fixed effects which suggests that different DWAs 345

correspond to earnings variation in different FOS (R2 = 0.779). The geographic 346

variables also help to improve the best model’s performance but not significant 347

(R2 = 0.782). 348

3.5 Within Field-of-Study skill variation and the earnings of 349

recent college graduates 350

Do differences in taught skills within college majors correspond to earnings differences 351

of recent graduates? To study how DWAs relate to earnings of graduates of a specific 352

field of study, we perform separate regression analyses for each FOS with at least 100 353

institution-year observations. We employ LASSO feature selection for DWAs and report 354

model performance using 40 independent trials of 5-fold cross-validation to mitigate 355

over-fitting. The remaining DWAs are used to predict earnings. As can be seen from 356

Figure 6, the DWA+GEO models perform significantly better than the baseline GEO 357

models in terms of RMSE. Due to the limited earnings data within FOS to perform 358

cross validation, the school ranking is omitted; the baseline models only include 359

geographic variables (GEO). We obtain similar performance when alternatively using 360

the model variance explained (R2) (see SI Figure S11C). This result again shows that 361

the DWAs complement the FOS information by increasing the share of the earnings 362

explained by the model and improving the model’s predictions. However, DWA+GEO 363

model performance varies across FOS. For example, the DWA+GEO model improves 364

27.2% RMSE over the GEO model for Business compared to a more modest 365

improvement of 4.2% for Psychology. Although O*NET DWAs improve predictions in 366

general, this varied performance across FOS could be because DWAs represent key skills 367

and activities better in some FOS than in others. Nevertheless, our methodology shows 368

that using granular workplace skills helps to identify important features contributing to 369

earnings of graduates beyond course educational and labor categories. 370
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Fig 5. Workplace activities detected from syllabi predicting median
first-year earnings of college graduates across fields of study. We perform
5-fold cross validation and repeat 40 times (i.e., 200 trials in total) for each model and
measure RMSE by the resulting model applied to the test set. Asterisks indicate the
statistically significant difference between two models’ performances with Bonferroni
correction. As a baseline, we consider the FOS, school ranking, and geographic fixed
effects to predict earnings.

FO
S

RANK

FO
S+

RANK+
GEO

FO
S+

RANK+
GEO

+DWA

FO
S+

RANK+
FO

S*D
WA

FO
S+

RANK+
GEO

+FO
S*D

WA

Model

0.14

0.16

0.18

0.20

0.22

0.24

Ro
ot

 M
ea

n 
Sq

ua
re

d 
Er

ro
r (

RM
SE

)

***
*

***
*

Dependent Variable: Earnings of College Graduates

December 20, 2022 13/19



Fig 6. Workplace activities detected from syllabi predicting median
first-year earnings of college graduates within a field of study. We perform
5-fold cross validation and repeat 40 times (i.e., 200 trials in total) for each model and
measure RMSE by the resulting model applied to the test set. The baseline GEO model
only includes geographic variables. The performances of the DWA+GEO models are
statistically significantly better than the GEO models with the p-values < 0.05 for all of
the reported FOS (the school ranking is omitted due to the limited earnings data).

Identifying DWAs that correspond to increased earnings after graduation could 371

inform students’ course selection based on the demand for skills in the labor market. To 372

demonstrate this, we analyze the regression of FOS Business as an example. After 373

performing 5-fold cross validation on the model determined by LASSO feature selection, 374

there are 57 DWAs remaining. Based on our statistical regression analysis, the 57 DWA 375

features are able to explain 69.2% of the variance of the earnings in Business. Among 376

those, 10 DWAs have significant coefficients with the p-values below 0.05. DWAs 377

“complete documentation required by programs or regulations,” “evalutate program 378

effectiveness,” and “advise others on career or personal development” are positively 379

associated with earnings while “conduct health or safety training programs” is negatively 380

associated with earnings (regression coefficients estimated with pvalue < 0.01 in each 381

case). The list of DWAs have significant coefficients for all the 10 FOS can be found in 382

SI Table S2. The full list of all the selected DWAs including the coefficients and 383

statistics can be found in this GitHub folder10. 384

4 Discussion 385

Knowledge, skills, and abilities shape workers’ careers, and so, quantifying their sources 386

may impact workforce development and our understanding of the labor market. Largely, 387

higher education is a source of skill acquisition for many middle and high-skilled jobs in 388

America. However, there is a disconnect between work and learning in the US; higher 389

education can fail to meet the skill demands of the labor market thus creating “skill 390

gaps” across the country. A labor market information system where work skills are 391

shared across entities, connecting education to work, could help students know what 392

skills they need, educators know what skills to instruct for, employers know what skills 393

10https://github.com/HungChau/OSP-connect-higher-education/tree/main/selected_DWAs
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workers have, and policy makers more effectively impact workforce development. This 394

study demonstrates a methodology to bridge material taught in U.S. colleges and 395

universities with the detailed work activities (DWAs) used by the Department of Labor 396

to describe the US workforce. This creates new opportunities to track changes in the 397

evolution of higher education and workforce development; for example, the emergence of 398

DWAs within the syllabi of a field of study (FOS), or major, corresponds to the 399

co-occurrence of DWA pairs across all of academia (see Fig. 4). As an illustrative 400

example, discussions of green technology design requirements may become more 401

prominent in Computer Science programs because they go hand-in-hand with 402

information technology project resource requirements, commonly taught in courses 403

across academia. Educators, educational policy, and course recommendation systems 404

could use these insights to design educational programs and to advise students towards 405

the classes offering the experience that will be most valuable for their career goals. 406

Following our example, proactive curriculum design might include green technology 407

topics to prepare students for jobs in Computer Science. 408

However, it is likely not the case that every FOS will teach every skill or ability, in 409

part, because labor market incentives for specific DWAs vary by industry, region, and 410

employer. Thus, insights into the course topics that correspond to increased, or 411

decreased, earnings after graduation (see Fig. 6 for example) may increase the relevance 412

of an educational program or policy and increase students’ success when they enter the 413

workforce. For example, academic programs might grow to include new high-demand 414

skills while decreasing emphasis on outdated topics. Such insights could inform 415

goal -based learning [31] in course recommendation systems while improving explanations 416

of recommendations. Increasingly-personalized course recommendations can identify 417

relevant topics based on students’ predefined goals (e.g., maximizing job earnings). For 418

example, recommending Business courses that include “complete documentation required 419

by programs or regulations” work activities might proactively prepare today’s students 420

to meet the growing demand for Business Analytics in the labor market. 421

This study has a few limitations. This study demonstrates how novel syllabus data 422

and natural language processing (NLP) techniques can connect labor market data to 423

higher education by predicting the change in taught skills within a FOS and linking 424

DWAs to graduate earnings. Future work might build on our study by analyzing the 425

causal implications of skill-level adjustments to course content. In particular, our 426

study’s approach is unable to address selection bias when students choose a university 427

in which to enroll. But future work may study natural experiments that overcome this 428

barrier. Potential examples include the hiring, firing, or retirement of new faculty, the 429

creation of a new school or department, the emergence of a large employer (e.g., 430

resulting from new tax credit), or large donations focused on specific learning outcomes. 431

For example, future work might augment our analysis of graduate’s recent earnings with 432

other career outcome measures. Our analysis of the College Scorecard earnings data is 433

limited to only two graduation cohorts and similar Post-Secondary Employment 434

Outcomes data is limited to only a few institutions. Furthermore, we only consider 435

earnings one year after graduation, which may not capture the full career trajectory [32]. 436

However, future analysis involving workers’ resumes will enable direct connections 437

between workers’ educational foundations during college and their career dynamics (e.g., 438

worker adaptability, tenure, and mobility) in addition to earnings. Similarly, job 439

postings analysis might compare employer demands to the DWAs detected in our study 440

thus identifying the most or least adaptive educational programs (e.g., [12]). Future 441

research along this dimension will offer new insights into the sources and sinks of the 442

high-skilled workers that shape job polarization [11] and urbanization today [4, 19]. 443

We have demonstrated, using mean cohort level graduate earnings, that there is 444

already detectable variation in earnings based on skills taught in courses offered. Our 445
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approach has focused on outcomes for groups of graduates (e.g., by major or university). 446

Future work with alternative data might investigate variations in labor market 447

outcomes for individuals. For example, students studying the same major could take 448

different courses offered, thus learning different skills. Whether the course selection by 449

individual students leads to different occupations and different earnings, and how much 450

learned skills could explain individual career variation are interesting questions left to 451

be discovered. One challenge in undertaking such research is the availability and 452

accessibility of this type of datasets at scale due to privacy concerns. Further, our 453

analyses focused on students with bachelor’s degrees, but future work might study the 454

skills of graduate education or the undergraduate education that lead to graduate school 455

admission. 456

Our study relied on simple off-the-shelf techniques in combination with novel data 457

sources, but future work might expand our methods with more sophisticated approaches. 458

For example, this study used pre-trained static word embeddings and standard 459

document similarity techniques to detect work activities from syllabi, but more complex 460

NLP techniques could yield further insights. Static word embeddings are a powerful tool 461

for capturing syntactic and semantic regularities in language, but each word is 462

represented by a single vector regardless of context. That is, all senses of a polysemous 463

word have to share the same representation. Contextualized word representations, such 464

as Transformer-based embeddings, overcome those issues and have yielded significant 465

improvements on many NLP tasks. Additionally, our study relies on the O*NET 466

taxonomy used by US Department of Labor to describe labor market trends. These 467

granular DWAs reveal core differences between courses, fields and universities. For 468

example, DWA propensity scores improved predictions of graduate earnings within 469

many fields of study, but not all. This suggests that “skill” differences may impact the 470

effectiveness of college education (in terms of earnings) but O*NET DWAs may not be 471

the most precise taxonomy to describe the granular level of knowledge expressed in 472

courses. This is in part because O*NET data is not designed to describe higher 473

education, but to describe workers. There is no standard knowledge base describing 474

more granular concepts and skills in higher education and the labor market. This 475

highlights an urgent need for future educational research that builds a knowledge base 476

that could standardize and advance insights into how educational foundations shape 477

workforce development and the skills of workers. With the advances of text mining 478

methods, one could extract skills described in course syllabi and job postings, and align 479

those skills to connect educational contents with the demands of the labor market. 480

There are some existing job skill taxonomies to describe job postings’ requirements such 481

as BG’s or LinkedIn’s proprietary skill taxonomies. Börner et al. (2018) analyze course 482

syllabi and BG’s job postings focusing on areas of Data Science and Data Engineering. 483

They use BG’s skill taxonomy instead of the one used by the U.S. Bureau of Labor 484

Statistics to analyze skill discrepancies between research, education and jobs. Modeling 485

job postings with NLP techniques has also been shown to be useful in understanding 486

wage premia [33]. Although our study focuses on the work side of job seeking, we 487

acknowledge that the demand from the employer side is also important to understand 488

the holistic picture from skill offerings in higher education to skill demands in the labor 489

market; which could benefit many applications such as identifying potential curricular 490

gaps or recommending courses to meet jobs’ requirements. 491

Increasingly, researchers and policy makers use workers’ skills and abilities to 492

describe labor market outcomes in addition to workers’ educational attainment based on 493

their occupation [5]. But, similar data and methods are only just being developed and 494

applied to workforce development and, in particular, to higher education. This study 495

offers an approach and a methodology to connect higher education to workplace skills 496

thus enabling new strategies for course recommendation, curriculum design, and 497
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education policy that prepare students to meet their career goals. 498
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