

The Firm Balance Sheet Channel of Uncertainty Shocks

Wentao Zhou

Institution: University of Wisconsin-Madison; Email: wzhou92@wisc.edu; Website: www.wentaozhou.com

This Paper

- ► Spikes in aggregates uncertainty are followed by large output drops.
- ► Understanding the transmission mechanism of uncertainty shocks is key to explaining its real impact and to the design of stabilization policies.
- ▶ Key idea: heightened uncertainty motivates firms to deleverage and build up liquid assets, thereby leading to capital investment cut.
- ► New Empirical Patterns + New Quantitative Model + Policy Implications

Empirical Patterns

Two Key Empirical Patterns:

- 1. The spikes in aggregate uncertainty are followed by physical capital drop, liquidity buildup, and deleveraging.
- 2. Drop in physical capital and buildup of liquidity are more pronounced among ex-ante more indebted firms.

1. Baseline Panel Local Projection:

Baseline Local Projection: Firm-Level Responses to 1 S.D. Growth in Macro Uncertainty Index

- ► Firm panel: COMPUSTAT non-financial firms (1990q1-2019q4)
- ► Indebtedness: (Outstanding Debt Liquid Assets)/ Total Assets
- $ightharpoonup \Delta \log \sigma_t$: Changes in Macro Uncertainty Index by Jurado et al. (2015)
- $ightharpoonup Z_{i,t-1}$: Indebtedness/Tobin's Q/Firm Size/Sales Growth/Cash Flows
- $ightharpoonup Y_t$: Real GDP Growth/Federal Funds Rate/Credit Spreads/Inflation Rate

2. Extended Panel Local Projection:

Cumulative growth

(a) Physical capital (b) Liquid assets holding (c) Outstanding debt Extended: Firm Controls Extended: Firm Controls

Extended Local Projection: Heterogeneous Responses by Firm indebtedness

Cyclical sensitivity Firm controls $\forall i, h = 0, 1, 2, 3, ..., 12$

► Empirical results are robust to a wide set of controls and specifications.

► Event study using the 9/11 terrorist attacks suggests similar patterns.

A Heterogeneous-Firm Model with Financial Frictions

- ▶ I embed firms' portfolio choice between physical capital and liquid assets into a heterogeneous-firm model with borrowing constraints.
- Frictions in financial markets and costly liquidity shortfalls for debt repayments motivate firms to hold liquid assets for future investment opportunities and for future debt repayment.

[Borrowing constraint]: $(1+r)b' \le \theta(1-\delta)k', 0 < \theta < 1$ [Equity issuance costs]: $\Phi(d) = \mathbf{1}_{d<0} \cdot \left(\kappa_0 + \frac{\kappa_1}{2}d^2\right)$

Model Validation

1.Empirically-consistent heterogeneity 2. Generating empirically-consistent dynamic investment/financing behavior in firm balance sheets

Uncertainty Shock

Cross-Sectional Moments: Data versus Model

(a) Leverage ratio

Data Model

(b) Cash ratio

▶ Both in the data and in the model, high indebtedness is associated with low capital investment/high cash growth/low debt growth.

Firm Characteristics and Firm Behavior: Data Versus Model

$\Delta \ln y_{i,t+1}$	$\Delta Capital_{i,t+1}$		$\Delta Cash_{i,t+1}$		$\Delta Debt_{i,t+1}$	
	Data	Model	Data	Model	Data	Model
$Indebtedness_{i,t}$	-0.023 *** (0.001)	-0.027*** (0.000)	0.122 *** (0.003)	0.110 *** (0.001)	-0.080 *** (0.003)	-0.060 *** (0.001)
Tobin's $Q_{i,t}$	0.022*** (0.000)	0.056*** (0.000)	0.038*** (0.001)	0.008*** (0.001)	0.013*** (0.002)	0.033*** (0.000)
Firm $Size_{i,t}$	-0.003*** (0.001)	-0.012*** (0.000)	-0.043*** (0.002)	-0.051*** (0.001)	-0.015*** (0.002)	-0.044*** (0.001)
Firm FE Sector-Quarter FE \mathbb{R}^2	√ √ 0.098	_ _ 0.784	✓ ✓ 0.055	_ _ 0.045	✓ ✓ 0.054	_ _ 0.144

▶ In both data and in the model, firms use cash holding and debt to fund capital investment when a growth opportunity realizes.

Firm Responses to Idiosyncratic Productivity Growth: Data versus Model

	Data			Model			
$\Delta \ln y_{i,t+1}$:	$\Delta Capital_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Debt_{i,t+1}$	$\Delta Capital_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Debt_{i,t+1}$	
$\Delta \ln TFP_{i,t}$	0.27*** (0.001)	-0.15 *** (0.005)	0.26*** (0.003)	0.849*** (0.002)	-0.955 *** (0.021)	0.381*** (0.012)	
Firm Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm FE	\checkmark	\checkmark	\checkmark	_	_	_	
Sector-Quarter FE	\checkmark	\checkmark	\checkmark	_	_	_	
R^2	0.176	0.080	0.084	0.896	0.112	0.171	

Model-implied Firm-level Transmission of Uncertainty Shocks

- ► The economy is at the steady state and unexpectedly receives a jump in the dispersion of idiosyncratic productivity (mean-preserving spread) that reverts back to steady-state level according to σ_{t+1} = 0.5 σ_t .
- Baseline model reproduces both average responses across firms and heterogeneous response driven by firm indebtedness.

$\Delta \ln y_{i,t+1} \times 100 :$	$\Delta Capital_{i,t+1}$	$\Delta Capital_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Debt_{i,t+1}$	$\Delta Debt_{i,t+1}$
$\Delta \log \sigma_{t+1}$	-0.326*** (0.013)	-0.214*** (0.016)	0.585*** (0.023)	0.753*** (0.026)	-0.491*** (0.060)	-0.193*** (0.069)
$\Delta \log \sigma_{t+1} \times Indebtedness_{i,t}$		-0.280*** (0.025)		0.257*** (0.039)		0.086 (0.103)
R-Squared Firm Controls _{i,t} $\Delta \log \sigma_{t+1} \times Z_{i,t}$	0.796 ✓ —	0.796 ✓	0.069 ✓	0.069 ✓ ✓	0.158 ✓ —	0.158 ✓ ✓

Decomposing the Mechanism: Role of Model Ingredients

Uncertainty shocks create both larger downside risk and greater upside opportunity.

- 1. Model w/o liquidity penalty \Longrightarrow no concern for downside risk \Longrightarrow no deleveraging
- 2. Model w/o debt issuance frictions \Longrightarrow no concern for upside opportunity \Longrightarrow cash drops

	(A) Model w/o liquidity penalty			(B) Model w/o debt issuance friction		
$\Delta \log y_{i,t+1} \times 100$:	$\Delta Capital_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Debt_{i,t+1}$	$\Delta Capital_{i,t+1}$	$\Delta Cash_{i,t+1}$	$\Delta Debt_{i,t+1}$
$\Delta \log \sigma_{t+1}$	0.033** (0.016)	0.239*** (0.008)	-0.018 (0.022)	-0.389*** (0.017)	-2.426*** (0.158)	-5.447*** (0.152)
Firm Controls $_{i,t}$ R^2	√ 0.727	√ 0.084	√ 0.589	√ 0.716	√ 0.059	√ 0.086

Novel Policy Implication

- ▶ Strong state-dependent effects: debt relief programs that can stimulate aggregate output by 0.5% during normal times drive up aggregate output by 1.5% during uncertainty-driven recessions.
- ► The working of policy: debt relief programs mitigate both deleveraging and liquidity buildup in response to uncertainty shocks.

Uncertainty-Driven Recessions and Credit Interventions

Conclusions

- ► A **novel** transmission mechanism of uncertainty shocks that works through firm balance
- ► The first model that reproduces joint capital/cash/debt dynamics following uncertainty
- ► Shed **new** light on stabilization policies during uncertainty-driven recessions.