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Abstract. In many set identified models, it is difficult to obtain a tractable characterization

of the identified set. Therefore, empirical works often construct confidence region based on an

outer set of the identified set. Because an outer set is always a superset of the identified set,

this practice is often viewed as conservative yet valid. However, this paper shows that, when

the model is refuted by the data, a nonempty outer set could deliver conflicting results with

another outer set derived from the same underlying model structure, so that the results of outer

sets could be misleading in the presence of misspecification. We provide a sufficient condition for

the existence of discordant outer sets which covers models characterized by intersection bounds

and the Artstein (1983) inequalities. We also derive sufficient conditions for the non-existence

of discordant submodels, therefore providing a class of models for which constructing outer sets

cannot lead to misleading interpretations. In the case of discordancy, we follow Masten and

Poirier (2021) by developing a method to salvage misspecified models, but unlike them we focus

on discrete relaxations. We consider all minimum relaxations of a refuted model which restores

data-consistency. We find that the union of the identified sets of these minimum relaxations is

robust to detectable misspecifications and has an intuitive empirical interpretation.

Keywords: Partial identification, identified/outer set, misspecification, nonconflicting hypothesis, robust identi-

fied set.
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1. Introduction

A central challenge in structural estimation of economic models is that the hypothesized structure

often fails to identify a single generating process for the data, either because of multiple equilibria or
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2 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

data observability constraints. In such a context, the econometrics of partially identified models has

been trying to obtain a tractable characterization of parameters compatible with the available data

and maintained assumptions (hereafter identified set). A question of particular relevance in applied

work is that it is often very difficult to find a tractable characterization of the identified set and then

to obtain a valid confidence region for it. To avoid this difficulty, a large part of the literature has

been trying to provide confidence region for an outer set, i.e., a collection of values for the parameter

of interest that contains the identified set but may also contain additional values.1 Because of its

tractability, constructing confidence region for an outer set has been entertained in various topic

of studies where the parameters of interest are only partially identified, see for instance Blundell

et al. (2007), Ciliberto and Tamer (2009), Aucejo, Bugni, and Hotz (2017), Sheng (2020), de Paula,

Richards-Shubik, and Tamer (2018), Dickstein and Morales (2018), Honoré and Hu (2020), Chesher

and Rosen (2020), Gualdani (2021), and Berry and Compiani (2022) among many others.

In most of the empirical studies, obtaining a tight outer set is very often interpreted as an evidence

for a small and then informative identified set;2 and this is because, under correct specification, any

outer set contains the identified set. In this paper, we examine the implication of using outer sets

for models that could be misspecified. We say a model is misspecified if the identified set of the

model parameters is empty. We use refutation and misspecification interchangeably in this paper.

The first main contribution of this paper is to characterize a class of models, for which outer

sets based on nonsharp identification conditions may be discordant. For this class of models, as

long as the model is misspecified, there always exist two sets of nonsharp identification conditions

that fail to detect the violation of the model and at the same time yield outer sets that are disjoint

with each other. Our result covers a large class of models studied in the partial identification

literature, including models whose identified set are characterized by intersection bounds, conditional

moment inequalities, or the Artstein (1983) inequalities. The discordancy that we find is a negative

property, because the result provided by an outer set could entirely be driven by the set of nonsharp

identification condition chosen by the researcher, and that we could always consider an alternative

choice that provides a result that conflicts with the initial one.

Discordant outer sets only exist when the model is misspecified. In theory, a researcher could run

a model specification test before using an outer set. However, in practice, although it is possible to

construct a nonsharp specification test which only checks the sufficient conditions for model misspec-

ification, constructing a sharp specification, which checks the necessary and sufficient conditions for

1See Molinari (2020) for a detailed discussion.

2A tight outer set here refers to an outer set that is very small and informative.
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the emptiness of the identified set, is as hard as obtaining a sharp characterization of the identified

set. The non-tractability of the latter is often the motivation to use outer sets in the first place.3

Therefore, our result shows that the usage of outer sets based on nonsharp identification conditions

is an unreliable compromise. It suggests that looking for the sharp characterization of the identified

set must not only be viewed as a theoretical exercise, but it has an important empirical relevance:

the identified set not only exhausts all the identification restrictions in the model structure and

assumptions, but also is immune to the possible misleading conclusions of discordant submodels.

However, discordant outer sets do not exist in all refuted models, especially when they are based

on weaker primitive assumptions instead of nonsharp identification conditions. We then derive

sufficient conditions for the non-existence of discordant submodels. This second result characterizes

a class of models for which constructing outer sets can not lead to misleading interpretations. In

this case, outer sets would be conservative, but are always robust.

Before us, various papers have been concerned about misspecification in partially identified mod-

els. An important focus has been dedicated on analyzing the impact of model misspecification on

standard confidence regions used for set identified models. Bugni, Canay, and Guggenberger (2012)

analyze the behavior of usual inferential methods for moment inequality models under local model

misspecification. Ponomareva and Tamer (2011) and Kaido and White (2013) consider the impact

of misspecification on semiparametric partially identified models, respectively, in the linear regres-

sion model with an interval-valued outcome and in a framework where some nonparametric moment

inequalities are correctly specified and misspecification is due to a parametric functional form. See

also Allen and Rehbeck (2020) who propose a method for statistical inference on the minimum ap-

proximation error needed to explain aggregate data in quasilinear utility models. It is worth noting

that if one tries to find a confidence region for an outer set, then no inference methods, including

those developed in the pre-cited papers, can fix the issue we are raising here. This is because two

non-empty outer sets derived from the same underlying model structure can lead to discordant re-

sults. Adopting one of these outer sets without checking the validity of the underlying model could

lead to misleading conclusions. Therefore, we need to suggest a more primitive approach to deal

with these discordant results in this paper.

This objective leads to our second main contribution which consists of providing a method to

salvage models that are possibly misspecified because of the existence of discordant misspecified

submodels or discordant nonempty outer sets. The main intuition is to construct some minimum

relaxation of the full model by removing discordant submodels until all remaining submodels are

compatible. Because, there could be multiple ways to relax a model to restore data consistency,

3See for instance, Sheng (2020), Gualdani (2021), and the empirical application in Berry and Compiani (2022,

Section 6, footnote 42).
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we take the union of the identified set of all these relaxed models. By doing so, we construct what

we call the misspecification robust bound. We provide general sufficient conditions under which our

misspecification robust bound exists, and also provide an intuitive empirical interpretation for it.

Intuitively, we will say that a hypothesis is robust to misspecification if the hypothesis is compatible

with all relaxed models that are data consistent, and is implied by at least one of those data-consistent

relaxed models.

The misspecification robust bound concept is related to the minimally-relaxed identified set in-

troduced in Andrews and Kwon (2019), and to the falsification adaptive set concept introduced in

Masten and Poirier (2021). The main departure from Masten and Poirier (2021) is that we focus on

discrete relaxations while Masten and Poirier (2021) focused exclusively on relaxing assumptions in

a continuous way. In general, the use of discrete or continuous relaxation depends on the empirical

application under scrutiny. We explore various features of discrete relaxations beyond its formal

definition.

It is worth noting that discrete relaxations of misspecified models have been entertained in various

existing papers, see for instance, Manski and Pepper (2000, 2009), Blundell et al. (2007), Kreider

et al. (2012), Chen, Flores, and Flores-Lagunes (2018), Kédagni (2021), Mourifié, Henry, and Méango

(2020), among many others. In these papers, when the initial model is too stringent, they suggested

alternative weaker assumptions that are believed to be more compatible with the empirical applica-

tion under scrutiny and for which the identified/outer set is not empty. However some alternative

reasonable relaxations may generate results that are discordant with what they suggested. To miti-

gate this issue, our misspecification robust bound approach suggests to collect information from all

reasonable discordant minimum relaxations of the initial model.

We organize the rest of the paper as follows. Section 2 introduces two simple leading exam-

ples that will illustrate our main contributions. Section 3 presents our general setting and main

results on the characterization of discordant submodels. Section 4 discusses a class of models for

which constructing outer sets do not lead to misleading interpretations. Section 5 introduces the

misspecification robust bound used to salvage misspecified models. Section 6 provides a numeri-

cal illustration of the discordancy issue by visiting the widely used entry game model studied in

Ciliberto and Tamer (2009), and also illustrates our misspecification robust bounds in a return to

education example. The last section concludes, and additional results and proofs are relegated to

the appendix.

2. Introductory examples

Although the main idea of this paper can be applied to general models, we start with these two

simple leading examples to illustrate our main contributions in a straightforward way.
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2.1. First leading example: Intersection bounds. Let us consider a special case of the inter-

section bounds in Chernozhukov, Lee, and Rosen (2013) in which parameter θ is bounded by the

conditional mean of an upper and lower bounds,

E[Y |Z = z] ≤ θ ≤ E[Y |Z = z] almost surely, (2.1)

where Y and Y are two observable random bounds and Z a vector of instrumental variables. Let Z
be the support of Z, and define

γ ≡ sup
z∈Z

E[Y |Z = z] and γ ≡ inf
z∈Z

E[Y |Z = z].

The identified set of θ is the interval [γ, γ] when γ ≤ γ. We assume the following regularity condition

holds in this example.

Assumption 1. Assume E|Y | < ∞ and E|Y | < ∞. In addition, assume that the conditional

expectations E[Y |Z], and E[Y |Z] exist and E[Y |Z] ≤ E[Y |Z] almost surely.

This simple framework encompasses some important treatment effect models, such that discrete

and continuous treatment models, see for instance Manski (1990, 1994) and Kim et al. (2018) among

many others.4 In practice, model (2.1) is sometimes implemented by solving its unconditional

version,

E
[
h(Z)(θ − Y )

]
≥ 0 and E

[
h(Z)(Y − θ)

]
≥ 0, (2.2)

where h is some nonnegative function mapping its input to Rm+ with m < ∞, and the inequalities

in (2.2) are vector inequalities. The inference for (2.2) is typically much simpler than the inference

for the original model (2.1), especially when Z is multi-dimensional. Let Θ̃(h) be the identified set

for θ in model (2.2). As made explicit in the notation, Θ̃(h) depends on the choice of instrumental

function h. However, since (2.1) implies (2.2), we know that for every choice of h, Θ̃(h) is always

an outer set of the interval [γ, γ], the identified set for θ in model (2.1), i.e. [γ, γ] ⊆ Θ̃(h). This

inclusion relation is often used as a justification for using model (2.2), it may not be as informative

as model (2.1), but its identification result Θ̃(h) is often viewed as a conservative bound for [γ, γ],

the identified set for model (2.1).

Our first observation is that the result based on Θ̃(h) is not always reliable. Later in Section 3.1,

we show that when the identified set of (2.1) is empty, i.e. γ > γ, there always exist two h and h′

such that both Θ̃(h) and Θ̃(h′) are nonempty but Θ̃(h)∩Θ̃(h′) is empty. Thus, two researchers could

apply the same model on the same data set and yet draw completely different conclusions from the

outer sets by choosing different h functions. For example, if one observes Θ̃(h) ⊆ (0,+∞) for some

h, one should not jump directly to the conclusion that the sign of θ is positive without verifying the

non-emptiness of the identified set, since in the case of emptiness, there are circumstances under

4For the sake of conciseness those examples are discussed in more details in Appendix A.1.
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which another researcher may choose an alternative h′ such that Θ̃(h) ⊆ (−∞, 0). This caveat of

outer sets is somewhat overlooked in the literature. As we listed some papers in the introduction, it

is common for researchers to construct a confidence interval for an outer set and draw conclusions

based solely on its result. If the model is refutable and a researcher only studies an outer set in

the empirical analysis without knowing whether the identified set is empty or not, results based on

an outer set could be misleading in the intersection bound model. In section 3, we show that this

caveat is indeed a concern for some widely used partial identification models, and in Section 6 we

illustrate this discordancy issue using the entry game model studied in Ciliberto and Tamer (2009).

However, there is a class of models for which constructing outer sets cannot lead to misleading

interpretations, we will study this class in Section 4. Before it, let’s introduce our second leading

example that belongs to such a class of models.

2.2. Second leading example: Adaptive Monotone IV (AMIV). Consider the following

potential outcome model: Y =
∑
z∈Z 1(Z = z)[Y1zD + Y0z(1 − D)], where the treatment D is

binary and the support Z of instrument Z is discrete and finite. Ydz is the potential outcome when

the treatment and the instrument are externally set to d and z, respectively. Assume Z is one

dimensional and assume, without loss of generality that Z = {1, ..., k}. We are interested in the

average potential outcomes θd =
∑
z P (Z = z)EYdz for d ∈ {0, 1}, and then average treatment effect

(ATE), i.e. θ1 − θ0. In this framework, the seminal work of Manski (1990) derived sharp bounds on

the ATE under three main assumptions: E.1 the bounded support of the potential outcomes, E.2

the exclusion restriction, i.e. EYdz = EYdz′ for z 6= z′, and E.3 the mean independence assumption,

i.e. E[Ydz|Z] = E[Ydz] for all z ∈ Z. However, there are some empirical evidences —for instance

Ginther (2000), where the identified for the ATE proposed by Manski is empty, suggesting a violation

of the at least one of these assumptions. To be able to say something meaningful on the ATE in

such a context, we introduce the Adaptive Monotone IV (AMIV) assumption which is one way to

relax Manski (1990)’s assumptions.

For any z ∈ {1, ..., k}, define assumption az to be the collection of the following assumptions:

E.1 for each d ∈ {0, 1} and any t ∈ {1, ..., k}, P (Ydt ∈ [ y
d
, yd ]) = 1.

E.2 for each d ∈ {0, 1} and any t ∈ {1, ..., k}, E[Ydt|Z] = E[Ydt] almost surely.

E.3 for each d ∈ {0, 1}, Ydt ≤ Ydt′ for all t ≤ t′, and Ydt = Ydz for all t ≥ z.

Each az has three parts. E.1 requires the potential outcomes to have a bounded support. E.2

is a mean independence assumption associated to the potential outcome Ydz. The novelty here is

E.3 which is an adaptive relaxation of the exclusion restriction. Indeed, on one extreme case when

z = 1, E.3 is equivalent to the full exclusion restriction, that is, Ydz = Ydz′ for all d, z and z′,

then E.2 and E.3 are equivalent to E[Yd|Z] = E[Yd], which is the restriction under which Manski
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(1990) derived bounds on the ATE. On the other extreme, when z = k, E.2 and E.3 imply the MIV

assumption introduced in Manski and Pepper (2000), i.e., z1 < z2 ⇒ E[Yd|Z = z1] ≤ E[Yd|Z = z2].

However, when 1 < z < k, we are in a middle ground situation where the exclusion restriction is

relaxed in such a way that Ydz′ is monotone in z′, but remains flat for z′ ≥ z. See Figure 1 for an

illustration of how Ydz depends on z under E.3 . We call this assumption the AMIV assumption

because we can allow this cut-off point z to be determined by the data. The economic rationality of

the AMIV is that, even if Z is not a valid IV because it could positively affect the potential outcome,

in some empirical context it could be reasonable to consider that the marginal effect of the IV on

the potential outcome becomes null after a certain cut-off point. Notice that by construction, for all

1 2 3 4 5
z

Ydz

Figure 1. Illustration of restriction E.3 when z = 3 and k = 5.

z = 1, ..., k − 1, az implies az+1, then, we have Θ ({az}) ⊆ Θ ({az+1}) for all z ∈ {1, ..., k − 1}. In

section 4, we will show that this nested structure of the assumptions may lead to a situation where

we cannot have discordant submodels. More generally, we will derive sufficient conditions for the

non-existence of discordant submodels.

In these leading examples, it is worth-noting that the motivation that leads to the construction

of the outer sets or the relaxation of the initial model are different. In the first example, the

outer sets are generated from non-sharp restrictions, and only used as an device aiming to provide

useful information on the identified set. Usually this situation happens when ones does not know

how to conduct inference directly for the identified set, or when the inference for the identified set

is computationally intractable to implement. In the Section 3 below, we will enumerate various
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reasons under which such an approach could lead to unreliable results. In the second example, the

outer sets are introduced in a more constructive manner aiming to relax a model refuted by the

data. They are based on more primitive assumptions on the latent variables. In such a case, it is

often possible to provide a series of outer sets that are not discordant with others. We will discuss

this case in Section 4.

3. Misleading Submodels in a General Setting

We view a model as a collection of constraints on the latent, observable variables, and the pa-

rameters. Throughout the paper, the parameter space Θ is assumed to be some subset in a metric

space, which can be on finite or infinite dimensions. Let A be some nonempty collection of these

constraints. We consider A as the full model (or simply model when there is no confusion) and,

A′ ( A as a submodel. For any nonempty subset A′ ⊆ A, we use ΘI(A
′) to denote the set of

parameter values that satisfy all the constraints in A′. For each a ∈ A, we abbreviate ΘI({a}) as

ΘI(a). Let ∅ denote the empty set, and we define ΘI(∅) := Θ∅ ⊆ Θ such that ΘI(a) ⊆ ΘI(∅) for all

a ∈ A.5 By definition, ΘI(A
′) ⊆ ΘI(A

′′) if A′′ ⊆ A′. As a result, for any A′ ⊆ A, ΘI(A
′) is an outer

set of ΘI(A). Moreover, we say a submodel A′ is data-consistent if ΘI(A
′) is nonempty, and call it

refuted or misspecified. if the reverse is true. Since ΘI(A) ⊆ ΘI(A
′) for any A′ ⊆ A, then, if the

model A is data-consistent, we know that each A′ ⊆ A is also data consistent, and ΘI(A
′)∩ΘI(A

′′)

is nonempty for any two submodels A′ and A′′.

In this section, we focus on A that consists of constraints that could be written in terms of the

observable variables and model parameters only. This includes models where the identified sets

are entirely characterized by a set of moment (in)equalities —including GMM models, or Artstein

(1983) inequalities involving only observables and the parameter of interests. We refer to this type

of constraints as identification conditions. These identification conditions are often derived from

primitive assumptions involving the latent variables. In this restricted framework, we view A as the

sharp identification conditions, and we call A′ nonsharp identification conditions if ΘI(A) ( ΘI(A
′).

For instance, in the first leading example, the role of A is played by the set of moment inequalities

(2.2) indexed by all instrumental function h, with ΘI(A) = [γ, γ]. A submodel A′ ⊆ A could refer

to (2.2) for a specific function h, with ΘI(A
′) = Θ̃(h). If [γ, γ] ( Θ̃(h), then A′ is a nonsharp

identification condition.

In empirical works with partially identified models, researchers often use nonsharp identification

conditions instead of the sharp ones. This is often motivated by two main reasons: (i) sometimes the

5For the sake of simplicity when there is no confusion we will just use Θ to refer to Θ∅.
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researchers may not even know the sharp characterization of the identified set, (ii) the sharp iden-

tification conditions might be computationally intractable given the existing inferential methods.6

More importantly, because an outer set (obtained from nonsharp identification conditions) is always

a superset of the sharp identified set (obtained using the sharp identification conditions), considering

only an outer set is often viewed as conservative yet valid. However, the next theorem shows that,

outer sets are not always reliable and potentially misleading in presence of misspecification.

Theorem 1. Suppose that:

(T1.C1) There exists a collection C of subsets of A such that

(1) ∀A′ ∈ C , A′ is data-consistent and consists of finite elements in A,

(2) ΘI(∪A′∈CA
′) = ΘI(A),

(3) either C is finite or, for each A′ ∈ C , ΘI(A
′) is compact.

(T1.C2) For any A′ ⊆ A, ΘI(A
′) = ∩a∈A′ΘI(a).

Then, ΘI(A) = ∅ if and only if there exist two finite subsets A′, A′′ ⊆ A such that both A′ and A′′

are data-consistent and ΘI(A
′) ∩ΘI(A

′′) = ∅.

Moreover, when ΘI(A) = ∅, for any data-consistent B ⊆ A, there exists two finite subset B′, B′′ ⊆
A such that both B ∪B′ and B′′ are data-consistent and ΘI(B ∪B′) ∩ΘI(B

′′) = ∅.

Theorem 1 tells us that when the model is refuted, an outer set derived from one set of nonsharp

identification conditions could be completely different from an outer set obtained from a different

set of nonsharp identification conditions. In such a case, the information delivered by an outer

set depends mainly on which nonsharp identification conditions the researcher had decided to use.

Therefore, for this class of models, applied researchers must be very careful in interpreting outer

sets based on nonsharp identification conditions.

Moreover, Theorem 1 shows that, for any data-consistent nonsharp identification condition, there

always exists another nonsharp identification conditions that are discordant with some of its strength-

ened version. We will illustrate this point further with the first leading example in the next sub-

section. And later in Section 6.1 we provide a numerical illustration of Theorem 1 when applied to

an entry game example. Finally, the discordant identification conditions found in Theorem 1 only

consists of a finite number of conditions, even when the cardinarlity of A and C are uncountably

infinite.

Let us now briefly discuss the two conditions in Theorem 1 in more details. Condition (T1.C1)

is the key condition which generates discordant outer sets. In condition (T1.C1), C is a collection

of data-consistent subsets of A, whose union has the same identified set as A. In most cases, C

6See, for example, Berry and Compiani (2022, section 6, footnote 42).
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could be constructed as C = {{a} : a ∈ A}. C could also depend on the underlying data generating

process. When A is refuted, condition (T1.C1) requires the existence of a collection of nonsharp

identification conditions which are data-consistent separately but are refuted jointly. The intuition

is that if the union of different data-consistent nonsharp identification conditions generates an empty

outer set, then some of them must be mutually incompatible. However, this condition alone does

not guarantee the result of Theorem 1. Condition (T1.C2) is also needed. It trivially holds in this

section since we consider that each a ∈ A as an identification condition written in terms of the

observables and the parameters. It may not hold in context when some A′ ⊆ A involve primitive

restriction on latent variables, as it is the case in our second leading example.

Although, Theorem 1 seems to focus essentially on partially identified models, it also applies

to point identified models. Suppose that each outer set derived from each single identification

condition is a singleton, i.e. ΘI(a) is a singleton, for all a ∈ A. Then, Theorem 1 says that the

model is misspecified if and only if there exists two different identification conditions a, a′ ∈ A

such that ΘI(a) 6= ΘI(a
′). This is related to a long existing observation in point identified models:

whenever a model is over-identified, one can test the model specification by comparing the point-

estimands obtained from different identification conditions. In point identified models, the issue of

over-identification or misspecification is a direct concern for the researchers. In partial identified

models, however, applied researchers tend to believe that their results are more credible, thus less

sensitive to misspecification. Therefore, they often interpret the tightness of an outer set as a

signal of an informative identified set, see for instance the discussion in Molinari (2020) regarding

the “usefulness” of outer sets. Theorem 1 provides a different perspective, that for a certain class

of models, outer sets could be misleading. Therefore, applied researchers should be very careful in

interpreting outer sets based on nonsharp identification conditions, even if the model is only partially

identified. In the following, we analyze the implication of Theorem 1 on our first leading example.

3.1. Intersection bounds example continued. First of all, let us construct A in this example.

Define H+
m to be the space of all nonnegative instrumental functions with dimension m. More

formally, let H+
m ≡ {h : Z 7→ Rm+ such that E ‖h(Z)‖ < ∞, E ‖Y h(Z)‖ < ∞, E

∥∥Y h(Z)
∥∥ <

∞ and E[hi(Z)] > 0, ∀ i = 1, ...,m}. Let A be the set of all identification conditions (2.2) indexed

by h ∈ H+
1 . The set A constructed here represents sharp identification conditions, because (2.1)

holds if and only if (2.2) holds for all h ∈ H+
1 .

Next, we verify (T1.C1) and (T1.C2) holds. Note that, for each a ∈ A, ΘI(a) is nonempty and

compact. This is because each a ∈ A corresponds to an h ∈ H+
1 , and because for all h ∈ H+

1 , the

identified set Θ̃(h) for model (2.2) is equal to the following interval[
E[h(Z)Y ]

E[h(Z)]
,
E[h(Z)Y ]

E[h(Z)]

]
,
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which is nonempty and compact under Assumption 1. We can let C = {{a} : a ∈ A}. Then, ΘI(A
′)

is nonempty and compact for all A′ ∈ C . Moreover, ΘI(A) = ΘI(∪A′∈CA
′) by the construction of

C . Thus, condition (T1.C1) is satisfied. Since (2.2) are moment inequalities which only depend on

observables and the parameter, condition (T1.C2) is also satisfied.

Note that, in this example, if B ⊆ A and B consists of m assumptions, then B refers to the

submodel that (2.2) holds for some h ∈ H+
m. As a result, Theorem 1 implies that when (2.1) is

refuted, there must exist some h1 ∈ H+
m1

and h2 ∈ H+
m2

, such that Θ̃(h1) 6= ∅ and Θ̃(h2) 6= ∅ but

Θ̃(h1) ∩ Θ̃(h2) is empty. In fact, because of the specific structures of this example, we can even

obtain the following stronger result.

Proposition 1. Suppose Assumption 1 holds. If the restriction in (2.1) is refuted, i.e. γ > γ, then,

for any θ in (γ, γ), there exists some h ∈ H+
2 such that Θ̃(h) = {θ}. Conversely, if there exists some

integer m and some h ∈ H+
m such that Θ̃(h) = {θ}, then θ ∈ [γ, γ].

When (2.1) is refuted, Proposition 1 shows that the unconditional moment restrictions can point

identify any element in the crossed bound (γ, γ) with a properly chosen instrumental function. The

width of (γ, γ) depends on the extent of the model violation: the worse the violation is, the wider

this interval would be. In the extreme case where the mean independence condition is so much

violated that [EY ,EY ] ⊆ (γ, γ), this means that any point in the Manski worst-case bounds can be

picked up as the point identification result by some choice of h.

Proposition 1 also shed some lights on the implementation of the inference procedure in Andrews

and Shi (2015) which is one of the most popular inference procedure used for conditional moment

inequalities. Andrews and Shi (2015) converts the conditional moment inequalities into unconditional

moment inequalities in the same way as we transformed, in the first leading example, (2.1) into

(2.2). The validity of their theoretical results relies on the assumption that the dimension of the

instrumental functions h increases to infinity as the sample size increases, but the Stata package

provided in Andrews, Kim, and Shi (2017) allows the researchers to choose an instrumental function

with a finite and fixed dimension. Proposition 1 gives a warning that a finite dimension instrumental

function might result in a spurious informative yet misleading results.

It is worth-noting that Theorem 1 applies to much general frameworks. More precisely, In Ap-

pendices A.2, and A.3, we provide sufficient conditions under which Theorem 1 applies to two widely

used classes of partially identified models. The first is a class of models where the identified set is

characterized by the following type of conditional moment inequalities:

E[m(X,Z; θ)|Z] ≤ 0 almost surely, (3.1)

where X ∈ Rk1 and Z ∈ Rk2 are observable random variables and m(·, · ; θ) ∈ R is some known

integrable function for each θ. If researchers construct outer sets by transforming (3.1) into a finite



12 DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS

dimensional unconditional moment inequalities then similar discordancy issue may happen as the

one we have seen in the first leading example. See Appendix A.2 for more details.

The second class of models that Theorem 1 could be applied to is the class for which the identified

set can be characterized by Artstein (1983) inequalities. In her recent survey Molinari (2020) shows

this class of models included: simultaneous-move finite games with multiple equilibria, auction

models with independent private values, network formation models, treatment effect models, etc.

In many of those cases, the number of Artstein (1983) inequalities that characterizes the (sharp)

identified set is extremely high (very often much more higher than the sample size of the data under

use). In practice for the sake of computational feasibility, empirical researchers often pre-select a

finite collection of Artstein inequalities to obtain an outer set. As examples, we could cite Ciliberto

and Tamer (2009), Haile and Tamer (2003), Sheng (2020), Chesher and Rosen (2020), and Berry and

Compiani (2022), among many others. In Appendix A.3, we show that those pre-selected nonsharp

moment inequalities suffer the same issue pointed out in Theorem 1.

In Section 6, we provide a numerical illustration of the discordancy issue by visiting the widely

used entry game model studied in Ciliberto and Tamer (2009). We will explore in more details the

consequences of this pre-selection procedure when the original model might be refuted, and illustrate

the implication of our Theorem 1 in this widely used framework.

4. Compatible Submodels and Minimum Data-Consistent Relaxation

As discussed in the previous section, there could exist discordant submodels when the full model

is refuted. However, the falsification of the full model does not necessarily lead to discordancy of the

submodels. Unlike in the previous section, we now consider A that consists of primitive assumptions

on latent variables in addition on those on observable variables, and the parameter of interests. In

this wider class of model, we will present a sufficient condition which ensures that all data-consistent

submodels are always compatible with each other. In this section, for the sake of simplicity, we focus

on the case where A is finite. For the case where A is infinite, similar results could be derived under

additional conditions. We elaborate those conditions and results in Appendix A.4.

To state our result, we need to introduce a new concept. When the full model is refuted, we

can get some data-consistent submodel by dropping or relaxing some of the assumptions. We say

that a data-consistent submodel is a minimum relaxation if we just relax the minimum number of

assumptions to restore the data consistency.

Definition 1. Let Ã be a subset of A. We say Ã is a minimum data-consistent relaxation of A if

ΘI(Ã) is nonempty and for any a ∈ A\Ã, ΘI(Ã ∪ {a}) is empty.
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It is worth noting that the concept of minimum data-consistent relaxation depends on how the

researcher defines each of the simple assumptions a that constitute A. Therefore, all the subsequent

results relying on the minimum data-consistent relaxation depend on the way the researcher con-

structs A. We would return to this point in Section 5.3. Furthermore, a minimum data-consistent

relaxation always exists when A is finite; its existence requires additional conditions when A is

infinite. See Appendix A.4.

To illustrate this concept, let us consider a simple example where A = {a1, a2, a3}. The identified

sets of each ai are all closed intervals in R as shown in Figure 2 with ΘI(a1) = [b, c], ΘI(a2) = [d, e],

ΘI(a3) = [f, g] and f ≤ b ≤ c < d ≤ e ≤ g. Assume also for the purpose of illustration that

ΘI({a, a′}) = ΘI(a) ∩ΘI(a
′) for a, a′ ∈ {a1, a2, a3}.

Figure 2. The three-interval example

b c

ΘI(a1)

d e

ΘI(a2)

f g

ΘI(a3)

In this example, both {a1, a3} and {a2, a3} are minimum data-consistent relaxations. And, {a3}
is not a minimum data-consistent relaxation, since it will remain data-consistent after including a1

or a2.

In general, the number of minimum data-consistent relaxations may or may not be unique. We

will defer the discussion of multiple minimum data-consistent relaxations to the next section. In this

section, we focus on the situation where there exists a unique minimum data-consistent relaxation.

In fact, the uniqueness of the minimum data-consistent relaxation ensures the absence of discordancy

issues discussed in the previous section. More precisely, in Appendix A.5, we show that the existence

of two discordant submodels is equivalent to the existence of two minimum data-consistent relax-

ations that are also discordant each other under some regularity conditions. Therefore, the unique-

ness of the minimum data-consistent relaxation ensures the absence of discordant sub-models. The

following result describes the conditions under which there exists a unique minimum data-consistent

relaxation.

Theorem 2. Suppose A is finite. Then the following statement are equivalent:

(T2.C1) for any A′ ⊆ A, A′ is data-consistent if and only if all a ∈ A′ are data-consistent.

(T2.C2) There exists a unique minimum data-consistent relaxation A∗.

Theorem 2 through its condition (T2.C1) provides a way to check whether there exists a unique

minimum data-consistent relaxation A∗. Condition (T2.C1) can be verified by investigating when
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each A′ ⊆ A is data-consistent, which could be done even without seeing the data. In terms of

interpretation, condition (T2.C1) implies that all data-consistent submodels are compatible with

each other. It also implies that the set of data-consistent submodels, i.e., {A′ ⊆ A : ΘI(A
′) 6= ∅}, is

closed under the union operation: the union of data-consistent submodels remains data-consistent.

When the full model A is data-consistent, the unique minimum data-consistent relaxation A∗ is just

equal to A. When A is refuted, A∗ can be viewed as the model learned from the data by removing

all refuted assumptions in A while keeping all the data-consistent ones. Indeed, condition (T2.C1)

suggests that A∗ = {a ∈ A : ΘI(a) 6= ∅}. The interpretation of A∗ and its role as the unique

minimum data-consistent relaxation will be studied further in Appendix A.6.

One way to illustrate condition (T2.C1) is to consider our second leading example.

4.1. AMIV example continued. Recall that by construction, for all z = 1, ..., k − 1, az implies

az+1. In addition, define a† as the collection of E.1 and E.2 . Let A = {a1, ..., ak, a
†} be the collection

of all assumptions. Then, the full model A is the classic mean independence assumption considered in

Manski (1990). Within this second leading example, all assumptions are nested. That is, for any two

a, a′ ∈ A, either a implies a′ or a′ implies a. Therefore, the data-consistency of a set of assumptions

is equal to the data-consistency of the strongest assumption in that set, which implies the validity of

(T2.C1).7 Therefore, (T2.C1) holds in this example. Theorem 2 then implies that all data-consistent

submodels will be compatible with each other and there exists a unique minimum data-consistent

relaxation A∗. The following result characterizes the identified set of A∗. To state the result, we

use the following notations: Y d = Y 1(D = d) + y
d
1(D 6= d), Y d = Y 1(D = d) + yd1(D 6= d),

q
dz

= E[Y d|Z = z], and qdz = E[Y d|Z = z].

Proposition 2. Assume that P (Y ∈ [y
d
, yd]

∣∣D = d) = 1 for any d ∈ {0, 1}. Let θ = (θ1, θ0) be the

parameter of interest. Then, model A always has a unique minimum data-consistent relaxation A∗,

and A∗ always contains a†. In addition, for any z = 1, ..., k, az ∈ A∗ if and only if the following

two conditions hold for each d ∈ {0, 1}:

∀z′ < z, max(q
dt

: t ≤ z′) ≤ min(qdt : t ≥ z′) (4.1)

and

max(q
dt

: t = 1, ..., k) ≤ min(qdt : t ≥ z) (4.2)

7However, it is worth-noting this nested structure is not necessary for condition (T2.C1) to hold.
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Hence, az ∈ A∗ implies that az′ ∈ A∗ for all z′ > z. Moreover, if {z : az ∈ A∗} is nonempty, define

z∗ = min{z : az ∈ A∗} and

Γd,z∗ =

∑
z<z∗

P (Z = z) max(q
dt
, t ≤ z) +

∑
z≥z∗

P (Z = z) max(q
dt

: t = 1, ..., k),

∑
z<z∗

P (Z = z) min(qdt : t ≥ z) +
∑
z≥z∗

P (Z = z) min(qdt : t ≥ z∗)

 . (4.3)

Then, ΘI(A
∗) = Γ1,z∗ × Γ0,z∗ . If {z : az ∈ A∗} is empty, then ΘI(A

∗) =
[
E[Y 1], E[Y 1]

]
×[

E[Y 0], E[Y 0]
]
.

Remark 1. It is worth noting that while, for simplicity, we impose the cut-off z∗ to be the same for

all potential outcomes in E.3 , we do not need to do so. We can let the data determine the cut-offs

for each potential outcome separately.

5. Misspecification Robust Bounds

In this section, we consider the cases where there are multiple data-consistent relaxations. By

Theorem 2, the multiplicity of minimum data-consistent relaxations is a necessary condition of the

existence of discordant submodels. Indeed, whenever there exist two mutually incompatible data-

consistent submodels, there exist at least two minimum data-consistent relaxations. If there is no

reason to favor one submodel over another ex ante, it is reasonable to take all of these relaxations

into consideration.

Definition 2. Let AR be the set of all minimum data-consistent relaxations. The misspecification

robust bound Θ∗I is defined as Θ∗I ≡ ∪Ã∈AR
ΘI(Ã).

The misspecification robust bound concept is similar to the falsification adaptive set concept

introduced in Masten and Poirier (2021). However, a distinctive feature of this section is that we

focus on discrete relaxations where an assumption is either dropped or kept, while Masten and

Poirier (2021) focuses exclusively on relaxing assumptions in a continuous way. In general, the

type of relaxation depends on the empirical question under study. In the following, we derive the

misspecification robust bound for our two leading examples.

5.1. Intersection bounds example continued. For the model (2.1), the misspecification robust

bound is given in the following result:
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Proposition 3. Suppose Assumption 1 holds, then:

Θ∗I =



[γ, γ] if γ ≤ γ,
[γ, γ] if γ < γ, P (E[Y |Z] ≤ γ]) > 0 and P (E[Y |Z] ≥ γ]) > 0,

(γ, γ] if γ < γ, P (E[Y |Z] ≤ γ]) = 0 and P (E[Y |Z] ≥ γ]) > 0,

[γ, γ) if γ < γ, P (E[Y |Z] ≤ γ]) > 0 and P (E[Y |Z] ≥ γ]) = 0,

(γ, γ) if γ < γ, P (E[Y |Z] ≤ γ]) = 0 and P (E[Y |Z] ≥ γ]) = 0.

(5.1)

A direct implication of Proposition 3 is that if P (E[Y |Z] ≤ γ]) > 0 and P (E[Y |Z] ≥ γ]) > 0

hold which are mild technical requirements, the misspecification robust bound simplifies to Θ∗I =

[min(γ, γ),max(γ, γ)] whether or not the full model is refuted.

5.2. AMIV example continued. A direct implication of Proposition 2 is that the AMIV model

has a unique minimum data-consistent relaxation A∗ which can be summarized as follows: A∗ =

{a†} ∪ {az : Equations (4.1) & (4.2) hold}. Therefore, the misspecification robust bound for the

AMIV model is:

Θ∗I =

{
Γ1,z∗ × Γ0,z∗ if A∗ 6= {a†},[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
if A∗ = {a†}, (5.2)

where z∗ = min{z : az ∈ A∗}.

5.3. Empirical interpretation of the misspecification robust bound. As we pointed out

earlier, Θ∗I will depend on how the researcher decides to define the assumptions a that constitute A.

Different construction of A corresponds to different ways to relax a refuted model. It is inevitable

that there almost always exist multiple ways to relax a stringent and refuted model, and different

ways of relaxations would lead to different results. Instead of drawing a general conclusion on which

way of relaxations is the best, we think it is important to provide an empirical interpretation of Θ∗I
for a given A. In this way, even if different researchers may construct A based on their own economic

interpretations of the model, they would have a clear interpretation of their results.

In Theorem 5 in Appendix A.6, we show that the misspecification robust bound Θ∗I is both

rationalizable and nonconflicting in the following sense:

• (Rationalizable) θ ∈ Θ∗I is implied by some data-consistent submodel. That is, there exists

some data-consistent submodel A′ ⊆ A such that ΘI(A
′) ⊆ Θ∗I .

• (Nonconflicting) θ ∈ Θ∗I is not rejected by any data-consistent submodel. That is, there does

not exist a data-consistent submodel A′ ⊆ A such that ΘI(A
′) ∩Θ∗I = ∅.

When the full model is refuted, different data-consistent submodels can imply different and po-

tentially discordant statements on θ. Among all possible statements on θ, we think that being

rationalizable and nonconflicting is a minimum requirement for a statement to be robust to model
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misspecification. If a statement fails to be rationalizable, then it is not implied by any of the data-

consistent submodels. If a statement is not nonconflicting, then it is rejected by some data-consistent

submodels.

The fact that Θ∗I is both rationalizable and nonconflicting gives it an interesting empirical inter-

pretation. Consider the simple case where θ is a scalar. Suppose we are interested in the sign of θ.

And, suppose Θ∗I turns out to be within the positive real line, i.e., Θ∗I ⊆ R++. Then, it means that

some submodels identify the sign of θ to be positive, and whenever the sign of θ can be identified

by a submodel, the sign of θ is always positive.

In some cases, Θ∗I is the smallest set that is both rationalizable and nonconflicting. That is, for

any Θ̃ ⊆ Θ, Θ̃ is both rationalizable and nonconflicting if and only if Θ∗I ⊆ Θ̃. In this case, Θ∗I could

have richer interpretations. Consider the previous simple example again. Suppose it turns out that

Θ∗I ∩ R++ 6= ∅ and Θ∗I ∩ R−− 6= ∅ so that θ ∈ Θ∗I does not imply the sign of θ. If we know Θ∗I is

the smallest rationalizable and nonconflicting set, then we have the following conclusion: neither θ

is positive nor θ is negative are rationalizable and nonconflicting statements. In other words, the

value of Θ∗I in this case implies that the data and the model cannot provide a clear statement on the

sign of θ. Finally, in Theorem 7 relegated in Appendix A.6, we show that Θ∗I would be the smallest

rationalizable and nonconflicting set if there exists a unique minimum data-consistent relaxation or

the identified set for each minimum data-consistent relaxation is singleton.

5.4. Discrete Relaxation versus Continuous Relaxation. As can be seen, the misspecification

robust bound relaxes a refuted model in a discrete way: an assumption is either fully kept or dropped

during the relaxation. There are many other ways to relax and salvage a refuted model. One can

also relax assumptions continuously as in Masten and Poirier (2021).

In general, different relaxations will lead to different results, and it is hard to compare all the

possible approaches. However, there does exist a special case where discrete relaxation always leads

to more informative results than any other ways of relaxations.

In order to make an adequate comparison, we need to introduce the terminology used in Masten

and Poirier (2021). For any ε ∈ [0, 1] and any a ∈ A, let aε denote the assumption after relaxing

assumption a. The degree of relaxation is measured by ε: when ε = 0, aε = a; when ε ∈ (0, 1),

the assumption a is partially relaxed but the exact form of aε would depend on the specific way of

relaxation chosen by the researcher; when ε = 1, the assumption a is completely relaxed and aε is

a null assumption which does not impose any restriction. Assume the relaxation is monotone: if

ε1 ≤ ε2, aε1 is stronger than aε2 , in the sense that aε1 implies aε2 . For any δ : A → [0, 1], define

A(δ) ≡ {aδ(a) : a ∈ A} as the perturbed full model. For any two δ1 : A→ [0, 1] and δ2 : A→ [0, 1],

we write δ1 < δ2 if δ1(a) ≤ δ2(a) for all a ∈ A and δ1(a) < δ2(a) for some a ∈ A. Then, the

falsification frontier in Masten and Poirier (2021) can be defined as FF = {δ : A → [0, 1] :
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ΘI(A(δ)) 6= ∅ and there does not exist δ′ such that ΘI(A(δ′)) 6= ∅,ΘI(A(δ′)) ( ΘI(A(δ)) and δ′ <

δ}. We slightly modified the definition of the falsification frontier of Masten and Poirier (2021) to

ensure the nonemptiness of FF in some special cases.8 Then, the falsification adaptive set Θ†I is

defined as Θ†I = ∪δ∈FFΘI(A(δ)).

Note that Θ†I depends on the specific way that one chooses to relax the assumptions. If one

chooses to relax them discretely, i.e., if aε = a1(ε>0) for any ε and a, then Θ†I is equal to the

minimum data-consistent relaxation Θ∗I . If one chooses a different way of relaxation, the Θ†I is

generally different. In some special cases, however, Θ∗I is always included in Θ†I no matter which

way of relaxation is chosen. More precisely, whenever for any minimum data-consistent relaxation

Ã, ΘI(Ã) is a singleton, it can be shown that Θ∗I ⊆ Θ†I for any type of relaxation chosen by the

researcher. We formally state and prove this result, respectively, Theorem 8 relegated in Appendix

A.7.

6. Numerical and Empirical Illustrations

In this section, through numerical exercises, we illustrate two of our main theoretical results.

In Section 6.1 we consider the entry game model studied in Ciliberto and Tamer (2009, CT). We

simulate a misspecified entry game model such that the sharp identification conditions delivers

an empty identified set. In such context we show that it is possible to generate multiple non-

empty conflicting outer sets by just selecting different sets of nonsharp identification conditions.

This illustrates the discordancy issue raised in Theorem 1. In Section 6.2, we revisit a return to

college application, and report the estimated identified set of the minimum data-consistent relaxation

derived under the assumption that parental education satisfies the AMIV assumption.

6.1. Numerical illustration of discordant outer sets in an entry game model. Consider an

entry game model with m players. Each player i chooses Yi ∈ {0, 1} to maximize its payoff:

πi = Yi

αi +Xiβ −
∑
j 6=i

δijYj + εi

 (6.1)

where δij is player j’s competition impact on player i, ε = (ε1, ..., εm) ∼ N(0, Im), and Im is the

identity matrix. Denote α = (αi : i = 1, ...,m), δ = (δij : i 6= j), and, let θ = (α, β, δ) collect all

the parameters. We model the players’ behaviour as pure-strategy Nash equilibrium. Therefore, we

restrict the parameter space Θ to be the set of parameters where pure-strategy equilibria exist with

probability 1. This is the same empirical model used in Ciliberto and Tamer (2009, CT), except

8The original definition in Masten and Poirier (2021), written in our notation, is FF = {δ : A → [0, 1] :

ΘI(A(δ)) 6= ∅ and there does not exist δ′ such that ΘI(A(δ′)) 6= ∅ and δ′ < δ}. With our modified definition, we do

not need to worry about the possibility that there is a sequence of {δi : i ≥ 1} such that δn → δ∗, ΘI(A(δ∗)) = ∅,
ΘI(A(δn)) = ΘI(A(δ1)) 6= ∅ and δn+1 < δn for all n ≥ 1.
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for two simplifications: (i) we assume that β is the same for all players; (ii) we assume that the

distribution of ε is known.

Let K be the collection of all subsets of Y ≡ {0, 1}m. Let F denote the joint distribution of

(Y,X) in the data. Define Γ(x, ε; θ) as the set of all pure-strategy Nash equilibria given (x, ε),

the parameter θ and the payoff function in (6.1). As shown in Galichon and Henry (2011) and

equivalently in Beresteanu, Molchanov, and Molinari (2011), θ belongs to the identified set ΘI(F )

if and only if

∀K ∈ K, PF (Y ∈ K|X) ≤ P(Γ(X, ε; θ) ∩K 6= ∅|X), X − a.s. (6.2)

Equation (6.2) characterized the Artstein (1983) inequalities associated to the entry game model

under study. For each fix covariate x, we have 22m inequalities to be checked. In this case, our

full model A is defined by the whole set of Artstein (1983) inequalities, and then its cardinality is

22m × Card(X). This becomes easily non-tractable even for a relatively small number of firms, i.e.

for instance, for a fixed x, and 5 firms we have 225

= 4, 294, 967, 296 inequalities to be checked.

Therefore, in practice, outer sets are almost always used. Let A′ be a subset of K. Then, the outer

set associated with A′ is

ΘI(F,A
′) ≡

{
θ ∈ Θ : ∀K ∈ A′, PF (Y ∈ K|X) ≤ P(Γ(X, ε; θ) ∩K 6= ∅|X), X − a.s.

}
A′ is a nonsharp identification conditions whenever ΘI(F,A

′) 6= ΘI(F,K) ≡ ΘI(F ). In CT, for each

fixed x, they considered the outer set associated with Act defined as Act = {{y} : y ∈ Y} ∪ {{y}c :

y ∈ Y} where {y}c stands for the complement set of {y} in Y. It is worthnoting that whenever

m > 2, Act is a nonsharp identification condition.

6.1.1. Data generating process (DGP). In order to illustrate the issue of non-reliability of the outer

sets in presence of misspecification, we generate a joint distribution F from a game that might be

different from the model (6.1). Assume that, in the data generating process, each player i chooses

Yi ∈ {0, 1} to maximize the following payoff instead of (6.1):

πi = Yi

αi +Xiβ −
∑
j 6=i

δijYj −
∑

j1,j2 6=i
γij1,j2Yj1Yj2 + εi

 . (6.3)

The extra vector of parameter γ ≡ {γij1,j2 : where (i, j1, j2) are mutually different} captures the

second-order competition effect. When γ = 0, the model in (6.1) is correctly specified. If γ 6= 0, the

model in (6.1) is misspecified. To complete the model, we assume that, whenever there are multiple

pure-strategy Nash equilibria, players will choose each equilibrium with the same probability. We

assume that the support of X is a bounded interval X in Rdim(X). Without loss of generality, we

assume X is distributed uniformly in its support.
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In the simulation, we focus on the simple case where γ1
j1,j2

= γ∗ for all (j1, j2), and γij1,j2 = 0 for

all (i 6= 1, j1, j2). Then, the joint distribution of (Y,X) generated from this data generating process

is indexed by (θ, γ∗), which we write as Fθ,γ∗ . Note that γ∗ measures the degree of misspecification:

the larger the value of γ∗ is, the larger the degree of misspecification of model in (6.1) is. In the

simulation design we impose that m = 3, dimX = 1, X ∼ U [−1, 1], β = 0.1, α = [1, 1, 1], and

δij = 1 for all (i, j). In the following, we construct outer sets both for the parameter δ and also for a

counterfactual outcome in a counterfactual experiment. In both cases, we will show that we will be

able to generate three outer sets (including the CT outer set) that are discordant with each other

and none of them contain the true value.

6.1.2. Discordant nonsharp identification conditions for δ. Our first objective is to illustrate the ex-

istence of discordant nonsharp identification conditions. Here, we focus on the (projected) identified

set for δ1
2 . Given the DGP with (θ, γ∗), the outer set for δ1

2 associated with the nonsharp identification

conditions in A′ is characterized as follows: Λ(Fθ,γ∗ , A
′) = {t : ∃(α, β, δ) ∈ ΘI(Fθ,γ∗ , A

′) s.t. δ1
2 = t}.

Now, let us denote by γ∗ct the maximum degree of misspecification that could not be detected by the

submodel Act. More precisely, we define γ∗ct ≡ sup{γ∗ : Λ(Fθ,γ∗ , Act) 6= ∅}, therefore, Λ(Fθ,γ∗ , Act)

is a nonempty outer set when γ∗ ≤ γ∗ct, while it becomes empty whenever γ∗ > γ∗ct. In Figure 3,

we plot in blue the CT outer set i.e., Λ(Fθ,γ∗ , Act), at various degree of model misspecification, for

γ∗ ∈ [0, γ∗ct], where 0 corresponds to no misspecification and γ∗ct corresponds to the maximum degree

of misspecification that is not detectable with Act. The horizontal dashed line in Figure 3 denotes

the true value for δ1
2 .

A first remark is that the CT outer set shrinks when the degree of misspecification increases and

at some point it no longer contains the true value. This illustrate that the tightness of the outer set

should not systematically be interpreted as a signal of an informative identified set but it could just

signal a presence of misspecification.

In Appendix A.3, we explain why the findings of Theorem 1 apply to the entry game example. So,

according to Theorem 1, there must exist some other A′ nonsharp identification conditions which

is discordant with Act. Indeed, we are able to find two sets of nonsharp identification conditions,

denoted as A1 and A2, which result in discordant identification results with Act. In Figure 4, we plot

Λ(Fθ,γ∗ , A1) in orange and Λ(Fθ,γ∗ , A2) in green. Λ(Fθ,γ∗ , A1) suggests values for δ1
2 that are higher

than those suggested by Λ(Fθ,γ∗ , Act) while Λ(Fθ,γ∗ , A2) suggests values that are lower. When the

degree of misspecification is higher than 0.4, none of the true outer set contain the true value of the

parameter.

6.1.3. Discordant counterfactual predictions. In many of the empirical games applications, applied

researchers are very often interested in implementing counterfactual analyses. Interestingly, we
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Figure 3. Λ(Fθ,γ∗ , Act) at various values of γ∗.
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Figure 4. Λ(Fθ,γ∗ , A1) and Λ(Fθ,γ∗ , A2) at various values of γ∗.

observe not only discordant results for the parameters, but we also observe this phenomenon for

counterfactuals. Below, we illustrate a scenario where different outer sets lead to discordant coun-

terfactual outcomes when the full model is misspecified. Therefore, we illustrate the fact that the

discordancy issue also applies to counterfactual outcomes. Let us consider a counterfactual where
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firm 3 is no longer a potential entrant of the market. This type of counterfactuals would arise, for

example, when firm 3 is a foreign firm and is banned from the home market due to a trade policy,

or when firm 3 is merged with other firms.

Figure 5 plots the different counterfactual predictions of submodels Act, A1 and A2 for the prob-

ability that only one firm enters the market, i.e. the probability of the presence of a monopoly in a

market with characteristics x0 = (0, 0, 0). As we can see clearly, three submodels give counterfactual

predictions that are discordant with each other.

0.0 0.1 0.2 0.3 0.4 0.5

γ∗

0.6

0.7

0.8

0.9

id
en

ti
fi

ed
se

t
fo

r
th

e
co

u
n
te

rf
ac

tu
al

Act A1 A2

Figure 5. P(Y1 + Y2 = 1|X = x0) at various γ∗

6.2. An empirical illustration for compatible submodels.

6.2.1. Context and Data. Estimating the causal impact of college education on later earnings has

always been troublesome for economists because of endogeneity of the level of education. To evaluate

the returns to schooling, different approaches have been proposed, and most of them rely on the

validity of instruments such as parental education, tuition fees, quarter of birth, distance to college,

etc. The validity of all these IVs has been widely criticized because of their potential correlation with

the children unobserved skills. In order to accommodate potentially invalid instruments, Manski and

Pepper (2000, 2009) introduced the monotone IV (MIV) that does not require the IV to be valid

but only impose a positive dependence relationship between the IV and the potential earnings. For

instance, parental education may not be independent of potential wages, but plausibly does not

negatively affect future earnings. In such a context, bounds on the average return to education can
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be derived. In this application, we will consider the AMIV assumption introduced in Section 4.1.

We consider that parental education can have a positive effect on children future earnings, but this

marginal positive effect could plausibly becomes null after some cut-off. The particularity of our

method is to let this cut-off be determined by the data using our misspecification robust bounds.

We consider the data used in Heckman, Tobias, and Vytlacil (2001, HTV). The data consists of a

sample of 1,230 white males taken from the National Longitudinal Survey of Youth of 1979 (NSLY).

The data contains information on the log weekly wage, college education, father’s education, mother’s

education, among many other variables. Following HTV, we consider the college enrollment indicator

as the treatment: it is equal to 1 if the individual has completed at least 13 years of education and 0

otherwise. In this empirical exercise, we use the maximum of the parental education as the candidate

instrumental variable. Some summary statistics are reported in Table 1.

Table 1. Summary Statistics

Total

Observations 1,230

log wage 2.4138 (0.5937)
college 0.4325 (0.4956)
father’s education 12.44715 (3.2638)
mother’s education 12.1781 (2.2781)
max(father’s education, mother’s education) 13.1699 (2.7123)

Average and standard deviation (in the parentheses)

6.2.2. Methodology and results. We start by constructing the 95% confidence region for the identified

sets of the average structural functions E[Yd], d ∈ {0, 1} and the average treatment effect E[Y1−Y0]

under the Manski (1990) mean independence assumption, denoted as ΘI(MI), and under the MIV

assumption, denoted as ΘI(MIV ). In addition we construct an estimate of our misspecification

robust bounds under the AMIV assumption, denoted as Θ∗I(AMIV ), using the following steps:

(1) The support of our instrument is Z = {0, 1, . . . , 20}. For each z ∈ {0, 1, . . . , 20}, we test the

implications (4.1) and (4.2) using the intersection bounds method of Chernozhukov, Lee, and

Rosen (2013), implemented in Chernozhukov et al. (2015). For each d ∈ {0, 1}, we set z∗d as

the smallest z for which we do not reject (4.1) and (4.2). The use of Chernozhukov et al.’s

(2015) Stata package yields a 95% confidence set for [max(q
dt

: t ≤ z),min(qdt : t ≥ z)] for

each z < z∗d , and [max(q
dt

: t = 1, ..., k),min(qdt : t ≥ z∗d)].

(2) We then plug the 95% confidence bounds obtained from step (1) in the bounds in Equation

(4.3), where we replace P(Z = z) by its sample analog. This procedure leads to an estimate
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of the identified set Γd,z∗ for each d ∈ {0, 1}, which yields an estimate for the identified set

Θ∗I(AMIV ).9

The same procedure is applied to get an estimate for ΘI(MIV ) except that z∗d is set to 20 for each

d ∈ {0, 1}. Finally, since the identified set for the ATE under the mean independence assumption

denoted as ΘI(MI) takes the form of standard intersection bounds, we use the Chernozhukov et al.

(2015) package to obtain its 95% confidence bounds.

The results are summarized in Table 2. Column (1) shows that the 95% confidence region for

ΘI(MI) is empty. In other words, the data shows clear evidence against the use of parental education

as a valid IV. On the other hand, column (4) shows the result for ΘI(MIV ).10 As can be seen, we

move from an empty identification region to a wide and non-informative identification region. In

contrast, our misspecification robust bounds provide a nonempty yet relatively smaller set estimate

for the ATE. Column (2) shows estimates of our misspecification robust bounds Θ∗I(AMIV ) when

we allow the cut-offs to differ across potential outcomes as discussed in Remark 1, while column (3)

shows estimates where the cut-offs are restricted to be the same for both potential outcomes as in

Proposition 2. In the former case, we see that our proposed approach almost identifies the sign of

the ATE.

Table 2. Results

(1) (2) (3) (4)

Set estimates/ ΘI(MI) Θ∗I(AMIV ) Θ∗I(AMIV ) ΘI(MIV )
95% Conf. Bounds (z∗1 , z

∗
0) = (0, 11) (z∗1 , z

∗
0) = (11, 11)

θ1 ≡ E[Y1] [2.535, 2.815] [2.535, 2.815] [2.412, 2.816] [0.933, 2.815]
θ0 ≡ E[Y0] Empty [2.547, 2.591] [2.547, 2.591] [2.548, 2.814]
ATE ≡ E[Y1 − Y0] Empty [−0.056, 0.268] [−0.179, 0.269] [−1.881, 0.267]

1 All values in column (1) are the 95% confidence intervals.

2 All values in column (2)-(4) are set estimates based on the 95% confidence interval of ΘI(az).

7. Discussion

In this paper, we show that there could exist discordant submodels in a wide range of models in

the presence of model misspecification. This provides another reason why one should use the sharp

characterization of the identified set whenever it is possible: the identified set not only exhausts

9Because our primarily focus in this paper is about identification, we do not attempt to study the statistical

issues related to the derivation of a valid confidence region for the misspecification robust bound. We leave this open

question for future research.
10We even test the validity of the MIV using the test proposed by Hsu, Liu, and Shi (2019), we do not reject the

MIV assumption even at 10 % level.
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all the identification restrictions in the model structure and assumptions, but also is immune to

the possible misleading conclusions of discordant submodels. Unlike an outer set, the identified

set will be empty when the model is refuted by the data. In empirical applications where sharp

characterization of the identified set is not tractable, our results suggest that empirical researchers

should be more careful when working with nonsharp identification conditions, especially when the

bounds that they get are very tight. For example, as a robustness check, one could construct the

outer sets in different ways and see if there is any discordance between them.

Salvaging a refuted model is usually a challenging task, as it often involves some arbitrariness

in how the model gets relaxed, and it could sometimes be computationally intractable. However,

things get much easier when the minimum data-consistent relaxation is unique. In this case, it is

apparent which assumptions are consistent with the data and which assumptions are not, because

all the data-consistent assumptions are compatible with each other (Theorems 2, and 4). Moreover,

the identified set of any data-consistent submodel can be viewed as a conservative bound for the

misspecification robust bound in this case, making the computation a lot easier.

When the uniqueness of minimum data-consistent relaxation is beyond the reach, one can still

choose to find the misspecification robust bound we proposed in this paper. It always lead to

rationalizable and non-conflicting statements (Theorem 5), and it is sometimes the most informative

rationalizable and non-conflicting statement (Theorem 7). We work out the misspecification robust

bound in some simple examples, but its exact solution could be too complicated to solve when

the underlying model involves many structures. In those challenging cases, it might be possible to

construct an outer set that always covers the misspecification robust bound proposed in this paper.

This type of outer sets will be immune to the issue raised in this paper. It remains unclear how to

construct such outer sets, but this could be one reasonable step beyond the findings in this paper.
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Appendix A. Additional Results

This appendix collects some additional theoretical results. We put all the proofs in Appendix C except for very short

ones.

A.1. Example of intersection bounds.

Example 1 (Discrete treatment model). Consider a setting where X ≡ {x1, ..., xK} is the set of all possible treatments.

Let Yk be the potential outcome when the treatment is externally set to xk. The observed outcome Y is defined as follows:

Y =
∑
k 1(X = xk)Yk. Let us define θk ≡ E[Yk] and assume that Yk has a bounded support [y

k
, yk]. The random bound

for Yk can be constructed as follows Y k ≡ Y 1(X = xk) + y
k
1(X 6= xk) and Y k ≡ Y 1(X = xk) + yk1(X 6= xk). If we

assume the mean independence assumption E[Yk|Z] = E[Yk] we obtain a special case of (2.1).

Discrete treatment models with bounded potential outcomes are usually considered in Manski’s work. See for instance

Manski (1990, 1994) among many others.

Example 2 (Smooth Treatment Model). Consider a smooth treatment model as in Kim et al. (2018). When the treatment is

x, the potential outcome is Y (x) = g(x, ε) where g is an unknown function, and ε is individual heterogeneous characterization.

Assume g(x, ε) is Lipschitz continuous in x with Lipschitz constant equal to τ . Suppose we are interested in θx = E[Y (x)].

The lower and upper bounds can be constructed as Y (x) = Y − ‖X − x‖ τ and Y (x) = Y + ‖X − x‖ τ . As in the discrete

treatment case, if we assume E[Y (x)|Z] = E[Y (x)], we obtain model (2.1). As a special case, one can also consider a linear

model with heterogeneous coefficient, Y = X′β + ε where β is a vector of an unobserved random coefficient. Suppose the

coefficient space for β is [β, β]. Then, Y (x) = Y +
∑
i min

{
(xi −Xi)β

i
, (xi −Xi)βi

}
where the subscript i stands for the

ith dimension of the corresponding variables. Similarly, Y (x) = Y +
∑
i max

{
(xi −Xi)β

i
, (xi −Xi)βi

}
.

A.2. Conditional Moment Inequalities. Let us now consider a more general setting than the introductory example.

Assume the full model is a conditional moment inequality,

E[m(X; θ)|Z] ≤ 0 almost surely (A.1)

where X ∈ Rk1 and Z ∈ Rk2 are observable random variables and m(·, · ; θ) is some known integrable function with

E ‖m(X; θ)‖ < ∞ for each θ. We focus on the case where Z are continuous random variables. Random variables X and Z

could have overlaps. In practice, empirical researchers sometimes use the following unconditional model instead:

E[w(Z)m(X; θ)] ≤ 0, (A.2)

where w(·) is some nonnegative weighting function. We want to understand what would happen when one conduct empirical

analysis based on (A.2) when (A.1) happens to be refuted.

To answer this question, define W+
m to be the set of all m-dimenstional nonnegative function w which satisfies 0 <

E ‖w(Z)‖2 <∞ and E ‖w(Z)m(X; θ)‖ <∞ for all θ ∈ Θ. Define A as the collection of condition (A.2) for all w ∈ W+
1 , i.e.

A := {(A.2) with w : w ∈ W+
1 }

With this definition, any subset B of A with m elements corresponds to the condition which (A.2) hold for some w ∈ W+
m.

By the construction of A, Condition (T1.C2) are satisfied.

To verify Condition (T1.C1), we need to construct a C . Let Z be the support of Z. For any z ∈ Z and any ε > 0, define

function hz,ε as hz,ε(Z) = 1(‖Z − z‖ < ε). Suppose that, for any z ∈ Z, there exists some θ ∈ Θ and some δ(z) > 0 such

that E[m(X; θ)|Z] ≤ 0 for almost every Z with ‖Z − z‖ ≤ δ(z). Then, for each z ∈ Z and each ε ∈ (0, δ(z)), there exists

some θ ∈ Θ such that E[hz,ε(Z)m(X, θ)] ≤ 0. Define the collection of functions W∗ as W∗ := {hz,ε : ε ∈ (0, δ(z)), z ∈ Z}.
Then, we can construct C as

C := {{a} : a ∈ A∗}, where A
∗ := {(A.2) with w : w ∈ W∗}. (A.3)

The following proposition shows that this C satisfies Condition (T1.C1) under some regularity conditions.

Proposition 4. Assume that

(a) there exists a function g(z; θ) such that ( i) for every θ ∈ Θ, E[m(X,Z; θ)|Z] = g(Z; θ) almost surely; ( ii) g(z; θ)

is continuous in z for any given θ; ( iii) g(z; θ) is continuous in θ for any given z
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(b) for any z in the support of Z, there exists some δ(z) > 0 and some θ ∈ Θ such that E[m(X; θ)|Z] ≤ 0 for almost

every Z satisfying ‖Z − z‖ ≤ δ(z).
(c) there exists some function γ(·) such that supθ∈Θ ‖E[m(X; θ)|Z]‖ ≤ γ(Z) almost surely and E|γ(Z)|2 <∞.

(d) Θ is compact.

Then, Condition (T1.C1) is satisfied for C constructed in (A.3).

As a result, Theorem 1 can be applied here. In the context of moment inequalities, the result in Theorem 1 means that

(A.1) is refuted if and only if there exists w1 ∈ W+
m1

and w2 ∈ W+
m2

such that both (A.2) with w = w1 and (A.2) with

w = w2 are not refuted but the identified sets of these two sets of identification conditions have empty intersection. Moreover,

whenever (A.1) is refuted, for any w̃ ∈ W+
m̃ with which (A.2) is data-consistent, there exists some w1 ∈ W+

m1
and w2 ∈ W+

m2

such that both the (A.2) with w = (w̃, w1) and (A.2) with w = w2 are data-consistent but their identified sets have empty

intersection.

This result complements the findings in Andrews and Shi (2013). In Andrews and Shi (2013), they propose an inference

procedure for models like (A.1). Their inference transform (A.1) into (A.2) by selecting w in a sub-family of W+
m and letting

m→∞ as the sample size increases. Our result shows that increasing m to infinity is crutial to ensure the robustness of the

result if (A.1) could be misspecified. If the dimension of w is fixed, then the empirical result for (A.2) could be misleading

even if the inference controls the size uniformly.

A.3. Random Sets and Choquet Capacity. In this section, we consider models whose identified set can be described

with random sets and choquet capacity functions. Let Y be a vector of endogenous random variables, and let X be a vector

of exogenous observable covariates. Let Y and X denote the support of Y and X respectively. Here, the parameter θ of

interest could be of infinite dimensions, and its parameter space Θ need not be compact.

Let Γ(θ) be some random closed set in Y which could depend on θ, X and some latent random variables. Assume

P (Y ∈ Γ(θ)) = 1. Artstein (1983) shows that the conditional distribution of Y given X equals FY |X almost surely if and

only if for any compact subset K of Y, the following inequality holds:

PF (Y ∈ K|X) ≤ L(K,X; θ) almost surely, where L(K,X; θ) := P (Γ(θ) ∩K 6= ∅|X) (A.4)

where PF refers to the probability measure corresponding to FY |X . The L(·, X; θ) is often known as the Choquet capacity

function. This type of models plays an important role in the partial identification literature. We refer to Molinari (2020)

for more background introductions. Often in practice, either PF (Y ∈ K|X) or L(K,X; θ) can be identified from the data,

and the other one can typically be derived or simulated from some additional assumptions. For the purpose of illustration,

we consider the case where Y and X are observable so that PF (Y ∈ K|X) can be identified from the data, and assume

L(K,X; θ) is a known function of K and X given θ.

In general, one needs to check (A.4) for all compact sets of Y in order to ensure this collection of moment inequalities is a

sharp identification condition. In some circumstances, checking the inequalities for all compact sets is equivalent to checking

the inequalities only for a subcollection of compact sets, in which case, this subcollection is called the core determining

class in the language of Galichon and Henry (2011). However, in practice, researchers often pre-select some finite collection

K of compact sets that are not core-determining, and they only check (A.4) for compact sets in this K. For instance, in

the treatment effect literature, the well-known Manski (1994) bounds on the potential outcome distributions implemented

in various applications such as in Blundell et al. (2007), or Peterson (1976) bounds on competing risk, use only a finite and

not sufficient collection of Artstein inequalities. See, respectively, Molinari (2020), and Mourifié, Henry, and Méango (2020)

for a detailed discussion. In empirical games, auction and network applications we can also cite Ciliberto and Tamer (2009),

Haile and Tamer (2003), Sheng (2020), Chesher and Rosen (2020), among many others who also focused on a finite and not

sufficient collection of Artstein inequalities.11

We want to explore the consequences of this pre-selection procedure when the original model might be refuted by the

data. For simplicity, we focus on the case where Y only takes a finite number of possible values. In this case, the support Y
of Y is a finite set and the collection of all compact sets in Y is simply the power set of Y, i.e. the collection of all subsets

of Y.

To fit this model into the general framework in Section 3, define A as the collection of all Artsein’s inequality, i.e.

A := {(A.4) with K : K ⊆ Y}.

11See Molinari (2020) for a detailed discussion.



DISCORDANT RELAXATIONS OF MISSPECIFIED MODELS 31

With this definition, any subset A′ of A corresponds to testing (A.4) only for a pre-selected collection of compact sets. In

order to apply Theorem 1, we need to verify Condition (T1.C1) and (T1.C2). By the construction of A, Condition (T1.C2)

is satisfied. To verify Condition (T1.C1), let us construct C as

C := {{a} : a ∈ A}. (A.5)

The following proposition provides a sufficient condition under which Condition (T1.C1) is satisfied with this choice of C .

Proposition 5. Let X and Y be the supports of X and Y , respectively. Suppose Y is a finite set. The parameter space

Θ may or may not be compact. Suppose that, for each y ∈ Y, the following assumptions hold:

(L5.C1) infx∈X P (Y = y|X = x) > 0,

(L5.C2) there exists a sequence θ1, θ2, ... in Θ such that infx∈X L({y}, x; θk)→ 1 as k →∞,

where the inf in the above two conditions refers to the essential infimum. Then, condition (T1.C1) holds for C defined

in (A.5).

As a result, Theorem 1 could be applied here. For any pre-selected collection K of compact subsets, define ΘI(K) as the

set of parameters which satisfy (A.4) for all K ∈ K. In this context, the result in Theorem 1 means that the model is refuted

if and only if there exists two K1 and K2 such that ΘI(K1) 6= ∅, ΘI(K2) 6= ∅ and ΘI(K1) ∩ ΘI(K2) = ∅. Moreover, for

any pre-selected collection K of compact sets with ΘI(K) 6= ∅, there always exist two finite collections K1 and K2 such that

ΘI(K ∪ K1) 6= ∅, ΘI(K2) 6= ∅ and ΘI(K ∪ K1) ∩ΘI(K2) = ∅.

We conclude this subsection with the entry game model as an example. We are going to verify all the conditions in

Proposition 5 for this example.

Example 3 (Entry game). Consider an m-player complete information entry game as in Ciliberto and Tamer (2009). Assume

there are m players, where player i’s payoff function is specified as

πi = Yi

γi +X
′
iβi −

∑
j 6=i

δ
i
jYj + εi


where the Xis are some covariates which might be player i specific, Yi ∈ {0, 1} stands for player i’s entry decision, and Yj

stands for the decision of player j. Here, γi and βi are player-specific parameter coefficient, and δij > 0 is the parameter that

describes the strategic interaction between player i and j. We assume that Y = (Yi : i = 1, ...,m) is always a pure-strategy

Nash equilibirum.

Assume ε = (ε1, ..., εm) is independent of X and ε follows the normal distribution N(0,Σ). Let γ = (γ1, ..., γm),

β = (β1, ..., βm), and δ = (δij : i 6= j). Let θ = (γ, β, δ,Σ) be the vector of all parameters. Let Y = {y = (y1, ..., ym) :

yi ∈ {0, 1}, i = 1, ...,m} be the set of all possible entry decisions. For any K ⊆ Y, define L(K,X, θ) to be the probability

that at least one y ∈ K is a pure-strategy Nash equilibrium given X and θ. In practice, L(K,X, θ) can often be solved from

numerical simulations.

In Galichon and Henry (2011), the identified set of this model is shown to be the set of all θ which satisfies (A.4) for

every subset K of Y. The number of these inequalities increases with m very quickly in the order of 22m . Galichon and

Henry (2011) provide some methods to reduce the number of inequalities by removing redundant inequalities in (A.4), but,

in general, sharp characterization of the identified set involves a large number of inequalities. In practice for the sake of

computational feasibility, emprical researchers often pre-select a finite collection K of subsets and only check (A.4) for each

K ∈ K. See, for example, Ciliberto and Tamer (2009), and Ciliberto, Murry, and Tamer (2020).

Let us now check conditions in Proposition 5. Let Θ = Rdim(θ). Condition (L5.C1) in Proposition 5 is a low-level condition

that can be directly verified by the data. In theory, this condition would hold, for example, if the true data generating process

has the following properties: (i) the support of ε is Rm conditinal on almost every X, and (ii) for each i, player i’s payoff

function is

πi = Yi (g(Xi, Y−i) + εi)

where Y−i = {Yj : j 6= i) and g can be an arbitrary function of (Xi, Y−i) that is bounded in their support. This class

of data generating processes nests the model that we imposed above, but the true data generating process need not be the

same as our model. That is, Condition (L5.C1) in Proposition 5 holds even if the model is misspecified. Condition (L5.C2)

in Proposition 5 also holds, because for each y ∈ Y, one can have L({y}, x; θk) → 1 by simply fixing β = 0, δ = 0 and let

γ → γ∗ where γ∗i =∞ if yi = 1 and γ∗i = −∞ if yi = 0.
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A.4. Existence and Uniqueness of Minimum Data-consitent relaxation.

Theorem 3. Suppose one of the following two conditions is satisfied,

(T3.C1) A is a finite set.

(T3.C2) For any a ∈ A, ΘI(a) is compact. Moreover, for any B ⊆ A, ΘI(B) = ∩a∈BΘI(a).

Then, there exists some minimum data-consistent relaxation of A. Moreover, for any data-consistent A′ ⊆ A, there exists

some minimum data-consistent relaxation Ã such that A′ ⊆ Ã.

Theorem 3 not only establishes the existence of a minimum data-consistent relaxation, but also shows that any data-

consistent subset A′ ⊆ A can be further strengthened into a minimum data-consistent relaxation by including additional

assumptions. It is worth noting that, when A is a finite set, the result of Theorem 3 does not require any additional

conditions. When A is an infinite set, we need ΘI(a) to be compact for each a ∈ A. In addition, we need that, for any

B ⊆ A, ΘI(B) = ∩a∈BΘI(a), which would hold, for example, if θ fully describes the distribution of both observed and latent

random variables as in a maximum likelihood setting.

The following theorem studies the uniqueness of the minimum data-consistent relaxation, and is a generalized version of

Theorem 2 in the main text.

Theorem 4. Statement (T2.C1) implies (T2.C2). If either (T3.C1) or (T3.C2) holds, then (T2.C2) implies (T2.C1).

A.5. Discordancy and multiplicity of minimum data-consistent relaxations.

Proposition 6. Whenever Condition (T3.C1) or (T3.C2) hold we have the following result: There exists two data-

consistent A1, A2 ⊆ A with ΘI(A1) ∩ΘI(A2) = ∅ if and only if there exists two minimum data-consistent relaxations Ã1

and Ã2 such that ΘI(Ã1) ∩ΘI(Ã2) = ∅.

Proof for Proposition 6. We first prove the if part. Suppose there exists two minimum data-consistent relaxations Ã1

and Ã2 such that ΘI(Ã1) ∩ ΘI(Ã2) = ∅. By the definition of minimum data-consistent relaxation, both Ã1 and Ã2 are

data-consistent subsets of A. Thus, this proves the existence of two data-consistent A1, A2 ⊆ A with ΘI(A1) ∩ΘI(A2) = ∅.

Next, we want to prove the only if part. Suppose that there exists two data-consistent A1, A2 ⊆ A with ΘI(A1) ∩
ΘI(A2) = ∅. By Theorem 3, there exists two minimum data-consistent relaxations Ã1 and Ã2 such that A1 ⊆ Ã1 and A2 ⊆
Ã2. Because Ã1 ⊆ A1, we have ΘI(Ã1) ⊆ ΘI(A1). Similarly, we have ΘI(Ã2) ⊆ ΘI(A2). Because ΘI(A1) ∩ ΘI(A2) = ∅,
we must have ΘI(Ã1) ∩ΘI(Ã2) = ∅. �

A.6. Empirical Interpretation of Misspecification Robust Bound. As discussed in Section 5.3, a rationalizable and

nonconflicting set has rich interpretations. The following theorem shows that the misspecification robust bound Θ∗I is both

rationalizable and nonconflicting.

Theorem 5. Suppose either (T3.C1) or (T3.C2) holds. Then, Θ∗I is both rationalizable and nonconflicting. That is,

• (rationalizable) there exists some submodel A′ ⊆ A such that ΘI(A′) ⊆ Θ∗I and ΘI(A′) 6= ∅.
• (nonconflicting) there does not exist a submodel A′ ⊆ A with ΘI(A′) 6= ∅ such that ΘI(A′) ∩Θ∗I = ∅.

As discussed in Section 5.3, Θ∗I have even richer explanations when it is the smallest rationalizable and nonconflicting

set. Recall that a set S∗ is the smallest rationalizable and nonconflicting set, if S∗ is rationalizable and nonconflicting,

and S∗ ⊆ S for every rationalizable and nonconflicting set S. The smallest rationalizable and nonconflicting set does not

always exists. However, the following theorem shows that, under mild conditions, whenever the smallest rationalizable and

nonconflicting set exists, it is equal to Θ∗I .

Theorem 6. Suppose either (T3.C1) or (T3.C2) holds. Assume

(T6.C1) there does not exist two different minimum data-consistent relaxation Ã1 and Ã2 such that ΘI(Ã1) ( ΘI(Ã2).

Then, whenever the smallest rationalizable and nonconflicting set exists, it is equal to Θ∗I .

Condition (T6.C1) could be verified from the data. Note that, for any two different minimum data-consistent relaxations

Ã1 and Ã2, we always have ΘI(Ã1 ∪ Ã2) = ∅, i.e. Ã1 and Ã2 are not compatible with each other. As it is unlikely that

for two sets Ã1 and Ã2 to satisfy ΘI(Ã1) ( ΘI(Ã2) while being incompatible with each other, we consider (T6.C1) as a
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mild condition. Finally, Condition (T6.C1) would hold, if there is a unique minimum data-consistent relaxation, or if the

identified set of every minimum data-consistent relaxation is a singleton set. In fact, these two conditions are also sufficient

conditions for Θ∗I being the smallest rationalizable and nonconflicting set, as shown in the following theorem.

Theorem 7. Suppose either (T3.C1) or (T3.C2) holds. Assume one of the following cnoditions is satisfied:

(T7.C1) there exists a unique minimum data-consistent relaxation,

(T7.C2) for any minimum data-consistent relaxation Ã, ΘI(Ã) is a singleton.

Then, Θ∗I is the smallest set that are both rationalizable and nonconflicting.

A.7. Discrete Relaxation versus Continuous Relaxation.

Theorem 8. Suppose (T7.C2) holds. Then, Θ∗I ⊆ Θ†I for any type of relaxation chosen by the researcher.

Appendix B. Proof of the main results

B.1. Proof of Theorem 1. First of all, note that (T1.C2) implies that for any A′, A′′ ⊆ A, ΘI(A′∪A′′) = ΘI(A′)∩ΘI(A′′).

If there exists A′, A′′ ⊆ A such that ΘI(A′) 6= ∅, ΘI(A′′) 6= ∅ and ΘI(A′) ∩ ΘI(A′′) = ∅, then, ΘI(A) ⊆ ΘI(A′ ∪
A′′) = ΘI(A′) ∩ ΘI(A′′) = ∅. Hence, ΘI(A) = ∅ if there exists A′, A′′ ⊆ A such that ΘI(A′) 6= ∅, ΘI(A′′) 6= ∅ and

ΘI(A′) ∩ΘI(A′′) = ∅.

Reversely, if ΘI(A) = ∅, we want to show that there exists two finite subsets A′, A′′ ⊆ A such that ΘI(A′) 6= ∅,
ΘI(A′′) 6= ∅ and ΘI(A′) ∩ΘI(A′′) = ∅. More specifically, we are going to show the following statement

when ΘI(A) = ∅, there exists A′ ∈ C and {A1, ..., An} ⊆ C for some finite n

such that both A′ and A′′ = ∪ni=1Ai are data-consistent, but ΘI(A′) ∩ΘI(A′′) = ∅. (B.1)

To show (B.1), we consider two cases.

Case 1: the C in (T1.C1) has infinite elements. In this case, ΘI(A′) is compact for all A′ ∈ C . Define D := {B :

ΘI(B) 6= ∅, and ∃C ′ ⊆ C , B = ∪A′∈C′A
′}. Because ΘI(A′) 6= ∅ for all A′ ∈ C , C ⊆ D. Hence, D is nonempty. Moreover,

because intersection of compact sets is compact, we know ΘI(A′) is compact for any A′ ∈ D.

Note that ⊆ can be viewed as a partial order for elements within D. We are going to show D has a maximal element in

terms of ⊆, i.e. there exists some A′ ∈ C such that you cannot find an A′′ ∈ D satisfying A′ ⊆ A′′ and A′ 6= A′′.

To show that D has a maximal element in terms of ⊆, we are going to invoke the Zorn’s lemma. Let Z be an arbitrary

nonempty chain in D. That is, Z 6= ∅, Z ⊆ D and, for any A′, A′′ ∈ Z , either A′ ⊆ A′′ or A′′ ⊆ A′. Define A† := ∪A′∈ZA′.

Then, ΘI(A†) = ∩A′∈Z ΘI(A′). Because Z is a chain, {ΘI(A′) : A′ ∈ Z } is also a chain in terms of ⊆. Because Z ⊆ D,

ΘI(A′) is nonempty and compact for any A′ ∈ Z . Hence, Lemma 1 (stated and proved below) implies that ΘI(A†) is

nonempty. As a result, A† ∈ D. Moreover, for any A′ ∈ Z , A′ ⊆ A†. Thus, D, as a partially ordered set in terms of ⊆, has

the following property: every nonempty chain Z in D has an upper bound A† in D. By Zorn’s lemma, this implies that D

has a maximal element in terms of ⊆.

Let A∗ be a maximal element of D in terms of ⊆. Because A∗ ∈ D, ΘI(A∗) 6= ∅. Because we have ∩Ã∈C ΘI(Ã) =

ΘI
(
∩Ã∈C Ã

)
= ∅ when ΘI(A) = ∅, A∗ 6= ∪Ã∈C Ã. Therefore, there must exist some A′ ∈ C such that A′ is not a subset of

A∗. Moreover, because C ⊆ D, and because A∗ is a maximal element of D in terms of ⊆, A∗ ∪ A′ /∈ D. This implies that

ΘI(A∗ ∪ A′) = ∅. Because ΘI(A∗ ∪ A′) = ΘI(A∗) ∩ ΘI(A′), ΘI(A∗) ∩ ΘI(A′) = ∅. Because A∗ ∈ D, there exists C ′ ⊆ C

such that A∗ = ∪Ã∈C′ Ã and, hence, ΘI(A∗) = ∩Ã∈C′ΘI(Ã). Because ΘI(Ã) is compact for each Ã ∈ C ′, Lemma 2 (shown

and proved below) implies that there exists {A1, ..., An} ⊆ C ′ ⊆ C for some finite n such that ΘI(∪ni=1Ai) ∩ ΘI(A′) = ∅
and ΘI(∪ni=1Ai) 6= ∅. This proves (B.1).

Case 2: the C in (T1.C1) has finite elements. Enumerate C as C = {A1, ..., AK}. For any k ∈ {1, ..., K}, define

Bk = ∪ki=1Ai. For any k, ΘI(Bk) = ∩ki=1ΘI(Ai). Define N = {k ∈ {1, ..., K} : ΘI(Bk) 6= ∅}. Because ΘI(A1) 6= ∅,
N is nonempty and 1 ∈ N . Let n be the largest element in N . By construction, ΘI(Bn) 6= ∅. By (T1.C1), ΘI(BK) =

ΘI(∪Ki=1Ai) = ∅. Therefore, we know n < K and ΘI(Bn+1) = ∅. Because Bn+1 = Bn ∪ An+1, we know that ΘI(Bn ∪
An+1) = ΘI(Bn) ∩ΘI(An+1) = ∅. This proves (B.1) with A′ = An+1.

We have proven (B.1) in both above cases, which completes the proof for the first result of the theorem.
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For the second part of the results, when ΘI(A) = ∅, for any B ⊆ A with ΘI(B) 6= ∅, we want to show there exists two

finite subsets B′, B′′ ⊆ A such that ΘI(B ∪B′) 6= ∅, ΘI(B′′) 6= ∅ and ΘI(B ∪B′)∩ΘI(B′′) = ∅. Let A′ and A′′ be the two

finite subsets of A stated in (B.1). Consider the following two cases:

(1) Suppose ΘI(A′) ∩ ΘI(B) = ∅. Then, let B′ = ∅, B′′ = A′. We have that ΘI(B ∪ B′) 6= ∅, ΘI(B′′) 6= ∅ and

ΘI(B ∪ B′) ∩ΘI(B′′) = ∅.
(2) Suppose ΘI(A′) ∩ ΘI(B) 6= ∅. Then, ΘI(A′ ∪ B) = ΘI(A′) ∩ ΘI(B) 6= ∅. Moreover, ΘI(A′ ∪ B) ∩ ΘI(A′′) =

ΘI(B) ∩ (ΘI(A′) ∩ ΘI(A′′)) = ∅. Let B′ = A′ and B′′ = A′′. Then, we have that ΘI(B ∪ B′) 6= ∅, ΘI(B′′) 6= ∅
and ΘI(B ∪ B′) ∩ΘI(B′′) = ∅.

This completes the proof of Theorem 1.

Lemma 1. Let B be a collection of nonempty compact sets within metric space T . Moreover, suppose B is a nonempty

chain in terms of ⊆, i.e. for any B,B′ ∈ B, either B ⊆ B′ or B′ ⊆ B. Then, ∩B∈BB is nonempty.

Proof. For the purpose of contradiction, suppose ∩B∈BB is empty. For any B ∈ B, let BC denote the complement of B.

Because the complement of ∩B∈BB is ∪B∈BB
C , empty ∩B∈BB implies that ∪B∈BB

C = T . Pick an arbitrary B′ ∈ B.

The fact that ∪B∈BB
C = T implies that {BC : B ∈ B} is an open cover of B′. Because B′ is compact, there exists a finite

{B1, ..., Bn} ⊆ B with n < ∞ such that B′ ⊆ ∪ni=1B
C
i . This is equivalent to B′ ∩ (∩ni=1Bi) = ∅. In other words, we can

find n+ 1 elements in B whose intersection is empty. This contradicts the assumptiton that B is a chain in terms of ⊆ and

that every set in B is nonempty. �

Lemma 2. Let B be a collection of nonempty compact sets within metric space T and ∩B∈BB 6= ∅. Let B′ be a

nonempty compact set in T such that B′ ∩ (∩B∈BB) = ∅. Then, there exists {B1, ..., Bn} ⊆ B for some finite n such

that ∩ni=1Bi 6= ∅ and B′ ∩ (∩ni=1Bi) = ∅.

Proof. Because B′ ∩ (∩B∈BB) = ∅, we know {BC : B ∈ B} is an open cover of B′. Because B′ is compact, there must

exist a finite subcover {BC1 , ..., BCn } ⊆ {BC : B ∈ B} for B′. This implies that B′ ∩ (∩ni=1Bi) = ∅. Finally, because

∩ni=1Bi ⊇ (∩B∈BB), ∩ni=1Bi 6= ∅. �

B.2. Proof of Proposition 1. Proposition 1 is an immediate result of the following two lemmas.

Lemma 3. Suppose Assumption 1 hold and γ < γ. Define the interval W as the following:

W ≡


[γ, γ] if P (E[Y |Z] = γ) > 0 and P (E[Y |Z] = γ) > 0

[γ, γ) if P (E[Y |Z] = γ) > 0 and P (E[Y |Z] = γ) = 0

(γ, γ] if P (E[Y |Z] = γ) = 0 and P (E[Y |Z] = γ) > 0

(γ, γ) if P (E[Y |Z] = γ) = 0 and P (E[Y |Z] = γ) = 0

(B.2)

For any integer m and any h ∈ H+
m, if Θ̃(h) is nonempty, then Θ̃(h) ∩W is nonempty.

Proof of Lemma 3. Since h has m dimensions, we can write h = (h1, ..., hm). Then, Θ̃(h) can be characterized as Θ̃(h) =

[θ, θ], where

θ = max
i

E[hi(Z)Y ]

E[hi(Z)]
and θ = min

i

E[hi(Z)Y ]

E[hi(Z)]
.

Let us first prove θ ≤ γ. Suppose, for the purpose of contradiction, δ ≡ θ−γ > 0. Let i′ ∈ arg maxi E[hi(Z)Y ]/E[hi(Z)].

Then, we have

E[hi′ (Z)(E[Y |Z]− θ]) = 0 (B.3)

Because δ ≡ θ − γ > 0, E[Y |Z] − θ ≤ −δ. In addition, because hi′ is nonnegative, we have E[hi′ ]δ ≤ 0, which contradicts

to the fact that δ > 0 and E[hi′ (Z)] > 0. Moreover, if P (E[Y |Z] = γ) = 0, then E[hi(Z)Y ] < γ · E[hi(Z)] for all i so that

θ < γ.

Similarly, we can show θ ≥ γ, and that θ > γ if P (E[Y |Z] = γ) = 0. These result then implies that Θ̃(h) ∩ W 6= ∅
whenever Θ̃(h) 6= ∅. �

Lemma 4. Suppose Assumption 1 hold and γ < γ. Let W be the interval defined as in (B.2). Then, for any θ ∈ W,

there exists some h ∈ H+
2 such that Θ̃(h) = {θ}.
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Proof of Lemma 4. Fix any θ ∈ W. Define S+ = {z : E[Y |Z = z] ≥ θ}, S− = {z : E[Y |Z = z] ≤ θ}, S+
= {z : E[Y |Z =

z] ≥ θ} and S
−

= {z : E[Y |Z = z] ≤ θ}. Note that, for any ϑ > γ, the definition of γ implies that P (ϑ ≥ E[Y |Z]) > 0.

When P (E[Y |Z] = γ) > 0, we also have P (ϑ ≥ E[Y |Z]) > 0 for any ϑ ≥ γ. Since θ ∈ W, we conclude that P (Z ∈ S−) > 0.

Similarly, that θ ∈ W also implies that P (Z ∈ S+) > 0. Moreover, since E[Y |Z] ≤ E[Y |Z] almost surely, we know S+ ⊆ S+

and S
− ⊆ S− almost surely. Therefore, P (Z ∈ S−) > 0 and P (Z ∈ S+

) > 0.

Next, we show there exists some nonnegative function h1 which satisfies E[Y h1(Z)] = θ and E[h1(Z)] = 1. Define

h+
1 (z) = 1(z ∈ S+)/P (Z ∈ S+) and h−1 (z) = 1(z ∈ S−)/P (Z ∈ S−). By construction, h+

1 and h−1 are nonnegative, and

E[h+
1 (Z)] = 1 and E[h−1 (Z)] = 1. Moreover, E[Y h+

1 (Z)] ≥ θ ≥ E[Y h−1 (Z)]. Hence, there must exists some q ∈ [0, 1] such

that E[Y (qh−1 (Z) + (1 − q)h+
1 (Z))] = θ. Let h1 = qh−1 (Z) + (1 − q)h+

1 (Z). Then, such h1 satisfies E[Y h1(Z)] = θ and

E[h1(Z)] = 1. Similarly, there exists some nonnegative function h2 which satisfies E[Y h2(Z)] = θ and E[h2(Z)] = 1.

Then, E[h1(Z)(θ̃ − Y )] ≥ 0 is equivalent to θ̃ ≥ θ. To see this, note that

E[h1(Z)(θ̃ − Y )] ≥ 0

⇔ E[h1(Z)]θ̃ ≥ E[h1(Z)Y ]

⇔ θ̃ ≥ θ

where the second equivalence follows from E[Y h1(Z)] = θ and E[h1(Z)] = 1. Similarly, we can show E[h2(Z)(Y − θ̃)] ≥ 0 is

equivalent to θ̃ ≤ θ. Let h = (h1, h2). These equivalence relation implies that if θ̃ ∈ Θ̃(h), then θ̃ = θ.

Moreover, we have

E[h2(Z)θ] = θ

= E[h2(Z)Y ]

≥ E[h2(Z)Y ]

where the first equality follows from E[h2(Z)] = 1, and the second equality follows from θ = E[h2(Z)Y ], and the last inequality

comes from E[Y |Z] ≤ E[Y |Z] almost surely. Similarly, we can show E[h1(Z)θ] ≤ E[h1(Z)Y ]. Therefore, θ ∈ Θ̃(h). As a

result, Θ̃(h) = {θ}. �

B.3. Proof of Theorem 2. Theorem 2 is a corollary of Theorem 4 which is proved below in Section C.4.

B.4. Proof of Proposition 2. Recall the notation used in this example: Y d ≡ Y 1(D = d) + y
d
1(D 6= d), Y d ≡ Y 1(D =

d) + yd1(D 6= d), q
dt
≡ E[Y d|Z = t] and qdt ≡ E[Y d|Z = t]. Proposition 2 is an immediate corollary of the following two

lemmas.

Lemma 5. In model Y =
∑
z∈Z 1(Z = z)[Y1zD + Y0z(1−D)] where Z = {1, 2, ..., k}. Fix an arbitrary z∗ = 1, ..., k. Let

ΘI,z∗ be the identified set of az∗ , i.e. the identified set of E.1, E.2 and E.3 for z = z∗. Then,

(1) ΘI,z∗ 6= ∅ if and only if the following two conditions hold for each d ∈ {0, 1}:

∀z < z
∗
, max(q

dt
: t ≤ z) ≤ min(qdt : t ≥ z) (B.4)

and

max(q
dt

: t = 1, ..., k) ≤ min(qdt : t ≥ z∗) (B.5)

(2) if ΘI,z∗ 6= ∅, then ΘI,z∗ = Γ1,z∗ × Γ0,z∗ .

Lemma 6. In model Y =
∑
z∈Z 1(Z = z)[Y1zD + Y0z(1−D)] where Z = {1, 2, ..., k}. Let ΘI be the identified set of a†,

i.e. the identified set of E.1 and E.2. Then,

(1) ΘI 6= ∅ if and only if P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1}.

(2) when ΘI 6= ∅, ΘI =
[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
.

Proof of Lemma 5. The results of this lemma can be divided into the following two parts:

(1) For any z∗ = 1, ..., k, ΘI,z∗ 6= ∅ only if that (B.4) and (B.5) hold for each d = 0, 1. Moreover, ΘI,z∗ ⊆ Γ1,z∗×Γ0,z∗ .

(2) if (B.4) and (B.5) hold, then ΘI,z∗ 6= ∅ and ΘI,z∗ ⊇ Γ1,z∗ × Γ0,z∗ .

Let us now prove these two parts one by one.
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Part 1. Fix any d ∈ {0, 1}. Suppose assumption az∗ hold, i.e. assumptions E.1 , E.2 and E.3 hold for z = z∗. Assumption

E.3 implies that for any z′ < z∗ and t ≤ z′ we have Ydt ≤ Ydz′ so that E[Ydt|Z = z′] ≤ E[Ydz′ |Z = z′]. Due to E.2 ,

we know E[Ydt|Z = z′] = E[Ydt|Z = t], so that E[Ydt|Z = t] ≤ E[Ydz′ |Z = z′]. Since q
dt
≤ E[Ydt|Z = t], we conclude

that maxt≤z′ qdt
≤ E[Ydz′ |Z = z′]. Similarly, E.3 implies that for any z′ < z∗ and t ≥ z′, we have Ydz′ ≤ Ydt so that

E[Ydz|Z = z′] ≤ E[Ydt|Z = z′]. Because of E.2 , and because qdt ≥ E[Ydt|Z = t], we know that E[Ydz′ |Z = z′] ≤ mint≥z qdt.

Hence, for any d ∈ {0, 1},

∀z′ < z
∗
, max(q

dt
: t ≤ z′) ≤ E[Ydz′ |Z = z

′
] ≤ min(qdt : t ≥ z′) (B.6)

Now, for any z′ ≥ z∗, E.3 implies that Ydt ≤ Ydz′ for any t ∈ {1, ..., k}. Hence, E[Ydt|Z = z′] ≤ E[Ydz′ |Z = z′] for

all t. Because E.2 implies that E[Ydt|Z = t] = E[Ydt|Z = z′], we have E[Ydt|Z = t] ≤ E[Ydz′ |Z = z′] for all t, so that

max(q
dt

: t = 1, ..., k) ≤ E[Ydz′ |Z = z′]. For any z′ ≥ z∗, assumption E.3 implies that Ydt ≥ Ydz′ for all t ≥ z∗. Hence,

E[Ydt|Z = z] ≥ E[Ydz|Z = z] for all t ≥ z∗. Assumption E.2 then implies that E[Ydt|Z = t] ≥ E[Ydz′ |Z = z′] for all t ≥ z∗,
so that min(qdt : t ≥ z∗) ≥ E[Ydz|Z = z]. Hence, we conclude that for any d ∈ {0, 1}:

∀z′ ≥ z∗, max(q
dt

: t = 1, ..., k) ≤ E[Ydz′ |Z = z
′
] ≤ min(qdt : t ≥ z∗). (B.7)

Combine (B.6) and (B.7), we conclude that for any d, θd ∈ Γd,z∗ , so that ΘI,z∗ ⊆ Γ1,z∗ × Γ0,z∗ . Moreover, because

Assumption E.1 , E.2 and E.3 imply (B.6) and (B.7), the violation of (B.4) and (B.5) implies that ΘI,z∗ = ∅. Equivalently,

ΘI,z∗ 6= ∅ only if (B.4) and (B.5) hold for any d ∈ {0, 1}.

Part 2. We want to prove that (B.4) and (B.5) implies that ΘI,z∗ 6= ∅ and ΘI,z∗ ⊇ Γ1,z∗×Γ0,z∗ . Fix an arbitrary d ∈ {0, 1}.
First of all, we are going to prove that one can construct Ydz which achieves the lower bound in Γd,z∗ , satisfies assumptions

E.1 -E.3 , and is compatible with the data at the same time.

Define γz for each z = 1, ..., k as follows:

• for z < z∗, let γz be the value which solves

max(q
dt

: t ≤ z) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Then, γz ∈ [y
d
, yd] if qdz ≥ max(q

dt
: t ≤ z), which is implied by (B.4).

• for z ≥ z∗, let γz be the value which solves

max(q
dt

: t = 1, ..., k) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Then, γz ∈ [y
d
, yd] if max(q

dt
: ∀t) ≤ qdz which is implied by (B.5).

Define Wdz ≡ 1(D = d, Z = z)Y + 1(D 6= d, Z = z)γz . Then, by construction,

E[Wdz|Z = z] =

{
max(q

dt
: t ≤ z) if z < z∗

max(q
dt

: t = 1, ..., k) if z ≥ z∗ (B.8)

which implies that

∀z ≤ t, E[Wdz|Z = z] ≤ E[Wdt|Z = t] (B.9)

∀z ≥ z∗, E[Wdz|Z = z] = max(q
dt

: t = 1, ..., k) (B.10)

Moreover, because γz ∈ [y
d
, yd] for any z ∈ {1, ..., k}, we know P (Wdz ∈ [y

z
, yz ]) = 1 for all z ∈ {1, ..., k}. And,

P (Wdz = Y |D = d, Z = z) = 1 for any d and z.

Now, for any t ∈ {1, ..., k}, define, φdt(α) ≡ (1− α)Wdt + αyd and ψdt(α) ≡ (1− α)y
d

+ αWdt. We claim that, for any

t 6= z, there exists αtz ∈ [0, 1] which solves the following equations:

∀t < z, E[Wdz|Z = z] = E[φdt(αtz)|Z = t]

∀t > z, E[Wdz|Z = z] = E[ψdt(αtz)|Z = t].
(B.11)

To see why it is so, note that

∀t < z, E[Wdt|Z = t] = E[φdt(0)|Z = t] and E[φdt(1)|Z = t] = yd,

∀t > z, y
d

= E[φdt(0)|Z = t] and E[φdt(1)|Z = t] = E[Wdt|Z = t].
(B.12)
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These results, combined with (B.9), imply that

∀t < z, E[φdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤ E[φdt(1)|Z = t],

∀t > z, E[ψdt(0)|Z = t] ≤ E[Wdz|Z = z] ≤ E[φdt(1)|Z = t].

which implies the existence of αtz ∈ [0, 1] satisfying (B.11) for all t 6= z.

In addition, (αtz : t 6= z) has some extra properties. Because (B.9) holds and E[φdt(α)|Z = t] is an increasing function

of α,

∀t < z < z
′
, αtz ≤ αtz′ . (B.13)

Because (B.9) holds and E[ψt(α)|Z = t] is an increasing function of α,

∀z < z
′
< t, αtz ≤ αtz′ . (B.14)

Construct Ydz ≡
∑
t<z φdt(αtz) +Wdz +

∑
t>z ψdt(αtz). Because P (Wdz ∈ [y

d
, yd]) = 1, assumption E.1 holds for this

Ydz . Because of (B.11), assumption E.2 holds for this Ydz , i.e. E[Ydz|Z = t] = E[Ydz|Z = z] for any t, z with t 6= z.

To show assumption E.3 also holds for this Ydz , note that, for any z1, z2 with 1 ≤ z1 < z2 ≤ k,

• If Z < z1, Ydz1 = φdZ(αZz1 ) ≤ φdZ(αZz2 ) = Ydz2 because of (B.13) and because φdZ(α) is increasing in α.

• If Z = z1, Ydz1 = Wdz1
≤ φdZ(αZz2 ) = Ydz2 because of the definition of φdZ(α).

• If z1 < Z < z2, Ydz1 = ψdZ(αZz1 ) ≤ WdZ ≤ φdZ(αZz2 ) = Ydz2 because of the definition of φdZ(α) and ψdZ(α).

• If Z = z2, Ydz1 = ψdZ(αZz1 ) ≤ WdZ = Ydz2 because of the definition of ψdZ(α).

• If z2 < Z, Ydz1 = ψdZ(αZz1 ) ≤ ψdZ(αZz2 ) = Ydz2 because of (B.14) and because ψdZ(α) is increasing in α.

As a result, Ydz1 ≤ Ydz2 almost surely for any z1 ≤ z2. Moreover, because of (B.10), αtz = αtz′ for any t, z and z′ with

t < min(z, z′) and z∗ ≤ min(z, z′). Because of (B.10) and (B.12), αtz = 0 for any z∗ ≤ t < z, and αtz = 1 for any

t > z ≥ z∗. Given these results, one can show that for any z′ ≥ z∗, Ydz′ =
∑
t<z∗ φdt(αtz∗ ) +

∑k
t=z∗ Wdt. This implies

that assumption E.3 also holds. So far, we have shown that Ydz constructed above satisfies assumption az∗ .

Finally, because E[Ydz ] = E[Ydz|Z = z] = E[Wdz|Z = z] and because of (B.8), we know
∑
z P (Z = z)E[Ydz ] achieves

the lower bound in Γd,z . Moreover, because P [Ydz = Y |D = d, Z = z] = 1, this construction of Ydz is consistent with the

data. Combine all the above results, for an arbitrary d ∈ {0, 1}, we have constructed Ydz which satisfies assumption az∗

and, at the same time,
∑
z P (Z = z)E[Ydz ] achieves the lower bound of Γd,z .

Similarly, one can construct Ydz which satisfies assumption az∗ and
∑
z P (Z = z)E[Ydz ] achieves the upper bound of

Γd,z , by defining γ′z as follows:

• for z < z∗, let γ′z be the value which solves

min(qdt : t ≥ z) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

• for z ≥ z∗, let γ′z be the value which solves

min(qdt : t ≥ z∗) = E[1(D = d)Y |Z = z] + E[1(D 6= d)Y |Z = z]γz

Following the same steps as before except replacing γz with γ′z , one can show that the constructed Ydz satisfies E.1 -E.3 and∑
z P (Z = z)E[Ydz ] achieves the upper bound of Γd,z .

Taking convex combinations of the constructions which achieve the upper and lower bound, every point in Γd,z can be

achieved under assumption E.1 -E.3 . This completes the proof. �

Proof of Lemma 6. Suppose E.1 and E.2 hold. For any z ∈ {1, 2, ..., k} and any d ∈ {0, 1}, we have

1(Z = z,D = d)Y + 1(Z 6= z or D 6= d)y
d
≤ Ydz ≤ 1(Z = z,D = d)Y + 1(Z 6= z or D 6= d)yd

Therefore, q
dz
≤ E[Ydz|Z = z] ≤ qdz . Because of E.2 , this implies that q

dz
≤ E[Ydz ] ≤ qdz . As a result, E[Y d] ≤∑z P (Z =

z)EYdz ≤ E[Y d], which proves that ΘI ⊆
[
E[Y 1], E[Y 1]

]
×
[
E[Y 0], E[Y 0]

]
. Moreover, when P

(
Y ∈ [y

d
, yd]|D = d

)
= 1

for any d ∈ {0, 1} fails to hold, E.1 will fail to hold. Hence, ΘI 6= ∅ only if P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1}.
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Suppose that P
(
Y ∈ [y

d
, yd]|D = d

)
= 1 for any d ∈ {0, 1} hold. Then, we know that for each z = 1, ..., k and each d,

y
d
≤ q

dz
≤ qdz ≤ yd. Construct Ydz as the following for each z and d:

Ydz = 1(Z = z,D = d)Y + 1(Z = z,D 6= d)y
d

+ 1(Z 6= z)q
dz
.

By construction, θd =
∑
z P (Z = z)EYdz =

∑
z P (Z = z)q

dz
= E[Y d]. Moreover, one can check that this construction also

satisfies assumptions E.1 and E.2 . Similarly, for each d, we can construct Y ′dz as

Y
′
dz = 1(Z = z,D = d)Y + 1(Z = z,D 6= d)yd + 1(Z 6= z)qdz.

Again, Y ′dz satisfies assumptions E.1 and E.2 by construction. In addition, θd =
∑
z P (Z = z)EY ′dz = E[Y d]. By

considering (Y1z, Y
′
0z), (Y ′1z, Y0z), (Y1z, Y0z) and (Y ′1z, Y

′
0z), we conclude that ΘI is nonempty and ΘI =

[
E[Y 1], E[Y 1]

]
×[

E[Y 0], E[Y 0]
]
. �

B.5. Proof of Proposition 3. Recall the A in the introductory example is the set of all condition (2.2) indexed by h ∈ H+
1 .

Let us first show Θ∗I is equal the interval specified in (5.1). By Lemma 4, we know that for each θ ∈ (γ, γ), there exists

some A′ ⊆ A such that ΘI(A′) = {θ}. By Theorem 3, there exists some minimum data-consistent relaxation A∗ such that

A′ ⊆ A∗. Since ΘI(A′) is singleton, we know ΘI(A∗) = ΘI(A′) = {θ}. Therefore, (γ, γ) ⊆ Θ∗I .

We claim that if P (E[Y |Z] ≤ γ) > 0, then γ ∈ Θ∗I and there exists some A′ ⊆ A with ΘI(A′) = {γ}. To see why it

is so, suppose P (E[Y |Z] ≤ γ) > 0. Then, define S1 = {z : E[Y |Z = z] ≤ γ} and S2 = {z : E[Y |Z = z] ≥ γ}. Since

P (E[Y |Z] ≤ γ) > 0, we know P (Z ∈ S1) > 0. Since γ > γ, we know P (Z ∈ S2) > 0. Now, define h1(z) = 1 (z ∈ S1) /P (Z ∈
S1) and h2(z) = 1(z ∈ S2)/P (Z ∈ S2). Then, Eh1(Z) = 1, Eh2(Z) = 1, E[h1(Z)Y ] ≤ γ and E[h2(Z)Y ] ≥ γ. Therefore,

there must exists h as a convex combination of h1 and h2 such that Eh(Z) = 1 and E[h(Z)Y ] = γ. Hence, γ ∈ Θ̃(h) and

Θ̃(h) ∩ (−∞, γ) = ∅. Moreover, for each i = 1, 2, ..., construct hi(z) as hi(z) = 1(E[Y |Z = z] ∈ [γ, γ + 1/i]). By the

definition of γ, we know Ehi(Z) > 0 for each i ≥ 1. Note that the identified set of (2.2) of hi, Θ̃(hi) is[
E[hi(Z)Y ]

Ehi(Z)
,
E[hi(Z)Y ]

Ehi(Z)

]
.

Because E[Y |Z] ≤ E[Y |Z] almost surely, the law of iterated expectation implies that γ ∈ Θ̃(hi). Moreover, by construction,

for any θ > γ, θ /∈ ∩iΘ̃(hi). Therefore, if we define H′ = {hi : i ≥ 1} ∪ {h}, we have ∩h∈H′ Θ̃(h) = {γ}. This implies that

γ ∈ Θ∗I and there exists some A′ ⊆ A with ΘI(A′) = {γ}.

Next, we claim that if P (E[Y |Z] ≤ γ) > 0, then Θ∗I ∩ (−∞, γ) = ∅. To see this, note that Lemma 3 implies that for

any a ∈ A, ΘI(a) ∩ [γ, γ] 6= ∅. Let A′ be an arbitrary minimum data-consistent relaxation A′ of A. Because Condition

(T1.C2) holds in this example, the preceding result implies that for any minimum data-consistent relaxation A′ of A,

we know ΘI(A′) ∩ [γ, γ] 6= ∅. Our claim will be verified if we can prove ΘI(A′) ∩ (−∞, γ) = ∅. Suppose not, i.e suppose

ΘI(A′)∩(−∞, γ) 6= ∅. Because ΘI(A′) is a closed interval, the fact that ΘI(A′)∩[γ, γ] 6= ∅ implies that γ ∈ ΘI(A′). Because

we’ve proven that ∩h∈H′ Θ̃(h) = {γ}, and because A′ is a minimum data-consistent relaxation, we know ΘI(A′) = {γ} which

leads to contradiction.

Next, we claim that if P (E[Y |Z] ≤ γ) = 0, then Θ∗I ∩ (−∞, γ] = ∅. To see this, note that P (E[Y |Z] ≤ γ) = 0 implies

P (E[Y |Z] > γ) = 1. Therefore, for any h ∈ H+
1 , E[h(Z)(θ − Y )] ≥ 0 implies that

E[h(Z)(θ − Y )] ≥ 0

⇒ E[h(Z)Y ] ≤ E[h(Z)]θ

⇔ E[h(Z)E[Y |Z]] ≤ E[h(Z)]θ

⇒ E[h(Z)]γ < E[h(Z)]θ

where the last inequality follows from the fact that P (E[Y |Z] > γ) = 1. Therefore, we know for any h ∈ H+
1 , Θ̃(h)∩(−∞, γ] =

∅. This implies Θ∗I ∩ (−∞, γ] = ∅.

Following similar steps as above, we can also prove the following results:

• If P (E[Y |Z] ≥ γ) > 0, then γ ∈ Θ∗I and there exists some A′ ⊆ A with ΘI(A′) = {γ}.
• If P (E[Y |Z] ≥ γ) > 0, then Θ∗I ∩ (γ,+∞) = ∅.
• If P (E[Y |Z] ≥ γ) = 0, then Θ∗I ∩ [γ,+∞) = ∅.
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Combining these results and that (γ, γ) ⊆ Θ∗I , we conclude that Θ∗I is equals to the interval specified in (5.1).

Appendix C. Proofs for Additional Results

C.1. Proof for Proposition 4. We need to verify that the C constructed in (A.3) satisfies all three requirements in Condition

(T1.C1).

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite elements in A. Fix an arbitrary

A′ ∈ C . By the construction of C , A′ only contains one element in A: (A.2) holds for some w = hz,ε ∈ W∗. By assumption,

there exists some θ ∈ Θ such that E[m(X; θ)|Z] ≤ 0 for all most every Z satisfying ‖Z − z‖ ≤ δ(z). This implies that this θ

must also satisfy (A.2) with w = hz,ε for all 0 < ε < δ(z). This proves ΘI(A′) 6= ∅.

Second, we need to prove that ΘI(∪A′∈CA
′) = ΘI(A). Because W∗ ⊆ W+

1 , we know ∪A′∈CA
′ ⊆ A so that

ΘI(∪A′∈CA
′) ⊇ ΘI(A). Hence, we only need to show ΘI(∪A′∈CA

′) ⊆ ΘI(A). By assumption, there exists a function

g(z; θ) such that (i) for every θ ∈ Θ, E[m(X,Z; θ)|Z] = g(Z; θ) almost surely; (ii) g(z; θ) is continuous in z for any given θ;

(iii) g(z; θ) is continuous in θ for any given z. Because θ ∈ ΘI(A) if and only if θ satisfy (A.1), we know that

θ /∈ ΘI(A) if and only if P (Z ∈ Zθ) > 0 where Zθ := {z ∈ Z : g(z; θ) > 0}.

Fix an arbitrary θ /∈ ΘI(A). Because g(·, θ) is a continuous function of z given θ, Zθ is an open set of z. Therefore, there

must exists some z ∈ Z and ε ∈ (0, δ(z)) such that {z′ :
∥∥z′ − z∥∥ < ε} ⊆ Zθ. As a result, the law of iterated expectation

implies that

E[hz,ε(Z)g(Z; θ)] = E[hz,ε(Z)m(X; θ)] > 0.

This means that θ /∈ ΘI(∪A′∈CA
′). Thus, we have proven that θ /∈ ΘI(∪A′∈CA

′) if θ /∈ ΘI(A), which is equivalent to

ΘI(∪A′∈CA
′) ⊆ ΘI(A).

Finally, we need to show that ΘI(A′) is compact for any A′ ∈ C . Fix an arbitrary A′ ∈ C . By the construction of

C , A′ only contains one element in A: (A.2) holds for some w ∈ W∗. Define κ(θ) := E[w(Z)g(Z; θ)]. Because g(z; θ) is

continuous in θ for any given z, and because, by assumption, supθ∈Θ ‖g(z; θ)‖ = supθ∈Θ ‖E[m(X; θ)|Z = z]‖ ≤ γ(z) and

E|γ(Z)| <∞, and because w(·) is a bounded function, the dominated convergence theorem implies that κ(θ) is a continuous

at any θ ∈ Θ. The law of iterated expectations implies that E[w(Z)m(X; θ)] = E[w(Z)g(Z; θ)] =: κ(θ). Therefore,

ΘI(A′) = {θ ∈ Θ : κ(θ) ≤ 0}. Because κ is continuous in θ, we know ΘI(A′) is a closed set. Because Θ is compact by

assumption, ΘI(A′) is compact.

C.2. Proof of Proposition 5. We need to verify that C constructed in (A.5) satisfies all three requirements in Condition

(T1.C1)

First, we are going to show that ∀A′ ∈ C , A′ is data-consistent and consists of finite elements in A. Fix an arbitrary

A′ ∈ C . By the construct of C in (A.5), A′ is a singleton set which only contains one element in A: (A.4) holds for some

K ⊆ Y. If K = Y, (A.4) holds for any θ ∈ Θ because L(K,X; θ) = 1 almost surely in this case. If K = ∅, (A.4) holds for

any θ ∈ Θ because PF (Y ∈ K|X) = 0 almost surely in this case.

If K ( Y and K 6= ∅, pick an arbitrary y′ ∈ Y\K. By (L5.C1), we know infx∈X P (Y = y′|X = x) > 0. Therefore, we

know

sup
x∈X

PF (Y ∈ K|X = x) = 1− inf
x∈X

PF (Y /∈ K|X = x) ≤ 1− inf
x∈X

PF (Y = y
′|X = x) < 1

On the other hand, pick an arbitrary y′′ ∈ K, (L5.C2) implies that there exists some sequence θk ∈ Θ such that

inf
x∈X

L({y′′}, x; θk)→ 1 as k →∞.

Therefore, there must exist some θ∗ ∈ Θ such that infx∈X L({y′′}, x; θ∗) ≥ supx∈X PF (Y ∈ K|X = x). This implies that

sup
x∈X

PF (Y ∈ K|X = x) ≤ inf
x∈X

L({y′′}, x; θ
∗
) ≤ inf

x∈X
L(K, x; θ

∗
)

the last equality hold because y′′ ∈ K implies that L({y′′}, x; θ∗) ≤ L(K, x; θ∗) for any x. The above inequality implies that

θ∗ ∈ ΘI(A′), because

PF (Y ∈ K|X) ≤ sup
x∈X

PF (Y ∈ K|X = x) ≤ inf
x∈X

L(K, x; θ
∗
) ≤ L(K,X; θ

∗
) almost surely

Hence, ΘI(A′) is nonempty. That is, we have shown that every A′ ∈ C is data-consistent.
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Second, we need to prove ΘI(∪A′∈CA
′) = ΘI(A). This is trivial, because ∪A′∈CA

′ = A by the construction of C in

(A.5).

Finally, because Y is a finite set, A is a finite set. By the construction of C in (A.5), C is also a finite set. This completes

the proof.

C.3. Proof for Theorem 3. Let us start with two trivial cases: (i) suppose ΘI(A′) = ∅ for any A′ ⊆ A. Then, ∅ is

the minimum data-consistent relaxation in this case; (ii) suppose ΘI(A) 6= ∅. Then, A is the minimum data-consistent

relaxation. Next, let us consider the following nontrivial case.

Suppose ΘI(A) = ∅ and there exits some A0 ⊆ A such that ΘI(A0) 6= ∅. We are going to show that there exists some

minimum data-consistent relaxation Ã such that A0 ⊆ Ã. Let’s consider two cases:

Case 1: (T3.C1) holds. Because ΘI(A) = ∅ while ΘI(A′) 6= ∅, A0 cannot be A so that A\A0 is nonempty. Because of

(T3.C1), A\A0 is a finite set. Enumerate it as A\A0 = {a1, ..., ak}. Construct A1, ..., Ak iteratively as follows: For any

i = 1, ..., k, define Ai = Ai−1 ∪ {ai} if ΘI(Ai−1 ∪ {ai}) 6= ∅, and define Ai = Ai−1 if otherwise. By construction, for

each i = 1, ..., k, ΘI(Ai) 6= ∅. Moreover, if ai /∈ Ak, we must have ΘI(Ak ∪ {ai}) = ∅ because ΘI(Ai ∪ {ai}) = ∅ and

ΘI(Ak∪{ai}) ⊆ ΘI(Ai∪{ai}). Therefore, Ak must be a minimum data-consistent relaxation, and A0 ⊆ Ak by construction.

Case 2: (T3.C2) holds. Define A = {A′ : A′ ⊆ A, A0 ⊆ A′ and ΘI(A′) 6= ∅}. A is not empty because A0 ∈ A . We are

going to prove that there exists some minimum data-consistent relaxation Ã such that A0 ⊆ Ã, which is equivalent to show

the following statement:

A has a maximum element Ã ∈ A in terms of partial order ⊆, i.e. there is no A
′ ∈ A such that Ã ( A

′
. (C.1)

To prove (C.1), we are going to invoke Zorn’s lemma. Let Z be an arbitrary nonempty chain in A in terms of ⊆. Because

Z is a chain, for any A′ and A′′ in Z , there is either A′ ⊆ A′′ or A′′ ⊆ A′, so that there is either ΘI(A′) ⊆ ΘI(A′′)

or ΘI(A′′) ⊆ ΘI(A′). Define A† = ∪A′∈ZA′. Because of (T3.C2), ΘI(A†) = ∩A′∈Z ΘI(A′). By Lemma 1, ΘI(A†) is

nonempty. This implies that A† ∈ A . Moreover, by construction, A′ ⊆ A† for any A′ ∈ Z . Therefore, we have shown that

there exists an upper bound A† in A in terms of partial order ⊆ for any nonempty chain Z in A . Zorn’s lemma then implies

(C.1).

C.4. Proof of Theorem 4. We first prove the first part of the theorem.

(T2.C1) ⇒ (T2.C2): Construct A∗ = {a ∈ A : ΘI(a) 6= ∅}. We are going to show that A∗ is the only minimum

data-consistent relaxation. For any a /∈ A∗, we have ΘI(a) = ∅ by the construction of A∗. Hence, for any a /∈ A∗,

ΘI(A∗ ∪ {a}) = ∅ because ΘI(A∗ ∪ {a}) ⊆ ΘI(a). Moreover, (T2.C1) implies that ΘI(A∗) 6= ∅ because every a ∈ A∗ is

data-consistent. Therefore, A∗ is a minimum data-consistent relaxation.

Suppose, for the purpose of contradiction, there exists another minimum data-consistent relaxation A′ different from A∗.

Because A′ is a minimum data-consistent relaxation, there is no A′ ⊆ A∗. Therefore, A′\A∗ must be nonempty. Pick an

arbitrary a′ ∈ A′\A∗. Because a′ /∈ A∗, we know ΘI(a′) = ∅ by the construction of A∗. Therefore, ΘI(A′) = ∅ because

ΘI(A′) ⊆ ΘI(a′). This contradicts to the fact that A′ is a minimum data-consistent relaxation.

If either (T3.C1) or (T3.C2) holds, (T2.C2) ⇒ (T2.C1): Suppose either (T3.C1) or (T3.C2) hold. Let A∗ denote the

unique minimum data-consistent relaxation. First of all, we are going to prove the following statement:

A
∗

= {a ∈ A : ΘI(a) 6= ∅}. (C.2)

Because A∗ is a minimum data-consistent relaxation, ΘI(A∗) 6= ∅. Because ΘI(A∗) ⊆ ΘI(a) for every a ∈ A∗, we know

ΘI(a) is nonempty for every a ∈ A∗. This implies that A∗ ⊆ {a ∈ A : ΘI(a) 6= ∅}. To show, A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅},
note that

• when A∗ = A, we have A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅} trivially.

• when A∗ ( A. Pick an arbitrary a′ /∈ A∗. Suppose, for the purpose of contradiciton, ΘI(a′) 6= ∅. Then, Theorem

3 implies that there exists some minimum data-consistent relaxation Ã with a′ ∈ Ã. Because a′ ∈ Ã and a′ /∈ A∗,
we must have Ã 6= A∗, which contradicts to A∗ being the unique minimum data-consistent relaxation. Hence,

ΘI(a′) = ∅ for any a′ /∈ A∗, which is equivalent to A∗ ⊇ {a ∈ A : ΘI(a) 6= ∅}.

This proves (C.2).
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Because of (C.2), a ∈ A is data-consistent if and only if a ∈ A∗. Therefore, for any A′ ⊆ A, all a ∈ A′ are data-consistent

if and only if A′ ⊆ A∗. As a result, we can show (T2.C1) if the following statement is true:

A
′ ⊆ A∗if and only if ΘI(A

′
) 6= ∅. (C.3)

To see why (C.3) is indeed true, note that

• Because ΘI(A∗) 6= ∅, and because ΘI(A∗) ⊆ ΘI(A′) for any A′ ⊆ A∗, we know ΘI(A′) 6= ∅ if A′ ⊆ A∗.
• Fix an arbitrary set A′ with ΘI(A′) 6= ∅. Because ΘI(A′) ⊆ ΘI(a) for every a ∈ A′, we know ΘI(a) 6= ∅ for every

a ∈ A′. Because of (C.2), this implies that a ∈ A∗ for every a ∈ A′, i.e. A′ ⊆ A∗. Thus, we have shown that

A′ ⊆ A∗ if ΘI(A′) 6= ∅.

This completes the proof.

C.5. Proof of Theorem 5. Recall that AR denote the collection of all minimum data-consistent relaxations. Because either

(T3.C1) or (T3.C2) holds, AR is nonempty.

First of all, we are going to prove Θ∗I is rationalizable. Because Θ∗I = ∪A′∈AR
ΘI(A′), for any minimum data-consitent

relaxation Ã, we must have ΘI(Ã) ⊆ Θ∗I . Becuase AR is nonempty, we know Θ∗I is rationalizable.

Second, we are going to prove Θ∗I is nonconflicting. Fix an arbitrary data-consistent subset A′ of A. By Theorem 3,

there exists a minimum data-consistent relaxation Ã such that A′ ⊆ Ã. Because A′ ⊆ Ã, we know ΘI(Ã) ⊆ ΘI(A′), so that

ΘI(A′) ∩ΘI(Ã) 6= ∅. Because Ã ∈ AR and Θ∗I = ∪Ã′∈AR
ΘI(Ã′), we know ΘI(A′) ∩Θ∗I 6= ∅.

C.6. Proof for Theorem 6. Suppose the smallest rationalizable and nonconflicting set exists. Denote it as S∗. We are

going to show that S∗ = Θ∗I when (T6.C1) is true. By Theorem 5, Θ∗I is both rationalizable and nonconflicting. Therefore,

S∗ ⊆ Θ∗I . What left to show is Θ∗I ⊆ S∗.

Define AR to be the collection of all minimum data-consistent relaxation. Define A1 = {A′ ∈ AR : ΘI(A′) ⊆ S∗} and

A2 = AR\A1. Because S∗ is rationalizable, there exists some data-consistent A′ ⊆ A such that ΘI(A′) ⊆ S∗. By Theorem

3, there exists some Ã ∈ AR such that A′ ⊆ Ã. Therefore, ΘI(Ã) ⊆ ΘI(A′) ⊆ S∗. Hence, A1 is not empty.

Because AR = A1 ∪A2, we know

Θ
∗
I =

(
∪A′∈A1

ΘI(A
′
)
)
∪
(
∪A′∈A2

ΘI(A
′
)
)
.

Therefore, to show Θ∗I ⊆ S∗, we only need to show A2 is an empty set. We discuss two cases:

• Suppose there exists some A∗ ∈ A1 such that ΘI(A∗) contains at least two different elements. We are going to

show that A2 = ∅ in this case. Suppose, for the purpose of contradiction, A2 is nonempty. Pick an arbitrary A†

within A2. Fix, also, an arbitrary element a∗ in ΘI(A∗). Define S′ as follows

S
′

=

{
∅ if ΘI(A∗) ∩ΘI(A†) 6= ∅
{a∗} if ΘI(A∗) ∩ΘI(A†) = ∅

Define S† as

S
† := ΘI(A

†
) ∪
(
∪A′∈AR

ΘI(A
′
)\ΘI(A

∗
)
)
∪ S′.

Because ΘI(A†) ⊆ S†, S† is rationalizable. Because of (T6.C1), ΘI(A′)\ΘI(A∗) 6= ∅ for each A′ ∈ AR with

ΘI(A′) 6= ΘI(A∗), otherwise we would have ΘI(A′) ( ΘI(A∗) for some A′ ∈ AR which violates (T6.C1). As

a result, S† ∩ ΘI(A′) 6= ∅ for any A′ ∈ AR with ΘI(A′) 6= ΘI(A∗). Next, because ΘI(A†) ∪ S′ and ΘI(A∗)

has nonempty intersection by the construction of S′, we know that S† ∩ ΘI(A′) 6= ∅ for any A′ ∈ AR with

ΘI(A′) = ΘI(A∗). In total, we know S† ∩ ΘI(A′) 6= ∅ for any A′ ∈ AR. Because of this result, and because, by

Theorem 3, for any A⊆ A, there exists some A′ ∈ AR such that ΘI(A′) ⊆ ΘI(A′′), we know S† is nonconflicting.

So far, we have shown that S† is both rationalizable and nonconflicting.

Then, we claim that there is no ΘI(A∗) ⊆ S†. By the construction of S†, S†∩ΘI(A∗) = (ΘI(A†)∪S′)∩ΘI(A∗).

So, this claim is also equivalent to that there is no ΘI(A∗) ⊆ ΘI(A†) ∪ S′. To see why this claim is true, discuss

to cases:

– when ΘI(A∗) ∩ ΘI(A†) 6= ∅, S′ = ∅. Because of (T6.C1), there is no ΘI(A∗) ( ΘI(A†). Because A∗ ∈ A1

and A† ∈ A2, there is no ΘI(A∗) = ΘI(A†). In total, there is no ΘI(A∗) ⊆ ΘI(A†). Because S′ = ∅, we

know there is no ΘI(A∗) ⊆ ΘI(A†) ∪ S′ is this case.
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– when ΘI(A∗) ∩ ΘI(A†) = ∅, (ΘI(A†) ∪ S′) ∩ ΘI(A∗) = S′ ∩ ΘI(A∗) = {a∗}. Because ΘI(A∗) contains at

least two different elements, there is no ΘI(A∗) ⊆ S′, which implies there is no ΘI(A∗) ⊆ ΘI(A†) ∪ S′ is

this case.

In total, we have verify the claim that there is no ΘI(A∗) ⊆ S†. However, because S∗ is the smallest rationalizable

and nonconflicting set, and because S† is both rationalizable and nonconflicting, there must be S∗ ⊆ S†, which

further implies ΘI(A∗) ⊆ S† because A∗ ∈ A1. This leads to the contradiction. As a result, A2 must be empty in

this case.

• Suppose that, for any A′ ∈ A1, ΘI(A′) only contains one element. We are going to show that A2 = ∅ in this

case. Suppose, for the purpose of contradiction, that A2 is nonempty. By the construction of A1 and A2, there is

no ΘI(A1) = ΘI(A2) for any A1 ∈ A1 and A2 ∈ A2. Because of (T6.C1), there is no ΘI(A1) ( ΘI(A2) for any

A1 ∈ A1 and A2 ∈ A2. In total, there is no ΘI(A1) ⊆ ΘI(A2) for any A1 ∈ A1 and A2 ∈ A2. Because ΘI(A′)

only contains one element for any A′ ∈ A1, for any S ⊆ Θ, ΘI(A′) ∩ S 6= ∅ would mean ΘI(A′) ⊆ S. Therefore,

we must have ΘI(A′) ∩ΘI(A′′) = ∅ for any A′ ∈ A1 and A′′ ∈ A2. Define S1 as

S1 = ∪A′∈A1
ΘI(A

′
).

And, define S2 as

S2 =
(
∪A′∈A2

ΘI(A
′
)
)
∩ S∗.

Because ΘI(A′)∩ΘI(A′′) = ∅ for any A′ ∈ A1 and A′′ ∈ A2, S1∩S2 = ∅. Moreover, because S∗ is nonconflicting,

S∗ ∩ ΘI(A′) 6= ∅ for each A′ ∈ A2. Therefore, S2 ∩ ΘI(A′) 6= ∅ for any A′ ∈ A2. This implies that S1 ∪ S2 is

nonconflicting. Moreover, because A1 is nonempty, S1 is rationalizable so that S1 ∪ S2 is also rationalizable. As a

result, S1 ∪ S2 is both nonconflicting and rationalizable. Next, define

S3 =
(
∪A′∈A2

ΘI(A
′
)
)
\S∗.

By the definition of A1, S1 ⊆ S∗. Therefore, S1 ∩ S3 = ∅. Also, we have S2 ∩ S3 = ∅ by the construction of S2

and S3. In addition, by the construction of A2, for each A′ ∈ A2, ΘI(A′)\S∗ 6= ∅. Therefore, S3 ∩ΘI(A′) 6= ∅ for

each A′ ∈ A2. This implies that S1 ∪ S3 is nonconflicting. Moreover, because A1 is nonempty, S1 is rationalizable

so that S1 ∪ S3 is also rationalizable. As a result, S1 ∪ S3 is both nonconflicting and rationalizable.

So far, we have shown that S1 ∪S2 is both rationalizable and nonconflicting. And, we have shown that S1 ∪S3

is both rationalizable and nonconflicting. Because S∗ is the smallest rationalizable and nonconflicting set, we must

have S∗ ⊆ S1 ∪ S2 and S∗ ⊆ S1 ∪ S3. In other words,

S
∗ ⊆ (S1 ∪ S2) ∩ (S1 ∪ S3)

However, because S1 ∩ S2 = ∅, S1 ∩ S3 = ∅ and S2 ∩ S3 = ∅, we know (S1 ∪ S2) ∩ (S1 ∪ S3) = S1. As a result, we

have

S
∗ ⊆ S1 (C.4)

We have already shown that we must have ΘI(A′) ∩ ΘI(A′′) = ∅ for any A′ ∈ A1 and A′′ ∈ A2. Therefore,

S1 ∩ΘI(A′′) = ∅ for any A′′ ∈ A2. Because A2 is nonempty, this means that S1 is not nonconflicting. Because of

(C.4), this implies that S∗ is not nonconflicting, which contradicts to the fact that S∗ is both rationalizable and

nonconflicting.

We have shown that A2 must be empty in both of the above cases. This completes the proof.

C.7. Proof for Theorem 7. By Theorem 5, Θ∗I is both rationalizable and nonconflicting. If we could show Θ∗I ⊆ S for an

arbitrary set S that is both rationalizable and nonconflicting, then Θ∗I would be the smallest rationalizable and nonconflicting

set. Fix an arbitrary set S that is both rationalizable and nonconflicting.

We first prove that (T7.C1) implies Θ∗I ⊆ S. Because S is rationalizable, there exists some data-consistent A′ ⊆ A such

that ΘI(A′) ⊆ S. By Theorem 3, there exits a minimum data-consistent relaxation Ã such that A′ ⊆ Ã. Because A′ ⊆ Ã,

we know ΘI(Ã) ⊆ ΘI(A′). Because of (T7.C1), Θ∗I = ΘI(Ã). Therefore, Θ∗I = ΘI(Ã) ⊆ ΘI(A′) ⊆ S.

Next, we prove that (T7.C2) implies Θ∗I ⊆ S. Let AR denote the collection of all minimum data-consistent relaxation.

Because S is nonconflicting, we must have ΘI(A′) ∩ S 6= ∅ for each A′ ∈ AR. For each A′ ∈ AR, because ΘI(A′) only

contains one element under (T7.C2), ΘI(A′) ∩ S 6= ∅ is equivalent to ΘI(A′) ⊆ S. As a result, we know Θ∗I ⊆ S because

Θ∗I = ∪A′∈AR
ΘI(A′).
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C.8. Proof for Theorem 8. Let AR be the set of all minimum data-consitent relaxations. Suppose for each Ã ∈ AR,

ΘI(Ã) is singleton. Then, we want to show that Θ∗I = ∪Ã∈AR
ΘI(Ã) is a subset of Θ†I no matter which type of relaxation is

chosen by the researcher.

To show this result, pick an arbitrary Ã ∈ AR. Define δ∗ : A → [0, 1] as follows: δ∗(a) = 0 if a ∈ Ã, and δ∗(a) = 1 if

a /∈ Ã. By construction, ΘI(A(δ∗)) = ΘI(Ã) only contains one element. Therefore, we must have δ∗ ∈ FF , because there

cannot exist some δ < δ∗ with ΘI(A(δ)) 6= ∅ and ΘI(A(δ)) ( ΘI(A(δ∗)). Because this holds for any Ã ∈ AR, we know

Θ∗I ⊆ Θ†I .
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