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Abstract

We present a general approach to experimentally testing candidate reference points.

This approach builds from Prospect Theory's prediction that an increase in payo�s is

perfectly o�set by an equivalent increase in the reference point. Violation of this predic-

tion can be tested with modi�cations to existing econometric techniques in experiments

of a particular design. The resulting approach to testing theories of the reference point is

minimally parametric, robust to broad classes of heterogeneity, yet still implementable

in comparatively small sample sizes. We demonstrate the application of this approach

in an experiment that tests the role of salience in setting reference points.
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Prospect Theory (Kahneman & Tversky, 1979) is the most prominent theoretical frame-

work advanced by behavioral economists. A central component of Prospect Theory is refer-

ence dependence: the idea that, rather than evaluating �nal wealth or consumption levels,

individuals instead evaluate gains and losses relative to a reference point. Prospect Theory

also incorporates a number of additional components regarding how gains and losses are eval-

uated (i.e., with loss aversion and diminishing sensitivity), how probabilistic outcomes are

mentally represented (i.e., with combination, segregation, or cancellation), and how probabil-

ities are ultimately assessed (i.e., through the probability weighting function). In economic

applications of Prospect Theory, however, there is signi�cant variability in whether, and

how, these additional assumptions are imposed,1 and active dispute about the importance

of some of them.2 Reference-dependence is viewed by many as the most supported and

agreed-upon component of Prospect Theory, and it accordingly has been widely adopted in

economic applications (see O'Donoghue & Sprenger, 2018, for a review).

While the idea that individuals consider gains and losses is widely accepted, the coding

of gains and losses remains imperfectly understood and actively disputed. To de�ne a gain

or a loss, one must de�ne the reference point. Kahneman and Tversky themselves viewed the

reference point as an object that could change across contexts and potentially be manipu-

lated.3 Supporting this view, the behavioral economics literature contains studies advancing

a wide variety of candidate reference points, including current asset position (Kahneman &

Tversky, 1979), endowments (Kahneman et al., 1990), social comparisons (Schwerter, 2013),

goals (Heath et al., 1999), targets (Pope & Schweitzer, 2011), averages (Crawford & Meng,

2011), adaptive averages (Thakral & Tô, 2021), and expected distributions of consumption

1For example, many applications study loss aversion in isolation while assuming away diminishing sen-
sitivity, while others rely critically on diminishing sensitivity alone. Formal attention to and modeling of
the combination, segregation, or cancellation assumptions is rare. Probability weighting is assumed away in
many Prospect Theory papers, and yet is viewed as essential in some others.

2Implicit dispute about the central importance of probability weighting or diminishing sensitivity can be
inferred by how often these features are left out of models building on Prospect Theory. More explicit dispute
about the central importance of loss aversion has recently received signi�cant attention. For example, Gal
& Rucker (2018) argues that current evidence does not support the foundational claim that losses are more
impactful than gains, and Chapman et al. (2018) argues that loss-loving behavior is prevalent, and possibly
even as prevalent as loss aversion.

3�However, the location of the reference point, and the consequent coding of outcomes as gains and losses,
can be a�ected by the formulation of the o�ered prospects and by the expectations of the decision-maker.�
(Kahneman & Tversky, 1979, page 247)
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(K®szegi & Rabin, 2006).4 In our view, this literature suggests that many of these candidates

may be adopted in particular environments, and thus that none of them is �the� reference

point at all times. Under this view, for Prospect Theory to be fully speci�ed, behavioral

economists must develop and empirically validate a relatively nuanced theory of the reference

point: one that dictates which reference points are adopted in di�erent situations.

Pursuing a nuanced theory of the reference point is conceptually straightforward but

challenging in practice. It is conceptually straightforward because it can be naturally pursued

with the standard scienti�c method: theorizing that certain factors in�uence reference point

adoption, randomly varying those factors, testing if they do indeed set the reference point

as theorized, updating theories, and then repeating the process. The challenge comes in

testing if reference points are indeed set as theorized. Reference points are typically viewed

as unobservable, and thus their value must be inferred from choice behavior. The large

literature on Prospect Theory presents many approaches to conducting this inference, but

these approaches invariably rely on auxiliary assumptions beyond mere reference dependence.

These auxiliary assumptions vary across papers�which is part of the di�culty in processing

this literature�but they typically involve speci�cation of the functional form of the value

function, assumptions about the parametrization of loss aversion or diminishing sensitivity,

or assumptions of homogeneity. In e�ect, this means that the resulting tests of reference

points may be understood as joint hypothesis tests: the candidate reference point is tested

jointly with additional, often debated or at least debatable, details of Prospect Theory.5

In this paper, we propose a new approach to testing theories of the reference point.

4While we cite a single focal paper as an example of each style of reference point, for most of these
candidates there are many papers available. See Brown et al. (2020) for a metaanalysis of Prospect Theory
(speci�cally focusing on loss aversion) that summarizes 607 empirical applications.

5To illustrate this criticism, consider the bunching-based methodology advanced in papers like Allen et al.
(2017), Rees-Jones (2018), and Seibold (2021). This approach is arguably the current leading methodology
for precisely identifying the location of a reference point. This approach relies on the sharp change in marginal
utilities that occurs at the reference point under common parameterizations of loss aversion, which in certain
classes of models generates excess mass at that point. While seeing excess mass at a particular value provides
compelling evidence of the precise reference point that is adopted, trusting in this approach does critically
rely on trusting in elements of the speci�cation of loss aversion, which is viewed as undesirable by at least
some members of this literature. Furthermore, and independently from the functional form assumptions we
have discussed thus far, formal statistical testing for the presence of excess mass relies on very large sample
sizes. These data requirements make this approach a di�cult foundation for designing a long sequence of
tailored experiments in the scienti�c process described above, with the approach instead �nding most use in
large-scale datasets of convenience.
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Our approach involves the combination of non-parametric econometric techniques previously

unused in the lab-experimental literature and novel experimental designs that make the

application of such techniques theoretically justi�ed. This combination results in a principled

hypothesis-testing framework that isolates the core content of the assumption of reference

dependence. Unlike prevailing methods, this approach has minimal reliance on Prospect

Theory's auxiliary functional form assumptions and remains valid and easily implementable

even in the presence of broad classes of heterogeneity.6 Perhaps surprisingly, these statistical

bene�ts arise even in comparatively small sample sizes. In short, we believe this approach

provides the needed tool to work towards a theory of the reference point without being

entangled in debate about auxilliary model components.

In Section 1, we describe the intuition behind our test. In our view, the de�ning char-

acteristic of a reference-dependent model is that the argument of the utility function is

relative rather than absolute. Loosely speaking, rather than assuming utility takes the func-

tional form u(c), reference dependent models take the form u(c − r).7 We show that the

mere assumption that c − r is the relevant input to utility allows for strong tests of cor-

rect reference-point speci�cation. Given exogenous variation in both c and r, the level sets

of utility in c × r space take on a particular form: they are parallel lines of slope 1. Put

simply, for any given consumption/referent combination, the consequences of increasing con-

sumption by one unit are o�set by increasing the referent by one unit. This implies that, if

experimental subjects are presented with choices between pairs of gambles where all payo�s

are shifted up by a common amount (denoted ∆), this too will be o�set by increasing the

referent by the same amount. The probability of choosing a particular one of the gambles

may therefore be described by a single-index function g(∆ − r)�i.e., a function with the

slope-1-parallel-line structure just described. As we document, this prediction will hold even

if individuals vary in their particular utility parameterizations but adopt the same notion

of the reference point. This suggests an immediate strategy for robust inference regarding

6The presence of signi�cant heterogeneity in Prospect-Theory parameters, and challenges that can arise
because of that, has recently been emphasized in the works of Goette et al. (2019), Chapman et al. (2018),
and others.

7Note that some models adopt a hybrid notion of reference dependence incorporating both an absolute
and a relative term. While we will often discuss intuition in the context of a purely relative model, our
formal approach accommodates utility in�uenced by absolute and relative components.
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candidate reference points: randomly varying a uniform payo� shock ∆ while also varying

the candidate reference point, and then rejecting the reference point if choice probabilities

do not admit the necessary representation.

In Section 2, we describe the formal statistical framework we adopt in order to test

these predictions. The theory just discussed implies that testing for a correctly speci�ed

reference point may be done by testing for a particular single-index representation. We may

thus proceed by modifying existing, powerful non-parametric techniques for single-index

speci�cation testing. Conceptually, the approach may be understood as comparing the best-

�t single-index function ĝ(∆ − r) and the best-�t unrestricted function ĝ(∆, r), each using

using kernel methods, and then examining whether the di�erence between them is su�ciently

large to reject the null of the single-index representation. We build on the work of Fan &

Li (1996) to derive an analytical formula for the associated p-values, with modi�cations to

accommodate some additional structure imposed by our model and the clustering issues that

arise in our domain.

In Section 3 we demonstrate how to apply these techniques in an experiment. We begin

with a discussion of general experimental design considerations. This discussion provides

guidance on how to design gambles that serve best as experimental stimuli, guidance on how

to vary reference points, and guidance on assessing statistical power. We then demonstrate

the application of these considerations in an experiment that we deployed among 1,001

members of the Understanding America Study. In this experiment, subjects chose between

a sure option and a 50-50 gamble, with payo�s from all choices facing uniform shocks of

the nature required by our test. Subjects are also presented with randomized values of two

variables that have been used as reference points in prior literature: average earnings of a

comparison group and goals. Based on our reading of existing literature, we believed each

candidate could be adopted as reference points in at least some situations.8 Within the

experiment, we sought to vary whether each reference point would be extremely salient (in

which case we would expect it to be adopted) or extremely subtlety presented (in which

8Supporting averages or expectations, see for example Abeler et al. (2011), Crawford & Meng (2011), Gill
& Prowse (2012), Marzilli Ericson & Fuster (2011), Schwerter (2013), or Lindskog et al. (2022). Supporting
goals, see for example Heath et al. (1999), Hsiaw (2013), Allen et al. (2017), Markle et al. (2018), or Hsiaw
(2018).
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case we would not expect it to be adopted). To make a potential referent salient, it was

vividly presented in large red font over every decision that was made. In contrast, when it

was not salient, the referent was not presented to subjects again after a brief mention in the

introductory materials.

Using these data and our testing approach, we con�rm a claim that has been well doc-

umented in prior literature: that salient goals can serve as reference points. Emphasizing

the importance of salience, however, our approach strongly rejects the adoption of goals as

reference points when they are not made salient. We believe that this comparison of results

provides some reassurance that the test is working as expected: our test appears to con�rm

goals work as reference points in a situation where they would be most expected to do so,

but our test rejects that goals operate as reference points in a situation where their adoption

appears unlikely due to experimental design. We additionally view these results as a demon-

stration of one of the foundational ideas motivating the pursuit of a more nuanced theory

of the reference point: that the adoption of a particular candidate reference point can be

in�uenced by changing features of the decision environment.

Perhaps more surprising results arise when examining tests of average earnings of a

comparison group as a reference point. In either salience condition, this reference point fails

our test. These results suggest that further scrutiny of the average-earnings-based reference

points in the literature may be warranted. Comparing our decision environment to those in

which average-earnings-based reference points appear to be adopted can help in generating

new hypotheses for factors that matter in reference point adoption. We further discuss these

issues in our concluding discussion of Section 4.

In the Appendix, we provide detailed derivations of the asymptotic properties of our test

statistics, a modi�cation to our methodology that facilitates the study of the K®szegi-Rabin

model of reference points, and a simulation study that provides guidance on the statistical

power of our test. We provide summaries of all of these appendix discussions at the relevant

places in the main text.

Our paper contributes to a small but growing literature aiming to develop econometric

techniques speci�cally optimized for behavioral models (see, e.g., Barseghyan et al., 2013;

Strack & Taubinsky, 2021). Due in part to the history of small sample sizes in behav-
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ioral economics experiments, as well as this research community's preference for transparent

reduced-form tests of comparative statics, behavioral economists have minimally engaged

with theoretical econometrics. With the simultaneous rapid rise in experimental sample

sizes a�orded by online platforms and the rapid proliferation of structural econometrics

among behavioral economists (DellaVigna, 2018), the potential value of rectifying this blind

spot in the literature has become more clear. This paper demonstrates this value in a partic-

ularly salient way. Econometricians developed a large and successful technical literature on

the non-parametric estimation of single-index models (see, e.g., Ichimura, 1993; Fan & Li,

1996; Horowitz, 2001; Horowitz & Mammen, 2004, 2010), but few �eld applications of these

techniques currently exist in the literature. As we document, with some modi�cation this

body of work can be used to develop a broadly portable and easily implementable testing

framework for one of the most core questions in behavioral economics.

1 A Conceptual Approach to Testing Reference Points

In this section, we begin with an intuitive discussion of the nature of our approach to testing

a candidate reference point. We formalize our approach more precisely in Section 1.2.

Our goal is to understand the key sources of identi�cation when examining a model that

is reference dependent, ideally relying on few other substantive assumptions. We adopt a

speci�c and reasonably broad de�nition of the fundamental content of the assumption of

reference dependence. Beyond technical assumptions, the core substantive assumption we

wish to make is that the observed utility input c ∈ R and utility u ∈ R satisfy u = φ(c− r),

where r ∈ R is a reference point (or �referent�) and φ is a monotone function.

1.1 Intuition in Case with Direct Observation of Utility

Most economic applications treat utility as fundamentally unobservable, and thus assume

that u is unobserved in the notation above. In this section, we will build towards character-

izing the intuition for identi�cation in the latent utility case, but will begin by considering

the path forward in the simpler case where u is directly observed.

In such a case, the consequences of correct speci�cation of the reference point can be
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completely characterized by the implications for properly de�ned level sets of u. While we

are only imposing minimal functional form restrictions on φ�constraining the nature of its

relative input and assuming that it is monotone�these core assumptions are enough to make

very stark predictions about the nature of these level sets. An immediate implication of the

monotonicity of φ is that it is invertible, thus allowing us to express the equation as

φ−1(u) = c− r (1)

→ c = φ−1(u) + r. (2)

Put simply, in this model, every level set is a line of slope 1 in c× r space. This is visually

represented in Figure 1.

This mathematical statement aligns with a simple intuition about relative thinking. If

our utility of consumption is evaluated purely by relative position as compared to a referent,

then any increase in consumption can be o�set by an increase in the referent of the same

size. Consuming one unit compared to a referent of zero, or two units compared to a referent

of one, or three units compared to a referent two (and so on) all will be evaluated as a

gain of one. The assumption that the gain of 1 is all that matters for utility provides

remarkable power for identi�cation, in that it makes the stark and easily testable prediction

that all levels sets are merely parallel lines of a particular slope. A violation of this property

provides a basis for �rmly establishing that, if utility is indeed reference dependent according

to structure u = φ(c− r) for some reference point, then the reference point considered must

be the wrong one.

1.2 Extending Intuition to Latent Utility Rationalizing Gamble Choice

The intuition above demonstrates that reference points can be tested under quite minimal

assumptions when utility itself is observed and when utility takes a particularly simple

reference-dependent structure. In this subsection, we demonstrate that similar results can be

generated when latent and more sophisticated reference-dependent utility models rationalize
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Figure 1: Level-Sets for Reference-Dependent Utility Function
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Notes: This �gure represents the level sets in c× r space for a reference-dependent utility function of the
form φ(c− r). The dashed lines indicate example level sets plotted for this function, with darker lines
denoting higher utility evaluations. At any potential consumption/referent combination, increasing
consumption and the referent by equal amounts leads to the same gain/loss evaluation, resulting in a
utility evaluation on the same level set. This generates the distinctive pattern of all level sets being parallel
lines of slope 1�the key property that we examine in our test.

binary choices, although some care is needed in the construction of that environment.9

Assume the reference-dependent agent is deciding between gambles over �xed, �nite sets

of mutually exclusive outcomes. Each gamble G = (po, co)o∈O is de�ned by the probability

po ∈ [0, 1] and the consumption co ∈ R yielded by each possible outcome o ∈ O.10 To

9While binary choices between gambles are a convenient environment to develop our test, they are by
no means the only one possible. As will become clear in the course of this section, the essential intuition
that arises from our analysis is that, in cases where utility is locally linear except for reference-dependent
evaluations, a uniform shock to payo�s in all states should be o�set by a shock to the reference point of the
same size. This intuition can be used to derive closely analogous tests in other experimental paradigms, such
as in multiple-price-list evaluations or in the Gneezy & Potters (1997) measure of risk preference.

10Our model of how these probabilities are used (soon to be presented in Assumption 1) does not rely on
them being objectively correct. For our purposes, it is �ne if these terms are used to represent subjective
probabilities or the outputs of the probability weighting function, for example.
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avoid confusion when dealing with multiple gambles, we will denote di�erent gambles with

subscripts and will link po, co, and O with their associated gambles using superscripts.

The following assumption formalizes our assumed structure of reference-dependent choices

over these gambles.

Assumption 1. Reference-Dependent Utility: Consider two gambles, G0 and G1. G1 is

chosen over G0 if U(G1|r) ≥ U(G0|r), where

U(G|r) =
∑
o∈OG

pGo · (ψ(cGo ) + φ(cGo − r)) + ε. (3)

Both ψ and φ are strictly increasing functions. ψ captures a standard direct utility function.

φ captures a reference-dependent utility function, and is assumed to be nonlinear.11 ε is

the realization of an i.i.d random-utility term distributed according to the probability density

function fε.

When decisions are made according to Assumption 1, a simple single-index representation

will not generally be available. However, if a speci�c structure is imposed on the gambles

presented, such a representation can arise. When discussing the intuition of our approach in

the simpli�ed setting of Section 1.1, we noted that if gains and losses are all that matters, an

increase in consumption is completely o�set by an increase in the reference point of the same

size. When considering gamble choices, note that we no longer have a single consumption

variable, but instead have consumption amounts associated with each outcome in each gam-

ble. In this situation, the analogous line of reasoning is that increasing consumption across

all outcomes by a �xed amount is completely o�set by an increase in the reference point of

the same size. To pursue a similar test in this environment, it is thus necessary to consider

sets of gamble choices in which all consumption amounts are varied in unison rather than

independently varied.

Given a shifting parameter ∆ ∈ R and a base gamble G, de�ne the ∆-shifted gamble

as S(∆|G) ≡ (pGo , c
G
o + ∆)o∈OG . Consider the behavior that would arise when subjects are

presented with binary choices between S(∆|G0) and S(∆|G1) for �xed base gambles G0 and

11Note that if φ is linear, then r serves as a choice-irrelevant constant.
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G1 and a varying shifting parameter ∆. De�ne a variable Y to be equal to 1 if S(∆|G1) is

chosen and 0 if S(∆|G0) is chosen. It holds that

E[Y |∆, r] =Pr(
∑
o∈OG1

pG1o · (ψ(cG1o + ∆) + φ(cG1o + ∆− r))−

∑
o∈OG0

pG0o · (ψ(cG0o + ∆) + φ(cG0o + ∆− r))

≥ ε0 − ε1)

(4)

Note that the reference-dependent components can be consolidated into a single-index

function�that is, a function with a single unidimensional input. This function is denoted

by ν, and is guaranteed to be nonconstant due to the assumption that φ is nonlinear. Using

this consolidating term, equation 4 can be expressed as

E[Y |∆, r] =Pr(ν(∆− r)+∑
o∈OG1

pG1o · (ψ(cG1o + ∆))−
∑
o∈OG0

pG0o · (ψ(cG0o + ∆))

≥ ε0 − ε1)

(5)

This structure remains more complicated than the single-index representation derived in

Section 1.1, but can be simpli�ed with an additional common assumption:

Assumption 2. Local Linearity of Direct Utility: Over the support of ∆,

∑
o∈OG1

pG1o · ψ(cG1o + ∆)−
∑
o∈OG0

pG0o · ψ(cG0o + ∆) = k

for a some constant k.

In words, this assumption states that the change in direct consumption utility (ψ) from

adding ∆ to all outcomes of base gamble G1 or to all outcomes of base gamble G0 is equal.

This is guaranteed to hold exactly if consumption utility (ψ) is linear. Less restrictively,

this property will be approximated when consumption utility (ψ) is approximately locally

linear under appropriate experimental designs. In circumstances where the range of wealth
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outcomes spanned by the ∆-shifted gamble outcomes is narrow, arguments like that of the

Rabin Calibration Theorem (Rabin, 2000) suggest that the curvature of the utility function

should be negligible.

If Assumption 2 holds, this results in a �nal representation of

E[Y |∆, r] =Pr(ν(∆− r) + k ≥ ε0 − ε1) ≡ g(∆− r) (6)

for some function g. Equation 6 indicates that the conditional expectation of Y can be

represented by a single-index function. To make use of this �nding, we will consider it's

implications for the conditional expectation that would arise when conditioning on ∆ and a

candidate reference point rc. We will �rst consider the case where this candidate is the true

reference point, captured in the following assumption.

Assumption 3. Null Hypothesis: r = rc, where r is the true reference point applied in

the utility function of Assumption 1 and rc is a proposed candidate reference point.

We now arrive at the Proposition that justi�es our testing approach.

Proposition 1. Single-Index Representation for Correctly Speci�ed Referent: Con-

sider choices between gambles S(∆|G0) and S(∆|G1). Assume that choices are governed by

reference-dependent utility (Assumption 1) with locally linear direct utility (Assumption 2).

Let rc be a correctly speci�ed candidate reference point (Assumption 3). Let variable Y take

the value of 1 if S(∆|G1) is chosen and the value of 0 if S(∆|G0) is chosen. There exists a

non-constant function g such that E[Y |∆, rc] = g(∆− rc).

In short, Proposition 1 guarantees that, under the null hypothesis, the same single-index

structure that arose over (c, r) in the direct utility case arises over (∆, rc) in the latent utility

case. This proposition follows immediately from the calculations leading up to equation 6.

1.2.1 Illustrating Levels Sets in an Example

To help illustrate the level-set structure that arises in the latent-utility case, Figure 2 presents

a simple example.
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To construct this �gure, we consider a situation with two base gambles: a �safe option�

(G0) o�ering $0 and �risky option� (G1) consisting of a 50-50 chance of +$2 or -$1. Our

simulated individual will face choices between ∆-shifted versions of these gambles. When

choosing between ∆-shifted versions of these gambles, the safe option will have the payo�

$0 + ∆ and the risky option will have a 50-50 chance of $2 + ∆ or −$1 + ∆.

We assume the individual adopts a standard prospect-theory value function:

φ(c|r) =

 (c− r)α if c ≥ r

−λ(r − c)α if c < r
. (7)

We assume that λ = 2 (re�ecting loss aversion) and that α = 0.6 (re�ecting diminishing

sensitivity). As above, assume the individual chooses the risky option only if U(G1|r) ≥

U(G0|r), which implies .5φ($2 + ∆|r) + .5φ(−$1 + ∆|r)− φ($0 + ∆|r) ≥ ε0 − ε1. We assume

that ε0 − ε1 is drawn from the standard normal distribution.

The left panel of Figure 2 presents the function E[Y |∆, r], which was previously writ-

ten in generality in equation 6 and which is now plotted with this speci�c assumed utility

structure. As this function demonstrates, the probability of choosing the risky option varies

substantially as ∆ is varied in the vicinity of the reference point.

The right panel of Figure 2 plots the level sets associated with the colored dots from the

left panel. Because the function plotted in the left panel is not monotone, multiple points on

its x-axis can map to the same value on the y-axis. The dots in the left-panel �gure represent

speci�c points mapping into the level sets in the right panel of corresponding color. As in

the observed-utility case, this results in a pattern of parallel lines of slope 1.

Despite our desire to not rely on the functional form of the choice probability function in

our testing approach, we note that the choice probability function shows distinctive patterns

when generated by variants of Prospect Theory. To help explain the pattern seen in the left

panel of Figure 2, it is helpful to isolate the role of individual pieces of Prospect Theory.

Figure 3 presents alternative choice-probability functions that are simulated with only loss

aversion present or with only diminishing sensitivity present. When assessing these choice-

probability functions, it is useful to consider their structure over three di�erent regions:

the region in which all gamble outcomes fall in the loss domain, the region in which all
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Figure 2: Level-Sets for Choice Probabilities with Latent Reference Dependence
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generated from a simulation using the utility function expressed in equation 7 and setting λ = 2 and
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gamble outcomes fall in the gain domain, and the region in which the risky gamble involves

a potential for gain or loss. These regions are shaded in the panels of Figure 3.

As seen in the left panel of Figure 3, the choice-probability function in�uenced by loss

aversion alone has two distinctive features. First, there is a v-shaped dip in the probability

of choosing the risky option in the center of the �gure. This dip occurs over the range of

∆− r values where the reference point falls between the good and bad outcomes of the risky

gamble. When this happens, the kink that occurs at the reference point causes �rst-order

risk aversion, leading to the decline it the probability of choosing the risky option. The

in�uence of the kink is small when it occurs near the ends of the range of options considered

and is maximized at at an intermediate point, leading to the v shape. Outside of the range of
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Figure 3: Choice Probabilities Generated by Components of Prospect Theory
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Notes: This �gure presents examples of choice-probability functions that help isolate the implications of
individual components of prospect theory. Both examples are simulated according to the procedure used
for Figure 2, but varying the terms α or λ from equation 7. The left �gure presents the choice-probability
function when loss aversion parameter λ is varied and diminishing sensitivity parameter α is set to 1,
capturing cases with loss aversion but no diminishing sensitivity. The right �gure presents the
choice-probability function when loss aversion parameter λ is set to 1 and diminishing sensitivity
parameter is varied, capturing cases with diminishing sensitivity but no loss aversion.

∆−r values mapping to this v-shaped dip, either all outcomes of either gamble map to gains

or all outcomes of either gamble map to losses. With diminishing sensitivity �turned o�,� the

utility function is linear and thus locally risk neutral in either of these regions. Because the

risky option has a positive expected value, it is favored under a risk neutral evaluation, and

the stable probability of choosing the risky option re�ected within this region is determined

by the probability that this utility evaluation is not overturned by unfavorable draws of

the random-utility error terms. The higher rate of choosing the risky option over losses
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arises because the steeper utility function over losses leads to a greater di�erence in the

deterministic utility component, thus leading to a lower probability that the error draws

overturn the deterministic evaluation.

As seen in the right panel of Figure 3, the choice-probability function in�uenced by

diminishing sensitivity alone similarly has distinctive features. First, notice that scaling up

the role of diminishing sensitivity reduces the scale of the deterministic utility component,

thus leading to a greater role of the random utility term and choice probabilities closer to

50-50. Next, notice that diminishing sensitivity generates risk loving over losses and risk

aversion over gains. This generates a greater propensity to choose the risky option in the

�all outcomes losses� region than the �all outcomes gains� region. In either region, as the

magnitude of gains or losses gets more extreme (i.e., |∆− r| gets large), sensitivity diminishes

and the magnitude of the deterministic component of utility di�erences declines. This leads

the random-utility error terms to have a larger role in determining outcomes, pushing choice

probabilities towards 50%. In the intermediate region in which the risky option outcomes

span the reference point, e�ective risk preferences transition from risk loving to risk aversion.

On either side of this region they are brie�y ampli�ed due to the steep region of the utility

curve near zero, generating the accentuated sinusoidal pattern.

While the precise shape of the resulting choice function will depend critically on the

parametric assumptions that are imposed, the qualitative patterns discussed here may be

used as a means of assessing whether choice data are consistent with the predictions of typical

parameterizations of Prospect Theory. Returning to our representation of primary interest,

we note that the prediction of parallel slope-1 level-sets (re�ected in the left panel of Figure

2) was generated with minimal functional form assumptions. Parametric assumptions about

diminishing sensitivity or loss aversion merely change the utility values associated with each

parallel line, but do not change the parallel-line structure itself.

1.2.2 Predictions when the Reference Point is Misspeci�ed

Proposition 1 indicates that the conditional expectation E[Y |∆, rc] has a distinctive single-

index structure when the candidate reference point is correctly speci�ed. We next present

two results that illustrate how this structure can be distinguished from what we would see
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when an incorrect candidate referent is randomly varied in an experiment and subsequently

examined. We consider cases where the reference point is �incorrect� either because another

reference point is used or because decisions are not reference dependent.

Proposition 2. No Single-Index Representation for Incorrectly-Speci�ed Experimentally-

Varied Referent: Consider choices between gambles S(∆|G0) and S(∆|G1). Assume that

choices are governed by reference-dependent utility (Assumption 1) with locally linear direct

utility (Assumption 2). Let rc be a candidate reference point that satis�es rc ⊥ ∆ − r and

rc ⊥ ε. Let variable Y take the value of 1 if S(∆|G1) is chosen and the value of 0 if S(∆|G0)

is chosen. There does not exist a non-constant function g such that E[Y |∆, rc] = g(∆− rc).

Proof. Assume for contradiction that there exists a non-constant single-index function g1

such that E[Y |∆, rc] = g1(∆−rc). Note that, because rc ⊥ ε, the line of calculations leading

to the proof of Proposition 1 imply that there exists a function g2 such that E[Y |∆, rc, r] =

g2(∆ − r). Applying the law of iterated expectations, we have g1(∆ − rc) = E[Y |∆, rc] =

E[E[Y |∆, rc, r]|∆, rc] = E[g2(∆ − r)|∆, rc]. The assumption that g1 is nonconstant implies

that there exists a triple (∆1, r
c
1, r

c
2) such that g1(∆1 − rc1) 6= g1(∆1 − rc2). This implies

that E[g2(∆− r)|∆1, r
c
1] 6= E[g2(∆− r)|∆1, r

c
2], which contradicts the assumption that rc ⊥

∆− r.

Proposition 2 establishes that, in cases where a candidate reference point is simulated

to be independent from the gain/loss evaluation, E[Y |∆, rc] will not admit a single-index

representation as it does in the case when the homogeneous null hypothesis holds. We have

proven this statement under the strong assumption that the false candidate reference point is

statistically independent from the our variation in gain/loss amounts (∆−r) because it makes

the logic of the proof particularly straightforward: when we consider a candidate reference

point that is independent of the true gain/loss evaluation, choice probabilities will not react

to variation in that potential reference point. In our experiment, we will generate candidate

reference points in a manner that satis�es this independence assumption and we will directly

assess whether choice probabilities vary in manner consistent with these predictions. While

these reasons make imposing statistically independent referents convenient and appropriate,

they are not strictly necessary�the lack of a single-index representation can be proven
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under signi�cantly weaker requirements, although with more assumed structure necessary to

facilitate the proof.12

Consider next the case when decisions are not reference dependent.

Assumption 4. Non-Reference-Dependent Utility: Consider two gambles, G0 and G1.

G1 is chosen over G0 if U(G1) ≥ U(G0), where

U(G) =
∑
o∈OG

pGo · ψ(cGo ) + ε. (8)

ψ is an increasing function that represents standard Bernoulli utility. ε is the realization of

an i.i.d random-utility term distributed according to the probability density function fε.

Proposition 3. Trivial Single-Index Representation for Non-Reference-Dependent

Decisions: Consider choices between gambles S(∆|G0) and S(∆|G1). Assume that choices

are governed by non-reference-dependent utility (Assumption 4) with locally linear direct util-

ity (Assumption 2). Let rc be a candidate reference point. Let variable Y take the value of

1 if S(∆|G1) is chosen and the value of 0 if S(∆|G0) is chosen. E[Y |∆, rc] = Ȳ for some

constant value Ȳ .

Proof. Notice that the non-reference-dependent utility function is simply the reference-

dependent utility function of Assumption 1 with the constraint that φ(x) = 0 for all x.

To assess the predicted structure of E[Y |∆, rc] in a case where the individual is not reference

dependent, we may reconsider the calculations presented in equations 4-6 while setting all

φ terms to zero. If these terms are all zero, the consolidated single-index function ν also is

zero. Equation 6 then becomes E[Y |∆, r] = Pr(k ≥ ε0 − ε1), implying that our conditional

expectation of interest is constant in ∆ and rc.

Because constants can be represented as single-index functions (where the function maps

any value of the single index to the same constant), an implication of Proposition 3 is that

even non-reference-dependent utility results in a single-index representation of E[Y |∆, rc].

However, this representation is guaranteed to be a simple constant function, and therefore

12Note, however, that our approach would not be suitable for distinguishing r1 and r2 when r1 = r2 + c
for some constant c.
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non-reference-dependent utility would be ruled out in the case where the rationalizing single-

index function were non-constant.

1.2.3 Testing in the Presence of Heterogeneity

The results thus far may be interpreted as providing conditions for testing models under

homogeneity assumptions. For a given utility function, the statistical object of interest,

E[Y |∆, rc], has distinguishing predicted features when the experimentally varied candidate

reference point is the true reference point, as compared to when the experimentally varied

candidate reference point is not the true reference point or when utility is not reference

dependent. In this section, we consider the implications of heterogeneous utility parameters,

heterogeneous choice environments, and heterogeneity in reference-dependent versus non-

reference-dependent utility adoption. Our approach has desirable robustness to all three

types of heterogeneity, derived from the same property of single-index models expressed in

Lemma 1.

Lemma 1. Say E[Y |∆, rc, θ] = gθ(∆− rc) for all θ ∈ Θ, where θ indexes a �nite set. If the

distributions of ∆ and r are statistically independent from θ, there exists a function g such

that E[Y |∆, rc] = g(∆− rc).

Proof. Applying the law of iterated expectations, notice that E[Y |∆, rc] = E[E[Y |∆, rc, θ]|∆, rc] =

E[gθ(∆−rc)|∆, rc]. Using the assumption that θ is statistically independent from ∆ and r, we

may now de�ne a new single-index function ḡ(∆−rc) = E[gθ(∆−rc)|∆, rc] = E[Y |∆, rc].

Put simply, this proposition guarantees that, in a population of heterogeneous types each

endowed with a di�erent single-index function, another averaged single-index function will

rationalize the population-wide conditional expectation. This has immediate and strong

implications for the robustness of our approach to presence of several types of heterogeneity.

The following propositions all follow immediately from Lemma 1 after applying previous

propositions to establish the existence of single-index representations within groups.

Proposition 4. Robustness to Heterogeneity in Utility Parameterizations: Con-

sider choices between gambles S(∆|G0) and S(∆|G1). Assume that choices between gambles
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are presented to a heterogeneous population of decision makers indexed by their type θ ∈ Θ.

All decision-makers satisfy Assumptions 1, 2, and 3, with no further homogeneity assump-

tions on the components of the utility functions. Let variable Y take the value of 1 if S(∆|G1)

is chosen and the value of 0 if S(∆|G0) is chosen. If the distributions of ∆ and r are statis-

tically independent from θ, there exists a function g such that E[Y |∆, r] = g(∆− r).

Proposition 4 implies that the approach suggested by Proposition 1 remains valid for a

population of agents who are heterogeneous in parameterizations of reference-dependence.

The key requirement is that agents all satisfy Assumptions 1, 2, and 3, regardless of the

presence of heterogeneity in the individual utility components. If individuals di�er in the

structure of their direct utility functions (ψ), their reference-dependent utility functions (φ)

or the distribution of their individual utility shocks (fε), the single-index function guaranteed

to exist by Proposition 1 will di�er across agents. However, when the conditional expectation

of Y is estimated from data that pools these heterogeneous agents, it can be explained by

the single-index function formed by averaging the type-speci�c functions. Testing for single-

index structure continues to provide a means for rejecting the model.

Proposition 5. Robustness to Heterogeneity in Base Gambles: Consider a population

of decision makers indexed by their type θ ∈ Θ, where each type faces choices between gambles

S(∆|Gθ0) and S(∆|Gθ1). All decision-makers satisfy Assumptions 1, 2, and 3. Let variable

Y take the value of 1 if S(∆|Gθ1) is chosen and the value of 0 if S(∆|Gθ0) is chosen. If the

distributions of ∆ and r are statistically independent from θ, there exists a function g such

that E[Y |∆, r] = g(∆− r).

Proposition 5 implies that the approach suggested by Proposition 1 remains valid for a

population of agents who are heterogeneous in their base gambles. While it is important that

each type face ∆-shifted gambles, the base gambles o� which ∆-shifting occurs may vary

across groups without jeopardizing the single-index-function-based approach to identi�ca-

tion.

Proposition 6. Robustness to Heterogeneity in Reference Dependence: Consider a

population of decision makers of two types, θRD and θNRD. Each type faces choices between

gambles S(∆|G0) and S(∆|G1). θRD decision-makers satisfy Assumptions 1, 2, and 3. θNRD
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decision-makers satisfy Assumptions 4 and 2. Let variable Y take the value of 1 if S(∆|G1) is

chosen and the value of 0 if S(∆|G0) is chosen. If the distributions of ∆ and r are statistically

independent from θ, there exists a nonconstant function g such that E[Y |∆, r] = g(∆− r).

Proposition 6 implies that the approach suggested by Proposition 1 remains valid for a

population of agents who are heterogeneous in the presence of reference dependence. If the

reference point is correctly speci�ed for the individuals who are reference dependent, a non-

constant single-index representation of E[Y |∆, rc] will still arise regardless of the presence

of non-reference-dependent types.

1.3 Summary

In this section, we have documented a key distinguishing feature of reference-dependent

choices: in appropriately structured choice environments, they result in choice probability

functions with distinctive level-sets. These level-sets re�ect a simple intuition: that if indi-

viduals care about gain/loss evaluations, then raising all consumption amounts by a �xed

amount can be o�set by raising the reference point by the same amount. This feature arises

with only minimal structure placed on the assumed utility model and is robust to a va-

riety of important forms of heterogeneity. While this property can be informally assessed

graphically�for example, by generating a contour plot and assessing if it is �close enough� to

having the predicted parallel-line structure�it is also amenable to formal statistical testing.

In the next section we present our approach to conducting that test.

2 Proposed Testing Strategy

As we established in the previous section, in a broad class of reference-dependent models,

conditional choice probabilities admit a non-constant single-index representation if the ref-

erence point has been correctly speci�ed. This observation allows us to link the behavioral

economic literature on reference dependence to an econometric theory literature on speci�-

cation testing of single-index models. In this section, we present our formal testing strategy

that arises from that linkage.
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Our econometric approach builds on Fan and Li's (1996) nonparametric test of single-

index speci�cation. Conceptually, when applied to a function of two variables, their test

involves estimating a kernel-smoothed approximation of E[Y |x1, x2] = g1(x1, x2) that does

not impose single-index structure and comparing that to a kernel-smoothed approximation

of E[Y |x1, x2] = g2(β1x1 + β2x2) that does impose the single-index structure. To modify

this to our setting, we simply take advantage of the additional restrictions imposed by a

reference-dependent model (i.e., that β1 = −β2). Additionally, we modify the test to allow

for clustered observations as opposed to an i.i.d. sample, which is needed to make our test

applicable in experiments eliciting multiple evaluations per subject and assigning reference

points at the subject level.

In the interest of making our approach accessible to readers with limited training in, or

fundamental interest in, nonparametric econometrics, the presentation of our test statistics in

this section is extremely concise. Full details of the derivation of our test statistic, complete

with necessary technical assumptions and derivation of the asymptotic distribution, are

available in the Appendix A.

2.1 The Stage-1 Test

The goal of this analysis is to test whether E[Y |∆, r] admits a single-index representation.

We do so by assessing a �nite-sample estimate of

E[v · f(∆− r)E[v · f(∆− r)|∆, r]] (9)

where f(∆ − r) is the p.d.f. of (∆ − r) and v is the expected approximation error induced

by assuming a single-index representation (i.e., v = E[Y |∆, r] − E[Y |∆ − r]). Note that if

E[Y |∆, r] admits a single-index representation, v is zero for any ∆ and r. Consequently, the

full expectation evaluated in equation 9 will also be zero. Given �nite-sample kernel-based

approximations to both E[Y |∆, r] and E[Y |∆− r], approximation error will cause v to not

be identically zero, but instead distributed around zero, as too will be the full expectation

evaluated in equation 9. Our test proceeds by generating a test statistic that, with proper

scaling, is asymptotically normally distributed under the null hypothesis of an admission of
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a single-index representation but that diverges under the alternative hypothesis.

The key statistic that estimates equation 9 is:

Ω =
∑
i

∑
j

1

N
[v̄(i,j)f̂a(∆(i,j)−ri)]

∑
i′ 6=i

∑
j′

1

(N −m)
[v̄(i′,j′)f̂a(∆(i′,j′)−ri′)][

1

h2
Kh

(i,j),(i′,j′)]. (10)

In this equation, i indexes the subject of interest and i′ indexes other subjects. j is used to

index the choice of subject i, and j′ is used to index the choice of subject i′. n denotes the

number of subjects (i.e., clusters), and m denotes the number of observations per subject,

yielding total sample size of N = n · m. In this equation, taking expectations of v̄(i,j) ≡

Y(i,j) − Ê[Y(i,j)|∆(i,j) − ri] provides a kernel-based estimate of the approximation error from

a best-�t single-index model. f̂a(∆(i,j) − ri) is a kernel-based estimate of f(∆ − r) with

bandwidth a. Kh
(i,j),(i′,j′) ≡ k(

∆(i,j)−∆(i′,j′)
h

)k(
ri−rj
h

) is a kernel-based estimate of the the joint

distribution of ∆ and r with bandwidth h, formed as a product of two univariate Gaussian

kernels k(.).13

In Equation 10, the inner summations (i.e., the component beginning with
∑

i′ 6=i
∑

j′) pro-

vide a empirical analog of the conditional weighted approximation error (E[vf(∆− r)|∆, r])

in Equation 9. This term is multiplied by v̄(i,j)f̂a(∆(i,j) − ri), which serves as the empirical

analog to the v · f(∆ − r) term in Equation 9. This product is averaged over all choices

j made by each subject i, providing an estimate of the outer unconditioned expectation

operation in equation 9.

In Appendix A, we prove that under the null hypothesis that E[Y |∆, r] admits a single-

index representation (and while imposing standard regularity conditions for kernel estima-

tion), NhΩ is asymptotically normally distributed with a mean of zero and a standard

deviation consistently estimated by

√
2 · (σ̂2

a + ρ̂2
a), where

σ̂2
a =

1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v̄(i,j)f̂a(∆(i,j)−ri)]2[v̄(i′,j′)f̂a(∆(i′,j′)−ri′)]2Kh
(i,j),(i′,j′)[

∫
k(u)2du]2

13All kernel-based estimates in this paragraph are fully de�ned in Appendix A, equations 14, 15, and 17.
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and

ρ̂2
a =

(m2 − 1)h

N(N −m)(m− 1)2h3

∑
i

∑
j1 6=j2

v̄(i,j1)f̂a(∆(i,j1) − ri)v̄(i,j2)f̂a(∆i,j2 − ri)
∑
i′ 6=i

∑
j′1 6=j′2

v̄(i′,j′1)f̂a(∆(i′,j′1) − r′i)v̄(i′,j′2)f̂a(∆(i′,j′2) − r′i)k(
∆(i′,j′1) −∆(di,j1)

h
)k(

∆(i′,j′2) −∆(i,j2)

h
)k(

r′i − ri
h

)

∫
k2(u)du.

Comparing the value of NhΩ√
2·(σ̂2

a+ρ̂2a)
against the standard normal distribution therefore pro-

vides the p-values of our test.

Note that, if ρ̂2
a is set to zero, this result follows closely from Fan and Li (1996) who

assume an i.i.d. data generating process. For experimental applications that elicit multiple

observations per subject, the i.i.d. assumption can be violated due to the correlations that

arise within-subject, and this violation changes the asymptotic distribution. One may inter-

pret the ρ̂2
a term as a correction to the original Fan and Li (1996) estimate of variance that

corrects for an assumed absence of correlation within subject.

2.2 The Stage-2 Test

While the stage-1 test directly assesses whether we can statistically reject a single-index

representation, it does not impose any constraint that this representation must be non-

constant. In the stage-2 test, we assess whether we can statistically reject a representation

of E[Y |∆, r] as a constant function.

Conceptually, the stage-2 test uses the same approach as the stage-1 test. Consider the

approximation error induced by �tting a constant function, denoted u = E[Y |∆− r]−E[Y ].

Our goal is to estimate a quantity similar to equation 9 in Stage 1:

E[uf(∆− r)E[u|∆− r]]. (11)

Applying similar approximation methods as in the Stage-1 test, we may generate a �nite-

sample estimate of equation 11 by

Π =
∑
i

∑
j

1

N
(Y(i,j) − µ̂)

∑
i′ 6=i

∑
j′

1

(N −m)
(Y(i′,j′) − µ̂)[

1

a
k(
X(i′,j′) −X(i,j)

a
)]. (12)
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In this equation, µ̂ = 1
N

∑
i

∑
j Y(i,j), X(i,j) = ∆(i,j) − ri, k(.) is the univariate Gaussian

kernel, and a is the bandwidth.

In Appendix A, we prove that under the null hypothesis that E[Y |∆, r] is constant

(and while imposing standard regularity conditions for kernel estimation), N
√
aΠ is asymp-

totically normally distributed with a mean of zero and a standard deviation consistently

estimated by
√

2(σ̂2
µ + (m2 − 1)aρ̂2

µ), where14

σ̂2
µ =

1

N(N −m)a

∑
i

∑
j

û2
(i,j)

∑
i′ 6=i

∑
j′

û2
(i′,j′)k(

X(i′,j′) −X(i,j)

a
)

∫
k2(u)du

and

ρ̂2
µ =

1

N(N −m)(m− 1)2a2

∑
i

∑
j1 6=j2

û(i,j1)û(i,j2)

∑
i′ 6=i

∑
j′1 6=j′2

û(i′,j′1)û(i′,j′2)

k(
X(i′,j′1) −X(i′,j′2)

a
)k(

X(i,j1) −X(i,j2)

a
).

Thus, similar to the stage-1 test statistic, comparing the value of N
√
aΠ√

2(σ̂2
µ+(m2−1)aρ̂2µ)

against

the standard normal distribution provides the p-values of our stage-2 test.

2.3 Proposed Usage and Interpretation of the Test

With our two test statistics formally de�ned, we now describe how these tests could be

applied and interpreted.

Consider a situation in which an experimenter has presented subjects with choices be-

tween ∆-shifted gambles in the presence of a randomly varied candidate reference point rc. If

this experimenter is comfortable with the two fundamental assumptions imposed in Propo-

sition 1�the structure of the random utility model in Assumption 1 and the local-linearity

restriction in Assumption 2�then he may attempt to reject the proposed reference point

by attempting to statistically reject the non-constant single-index representation that this

proposition guarantees. To do so, the experimenter could conduct the stage-1 and stage-2

tests described in this section.

14As de�ned in Equation 30, û(i,j) is the estimated approximation error for observation (i, j).
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If the stage-1 test rejects the null of a single-index representation, or if the stage-1 test

fails to reject the null of a single-index representation but the stage-2 test subsequently fails to

reject a representation by a constant function, we interpret our test to have failed. Formally,

this means that these two tests taken together do not provide support for the existence

of the non-constant single-index representation that Proposition 1 guarantees. Without

statistical evidence that a non-constant single-index representation exists, the assumptions

of Proposition 1 are called into question. If Assumptions 1 and 2 are already conceded, then

the assumption called into question is Assumption 3: the null hypothesis of correct reference

point speci�cation.

If the stage-1 test fails to reject the null and the stage-2 test rejects the null, we interpret

our test to have passed. Taken together, these two tests imply that the choice probability

function is non-constant, but is statistically indistinguishable from a non-constant single-

index function. Of course, a failure to reject a null hypothesis does not mean that the null

hypothesis is true. However, the parallel level-set patterns that we have documented are

rather distinctive. If the researcher assesses there to be strong evidence in support of these

patterns, we view that as strong evidence in support of the claim that the tested model of

the reference point could indeed be the true one.

Applying this template requires specifying a threshold for rejecting or failing to reject a

null hypothesis. Throughout our analysis we adopt the standard 5% α-level.

3 Applying Our Approach in an Experiment

In this section, we demonstrate how to run an experiment optimized for our econometric

approach. We begin by discussing abstract experimental design considerations, and then

present a concrete example of an experiment optimized for this approach.

3.1 Considerations for Experimental Design

The conceptual approach we detailed in Section 1 suggests a straightforward procedure for

testing a candidate model of reference points. Roughly speaking, the procedure involves

presenting subjects with ∆-shifted gambles while exogenously varying the candidate refer-
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ence point, then assessing the necessary single-index structure with the statistical approach

detailed in Section 2. In this section, we discuss some key considerations that arise when

designing an experiment that executes that strategy.

3.1.1 Designing the Gambles

Utilizing our testing approach requires presenting subjects with ∆-shifted gambles, denoted

S(∆|G). Given this requirement, the gambles ultimately presented to subjects are fully

determined by the experimenter's choice of base gambles (G) and by the procedure for

choosing shifts to those gambles (i.e., choosing the distribution of ∆). While we formulated

our approach to be applicable with arbitrary choices of these primitives, some versions of

them are preferable to others for creating a desirable experience for subjects or for maximizing

statistical power. When making these design decisions, we recommend that experimenters

keep two considerations in mind.

First, the potential for a reference point to survive our testing procedure depends critically

on presenting gambles in which choice probabilities vary with ∆ and r. To illustrate with

an extreme example, imagine we presented subjects choices between S(∆|G0) and S(∆|G1)

where G0 o�ers a 100% chance of earning $1, G1 o�ers a 50-50 chance of earning -$1,000 or

-$2,000, and ∆ is drawn from a uniform distribution ranging from -$1 to +$1. This choice

of gamble structure is not expected to generate informative choice data�regardless of the

realization of ∆ or r, S(∆|G0) is so clearly preferable to S(∆|G1) that we'd expect it to

essentially always be chosen, and thus E[Y |∆, r] is expected to be approximately constant.

In contrast, the most useful choices to present to subjects are those where, for di�erent

ranges of ∆ within the support of f∆, substantially di�erent choice probabilities arise. To

illustrate with an example, in the simulation presented in Figure 2 we documented that

the choice probability function would signi�cantly vary when ∆-r varied between -5 and

+5. When considering potential gambles to present, we recommend conducting similar such

simulations, determining the region of ∆-r values over which variation in choice probabilities

occurs for standard utility parametrizations, and then choosing the sampling distribution of

∆ such that the realizations of ∆-r will fall in that range.

Second, from a subject-engagement perspective, it may be desirable to obfuscate the
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structured manner in which gambles are being randomly generated. Concretely, consider a

situation where a subject is presented with 10 choices between gambles, all generated from

the same �xed base gambles. As in the example presented in Figure 2, imagine the base

gambles present a �safe option� o�ering $0 with certainty and �risky option� o�ering a 50-50

chance of +$2 or -$1. The sequence of choices presented to the subject could be:

Decision 1: +$2 with certainty vs. a 50-50 chance of +$4 or +$1 (i.e., ∆ = 2),

Decision 2: -$1.5 with certainty vs. a 50-50 chance of +$0.5 or -$2.5 (i.e., ∆ = −1.5),

Decision 3: +$0.6 with certainty vs. a 50-50 chance of +$2.6 or -$0.4 (i.e., ∆ = 0.6),

Decision 4: -$2 with certainty vs. a 50-50 chance of +$0 or -$3 (i.e., ∆ = −2),

... and so on.

When faced with a sequence like this, we believe that many attentive subjects will relatively

quickly notice that all decisions follow the same structure, di�ering only by all consumption

amounts shifting up and down in unison. We worry that this realization could invite subjects

to disengage from the experiment due to boredom with subtle variants of the same question.

One means of dealing with this issue, which we adopt in our experiment and we recommend,

is to present choices based on several di�erent base gambles.15 If the order of presentation

is alternated or randomized, this makes quickly inferring the pattern substantially more

di�cult for subjects. In practice, we believe this can be done in a manner that results in

all gambles seeming fully randomly generated from the perspective of subjects, which is

desirable for motivating consistent attention to each new choice presented. Using a set of

di�erent base gambles also allows the researcher to present gambles that are predicted to be

close to marginal for a range of di�erent assumptions on utility structures.

3.1.2 Varying Reference Points

Utilizing our testing approach additionally requires generating exogenous variation in the

candidate reference point that one wishes to test. When designing an experiment that

15Recall that Proposition 5 established that pooling choices derived from several di�erent base gambles is
viable with our testing strategy.
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uses this approach, the experimenter must decide how to induce this variation and what

distribution of variation to induce.

The decision of how to induce variation in the reference point is fundamentally tied to

the speci�c model of the referent being tested and will vary across models. For at least some

reference points, saliently presenting the reference value may be enough to set it according

to an experimenter's goals. For example, in our experiment, we test whether subjects adopt

externally suggested goals or reported group average earnings as reference points. Prior

literature (referenced in the introduction) suggests that salient presentations of these objects

could be su�cient as an experimental manipulation. For other models of reference point

formation, more laborious designs may be needed. For example, when testing an endowment-

based reference point, the experiment may require randomizing the physical provision of a

good. In the interest of providing a technique that applies to general models of reference-

point formation, we do not take a stand on the randomization technique that is required.

Instead, we merely emphasize that the approach presented in this paper requires that r and

∆ be capable of varying independently from one another. This is possible for nearly all

candidate reference points discussed in the literature, but it is notably not possible in the

model of K®szegi & Rabin (2006). Note, however, that a test of K®szegi-Rabin reference

points can be generated in a simple extension of our framework. We provide this approach

in Appendix B.16

Upon determining a means of randomizing the referent, the researcher must then decide

whether to randomize reference points within subject or between subjects. There are two

natural paradigms to follow, with either being valid from the perspective of our statistical

approach. One option is to assign ∆ and r randomly for each individual decision made.

Another option is to assign ∆ randomly for each individual decision, but to assign a single,

�xed value of r to each experimental subject. We follow the later option in our experiment,

and believe it will typically be preferable. While random assignment of reference points

16Due to its popularity with behavioral economic theorists, some perceive the K®szegi-Rabin model to
be an especially important candidate for testing. We note, however, that it is adopted in a small minority
of empirical tests: the recent metaanalysis of Brown et al. (2020) examines 522 empirical estimates of loss
aversion and �nds that only 18 of them applied expectations-based reference points. Furthermore, this model
now has well documented limitations in explaining experimental data (see, e.g., He�etz & List, 2014). While
we do view the K®szegi-Rabin notion of reference points as a reasonable candidate for testing, we do not
view it as elevated above the set of other candidate theories that our framework is optimized to test.
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at the decision level has advantages for statistical power, we worry that varying a reference

point across sequential decisions would feel very unnatural for subjects and might make them

attend to and rely on the referent less than they would if it were stable.

When determining the distribution of variation in the referent to induce, the experiment

faces the same considerations that were just presented for gamble choice. Conditional on

testing the true reference point, establishing the presence of a non-constant single-index

representation is easiest when ∆ − r is sampled from a region with substantial variation in

E[Y |∆, r]. We recommend that the choice of the sampling distribution of the reference point

be made in conjunction with the choice of base gambles and the distribution of ∆ to achieve

that goal, following the guidance provided in Section 3.1.1.

3.1.3 Assessing Power

In any experiment, it is crucial to generate a su�cient sample size for powered statistical

analysis. In our experiment, this means ensuring that the two-stage testing procedure de-

tailed in Section 2 rejects false candidate reference points with high probability and rejects

true candidate reference points with low probability. To guide our experimental design, we

assessed these issues in a large-scale simulation study. This study involved simulating choices

among the gambles that we present for a wide range of possible utility parameterizations.

Based on these analyses, we determined that collecting 4 observations per subject for 300

subjects resulted in tolerable rates of type-1 and type-2 error.17 At this sample size, across

the di�erent parameterizations we considered, our estimated rate of passing the true refer-

ence point was 95.5% on median (and above 75.0% for 90% of parameter combinations). Our

estimated rate of passing the false reference point was 4.0% on median, and below 8.5% in

90% of parameter combinations. We provide full details of our simulation study in Appendix

C, and we recommend researchers follow the template of this analysis prior to running their

own experiments.

17Note that our experiment presents subjects with 20 choices: 4 ∆-shifts of each of 5 di�erent base
scenarios. While we can conduct our test pooling all choices together, we wished to ensure that we would
be powered to run our test on the unpooled data from each of the 5 di�erent base scenarios.
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3.2 Design of Our Experiment

In our experiment, subjects were presented with a series of choices between a sure option

and a risky option. Each option was presented as a gamble based on the �ip of a fair coin.

For the risky option, heads and tails mapped to di�erent amounts of money, whereas for the

sure option heads and tails mapped to the same amount of money.

After the initial presentation of the format of decisions, subjects were told that they

would face 20 decisions of this type. They were also told that one of these decisions would

be randomly selected to be the decision that �counts.� For that decision, we would simulate a

coin�ip and deliver a bonus payment as dictated in the the gamble that they chose. Payment

for taking the full study consisted of a $4 �xed payment plus this bonus. These instructions

were followed by a series of three questions meant to verify their understanding of the decision

format and correct any misunderstanding that still existed. Subjects were presented with an

example gamble followed by two questions asking them to verify the amounts of money they

could earn if they selected option A or option B. They faced a third multiple-choice question

that asked them to indicate the manner in which they would be compensated for the study

to ensure they understood the random selection of a decision that �counts.� After answering

these questions subjects were given feedback on their responses and told the correct answer

if they answered incorrectly.

A �nal introductory screen introduced potential reference points to subjects. Subjects

were told:

Starting on the next screen, you will face the series of choices that were just described.

To decide which option to choose, participants sometimes �nd it useful to use benchmarks

for their earnings.

• Some participants �nd it helpful to set goals for themselves when completing these tasks.

We would like for you to view earning at least a $[R1] bonus as your goal.

• Some participants �nd it helpful to compare their performance against averages. We

would like for you to imagine that you are part of a group of participants who earned

an average bonus of $[R2].
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Figure 4: Screenshot of Gamble Interface

Notes: This �gure presents a screenshot of a gamble choice in our experiment. In this treatment arm,
average earnings were made salient as a potential referent. In other treatment arms, the box containing the
red text could instead report the goal assigned to the subject, or it could be omitted entirely.

In this text, the terms [R1] and [R2] are placeholders for the randomly generated values

of the potential reference points. Each reference point is populated by i.i.d. draws from a

random normal distribution with a mean of $3.4 (the average value of the sure payment)

and a standard deviation of $0.7.

This screen provides the �rst mention of the two reference points considered in this study.

In all conditions, these two reference points are randomly generated and presented on this

page. After this page, subjects move to making their 20 gamble choices under one of three

di�erent conditions. One serves as a control condition, in which these reference points are

not mentioned again throughout the study. The other two conditions correspond to cases

where one of the two reference points is made salient during gamble choices. As illustrated

in Figure 4, this salience is achieved by including large red text over the choice interface

reminding the subject of either their goal or the average earnings. In those conditions, one

potential reference point is entirely ignored after its �rst mention in the example text above,

whereas the other potential referent is consistently and vividly present throughout the study.
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Table 1: Baseline Gambles

Sure Amount 50-50 Values
Base Scenario qa qb qc
1 $3.4 $2.00 $4.80
2 $3.4 $2.25 $4.65
3 $3.4 $2.45 $4.65
4 $3.4 $2.30 $4.90
5 $3.4 $2.50 $4.50

Notes: This table presents the payo� values for the �ve pairs of base gambles considered in experiment.

The 20 decisions presented to the subjects di�er only in the amounts of money corre-

sponding to the sure payment and the heads and tails outcomes of the risky payment. These

amounts were generated from �ve base scenarios of four questions each. Within base sce-

nario, all gambles are ∆-shifted from common base gambles but with di�erent i.i.d. draws

of ∆ from a normal distribution with a mean of zero and a standard deviation of $0.25. The

base gambles used vary by base scenario and are presented in Table 1.

After subjects made their sequence of 20 gamble choices, they were shown the choice that

was randomly selected for incentivization. The gamble was simulated and the subject was

informed of their earnings in the study.

Complete text of the experiment, along with details of all data collected, are available in

the UAS Experimental Codebook.18

3.3 Experimental Deployment

In December 2020 and January 2021, we deployed our experiment in the Understanding

America Study (UAS), an online panel of American Households.19 To achieve our targeted

sample size of 1,000 responses, the UAS drew a random subsample of 1,333 respondents from

their full panel. These 1,333 respondents received invitations to take our study. The study

was closed shortly after the target sample size was attained, ultimately resulting in 1,001

complete observations and a 75% response rate.

18Available at https://uasdata.usc.edu/survey/UAS+287.
19For a detailed description of the UAS, see Alattar et al. (2018).
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Panelists in the UAS are recruited in a manner meant to generate samples representative

of the United States population. As a result, our sample appears reasonably representative

based on observables, although some notable di�erence exist. Relative to the full U.S.

population, participants in our survey are more likely to be female, married, white, and highly

educated. Comparing the demographics of those who completed our survey versus those who

were invited but did not complete it, we see some evidence of selection for respondents who

are Hispanic or Latino, older, and married. (Table D.1 provides full demographic information

on our sample.)

Prior to deployment, our study was preregistered on aspredicted.org.20 This preregistra-

tion speci�ed our sample size, precise analyses of interest, and default values for the tuning

parameters in our non-parametric approach.21

3.4 Experimental Results

We begin our empirical analysis by applying the testing approach detailed in Section 2.

Recall that our experiment has three treatment arms: one in which the randomly generated

goal is made salient in all decisions, one in which the randomly generated average earnings

is made salient in all decisions, and a control treatment in which neither potential referent

is made salient after its brief initial presentation. Using this structure, we may apply our

approach to test if either reference point is adopted in each treatment arm. Because there

are multiple applications of either reference point in the existing literature, we believe that

either could be adopted as a reference point under the right conditions. We expected that

their presentation in the salient condition could be su�cient. However, we also expected

that each candidate would not be adopted when it was not made salient.

20Available at https://aspredicted.org/7pc6i.pdf.
21As speci�ed in the pre-registration, the bandwidth when estimating the two-dimensional density of (∆, r)

in the stage-1 test is 1.5σ̂N−0.45. The bandwidth when estimating the one-dimensional density of (∆ − r)
in the stage-1 test is 1.5σ̂N−0.35. The bandwidth for the one-dimensional density in the stage-2 test is
1.5σ̂N−0.5. σ̂ is the estimated standard deviation of corresponding variables (∆ and r in two-dimensional
smoothing in stage 1, ∆ − r for one-dimensional smoothing in stage 1 and stage 2). These bandwidths
where choosen with several considerations in mind. First, they were selected to conform with Assumption
7 in Appendix A. Second, they were informed by Fan and Li's discussion of the value of undersmoothing
the two-dimensional alternative relative to the one-dimensional null. Finally, the scaling parameter, 1.5,
was chosen based on simulated test performance, and is comparable to the scale parameter in other related
papers (see Henderson & Parmeter (2015) for a review).
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Table 2: Test Results

Reference Point Reference Point Made Salient in Treatment Arm
Tested None Goal Avg Earnings

Goal
S1: p=0.26 S1: p=0.78 S1: p=0.49
S2: p=0.36 S2: p=0.00 S2: p=0.69

Avg Earnings
S1: p=0.11 S1: p=0.51 S1: p=0.70
S2: p=0.46 S2: p=0.52 S2: p=0.16

Notes: We test whether each reference point presented in our experiment (indicated in the left column) can
rationalize the choices made in each treatment arm of the experimented (indicated in the header). In each
cell we report the p-values of both the stage 1 (S1) and stage 2 (S2) test statistics, and we color coded the
cell to indicate whether the test as a whole passed (in green) or not (in yellow).

Table 2 presents the results of our test when applied to the di�erent reference points

(indicated in the left column) using the data from di�erent treatment arms (indicated in the

header). Cells of this table contain the p-values of the stage 1 (S1) and stage 2 (S2) test

statistics, and are color-coded to indicate whether the test passed (in green) or failed (in

yellow).22

Focusing �rst on the �rst column, we see that neither reference point passed our test

in the control arm in which neither was salient. This conforms with our expectations, and

indicates that when a goal or an average earnings value is randomly generated and only very

subtlety presented (with no reminders after a single appearance on an instruction screen),

subjects do not adopt it as their reference point.

The next column presents results from the treatment arm where goals are made salient.

When goals are made salient, goals pass our test as a candidate reference point and average

earnings do not. This too conforms with our expectations: existing literature suggests that

goals can serve as reference points in at least some circumstances, and we designed this

experiment expecting the salient presentation in our design to be su�cient to lead them

to be adopted. If goals are adopted as the reference point, this would imply that average

earnings are not, and accordingly the average earnings reference point fails to pass the test

in this treatment arm.

22This table presents results of our test using pooled data from all 5 base scenarios presented to subjects. In
Appendix Table D.2, we present results from these tests when conducted within each of the 5 base scenarios.
Across these 30 tests (2 reference points x 3 treatment arms x 5 base scenarios), the base-scenario-speci�c
analyses lead to the same pass/fail conclusion as the pooled test in all but two cases.
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The �nal column presents results from the treatment arm where average earnings are

made salient. When average earnings are made salient, neither reference point passes our

test. This �nding may be considered surprising for readers familiar with existing literature

on average-based reference points. In the next section, we discuss the implications of this

�nding for that literature and our advised use of this �nding going forward.

The econometric approach used to generate these test statistics applies econometric tech-

niques that are relatively complex and unfamiliar to many readers in the experimental and

behavioral literatures. This invites the criticism that it operates as a �black box.� However,

as we have documented in this paper, these tests may be understood to assess a simple and

easy-to-visualize structure on the level-sets of the choice probability function. To illustrate

this connection, we next directly examine contour plots of choice probabilities mapped over

∆ × r space to search for the parallel-line, slope-1 level sets that were the key identifying

feature highlighted in our intuitive description of our approach.

To non-parametrically assess the shape of level sets of our choice probability functions,

we conduct local-linear kernel regressions of a dummy variable indicating choosing the risky

gamble on ∆ and r. Figure 5 presents these estimated choice probabilities plotted over a �ne

grid. For each of our two candidate reference points, we separately conduct this exercise for

the treatment arm where the relevant reference point was salient and pooling the two other

treatment arms when the relevant reference point was not salient.

We �rst direct attention to the top left panel, which plots variation in choice probabilities

over our randomly generated goal reference points. Despite the completely non-parametric

manner in which this �gure has been generated, several clear parallel lines of slope close

to 1 are readily apparent. The overall structure of this �gure bears remarkable similarity

to the example plotted in Figure 2, and serves as a clear demonstration of the patterns

we have isolated as hallmarks of a correctly speci�ed reference point. The fact the salient

goal reference point passes our test can be understood to derive directly from this pattern:

the empirical relationship is �close enough� to the theoretical prediction under a correctly

speci�ed reference point that correct speci�cation cannot be rejected.

Next turn attention to the bottom left panel, which considers choice probability level-sets

in the treatment arms where goals are not salient. In contrast to the previously considered
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Figure 5: Level Sets of Choice Probabilities

Notes: This �gure presents contour plots of the conditional probability of choosing the risky option as a
function of the level of sure payment (which is always $3.4 + ∆) and di�erent candidate reference points.
The plots on the left apply the goal value as the candidate reference point and the plots on the right apply
the average value as the candidate reference point. In the top row, the data are restricted to the treatment
arm where the candidate reference point was made salient. In the bottom row, the data are restricted to
the two treatment arms where the candidate reference point was not made salient. In all �gures, values are
derived by local-linear kernel regression of a dummy variable indicating choosing the risky gamble on the
variables plotted on each axis. Kernel: Epanechnikov. Bandwidth values are chosen to minimize the
integrated mean squared error of the prediction.

panel, this �gure does not feature slope-1 parallel lines that were illustrated in Figure 2.

When goals are not made salient, the absence of this feature in our data contributes to the

rejection of the reference point in our formal statistical tests.

The two panels on the right of this �gure present results when average earnings are used

as the candidate reference point. As in the panel analyzing non-salient goals, the analysis

in these two panels bears little resemblance to the predicted structure under a correctly

speci�ed reference point. Again, we see no suggestion of parallel lines of slope 1, and the

empirical patterns are �di�erent enough� that they drive the rejection of this reference point
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Figure 6: Estimated Choice Probability Functions

Notes: This �gure presents plots of the conditional probability of choosing the risky option as a function of
the perturbation to gain/loss values (∆− r), along with estimated 95% con�dence intervals. The plots on
the left apply the goal value as the candidate reference point and the plots on the right apply the average
value as the candidate reference point. In the top row, the data are restricted to the treatment arm where
the candidate reference point was made salient. In the bottom row, the data are restricted to the two
treatment arms where the candidate reference point was not made salient. In all �gures, the conditional
choice probabilities are estimated by local-linear kernel regression of a dummy variable indicating choosing
the risky gamble on the variables plotted on each axis. Kernel: Epanechnikov. Bandwidth values are
chosen to minimize the integrated mean squared error of the prediction.

in our formal statistical tests.

In the course of developing our test, we have emphasized our desire to not use the shape of

the choice probability function E[Y |∆− r] itself as a source of identifying power. Avoiding

this in our test enables us to avoid reliance on functional form assumptions, and helps

generate our test's robustness to heterogeneity. Despite this desire, we still wished to assess
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whether the choice probability functions that arose in our setting would indeed con�rm to

the predictions of standard parameterizations of Prospect Theory.

Figure 6 presents our estimated choice probability functions, generated with a local-linear

kernel regression of Y on ∆− r. The top left panel presents the estimated choice probability

function in the �goals salient� treatment, assessed using goals as the reference point. Recall

that this was the sole condition under which a candidate reference point passed our test. In

this case, the estimated choice probability function is clearly non-constant, and conforms to

the general shape that we documented in the simulated example of Figures 2. In contrast,

in all other panels the estimated choice probability function is near constant, and does not

bear such striking similiarity to Figure 2. This further helps explain the rejection of our test

in these cases, since passing our test requires rationalization by a non-constant single-index

choice probability function.23

In summary, our test suggests that salient goals can serve as reference points, but rejects

the adoption of non-salient goals or average earnings (regardless of salience) in our environ-

ment. While these claims are based on our novel econometric test, the passage or failure of

our test can be quickly visually assessed in simple plots of choice probability functions and

their level sets.

4 Discussion

Reference dependence is among the most well-studied phenomena in behavioral economics.

And yet, a complete account of how reference points come to be adopted remains elusive.

This paper presents a tool for making progress in this domain. In closing, we provide guidance

on a �nal stage of using this tool: deciding how to proceed after individual experiments run

with this framework.

As we emphasized in the introduction, our goal in this project was to design a testing

framework that was amenable to iterative use across di�erent contexts. With such a tool in

hand, researchers can follow a simpli�ed scienti�c process, cycling between developing new

23Put di�erently, this provides a visual means of assessing the failure of the stage-2 test to reject the null
hypothesis of a constant in these cases.
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theories, testing them in a standardized manner, and then using the results to guide the

development of future theories to test. Given the results of our �rst use of this approach,

it is now appropriate to take stock and consider the implied theory re�nements for future

tests.

We view our results as clear con�rmation of two natural elements of a general theory of

the reference point: that goals can serve as reference points, and that salience can moderate

reference point adoption. These ideas are not novel. A number of existing papers consider

the role of goals as reference points,24 and we believe that many experimenters already

consider the salience of a potential reference point at the design stage of Prospect Theory

experiments (even if they relatively rarely discuss this in papers). Despite this lack of novelty,

we believe that there is value in our demonstration of these points with a novel method. And

additionally, our ability to recover expected results with our novel method provides some

reassurance that our method works as intended.

We also view our results as providing some indication of an area where our theories of

reference points need further development. Viewing our test in isolation, one possibility

is that beliefs about average earnings never serve as reference points. Moving beyond the

consideration of our experiment in isolation, however, we would be surprised if this inter-

pretation turned out to be true. We view experimental results such as those of Abeler et al.

(2011), Gill & Prowse (2012), and Marzilli Ericson & Fuster (2011) to compellingly suggest

at least some environments where these reference points could be active. At the same time,

we view the experimental results of He�etz & List (2014) and He�etz (2021) to suggest that

related reference points fail in at least some other environments. Given this literature, we

advise against taking our �ndings as a systematic rejection of average- or expectation-based

reference points, and instead interpret them as a clear demonstration of a case where a par-

ticular version of them failed. What features of our decision environment may explain this

failure? One possibility is that the reason averages are adopted as reference points is because

they are at times endogenously adopted as goals, but when they are placed side-by-side with

an explicit goal as in our experiment that endogeneous process is disrupted. Another possi-

bility is that our manipulation of averages�involving asking subjects to imagine themselves

24For references, see footnote 8.
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as part of a group with a particular earnings�was insu�cient as compared to a situation

where groups averages were truly di�erent. These are merely two focal possibility, and other

candidate explanations will surely be constructed. Moving forward, we advocate for the

formal testing of hypotheses like these. The approach we provide in this paper can be put

to good use in that pursuit, just as it may be used to test hypotheses regarding the many

other candidate reference points that were not included in our experiment.
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A Deriving Test Statistics

Roadmap This appendix provides details and derivations related to our test statistics.

Subsection A.1 summarizes all notation. Subsection A.2 details the necessary technical

assumptions. Subsection A.3 presents our �rst-stage estimator, and after establishing a

long list of necessary intermediate results it provides a proof of the asymptotic distribution.

Subsection A.4 presents our second-stage test.

A.1 Summary of Notation

i: individuals Throughout the appendix, we will use i to denote an individual who par-

ticipates in the experiment. When the derivations involve two or more individuals, they will

be denoted by i1, i2, i3, ... and so on.

j: choices Throughout the appendix, we will use (i, j) to denote the jth choice made by

individual i. When the derivations involve two or more choices from the same individual

i, they will be denoted by (i, j), (i, j′), (i, j̃), ... and so on. When the derivations involve

two or more choices from two distinct individuals i and i′, they will be denoted by (i, j) and

(i′, j′).

∆: shifter For each individual i and for each choice j, ∆(i,j) is the shifter associated with

the ∆-shifted gambles presented in that choice problem. Note that ∆(i,j) is identically and

independently distributed across all tuples of (i, j).

r: reference point We denote the reference point of person i by ri. It is identical and

independently distributed across i.

ε: utility shock The utility shock (formally speci�ed in Assumption 1) for person i in

choice j is denoted ε(i,j).

Prediction Error The error term associated with predicting the choice probability of

binary choice with a conditional expectation function is denoted by v(i,j) in the 1st stage,
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and u(i,j) in the 2nd stage. The estimated prediction error is denoted by the hat version of

corresponding variables.

Number of observations Number of individuals is denoted by n; note that each indi-

vidual is a cluster in our framework. Number of observation in each cluster (i.e. number of

choices made by each subject) is denoted by m. Total number of observations, i.e. n ∗m, is

denoted by N . When studying asymptotic properties we consider sampling greater numbers

of individuals while holding their number of choices �xed�i.e., we treat m as a constant,

and as a result N and n have the same order.

Bandwidth The test involves the usage of kernel smoothing to estimate the unrestricted

model, i.e. the probability of choosing the risky gamble conditional on ∆ and r. We use h to

denote the bandwidth. The test also involves the usage of kernel smoothing to estimate the

restricted model, i.e. the null hypothesis that the conditional probability can be represented

as a single-index model g(∆− r). In this case, the bandwidth for estimating the function g

is denoted by a. Note that the use of a and h is the same as that in Robinson (1988) and

Fan & Li (1996).

Functions: Kernel Smoothing and Probability Density Uni-dimensional kernels are

denoted by k(.). For the 1st-stage test, in case of multivariate smoothing over (∆, r), we use

the product of k(.) over the individual dimensions, which is denoted by Kh(.). Also, any

function that are over the single dimension of (∆−r) is indexed by a subscript or superscript

a. For example, the smoothing kernel over the dimension of (∆− r) is denoted by Ka, and

the density of ∆(i,j)−ri is denoted by fa(∆(i,j)−ri). We will use subscripts like Kh
(i,j),(i′,j′) to

denote the pair of observations plugged in the kernel Kh(.). Unless otherwise speci�ed, we

use f(., .) or f(., ., .) to denote the joint probability distribution of several random variables.

The notations here largely follows Fan & Li (1996).

Functions: Conditional Correlation and Variance within Cluster When dealing

with calculations involving within-subject heterogeneity, in the 1st stage for example, ρ and

σ is de�ned such that:
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σ2(∆(i,j), ri) ≡ E[v2
(i,j)|∆(i,j), ri]

σ4(∆(i,j), ri) ≡ (σ2(∆(i,j), ri))
2

ρ2(∆(i,j),∆(i,j′), ri) ≡ E[v(i,j)v(i,j′)|∆(i,j),∆(i,j′), ri]

ρ4(∆(i,j),∆(i,j′), ri) ≡ (ρ2(∆(i,j),∆(i,j′), ri))
2

Asymptotic order Throughout this section we use conventional symbols for asymptotic

order. Speci�cally, as number of subjects n approaches in�nity, the relationship between x

and y, which both depend on n are de�ned as follows:

(I) x = O(y): There exist constants 0 < M < ∞ and 0 < L < ∞ such that for any

n > L, x < My.

(II) x = o(y): for any constant 0 < M <∞ there exists a constant 0 < L <∞ such that

for any n > L, x < My.

(III) x = Op(y): x and y are random variables. There exist constants 0 < M < ∞ and

0 < L <∞ such that for any n > L and ε̃ > 0, P (x < My) > 1− ε̃.

(IV) x = op(y): x and y are random variables. For any constant 0 < M <∞ there exists

a constant 0 < L <∞ such that for any n > L and ε̃ > 0, P (x < My) > 1− ε̃.

A.2 Technical Assumptions

Our non-parametric approach relies on several relatively mild technical assumptions.

Assumption 5. The random vector (∆(i,1), ...,∆(i,m), ri, ε(i,1), ..., ε(i,m)) has the following

properties:

(I) It is identically and independently distributed across i.

(II) (ε(i,1), ..., ε(i,m)) ⊥ (∆(i,1), ...,∆(i,m), ri).

(III) (ε(i,1), ..., ε(i,m)) has a continuous distribution.
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Note that (I) and (II) are satis�ed in the data generating process underlying our experiment.

(III) is an assumption that most applications of discrete choice models uphold.

Following Robinson (1988) and Fan & Li (1996), we need to de�ne the following two

classes of functions before presenting the next assumption.

De�nition 1. Kl, l ≥ 1, is the class of even functions k : R→ R satisfying

∫
R

sϕk(s)ds = max{1− ϕ, 0}

for any ϕ = 0, 1, ..., l − 1, and there exist δ > 0 such that

k(s) = O((1 + |s|l+1+δ)−1)

De�nition 2. J δ
γ , γ > 0, δ > 0, is the class of functions g : Rd → R satisfying the following

properties.

(I) There exists η such that η − 1 < γ < η and g is η − 1 times di�erentiable.

(II) There exists ε > 0 such that for any z, supy∈{y:|y−z|<ε}|g(y)− g(z)−Qg(y, z)|/|y− z|γ ≤

hg(z), where Qg = 0 when η = 1, Qg is a (η − 1)th degree homogeneous polynomial in y − z

with coe�cients the partial derivatives of g at z of orders 1 through η − 1 and less when

η > 1, and hg(z) have �nite δth moments.

The notation here is di�erent from Fan & Li (1996) because we have previously de�ned

the term G to refer to gambles.

The next technical assumption concerns the properties of the kernels and function under

null hypothesis using De�nition 1 and 2. It follows Assumption A1 in Fan (1996), with minor

revisions that accommodate the issue of clustering in our environment:

Assumption 6. Any kernel in the test belongs to function class K2, and fa ∈ J∞ξ , for some

1 < ξ ≤ 2, g ∈ J 4
ξ where 0 < γ < 1

Observation 1. The Gaussian kernel satis�es Assumption 6.

The �nal technical assumption concerns the bandwidths in kernel smoothing. It follows

Assumption A2 in Fan (1996), with minor revisions that accommodate the issue of clustering

in our environment:
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Assumption 7. As N → ∞, a → 0, h → 0, Nh2 → ∞, Na2ηh → 0, h/a → 0, nh → ∞,

na1+η → ∞, m2h → 0, where η = min(ξ + 1, γ), where ξ and γ are de�ned in Assumption

6.

The lemma below is a direct application of Lemma B.1 in Fan & Li (1996) in our setting,

taking into account that r is constant within each cluster:

Lemma 2. If Assumption 6 and Assumption 7 hold, there exists a function Dg(∆(i,j), ri)

which has fourth moment, such that as long as (i, j) 6= (i′, j′), E[[g(∆(i′,j′) − r′i)− g(∆(i,j) −

ri)]k
a(

∆(i,j)−∆(i′,j′)−ri+r′i
a

)|∆, r] ≤ Dg(∆(i,j), ri)a
1+η, where η is de�ned in Assumption 7.

Finally, we list the null hypothesis that is formally tested by our proposed estimator.

H0 : There exists a function g ∈ J 4
γ such that E[Y |∆, r] = g(∆− r).

A.3 Deriving 1st-Stage Test Statistic

Our statistic of interest is:

E[vf(∆− r)E[vf(∆− r)|∆, r]] (13)

where f(∆−r) is the p.d.f. of (∆−r). Thus we need to approximate v, f(∆−r), f(∆, r)

respectively. The estimator that we adopt is essentially the same as Fan & Li (1996), but

modi�ed to accommodate the reference point ri being held constant within each cluster.

To that end, we replace Fan and Li's leave-one-out estimator with a leave-m-out estimator.

Speci�cally, when estimating the functional value (say, probability density function of (∆, r))

evaluated at (∆(i,j), ri), we will use every observation other than those which are generated

by the same subject.

We estimate the test statistic as follows. First, de�ne

ĝ(i,j) ≡ Ê[Y(i,j)|∆(i,j) − ri] =
[(N −m)a]−1

∑
i′ 6=i
∑

j,j′ Y(i′,j′)K
a
(i,j),(i′,j′)

f̂a(∆(i,j) − ri)
(14)
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where

f̂a(∆(i,j) − ri) =
1

(N −m)a

∑
i′ 6=i

∑
j,j′

Ka
(i,j),(i′,j′) (15)

and Ka
(i,j),(i′,j′) ≡ k(

(∆(i,j)−ri)−(∆(i′,j′)−ri′ )
a

). k(.) is a univariate Gaussian kernel.

E[vf(∆− r)E[vf(∆− r)|∆, r]] may then be estimated by

Ω =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v̄(i,j)f̂a(∆(i,j) − ri)][v̄(i′,j′)f̂a(∆(i′,j′) − ri′)]K(i,j),(i′,j′) (16)

where

v̄(i,j) = Y(i,j) − Ê[Y(i,j)|∆(i,j) − ri] (17)

K(i,j),(i′,j′) ≡ k(
∆(i,j)−∆(i′,j′)

h
)k(

ri−rj
h

) is a product of two univariate Gaussian kernels, and the

bandwidth is h.

The statistic Ω is the key element of the test, as elaborated in the theorem below:

Theorem 1. When assumption 5, 6, and 7 hold:

(I) Under the null, NhΩ→ N(0, 2(σ2
a + ρ2

a)), where

σ2
a = E[f(∆(i,j), ri)σ

4(∆(i,j), ri)f
4
a (∆(i,j) − ri)][

∫
k2(s)ds]2 (18)

and

ρ2
a = (m2 − 1)h(E[(ρ4(∆(i,j),∆(i,j′), ri))f(∆(i,j),∆(i,j′), ri)f

4
a (∆(i,j) − ri)]

∫
k2(s)ds (19)

(II) Under the alternative, NhΩ converges to positive in�nity with probability 1.

In light of the theorem, the �nal test statistic is:

T1 =
NhΩ√

2(σ̂2
a + ρ̂2

a)
(20)

The estimator σ̂2
a, resembling that in Fan & Li (1996), is
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σ̂2
a =

1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v̄(i,j)f̂a(∆(i,j)−ri)]2[v̄(i′,j′)f̂a(∆(i′,j′)−ri′)]2K(i,j),(i′,j′)[

∫
k2(s)ds]2

(21)

As we need to correct for the presence of within-cluster correlation, we need to consistently

estimate the second term ρ2
a. Since we can rewrite ρ2

a as

ρ2
a = (m2 − 1)hE[v(i,j1)fa(∆(i,j1) − ri)v(i,j2)fa(∆(i,j2) − ri)

E[v(i′,j′1)fa(∆(i′,j′1) − ri′)v(i′,j′2)fa(∆(i′,j′2) − ri′)|∆(i′,j′1),∆(i′,j′2), ri′ ]f(∆(i′,j′1),∆(i′,j′2), ri′)]

∫
k2(s)ds

(22)

This motivates us to use the following U-statistic to estimate it:

ρ̂2
a =

(m2 − 1)h

N(N −m)(m− 1)2h3

∑
i

∑
j1 6=j2

v̂i,j1 f̂a(∆(i,j1) − ri)v̂(i,j2)f̂a(∆(i,j2) − ri)
∑
i′ 6=i

∑
j′1 6=j′2

v̂(i′,j′1)f̂a(∆(i′,j′1) − ri′)v̂(i′,j′2)f̂a(∆(i′,j′2) − ri′)k(
∆(i,j1) −∆(i,j2)

h
)k(

∆(i′,j′1) −∆(i′,j′2)

h
)k(

ri′ − ri
h

)

∫
k2(s)ds

(23)

where K is the product kernel of univariate Gaussian kernel k(.).

A.3.1 Intermediate Results for Proof of Theorem 1

To characterize the asymptotic distribution of Ω, we �rst decompose it into six parts (similar

to in Fan & Li (1996), equation (A.1)). We will then present intermediate results character-

izing each of these parts before combining results into the �nal proof of Theorem 1.

To simplify presentation, we will extensively use the following short-hand notation:

fa(i,j) ≡ fa(∆(i,j) − ri), g(i,j) ≡ g(∆(i,j) − ri).

The decomposition is
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Ω =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

{(g(i,j) − ĝ(i,j))f̂a(i,j)(g(i′,j′) − ĝ(i′,j′))f̂a(i′,j′) + v(i,j)v(i′,j′)f̂a(i,j) f̂a(i′,j′)

+v̂(i,j)v̂(i′,j′)f̂a(i,j) f̂a(i′,j′) + 2v(i,j)f̂a(i,j)(g(i,j) − ĝ(i,j))f̂a(i′,j′)

−2v̂(i,j)f̂a(i,j)(g(i,j) − ĝ(i,j))f̂a(i′,j′) − 2v(i,j)f̂a(i,j) v̂(i′,j′)f̂a(i′,j′)}K(i,j),(i′,j′)

≡ ω1 + ω2 + ω3 + 2ω4 − 2ω5 − 2ω6

(24)

where

ω1 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

(g(i,j) − ĝ(i,j))f̂a(i,j)(g(i′,j′) − ĝ(i′,j′))f̂a(i′,j′)K(i,j),(i′,j′)

ω2 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

v(i,j)v(i′,j′)f̂a(i,j) f̂a(i′,j′)K(i,j),(i′,j′)

ω3 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

v̂(i,j)v̂(i′,j′)f̂a(i,j) f̂a(i′,j′)K(i,j),(i′,j′)

ω4 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

v(i,j)f̂a(i,j)(g(i,j) − ĝ(i,j))f̂a(i′,j′)K(i,j),(i′,j′)

ω5 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

v̂(i,j)f̂a(i,j)(g(i,j) − ĝ(i,j))f̂a(i′,j′)K(i,j),(i′,j′)

ω6 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

v(i,j)f̂a(i,j) v̂(i′,j′)f̂a(i′,j′)K(i,j),(i′,j′)

The strategy of our proof will be to establish that, under the null, ω2 has a known

asymptotic distribution and ω1, ω3, ..., ω6 all are asymptotically negligible. The following

propositions establish those claims:

Proposition 7. ω1 = op((Nh)−1)
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Proof. As discussed in Fan & Li (1996) Proposition A.1, it su�ces to show that E[ω1] =

o((Nh)−1) and E[ω2
1] = o((Nh)−2). From equation 24 we know that

ω1 =
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j,j′

(g(i,j) − ĝ(i,j))f̂a(i,j)(g(i′,j′) − ĝ(i′,j′))f̂a(i′,j′)K(i,j),(i′,j′)

=
1

N(N −m)3h2a2

∑
i

∑
i′ 6=i

∑
j,j′

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j̃,j̃′

(g(i,j) − g(̃i,j̃))K
a
(i,j),(̃i,j̃)

(g(i′,j′) − g(̃i′,j̃′))K
a
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

(25)

The proof of elements where i, i′, ĩ, ĩ′ do not equal each other is exactly the same as

Proposition A.1 in Fan & Li (1996). We need to ensure that the within-cluster interaction

does not change the original conclusion.

Showing E[ω1] = o((Nh)−1) The sum of terms where exactly two among i, i′, ĩ, ĩ′ are the

same depends on the number of such terms (n(n − 1)2m4), as well as whether the value of

kernel function decreases in the order of smoothing bandwidth. In this case, each term does

not exceed the order of ah2. Thus the sum is

O(
1

N(N −m)3h2a2
∗ n(n− 1)2m4 ∗ ah2) = O((na)−1) = o((Nh)−1)

Showing E[ω2
1] = o((Nh)−2) We have

E[ω2
1] =

1

N2(N −m)6h4a4

∑
i

∑
i′ 6=i

∑
j,j′

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j̃,j̃′

∑
k

∑
k′ 6=k

∑
l,l′

∑
k̃ 6=k

∑
k̃′ 6=k′

∑
l̃,l̃′

(g(i,j) − g(̃i,j̃))K
a
(i,j),(̃i,j̃)

(g(i′,j′) − g(̃i′,j̃′))K
a
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

(g(k,l) − g(k̃,l̃))K
a
(k,l),(k̃,l̃)

(g(k′,l′) − g(k̃′,l̃′))K
a
(k′,l′),(k̃′,l̃′)

K(k,l),(k′,l′)

When i, i′, ĩ, ĩ′, k, k′, k̃, k̃′ do not equal each other, the expression can be dissected into

independent pieces like (g(i,j) − g(̃i,j̃))K
a
(i,j),(̃i,j̃)

so that Lemma 2 can be applied. In this case

the sum of these terms is O(a4η) = o((nh)−2)

When exactly two i-indices equal each other, three types of terms need to be discussed.
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(i) i = k. In this case, conditional on i, i′, k, k′, Lemma 2 can be applied to all terms

like (g(i,j) − g(̃i,j̃))K
a
(i,j),(̃i,j̃)

, so that the product of these conditional expectation terms is of

order O(a4+4η). As i = k, K(i,j),(i′,j′) ∗ K(k,l),(k′,l′) is of order O(h3). Therefore the sum of

these terms is 1
nh
∗O(a4η) = o((nh)−2)

(ii) i = k̃. In this case, conditional on i, i′, k, k′, Lemma 2 can be applied to all terms

like (g(i,j) − g(̃i,j̃))K
a
(i,j),(̃i,j̃)

except for (g(k,l) − g(k̃,l̃))K
a
(k,l),(k̃,l̃)

, so that the product of these

conditional expectation terms is of order O(a3+3η). Therefore the sum of these terms is

1
n
∗O(a3η) = o(n−2h−1aη)) = o((nh)−2)

(iii) ĩ = k̃, this case is similar to (i). In this case, conditional on i, i′, k, k′, ĩ, Lemma 2 can

be applied to (g(i′,j′)−g(̃i′,j̃′))K
a
(i′,j′),(̃i′,j̃′)

and (g(k,l)−g(k̃,l̃))K
a
(k,l),(k̃,l̃)

(g(k′,l′)−g(k̃′,l̃′))K
a
(k′,l′),(k̃′,l̃′)

,

whose conditional expectation is both of order O(a1+η). Then, conditional on i, i′, k, k′, the

expectation of order O(a2+2η). The order in total is thus 1
n
O(a4η) = o((nh)−2)

When i, i′, ĩ, ĩ′, k, k′, k̃, k̃′ takes no more than six values, the order is at mostmax{O(n−2∗
1
h2
∗ a4η), O((na)−2a2η)} = o((nh)−2).

Proposition 8. Nhω2 → N(0, 2(σ2
a + ρ2

a)) in distribution, where

σ2
a = E[f(∆(i,j), ri)σ

4(∆(i,j), ri)f
4
a (∆(i,j) − ri)][

∫
k2(s)ds]2

and

ρ2
a = (m2 − 1)h(E[(ρ4(∆(i,j),∆(i,j′), ri))f(∆(i,j),∆(i,j′), ri)f

4
a (∆(i,j) − ri)]

∫
k2(s)ds

where k(.) is the Gaussian kernel.
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Proof. Consider term ω2. We have

ω2 =
1

N(N −m)3h2a2

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

≡ 1

N(N −m)3h2a2

∑
i 6=i′ 6=ĩ 6=ĩ′

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

+ωR2

≡ ωU2 + ωR2

(26)

Here the terms where i, i′, ĩ, ĩ′ do not equal each other is denoted by ωU2 . This is a key

place in the proof where the leave-one-out estimator in Fan & Li (1996) needs to be revised,

since we cannot rely on the independence of di�erent observations within the same cluster to

eliminate some relevant cross-products. Our leave-m-out estimator, where the cross products

of some dependent observations are omitted, addresses this issue.

To see this formally, rewrite ωU2 in terms of U-statistics:

(
n
4

)
N(N −m)3h2a2

[

(
n

4

)−1 ∑
1≤i<i′<ĩ<ĩ′≤n

P (Zi,Zi′ ,Zĩ,Zĩ′)]

where

Zi = (∆(i,1), ...,∆(i,m), v(i,1), ..., v(i,m), ri)
′

and

P (Zi,Zi′ ,Zĩ,Zĩ′) =
∑

4!

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

where 4! stands for the permutation of {i, i′, ĩ, ĩ′}

De�ne Pn(Zi,Zi′) = E[P (Zi,Zi′ ,Zĩ,Zĩ′)|Zi,Zi′ ], we have

Pn(Zi,Zi′) = 4
∑

j,j′,j̃,j̃′ v(i,j)v(i′,j′)K(i,j),(i′,j′)E[Ka
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

|Zi,Zi′ ]
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E[Pn(Zi,Zi′)2] = 16E[(
∑
j,j′

v(i,j)v(i′,j′)K(i,j),(i′,j′)

∑
j̃,j̃′

E[Ka
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

|Zi,Zi′ ])2]

= 16m4E[(
∑
j,j′

v(i,j)v(i′,j′)K(i,j),(i′,j′)E[Ka
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

|Zi,Zi′ ])2]

= 16m6E[v2
(i,j)v

2
(i′,j′)K

2
(i,j),(i′,j′)(E[Ka

(i,j),(̃i,j̃)
Ka

(i′,j′),(̃i′,j̃′)
|Zi,Zi′ ])2]+

16m6(m2 − 1)E[v(i,j)v(i′,j′)v(i,j∗)v(i′,j′∗)K(i,j),(i′,j′)K(i,j∗),(i′,j′∗)(E[Ka
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

|Zi,Zi′ ])2]

(27)

The �rst term, as the original proof derives, can be reduced to

16m6a4h2E[f(∆(i,j), ri)σ
4(∆(i,j), ri)f

4
a ][
∫
k2(s)ds]2

Next simplify the second term. When a and h is approaching 0, we have:

16m6(m2 − 1)E[v(i,j)v(i′,j′)v(i,j∗)v(i′,j′∗)K(i,j),(i′,j′)K(i,j∗),(i′,j′∗)(E[Ka
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

|Zi,Zi′ ]))2]

= 16m6(m2 − 1)a4E[ρ2(∆(i,j),∆(i,j∗), ri)ρ
2(∆(i′,j′),∆(i′,j′∗), ri′)K(i,j),(i,j∗)K(i′,j′),(i′,j′∗)

(

∫
k(τ(i,j),(̃i,j̃))k(ζ(i′,j′),(̃i′,j̃′))fa(∆(i,j) − ri + aτ(i,j),(̃i,j̃))

fa(∆(i′,j′) − ri′ + aζ(i′,j′),(̃i′,j̃′))dτ(i,j),(̃i,j̃)dζ(i′,j′),(̃i′,j̃′))
2]

= 16m6(m2 − 1)a4h3

∫
ρ2(∆(i,j),∆(i,j∗), ri)ρ

2(∆(i,j) + hs1,∆(i,j∗) + hs2, ri + hs3)f(∆(i,j),∆(i,j∗), ri)

f(∆(i,j) + hs1,∆(i,j∗) + hs2, ri + hs3)k(s1)k(s2)k2(s3)

(

∫
ka(τ(i,j),(̃i,j̃))k

a(ζ(i′,j′),(̃i′,j̃′))fa(∆(i,j) − ri + aζ(i′,j′),(̃i′,j̃′))

fa(∆(i,j) + hs1 − ri − hs2 + aτ(i,j),(̃i,j̃))dτ(i,j),(̃i,j̃)dζ(i′,j′),(̃i′,j̃′))
2ds1ds2ds3d∆(i,j)d∆(i,j∗)dri

= 16m6(m2 − 1)a4h3(E[(ρ4(∆(i,j),∆(i,j∗), ri))f(∆(i,j),∆(i,j∗), ri)fa(∆(i,j) − ri)4]

∫
k2(s3)ds3 + o(1))

where s1 ≡
∆i′,j′−∆i,j

h
, s2 ≡

∆i,j′∗
−∆i,j∗
h

, s3 ≡ ri′−ri
h

, τ(i,j),(̃i,j̃) ≡
(∆(̃i,j̃)−rĩ)−(∆(i,j)−ri)

a
,

ζ(i′,j′),(̃i′,j̃′) ≡
(∆(̃i′,j̃′)−rĩ′ )−(∆(i′,j′)−ri′ )

a
, and f(., ., .) is the joint probability distribution of (∆(i,j),∆(i,j∗), ri).

Thus when within-cluster correlation is taken into account, we have

NhωU2
d−→ N(0, 2(σ2

a + ρ2
a))
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where

ρ2
a = (m2 − 1)h(E[(ρ4(∆(i,j),∆(i,j′), ri))f(∆(i,j),∆(i,j′), ri)f

4
a (∆(i,j) − ri)]

∫
k2(s)ds

Finally we have,

ωR2 =
1

N(N −m)3h2a2
{
∑
i 6=i′ 6=ĩ

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
w
(i,j),(̃i,j̃)

Kw
(i′,j′),(̃i,j̃′)

K(i,j),(i′,j′)+

∑
i 6=i′ 6=ĩ

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
w
(i,j),(i′,j̃)

Kw
(i′,j′),(̃i,j̃′)

K(i,j),(i′,j′)+

∑
i 6=j

∑
j,j′,j̃,j̃′

v(i,j)v(i′,j′)K
w
(i,j),(i′,j̃)

Kw
(i′,j′),(i,j̃′)

K(i,j),(i′,j′)}

≡ ωR1
2 + ωR2

2 + ωR3
2

There are three terms in total. For the �rst term ωR1
2 and second term ωR2

2 , we can use

similar arguments deriving the distribution of degenerate U-statistics to estimate the order

of its second moment. For the third term ωR3
2 , directly estimate its order using LLN to derive

the order of its second moment. Then we would have,

NhωR1
2 =

(
n
3

)
(N −m)3ha2

[

(
n

3

)−1

ωR1
2 ]

= n−1

(
n
3

)
(N −m)3ha2

[n

(
n

3

)−1

ωR1
2 ]

As m is a constant, and n
(
n
3

)−1
ωR1

2 = op(ah
2), we have

NhωR1
2 = op(

1

na
) = op(1)

Similarly we have
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NhωR2
2 = op(

1

na
) = op(1)

and

NhωR3
2 = op(

1

na
) = op(1)

So now we can conclude that

Nhω2 → N(0, 2(σ2
a + ρ2

a))

Proposition 9. ω3 = op((Nh)−1)

Proof. From equation 24, we have,

ω3 =
1

N(N −m)3h2a2

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j,j′,j̃,j̃′

v(̃i,j̃)v(̃i′,j̃′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

≡ ωF3 + ωS3

where ωF3 is the sum of the terms where ĩ = ĩ′. ωS3 is the sum of the terms where ĩ 6= ĩ′.

For ωF3 , we have

E[ωF3 ] =
1

N(N −m)3h2a2
∗O(

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j,j′,j̃,j̃′

E[v(̃i,j̃)v(̃i,j̃′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)])

= O(
1

na
) = o(

1

nh
)

and

E[(ωF3 )2] = o(
1

(na)2
) = o(

1

(nh)2
)
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ωS3 = ωSF3 + ωSS3

where ωSF3 is the sum of the terms where i, i′, ĩ, ĩ′ take di�erent values. ωSS3 is the sum

of the terms where at least two of the values equal each other.

Regarding ωSF3 , we have,

E[(ωSF3 )2] =
1

n8h4a4
∗ o(n6h4 ∗ a ∗ 2) ∗max{o( 1

nh
,

1

na
, 1)}

= o(
1

n2a2
) = o(

1

n2h2
)

Regarding ωSS3 , we have,

E[|ωSS3 |] =
1

N4h2a2
∗O(N3ah2) = O(

1

na
) = o(

1

nh
)

Proposition 10. ω4 = op((Nh)−1)

Proof. We have

ω4 =
∑
i

∑
i′ 6=i

v(i,j)

∑
j, j′f̂a(i,j)(g(i,j) − ĝ(i,j))f̂a(i′,j′)

=
1

N(N −m)3h2a2

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j, j′, j̃, j̃′v(i,j)(g(i′,j′) − g(̃i′,j̃′))K

a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

Since

E[ω4] = 0

and

E[ω2
4] =

1

N2(N −m)6h4a4

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
k

∑
k′ 6=k

∑
k̃ 6=k

∑
k̃′ 6=k′

∑
j,j′,j̃,j̃′,l,l′,l̃,l̃′

v(i,j)(g(i′,j′) − g(̃i′,j̃′))K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)v(k,l)(g(k′,l′) − g(k̃′,l̃′))K
a
(k,l),(k̃,l̃)

Ka
(k′,l′),(k̃′,l̃′)

K(k,l),(k′,l′)

≡ ωP4 + ωR4
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where ωP4 is the sum of the terms where i = k and i, i′, ĩ, ĩ′, k′, k̃, k̃′ are pairwise di�erent. ωR4

represents all the other terms. ωP4 is of order O(n−1a2η) = o( 1
n2h

) = o( 1
n2h2

). When two of

these indices equal each other, ωR4 is at most of order O(n−1a2ηmax{ a
naη

, 1
naη

, 1
nh2
}) = o( 1

n2h2
)

Proposition 11. ω5 = op((Nh)−1)

Proof. As ω5 is algebraically of the same structure as ω4, the derivation is the same as

Proposition 10.

Proposition 12. ω6 = op((Nh)−1)

Proof. We have:

ω6 =
∑
i

∑
i′ 6=i

∑
j,j′

v(i,j)f̂a(i,j) v̂(i′,j′)f̂a(i′,j′)K(i,j),(i′,j′)

=
1

N(N −m)3h2a2

∑
i

∑
i′ 6=i

∑
ĩ 6=i

∑
ĩ′ 6=i′

∑
j,j′,j̃,j̃′

v(i,j)v(̃i′,j̃′)K
a
(i,j),(̃i,j̃)

Ka
(i′,j′),(̃i′,j̃′)

K(i,j),(i′,j′)

≡ ωF6 + ωS6

where ωF6 denotes the sum the of terms where ĩ′ = i, ωS6 denotes the sum of the terms where

ĩ′ 6= i. We have, Similar to Proposition A.6 in Fan & Li (1996), we have E[(ωF6 )2] = o(n−2h−2)

and E[(ωS6 )2] = o(n−2h−2). Thus ω6 = op((Nh)−1).

Proposition 13. σ̂2
a = σ2

a + op(1) and ρ̂2
a = ρ2

a + op(1)

Proof. We know from equation 21 that

σ̂2
a =

1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v̄(i,j)f̂a(∆(i,j)−ri)]2[v̄(i′,j′)f̂a(∆(i′,j′)−ri′)]2K(i,j),(i′,j′)

∫
K2(s)ds

using Lemma 2 and discussions in Proposition 7 to Proposition 12, we have,
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σ̂2
a =

1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v̄(i,j)f̂a(∆(i,j) − ri)]2[v̄(i′,j′)f̂a(∆(i′,j′) − ri′)]2K(i,j),(i′,j′)

∫
K2(s)ds+ op(1)

=
1

N(N −m)h2

∑
i

∑
i′ 6=i

∑
j

∑
j′

[v(i,j)fa(∆(i,j) − ri)]2[v(i′,j′)fa(∆(i′,j′) − ri′)]2K(i,j),(i′,j′)

∫
K2(s)ds+ op(1)

= σ2
a + op(1)

Similarly,

ρ̂2
a =

(m2 − 1)h

N(N −m)(m− 1)2h3

∑
i

∑
j1 6=j2

v̂i,j1 f̂a(∆(i,j1) − ri)v̂(i,j2)f̂a(∆(i,j2) − ri)
∑
i′ 6=i

∑
j′1 6=j′2

v̂(i′,j′1)f̂a(∆(i′,j′1) − ri′)v̂(i′,j′2)f̂a(∆(i′,j′2) − ri′)k(
∆(i,j1) −∆(i,j2)

h
)k(

∆(i′,j′1) −∆(i′,j′2)

h
)k(

ri′ − ri
h

)

∫
k2(s)ds

=
(m2 − 1)h

N(N −m)(m− 1)2h3

∑
i

∑
j1 6=j2

vi,j1 f̂a(∆(i,j1) − ri)v(i,j2)f̂a(∆(i,j2) − ri)
∑
i′ 6=i

∑
j′1 6=j′2

v(i′,j′1)f̂a(∆(i′,j′1) − ri′)v(i′,j′2)f̂a(∆(i′,j′2) − ri′)k(
∆(i,j1) −∆(i,j2)

h
)k(

∆(i′,j′1) −∆(i′,j′2)

h
)

k(
ri′ − ri
h

)

∫
k2(s)ds+ op(1)

=
(m2 − 1)h

N(N −m)(m− 1)2h3

∑
i

∑
j1 6=j2

vi,j1fa(∆(i,j1) − ri)v(i,j2)fa(∆(i,j2) − ri)
∑
i′ 6=i

∑
j′1 6=j′2

v(i′,j′1)fa(∆(i′,j′1) − ri′)v(i′,j′2)fa(∆(i′,j′2) − ri′)k(
∆(i,j1) −∆(i,j2)

h
)

k(
∆(i′,j′1) −∆(i′,j′2)

h
)k(

ri′ − ri
h

)

∫
k2(s)ds+ op(1)

= ρ̂2
a = ρ2

a + op(1)

(28)

A.3.2 Proof of Asymptotic Consistency

Armed with the results of Appendix A.3.1, we are now equipped to prove the asymptotic

consistency of our estimator.
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Theorem 1. When assumption 5, 6, and 7 hold:

(I) Under the null, NhΩ→ N(0, 2(σ2
a + ρ2

a)), where

σ2
a = E[f(∆(i,j), ri)σ

4(∆(i,j), ri)f
4
a (∆(i,j) − ri)][

∫
k2(s)ds]2

and

ρ2
a = (m2 − 1)h(E[(ρ4(∆(i,j),∆(i,j′), ri))f(∆(i,j),∆(i,j′), ri)f

4
a (∆(i,j) − ri)]

∫
k2(s)ds

(II) Under the alternative, NhΩ converges to positive in�nity with probability 1.

Proof. To establish part (I), recall from equation 16 that we can decompose the test statistics

into

ω1 + ω2 + ω3 + 2ω4 − 2ω5 − 2ω6

Proposition 8 establishes that ω2 has exactly the distribution noted in the theorem.

Propositions 7, 9, 10, 11, and 12 establish that all other terms are asymptotically negligible.

Proposition 13 establishes the consistency of the necessary input estimators σ̂2
a and ρ̂

2
a. These

results together imply that the test statistic has the stated distribution, completing the proof

of part I. Part II of the proof trivially follows from the logic in Fan & Li (1996) Theorem

3.2.

A.4 Deriving 2nd-Stage Test Statistic

As we describe in Section 2, our proposed procedure involves a 2nd-stage test to be under-

taken after a failure to reject the null in the �rst stage. The purpose of this 2nd-stage test

is to rule out a degenerate form of reference dependence in which the single-index function

maps to a constant. We construct this test with a simple analog of our 1st-stage approach.

Formally, we test the null hypothesis

H0 : There exists a real number µ, such that E[Y |x] = µ for any x.

against the alternative that there does not exist such a µ.
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We will use the sample average to approximate µ, that is,

µ̂ =
1

N

∑
i

∑
j

Y(i,j) (29)

The estimated approximation error is

û(i,j) ≡ Y(i,j) − µ̂ (30)

The numerator of the test statistic, Π, under the null, is

Π =
1

N(N −m)a

∑
i

∑
i′ 6=i

∑
j,j′

(Y(i,j) − µ̂)(Y(i′,j′) − µ̂)k(
X(i′,j′) −X(i,j)

a
)

=
1

N(N −m)a

∑
i

∑
i′ 6=i

∑
j,j′

(u(i,j) + µ− µ̂)(u(i′,j′) + µ− µ̂)k(
X(i′,j′) −X(i,j)

a
)

= (µ− µ̂)2 1

N(N −m)a

∑
i

∑
i′ 6=i

∑
j,j′

k(
X(i′,j′) −X(i,j)

a
)

+(µ− µ̂)
1

N

∑
i

∑
j

u(i,j)
1

(N −m)a

∑
i′ 6=i

∑
j′

k(
X(i′,j′) −X(i,j)

a
)

+(µ− µ̂)
1

N

∑
i′

∑
j′

u(i′,j′)
1

(N −m)a

∑
i 6=i′

∑
j

k(
X(i′,j′) −X(i,j)

a
)

+
1

N(N −m)a

∑
i

∑
i′ 6=i

∑
j,j′

u(i,j)u(i′,j′)k(
X(i′,j′) −X(i,j)

a
)

(31)

Since (µ− µ̂) = o( 1√
N

), the �rst three terms are all are all Op(
1
N

) = op((N
√
a)−1) while

the last term is Op((N
√
a)−1), we could rescale the term so that the theorem for degenerate

U-statistics can again be applied.

N
√
aΠ =

N
√
a

N(N −m)a

∑
i

∑
i′ 6=i

∑
j

∑
j′

u(i,j)u(i′,j′)k(
X(i′,j′) −X(i,j)

a
) + op(1)

=

(
n
2

)
m

N(N −m)
√
a
{n
(
n

2

)−1 ∑
1≤i<j≤n

[2
∑
j

∑
j′

u(i,j)u(i′,j′)k(
X(i′,j′) −X(i,j)

a
)]}+ op(1)

→ N(0, 2(σ2
µ + ρ2

µ))

(32)
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where

σ2
µ = E[u2]2E[f(X)]

∫
k2(u)du (33)

ρ2
µ = E[ρ4(X(i,j), X(i′,j′))f(X(i,j), X(i′,j′))] (34)

Thus, similar to the �rst-stage test, we have:

Theorem 2. (I) Under the null, N
√
aΠ→ N(0, 2(σ2

µ + ρ2
µ)), where

σ2
µ = E[u2]2E[f(X)]

∫
k2(u)du

ρ2
µ = E[ρ4(X(i,j), X(i,j∗))f(X(i,j), X(i,j∗))]

(II) Under the alternative, N
√
aΠ converges to positive in�nity with probability 1.

The estimator for σ2
a and ρ

2
a is

σ̂2
µ =

1

N(N −m)a

∑
i

∑
j

û2
(i,j)

∑
i′ 6=i

∑
j′

û2
(i′,j′)k(

X(i′,j′) −X(i,j)

a
)

∫
k2(u)du (35)

ρ̂2
µ =

(m2 − 1)a

N(N −m)(m− 1)2a2

∑
i

∑
j1 6=j2

û(i,j1)û(i,j2)

∑
i′ 6=i

∑
j′1 6=j′2

û(i′,j′1)û(i′,j′2)

k(
X(i′,j′1) −X(i,j1)

a
)k(

X(i′,j′2) −X(i,j2)

a
)

(36)

The test statistics is

T2 =
N
√
aΠ√

2(σ̂2
µ + ρ̂2

µ)
(37)

Theorem 2 can be proved using the same approach employed in Theorem 1. While still

somewhat laborious, it is substantially simpler because of the reduced complexity of the null

hypothesis.
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B Extending Approach to the K®szegi-Rabin Framework

The approach presented in our main text addresses a case where a reference point is, in fact,

a point, and this point can be exogenously manipulated. These assumptions are satis�ed

by most common models of reference points, but are notably not satis�ed in the model

of K®szegi & Rabin (2006) (or its extension to risk attitudes in K®szegi & Rabin (2007)).

In those frameworks, reference e�ects are assumed to operate by individuals considering

a distribution of di�erent possible reference points, with the distribution pinned down by

the distribution of possible consumption realizations given one's choices. The di�erences of

this model make it challenging to nest it within an approach designed for other common

reference points. Despite its di�erences, however, this model can be tested with relatively

minor modi�cations to our existing framework.

To begin, consider the framework for utility as presented in K®szegi & Rabin (2007). For

a riskless wealth outcome w ∈ R and riskless reference level of wealth r ∈ R, de�ne utility

as u(w|r) = m(w) + µ((m(w)−m(r)). The term m(w) is viewed as intrinsic �consumption

utility,� and is analogous to the ψ(c) term in our framework that we refer to as direct

utility. The term µ(·) is the reference-dependent evaluation, analogous to the φ(·) term in

our framework. Note that the input to the reference-dependent evaluation is the di�erence

in consumption utilities derived from wealth outcome m(w) and the reference level m(r), as

opposed to the di�erence in w and r themselves (as in our theory). However, also note that

this distinction is inconsequential when consumption utility is assumed to be linear, as we

previously imposed in Assumption 2 and as we will continue to impose here.

When extending this concept to potentially risky outcomes, utility is de�ned by U(F |G) =∫ ∫
u(w|r)dG(r)dF (w), where G is a probability measure over reference points and F is a

probability measure over potential wealth outcomes.

To focus ideas, consider K®szegi and Rabin's solution concept of �choice-acclimating

personal equilibrium.�

De�nition 3. For any choice set D, F ∈ D is a choice-acclimating personal equilibrium

(CPE) if U(F |F ) ≥ U(F ′|F ′) for all F ′ ∈ D. (K®szegi & Rabin, 2007, De�nition 3)

We now consider how to apply this concept in a framework like our own. In the approach
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of Section 1.2, the choice sets presented to subjects always contain two gambles, denoted G0

and G1. These gambles were de�ned over discrete sets of outcomes, o ∈ O (i.e., heads or

tails coin �ips as in our experiment). With this set up, we formally de�ne a notion of choice

guided by CPE that incorporates additional assumptions that we have imposed.

Assumption 8. For a choice between two gambles G0 and G1, G1 is chosen if

∑
o∈OG1

pG1o c
G1
o +

∑
o,o′∈OG1

pG1o p
G1
o′ µ(cG1o − c

G1
o′ ) + ε1 ≥

∑
o∈OG0

pG0o c
G0
o +

∑
o,o′∈OG0

pG0o p
G0
o′ µ(cG0o − c

G0
o′ ) + ε0.

Decisions made according to Assumption 8 can be understood as CPE while imposing

the assumption that consumption utility m is linear and while introducing a random-utility

component ε.

We will now show that a single-index structure analogous to that in our primary test

can arise under Assumption 8 for a particular class of gambles. De�ne the double ∆-shift

operation over base gamble G and partition of the set of outcomes OG = OGa ∪ OGb (held

constant across both base gambles) to be:

S(∆a,∆b|G, OGa , OGb ) = (pGo , c
G
o + ∆aI(o ∈ OGa ) + ∆bI(o ∈ OGb ))o∈OG

In this equation, I(o ∈ O) is an indicator function that takes the value 1 if o ∈ O and 0

otherwise.

To illustrate with an example, consider the base gambles in base scenario 5 of our ex-

periment, where G0 = (100%, 3.4) and G1 = (50%, 2.5; 50%, 4.5). We may form double

∆-shifted gambles by adding ∆a to each outcome of these two choices and mixing both

choices with a payment of ∆b with a 50% of chance. The revised, double ∆-shifted gamble

is G′0 = (50%, 3.4 + ∆a; 50%∆b) and G
′
1 = (25%, 2.5 + ∆a; 25%, 4.5 + ∆a; 50%,∆b).

Similar to the set-up of Proposition 1, consider choice made between double ∆-shifted

values of two �xed base gambles. Let Y take the value of 1 if S(∆a,∆b|G1, O
G1
a , O

G1
b ) is

chosen and the value of 0 if S(∆a,∆b|G0, O
G0
a , O

G0
b ) is chosen. If choices are made according

to Assumption 8, there exists a single-index representation of E[Y |∆a,∆b] as g(∆a−∆b) for
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some g. This follows from series of calculations similar to those developed in equations 4-6:

E[Y |∆a,∆b] =

Pr

 ∑
o∈OG1a

pG1o (cG1o + ∆a) +
∑
o∈OG1b

pG1o (cG1o + ∆b) (38)

−
∑
o∈OG0a

pG0o (cG0o + ∆a)−
∑
o∈OG0b

pG0o (cG0o + ∆b) (39)

+
∑

o,o′∈OG1a

pG1o p
G1
o′ µ(cG1o − c

G1
o′ ) +

∑
o,o′∈OG1b

pG1o p
G1
o′ µ(cG1o − c

G1
o′ ) (40)

−
∑

o,o′∈OG0a

pG0o p
G0
o′ µ(cG0o − c

G0
o′ )−

∑
o,o′∈OG0b

pG0o p
G0
o′ µ(cG0o − c

G0
o′ ) (41)

+
∑

o∈OG1a ,o′∈OG1b

pG1o p
G1
o′ µ(cG1o − c

G1
o′ + ∆a −∆b) (42)

−
∑

o∈OG0a ,o′∈OG0b

pG0o p
G0
o′ µ(cG0o − c

G0
o′ + ∆a −∆b) (43)

+
∑

o∈OG1b ,o′∈OG1a

pG1o p
G1
o′ µ(cG1o − c

G1
o′ + ∆b −∆a) (44)

−
∑

o∈OG0b ,o′∈OG0a

pG0o p
G0
o′ µ(cG0o − c

G0
o′ + ∆b −∆a) ≥ ε0 − ε1

 (45)

Notice that the terms in lines 40 and 41 solely consist of constants (i.e., they do not

include ∆a and ∆b), and thus are jointly constant. Denote this constant k2. Also note that,

in all terms on lines 42 through 45, all terms25 may be expressed as a function of ∆a-∆b,

and thus these lines may be collapsed into a single function ν(∆a −∆b). Finally, note that

the di�erences in consumption utility expressed in lines 38 and 39 will be constant (denoted

k1 with regard to ∆a and ∆b if
∑

o∈OG0a
po =

∑
o∈OG1a

po. While this is not guaranteed for

arbitrary gambles, gambles can be constructed where this is satis�ed. Taken together, these

conditions then imply that E[Y |∆a,∆b] = Pr(k1 + k2 + ν(∆a −∆b) ≥ ε0 − ε1), which thus

guarantees the existence of a function g such that E[Y |∆a,∆b] = g(∆a −∆b).

25Excluding, of course, ε0 − ε1.
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This analysis demonstrates that, for an appropriately designed experiment, similar meth-

ods to those developed in our main text can be used to test whether a given set of choices

can be rationalized by K®szegi and Rabin's CPE concept. If the existence of a single-index

representation g(∆a − ∆b) is rejected, that serves as a basis to reject K®szegi and Rabin's

notion of the reference point. Similar approaches may be used to generate means of testing

unacclimating personal equilibrium or preferred personal equilibrium, although we omit the

development of these approaches here due to their close similarity to the approach presented

for CPE.

C Simulation Study of Power of Test

In this section, we assess the power of our test when applied to experiments like the one

we ran. We simulate experimental data in which decisions are made according to a variety

of parameterizations of standard Prospect Theory, conduct our test, and assess the rate of

type-1 and type-2 error.

C.1 Parameters for Simulation

Simulating Gambles Presented and Reference Points: In our simulated experiments, sim-

ulated subjects face ∆-shifted versions of one of the 5 base scenarios presented in Table

1.

We randomly generate a true reference point governing the decision process (rt) and a

false candidate reference point that we wish to study (rc). We randomly sample the values

of ∆, rt, and rc from the distribution
∆

rt

rc

 ∼ N




0

3.4

3.4

 ,


0.25 0 0

0 0.7 0

0 0 0.7


 . (46)

The distribution matches the distribution used to simulate values of ∆ and our two candidate

reference points in the experiment that we deployed.
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Simulating Choice: Given the randomly-generated gamble and reference points, we sim-

ulate choices as arising from a range of potential utility functions. We model utility of a

given outcome in standard prospect-theory form:

φ(x|rt) =

 (x− rt)α if x ≥ r

λ(rt − x)α if x < r
. (47)

Choices are made to maximize expected utility, complete with a random-utility component:∑
o∈O po · (φ(co − r)) + ε. In this simulation, we do not include a direct-utility component.

For our purposes, this is equivalent to assuming that local linearity holds exactly for direct

consumption utility (ψ).

Given this speci�cation of choices, the relevant parameters for simulations are λ, α, and

the parameters governing the distribution of the additive error term ε. λ is sampled from the

values 1, 1.5, 2, 2.5, and 3; this range is distributed around median estimates in the literature

(approximately λ = 2, see Brown et al., 2020), and includes as one endpoint the case where

loss aversion is not present (λ = 1). α is sampled from the values 0.6, 0.7, 0.8, 0.9, and 1,

covering a range from relatively extreme diminishing sensitivity to none at all. Note that we

do not sample situations where α = λ = 1, because this results in linear reference-dependent

utility in violation of Assumption 1.

Construction of the error term is made somewhat more complex by the fact that di�erent

values of α and λ change the scale of �xed utility di�erences. Thus, holding constant the

mean and variance of ε, the rate of preference-reversals would not be held constant across

di�erent draws of α and λ. To address this issue, while simultaneously allowing for di�erent

within- and between-subject distributions of ε, we use the following approach to simulating

these errors. For each set of simulated values, we �rst calculate the deterministic portion

of the utility di�erence. De�ne parameter M to equal the standard deviation of that value,

holding �xed all utility parameters and the baseline gamble, but varying the draw of ∆. For
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each choice, we model the error process as being governed by the sum of two components:

subject-speci�c shock: εi ∼ N(0, (Mi · si)2) (48)

choice-speci�c shock: εj ∼ N(0, (Mj · sj)2) (49)

Terms si and sj are terms that are used to scale up or down the degree of variance in

each component. When these values are set to 1, then the distribution of the error term is

such that a 1-standard-deviation shock is scaled to a 1-standard-deviation di�erence in the

deterministic utility component. si and sj represent the scale of the degree of cross-subject

and within-subject choice heterogeneity respectively. We consider three values of each scale

term: 1, 2.5, and 4, resulting in nine combinations total.

Simulating Sample Size and Panel Length: Across simulations, we vary two features of

the way datasets could be generated: the number of subjects included, and the number of

questions posed to each subject. We consider potential numbers of subjects drawn from

the values 50, 100, 300, 500, and 1,000, ranging from the size of comparatively small lab

experiments to larger experiments only possible in online formats. We additionally consider

a range of numbers of questions presented of 1, 2, 3, or 4.

Summary of All Iterations: Across all dimensions varied above, there are 43,200 unique

combinations possible: applying the correct or incorrect reference point (2) × 5 Baseline

gambles × 24 combinations of α and λ × 9 versions of the error distributions × 5 potential

sample sizes × 4 potential panel lengths. For each of the 43,200 combinations, we simulate

200 datasets for analysis, yielding a total of 8,640,000 simulated experiments. Within each

batch of 200 datasets simulated under �xed parameters, we calculate an aggregate �pass

rate� among those 200 applications of our test. An application is coded as passing if our

test fails to reject a single-index representation in our stage-1 test but does reject reject a

constant representation in our stage-2 test.

C.2 Results of Simulations

Figure C.1 presents violin plots summarizing pass rates in our full set of simulations.

We begin by focusing attention on the left panel of the �gure, which presents results for
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Figure C.1: Assessing Pass-Rate of Test Across Simulations
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Notes: The left panel presents results when the test is applied to the true reference point used in the
simulation�i.e., cases where the test would ideally pass. The right panel presents results when the test is
applied to a false candidate reference point that is statistically independent from the true reference point
used in the simulation�i.e., cases where the test would ideally fail. Within each panel, for a range of the
number of subjects and the number of observations per subject, we summarize the distribution of pass
rates achieved in the 200 iterations run for each combination of potential simulation parameters. The
orange dots present the median pass rate, the thick portion of the orange line represents the interquartile
range, and the thin orange line extends to the upper- and lower-adjacent values. Behind each line is small
kernel-density representation of the distribution.

the cases where we apply our test to the true reference point used in the simulations. In

these situations, our test would ideally pass.

The x-axis of this �gure covers the range of sample sizes considered, and varies both

the number of subjects in each simulation and the number of choices posed to each subject.

Above each potential sample size, we summarize the distribution of pass rates across all
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sets of simulated parameter values. The orange dots present the median pass rate, the

thick portion of the orange line represents the interquartile range, and the thin orange line

extends to the upper- and lower-adjacent values. Behind each line is a small kernel-density

representation of the distribution.

Summarizing this panel as a whole, we note that our pass-rate converges to a rate of

approximately 95% relatively quickly as sample size increases. In our simulations with

500 or more subjects included, the pass rate is uniformly high regardless of the number

of observations generated by each subject, and with 300 observations the pass rate is high

as long as more than 2 observations are collected per subject. When only 50 or 100 subjects

are included in the simulation pass rates are well below their ideal. This is largely in�uenced

by being ill-powered to reject the null hypothesis in stage-2 of the test, a necessary step for

the test to pass. This issue may conceivably be alleviated by collecting more observations

per subject. We limited our simulation to only cases up to 4 observations per subject

largely because the computation time increases su�ciently quickly with the number of panel

observations to make a high-iteration simulation impractical, and not because we think

collecting more data past this point is unproductive in small samples (although it appears

to be so in larger samples).

We next turn attention to the right panel of the �gure, which presents results for the

cases where we apply our test to an incorrect reference point simulated to be statistically

independent from the true reference point. These simulations are somewhat more straight-

forward to characterize: across the sets of parameters and samples sizes considered, our

ability to reject false reference points is uniformly high. Even with the smallest sample sizes

considered, a false reference point is rejected in the vicinity of 95% of the time on median,

with relatively little variation across the sets of parameters studied. While this degree of

power is perhaps surprising, two simple forces contribute. First, as noted about, our stage-2

test has low power to reject a null of a constant choice probability, making acceptance of

candidates rare for small sample sizes. Conceptually, while this makes passing true reference

points harder at small sample sizes, it makes rejecting false reference points easier. Second,

recall that our test can be understood to be asking �are all level-sets in ∆× r space parallel

lines of slope 1?� Roughly speaking, distinguishing lines of slope 1 from lines of slope 0 (as
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they would be with a false candidate referent in this case) is not an extremely demanding

data exercise.

We interpret these �ndings to suggest that, for reference-dependent utility functions of

the type typically considered in this literature, the diagnostic value of our test for detecting

the correct reference point is quite high even in relatively modest sample sizes.

D Supplementary Tables

This section contains supplemental tables referenced in text.
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Table D.1: Summary Statistics from UAS Data

(1) (2) (3) (4)

Survey Completion Status Test for Di�erences

Complete Incomplete All Recruits

Basic Demographics

Female 61.4 56.8 57.9 p = 0.14

Married 47.4 60.1 56.9 p = 0.00

Working 58.6 58.4 58.4 p = 0.96

US Citizen 97.0 97.9 97.7 p = 0.34

Hispanic or Latino 11.7 6.9 8.1 p = 0.01

Race .

White Only 81.0 76.9 80.0 .

Black Only 8.9 12.6 9.8 .

Am. Indian or Alaska Native Only 1.2 0.9 1.1 p = 0.37

Asian Only 3.2 2.7 3.1 .

Hawaiian/Paci�c Islander Only 0.5 0.9 0.6 .

Multiple Races Indicated 5.2 5.7 5.3 .

Education .

< 12th grade 4.7 4.5 4.7 .

High school grad. 18.6 16.8 18.2 .

Some college 22.5 21.9 22.4 p = 0.08

Assoc. degree 14.8 15.6 15.0 .

Bachelor's degree 22.2 29.1 23.9 .

Master's degree + 17.2 12.0 15.9 .

Household Income .

< $10,000 5.9 9.3 6.8 .

$10,000 - $24,999 13.0 15.9 13.7 .

$25,000 - $49,999 20.6 21.0 20.7 p = 0.14

$50,000 - $74,999 21.0 20.1 20.8 .

$75,000 - $99,999 14.0 12.6 13.7 .

$100,000 + 25.2 20.7 24.1 .

Age .

18-29 7.3 15.0 9.2 .

30-39 16.6 22.2 18.0 .

40-49 17.4 16.5 17.2 p = 0.00

50-59 21.9 18.3 21.0 .

60+ 36.8 27.9 34.6 .

Notes: This table presents summary statistics characterizing the demographic features of our sample. With
the exception of p-values, all numbers presented are the percentage of respondents with a given row's
classi�cation. The �rst panel characterizes a series of binary demographic variables, and the panels that
follow present tabulations of individual categorical variables. The �rst column presents results for subjects
included in our primary analyses. To help assess selection into our study, the second and third columns
present results for the subjects who were contacted but did not complete the study and all contacted
subjects, respectively. The �nal column provides p-values for Fisher Exact Test for di�erences in the
distribution of the categorical variable by survey completion status.
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Table D.2: Base-Scenario-Speci�c Test Results

Stage-speci�c p-value
Scenario Number Stage 1 Stage 2 Passed?

Treatment Arm: Goal Salient
1 0.516 0.000 Yes
2 0.199 0.000 Yes

Ref Pt: Goal 3 0.628 0.000 Yes
4 0.888 0.000 Yes
5 0.040 0.000 No

Pooled 0.778 0.000 Yes

1 0.178 0.702 No
2 0.640 0.866 No

Ref Pt: Average Earnings 3 0.520 0.941 No
4 0.959 0.476 No
5 0.110 0.270 No

Pooled 0.506 0.516 No

Treatment Arm: Average Earnings Salient
1 0.912 0.699 No
2 0.254 0.274 No

Ref Pt: Goal 3 0.457 0.305 No
4 0.643 0.994 No
5 0.199 0.494 No

Pooled 0.491 0.685 No

1 0.060 0.727 No
2 0.992 0.706 No

Ref Pt: Average Earnings 3 0.882 0.473 No
4 0.751 0.586 No
5 0.710 0.279 No

Pooled 0.702 0.157 No

Treatment Arm: No Reference Point Salient
1 0.847 0.046 Yes
2 0.302 0.268 No

Ref Pt: Goal 3 0.848 0.178 No
4 0.037 0.757 No
5 0.197 0.659 No

Pooled 0.263 0.359 No

1 0.219 0.290 No
2 0.232 0.904 No

Ref Pt: Average Earnings 3 0.843 0.873 No
4 0.520 0.746 No
5 0.126 0.421 No

Pooled 0.107 0.460 No

Notes: This table presents the the results from our proposed test across di�erent treatment arms and
candidate reference points. The �rst panel present results from the treatment arm where the goal is made
salient. The second panel present results from the treatment arm where average earnings are made salient.
The third panel presents results from the control arm where neither reference point is made salient. Within
each panel, we separately present results for each of the �ve base scenarios. The �rst column indexes the
base scenario group, the second and third columns present p-values from the �rst and second stage of our
test, respectively, and the �nal column indicates whether the test as a whole has passed.
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