Option Liquidity and Gamma Imbalances Leander Gayda, Thomas Grünthaler, <u>Jan Harren</u>

1. Story

Summary

We study the relationship between the market makers' inventory and liquidity for S&P 500 options. Option spreads are higher when the aggregate gamma inventory is negative, i.e., when market makers act as momentum traders to keep their portfolio delta neutral. Aggregate gamma inventory can explain up to 1*/*3 of the daily variation in spreads. We show that market makers have balanced gamma inventory whenever markets are illiquid, volatile, and financial intermediaries are constraint. Our results indicate that market makers actively adjust option expensiveness to balance their inventory in the desired direction. Standard option valuation models and market microstructure theories contradict our findings.

Option market making and liquidity provison

- Market makers (MM) provide liquidity on option markets \rightarrow take opposite side of a trade when counterparts' positions are not exactly met \rightarrow zero net supply
- MM build up large inventories \rightarrow might deviate from optimal MM inventory \rightarrow hedge demand for (possible risky) inventory positions
- Hedging is costly and risky due to market imperfections (Figlewski, 1989)
- Deviations from optimal inventory, associated risks, and hedging costs should be reflected in **MM compensation for liquidity provision** \rightarrow option spread

- \bullet MM manage their book using delta hedging \rightarrow non-informational channel why stock prices move
- Negative *AGI*: MM is **momentum** trader
- Positive *AGI*: MM is **reversal** trader

Three questions

- What is the relation between hedging needs and option liquidity?
- When do market makers require more compensation for providing liquidity?
- Which positions are associated with higher liquidity costs?

 $S \downarrow \rightarrow MM$ sells to stay delta neutral \rightarrow trades in the same direction market \rightarrow hard to find a counterpart \rightarrow illiquid markets $\rightarrow AGI$ survives existing illiquidity measures \rightarrow MM appear to care about further risk sources

What we do

- We compute the daily aggregated inventory
- We determine the magnitude of MM hedging activity by the aggregated gamma inventory (*AGI*)
- \bullet Gamma: Change in option's delta \rightarrow good proxy for rebalancing activity of market makers inventory
- Gamma exposure approximates hedging costs of market makers (Gârleanu et al., 2009)
- We relate *AGI* to liquidity measures from intraday option trades

In a nutshell

What do we find?

- \bullet Negative *AGI* is associated with wider spreads \rightarrow higher compensation for providing liquidity
- Effect appears to be largest in magnitude and significance for OTM calls/puts
- MM manage their inventory in turbulent times \rightarrow balanced gamma inventory (near zero) \rightarrow especially when markets are volatile, illiquid, and intermediaries are especially constrained \rightarrow rebalancing activity reduces to a minimum
- \bullet Balanced inventory \rightarrow option expensiveness is high and liquidity risk premium is high

Compute the median ES_j^B within each moneyness bucket to obtain ES_t^B *t*

Mechanical trading to stay delta neutral

Hedging and trading.

What could rationalize our findings? E.g. MM is short gamma (negative *AGI*)

2. Data and Methodology

Gamma weighted inventory

Construction. We follow Ni et al. (2021)

$$
OI_{j,t}^{\text{buy},y} = \underbrace{OI_{j,t-1}^{\text{buy},y}}_{\text{Existing}} + Volume_{j,t}^{\text{Open buy},y} - Volume_{j,t}^{\text{Close sell},y}
$$
\n
$$
OI_{j,t}^{\text{sell},y} = OI_{j,t-1}^{\text{sell},y} + Volume_{j,t}^{\text{Open sell},y} - Volume_{j,t}^{\text{Close buy},y}
$$
\n
$$
netOI_{j,t} = -1 \cdot \left[OI_{j,t}^{buy,cust} - Ol_{j,t}^{sell,cust} + Ol_{j,t}^{buy,firm} - Ol_{j,t}^{sell,firm} \right]
$$

 $\overline{}$

Gamma weighting.

$$
net\Gamma_t = S_t^2 \cdot \sum_{j=1}^{N} (netOI_{j,t} \cdot \Gamma_j (S_t, K, \tau, IV, r, d))
$$

where Γ_j is the Black and Scholes (1973) gamma for option *j*.

$$
AGI_t = \frac{net\Gamma_t}{\frac{1}{M}\sum_{i=0}^{n-1} \text{Total Contracts}_{M-i}}
$$

where AGI_t is the aggregated dollar gamma exposure per unit of contract.

AGI and absolute number of contracts in inventory.

Implied volatility effective spreads

Effective spreads. We follow Christoffersen et al. (2018) and Chaudhury (2015)

$$
IVES_{k,j} = \frac{2 \cdot |O_{k,j}^P - O_{k,j}^M|}{O_{k,j}^M}
$$

$$
IVES_j = \frac{\sum_k Vol_k \cdot IVES_{k,j}}{\sum_k Vol_k}
$$

Data

Focus on S&P 500 Options.

 \bullet C1 CBOE Open-Close database \rightarrow signed trades \bullet OptionMetrics \rightarrow Option mid-quotes, Δ , IVs \rightarrow calculate Γ \bullet CBOE intraday option trades \rightarrow liquidity measures

-
-
-
- **Sample period.**
-

University of Münster

January 01, 2004 - December 31, 2020 Preceding years as a "burn-in period"

3. Empirical Results

Negative gamma inventory → **wider spreads**

- Highest R^2 for ATM options \rightarrow highest Γ risk
-
-

A one standard deviation decrease in *AGI^t* increases *IV ES^t* by 0.73% on average Our result is not a phenomenon of illiquidity spillovers from underlying

More uncertain states → **balanced gamma inventory**

$$
\mathbb{1}_t^{20} = \alpha + \beta_1 \text{MI}_t + \beta_2 \text{RV}_t + \beta_3 \text{HKM}_t + e_t
$$

Higher probability to end up in 20^{th} quantile of abs(AGI_t) if

... markets are more illiquid (Amihud, 2002), RV is higher, intermediaries are more constrained

Contact

jan.harren@wiwi.uni-muenster.de