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Abstract

I find that the causal effect of subjective growth expectations on asset prices is far smaller
than standard models suggest. To quantify this causal effect, I construct an asset demand
model in which Bayesian investors learn from analysts and other signals. A 1% rise in annual
investor growth expectations raises price only 7 to 16 basis points, an order of magnitude less
than in standard models. This small causal effect arises from the limited passthrough of beliefs
to asset demand, and is consistent with small price elasticities of demand. To reconcile this
small causal effect with the strong correlation of growth expectations and prices, I provide
evidence of reverse causality. Using flow-induced trading to instrument for prices, I find that
prices cause growth expectations.
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1 Introduction

A long history of research appeals to subjective beliefs about fundamentals to explain important
phenomena in asset pricing and macro-finance, such as excess volatility, asset bubbles, and credit
cycles (Keynes (1937); Minsky (1977); Kindleberger (1978); Shiller (1981)). This view has recently
experienced a resurgence of interest due to the increasing availability of survey measures of subjective
beliefs. Since beliefs can be measured using survey data, subjective belief models offer an appealing
alternative to the rational expectations paradigm, which attributes most price variation to “dark
matter,” unobservable shocks to preferences or risk (Chen, Dou and Kogan (2019)). Empirically,
surveyed cash flow growth expectations correlate strongly with asset prices and can match the
magnitude of price variation. These facts motivate models that explain variation in asset prices
with biased and excessively volatile cash flow growth expectations (Bordalo et al. (2019, 2022);
Nagel and Xu (2021); De La O and Myers (2021)).

However, recent research raises doubts about the quantitative strength of the core mechanism
in this class of subjective belief models: the causal impact of subjective growth expectations on
prices. A growing literature finds that investors do not trade strongly on their beliefs, which
suggests subjective growth expectations might have little impact on prices (Merkle and Weber
(2014); Meeuwis et al. (2018); Giglio et al. (2021a,b); Bacchetta, Tieche and Van Wincoop (2020);
Dahlquist and Ibert (2021); Beutel and Weber (2022)). Moreover, while subjective belief models
interpret the strong correlation of growth expectations with prices as evidence of a large causal
effect, the correlation need not imply causation.

This paper addresses two questions. Does the strong correlation of subjective growth expecta-
tions with prices imply a large causal effect of growth expectations on prices? If not, how large is
the causal effect of subjective growth expectations on prices?

First, I provide evidence of reverse causality, which implies that the correlation between subjec-
tive growth expectations and prices is not evidence of a large causal effect. Using several variations
of flow induced trading to instrument for prices, I find that prices cause growth expectations. Thus,
quantifying the strength of the core mechanism in subjective belief models requires direct measure-
ment of the causal effect of subjective growth expectations on prices.

Second, I find the causal effect of subjective growth expectations on prices is small. I construct an
asset demand model in which Bayesian investors learn from analysts and other signals. Empirically,
a 1% increase in investor annual growth expectations raises price only 7 to 16 basis points, an order
of magnitude less than in leading rational (e.g. Campbell and Cochrane (1999); Bansal and Yaron
(2004); Barro (2006); He and Krishnamurthy (2013)) and behavioral (e.g. Barberis et al. (2015);
Nagel and Xu (2021); Bordalo et al. (2022)) models, which imply a transitory 1% increase in growth
expectations (i.e., with no persistence) raises price by 1%. Any persistence in growth expectations
shocks makes this benchmark value even larger than 1%. Thus, if the only mechanism through
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which growth expectations impact prices is that featured in standard models, subjective growth
expectations matter far less for asset prices than these models suggest.

This small causal effect arises from the limited passthrough of beliefs to asset demand and is
consistent with small price elasticities of demand found in previous work (Shleifer (1986); Harris
and Gurel (1986); Chang, Hong and Liskovich (2014); Pavlova and Sikorskaya (2020); Koijen and
Yogo (2019); Gabaix and Koijen (2020b); Schmickler and Tremacoldi-Rossi (2022)). Extant studies
document a low sensitivity of demand to investors’ expected returns, which generates both inelastic
demand and small demand curve shifts due to growth expectations shocks. When prices rise, ex-
pected returns fall, but demand adjusts little to the change to expected returns, and is thus inelastic.
Holding prices fixed, increases to growth expectations raise expected returns, but demand curves
shift little in response to that change. While lower price elasticities amplify price impact, smaller
demand curve shifts dampen price impact. These channels do not offset. I show, theoretically
and empirically, that the dampening of price impact due to small demand shifts dominates. As
an extreme example, if demand curves do not shift due to growth expectations shocks, the shocks
have no price impact, regardless of price elasticity. Similarly, small demand shifts due to growth
expectations shocks cause only small price changes even though demand is inelastic. This result
builds on the notion of “myopia” in inelastic markets introduced by Gabaix and Koijen (2020b).

The small causal effect of subjective growth expectations on prices raises the possibility that
subjective growth expectations cannot quantitatively explain important phenomena in asset pricing
and macro-finance. If asset prices are insensitive to growth expectations, extrapolative or overly
optimistic growth expectations cannot quantitatively explain all excess volatility (Bordalo et al.
(2019); Nagel and Xu (2021); Bordalo et al. (2022)), asset bubbles (Bordalo et al. (2021)), or credit
cycles (Bordalo, Gennaioli and Shleifer (2018); Farhi andWerning (2020); Maxted (2020)). However,
since this small causal effect is consistent with low price elasticities, it augments the importance
of other demand shocks, and it thus allows other resolutions of asset pricing and macro-finance
puzzles.

If subjective growth expectations do distort asset prices significantly, such distortion must oper-
ate through dynamic amplification mechanisms that lie outside existing models that use measured
subjective growth expectations to match asset pricing moments. I find that the standard mechanism
through which subjective growth expectations distort asset prices is far weaker empirically than as-
sumed in such models. Yet other mechanisms outside existing models could heighten the importance
of subjective growth expectations at longer time horizons. My empirical results motivate augment-
ing existing models with these alternative mechanisms, and my empirical methodology provides a
general framework for using data on beliefs, prices, and holdings to assess these mechanisms.

I begin by presenting evidence of reverse causality, which undermines the common interpretation
of the correlation of subjective growth expectations with prices. Since prices and expectations are
jointly determined, measuring the causal effect of prices on growth expectations requires exogenous
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variation in prices. I thus extend the mutual fund flow-induced trading instrument of Lou (2012)
to instrument for stock prices and examine how these exogenous price changes impact one-year
earnings per share (EPS) growth forecasts from I/B/E/S analysts. Stock-level mutual fund trading
that is induced by inflows and outflows is uninformed; mutual funds tend to scale up or down their
preexisting holdings proportionally. Flow-induced trading is a relevant instrument: this uninformed
trading has a large impact on stock prices. As a shift-share instrument, flow-induced trading does
not require mutual fund flows to be exogenous. A sufficient condition for exogeneity is that the
ex-ante mutual fund ownership shares do not correlate with other variables besides price that im-
pact growth expectation updates. This assumption proves reasonable because expectation updates
depend on new information. The ex-ante mutual fund ownership shares, by construction, do not
depend on new ex-post information, and thus they satisfy the exclusion restriction. To assuage
any endogeneity concerns about the standard flow-induced trading instrument, I conduct a series
of robustness checks. I also consider several extensions that use within stock-quarter variation in
the timing of analyst announcements to provide exogenous variation in prices. These alternate
specifications yield similar results to the baseline specification.

Using the flow-induced trading instrument, I find an exogenous 1% increase in stock price raises
one-year analyst EPS growth expectations by 41 basis points. Thus, the correlation of subjective
growth expectations with prices cannot be interpreted as evidence of a large causal effect of growth
expectations on prices. Testing the core mechanism in subjective belief models requires measuring
this causal effect.

Next, I provide an asset demand framework to formally define the causal effect of subjective
growth expectations on prices and motivate an empirical strategy to measure it. Changes in growth
expectations shift asset demand curves and prices adjust to clear markets. This framework links
this causal effect to previous work that measures the passthrough of subjective beliefs to asset
demand, and studies that measure price elasticities of demand in financial markets. This framework
motivates regressions of price changes and investor-level quantity changes on shocks to investor
growth expectations to identify the causal effect of growth expectations on prices.

However, given the unavailability of investor-level subjective growth expectations, I use analyst
growth expectations, which creates two empirical challenges. First, I must measure the passthrough
of analyst beliefs to investor beliefs. Small price reactions to analyst growth expectations might
arise if either 1) the causal effect of investor growth expectations on prices is small, or 2) analyst
expectations represent a poor proxy for investor growth expectations. Distinguishing these channels
requires measurement of the passthrough of analyst beliefs to investor beliefs. Second, given the
reverse causality result, I must extract exogenous shocks to observed analyst growth expectations
that are not driven by price changes.

To solve the first challenge, I model investors as Bayesians who learn from analysts and other
signals, and I measure analyst influence on investor beliefs. Bayesian learning imposes structure on
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how analyst influence varies in the cross-section of equities. In particular, Bayesian learning implies
signal averaging: the influence of each analyst declines with the number of analysts who cover
a stock. This signal-averaging mechanism also appears in a large class of non-Bayesian learning
models as well. Thus, cross-sectional variation in the number of analysts who cover each stock
identifies analyst influence on investor expectations. This use of signal averaging is a novel method
of identifying analyst influence on investor beliefs without observing investor beliefs.

To solve the second challenge and extract exogenous shocks to analyst growth expectations, I
use tools from a branch of machine learning known as collaborative filtering. I model analyst beliefs
as having a factor structure, and I use a latent factor model to extract idiosyncratic shocks to
analyst growth expectations (e.g., private information garnered by the analyst) that are orthogonal
to common factors (e.g., stock prices, public signals, and firm characteristics). Removing these
common factors yields exogenous variation in analyst beliefs that is uncorrelated with other sources
of asset demand that impact prices. I use collaborative filtering to estimate the latent factor model
(Goldberg et al. (1992); Funk (2006); Koren and Bell (2015)), an approach that overcomes the
limited efficiency of standard factor model estimation methods (e.g., PCA) in this setting where
each analyst institution reports a relatively small number of expectations in each quarter.

Under some homogeneity assumptions, which I later relax, the causal effect of subjective growth
expectations on prices can be identified in the cross-section of equities from price and beliefs data
alone. The two homogeneity assumptions required are that analyst influence on investor beliefs and
the sensitivity of asset demand to growth expectations do not vary across investors. Regressions of
high-frequency price changes shortly after analyst report releases on idiosyncratic analyst growth
expectations shocks and their interaction with the number of analysts covering each stock identify
both analyst influence and the causal effect of investor growth expectations on prices. These regres-
sions imply that a 1% increase in annual investor growth expectations raises stock price by only 7
basis points.

The causal effect of subjective growth expectations on prices can be identified without these ho-
mogeneity assumptions by using investor-level holdings data. I thus use institutional stock holdings
data from SEC Form 13F. Controlling for investor-specific price elasticities of demand, measured
following the approach of Koijen and Yogo (2019), and equilibrium price changes allows for isolation
of low-frequency (quarterly) demand curve shifts from the observed changes in equilibrium quanti-
ties demanded. In the cross-section of each investor’s holdings, regressions of these demand curve
shifts on idiosyncratic analyst growth expectations shocks and their interaction with the number
of analysts covering each stock identify both analyst influence and the sensitivity of demand to
investor growth expectations at the investor level. This analysis demonstrates that the limited
passthrough of beliefs to asset demand found in previous work for specific subsets of investors is a
marketwide phenomenon. Aggregating the sensitivity of demand to investor growth expectations
across investors, and scaling by the aggregate price elasticity of demand, identifies the causal effect
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of investor growth expectations on prices under full investor heterogeneity. This procedure finds
that a 1% increase in annual investor growth expectations raises stock prices by only 16 basis points.
This paper represents the first use of subjective beliefs data in asset demand systems.

The remainder of this paper is organized as follows. Section 1.1 reviews related literature.
Section 2 defines, at high level, the two directions of causality quantified in this paper. Section 3
discusses the data I use. Section 4 presents evidence of reverse causality: a causal impact of prices
on growth expectations. Section 5 discusses a theoretical framework to formally define the causal
effect of subjective growth expectations on prices. This section also explains how a low sensitivity
of demand to expected return generates both inelastic demand and a small causal effect of growth
expectations on prices. Section 6 uses price and beliefs data to identify the causal effect of growth
expectations on prices under assumptions regarding investor homogeneity. Section 7 uses holdings
data to relax these homogeneity assumptions and presents the associated estimates of the causal
effect. Section 8 concludes.

1.1 Related Literature

This paper relates to four bodies of literature: studies linking surveyed beliefs to asset prices,
research on the passthrough of beliefs to asset holdings, recent developments in measuring price
elasticities of demand, and previous work at the intersection of analyst expectations and asset
prices.

First, the past decade has seen a resurgence of interest in using surveys to measure beliefs and
mapping these beliefs to asset prices. Greenwood and Shleifer (2014) assess extrapolation in sur-
veyed expectations of market returns and the extent to which these beliefs correlate with market
price levels and returns. Bordalo et al. (2019), Nagel and Xu (2021), and Bordalo et al. (2022)
investigate the extent to which long-term growth expectations correlate with cross-sectional and
time-series variation in price levels. De La O and Myers (2021) find, in a variance decomposi-
tion, that subjective growth expectations correlate with price-dividend ratios more strongly than
subjective expected returns do. While this literature documents important reduced-form facts, it
does not quantify the causal impact of beliefs on asset prices. Expectations and prices are jointly
determined in equilibrium, and both are subject to other, potentially correlated shocks. For this
reason, reduced-form correlations between beliefs and prices do not measure the causal effect of
beliefs on prices; such correlations could be picking up reverse causality or omitted variable bias.
In this paper I provide evidence of reverse causality: there is a causal effect of prices on growth
expectations.1 Given this endogeneity concern, I use the demand-based asset pricing approach to
develop an empirical strategy to cleanly identify the causal effect of subjective growth expectations

1The reverse causality result relates broadly to the corporate finance literature that assesses the dependence of
managerial decisions on prices (e.g., Giammarino et al. (2004); Edmans, Goldstein and Jiang (2012)).
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on asset prices. Since this identification strategy uses cross-sectional variation across assets, I focus
on the cross section of stocks (as in Bordalo et al. (2019)) instead of the time series of the equity
market (as in Nagel and Xu (2021); De La O and Myers (2021); Bordalo et al. (2022)).

Second, a large literature studies the passthrough of beliefs to asset demand, finding a limited
sensitivity of demand to expected returns: investors do not trade aggressively based on their beliefs.
Investors who report higher expected returns for an asset hold only slightly larger portfolio weights
in that asset in comparison to less bullish investors (Vissing-Jorgensen (2003); Dominitz and Manski
(2007); Kézdi and Willis (2009); Hurd, Van Rooij and Winter (2011); Amromin and Sharpe (2014);
Arrondel, Calvo Pardo and Tas (2014); Drerup, Enke and Von Gaudecker (2017); Giglio et al.
(2021a); Ameriks et al. (2020); Andonov and Rauh (2020); Dahlquist and Ibert (2021)). Investors
adjust their portfolio weights little in response to changes in expected returns (Merkle and Weber
(2014); Meeuwis et al. (2018); Giglio et al. (2021a); Bacchetta, Tieche and Van Wincoop (2020);
Giglio et al. (2021b); Beutel and Weber (2022)). This paper fills three gaps in the previous literature.
First and foremost, I focus on the asset pricing implications of the limited passthrough of beliefs
to demand, which mostly have not yet been studied in previous work.2 The insensitivity of asset
demand to expectations limits the price impact of subjective growth expectations. Second, while
most of this literature focuses on household expectations and holdings, I find that the limited
passthrough of expectations to holdings is a marketwide phenomenon.3 Third, whereas previous
work measures the passthrough of subjective expected returns to asset demand, this paper focuses
on subjective growth expectations.

Third, a growing literature measures price elasticities of demand in financial markets (Shleifer
(1986); Harris and Gurel (1986); Chang, Hong and Liskovich (2014); Pavlova and Sikorskaya (2020);
Koijen and Yogo (2019); Gabaix and Koijen (2020b); Haddad, Huebner and Loualiche (2021); Li
(2021); Schmickler and Tremacoldi-Rossi (2022)), documenting elasticities for individual stocks in
the range of 0.1—2, which is several orders of magnitude smaller than in standard models (Petajisto
(2009)). The goal of the current paper is not to measure price elasticities of demand, but to
investigate the implications of inelasticity for the role beliefs can play in determining asset demand
and prices. In particular, inelastic demand driven by an insensitivity of demand to expected returns
implies a small causal effect of subjective growth expectations on prices. This result builds on the
notion of “myopia” in inelastic markets introduced by Gabaix and Koijen (2020b).

Fourth, a large body of work examines the link between equity research analyst reports and
asset prices, finding directionally sensible price reactions for individual stocks after the release of
new analyst ratings, price targets, and earnings forecasts (Davies and Canes (1978); Groth et al.
(1979); Barber and Loeffler (1993); Stickel (1995); Albert Jr and Smaby (1996); Francis and Soffer

2An exception is Charles, Frydman and Kilic (2021), which argues in an experimental setting that the limited
passthrough of beliefs to asset demand can weaken the importance of beliefs for prices.

3Some research examines some types of institutional investors (Andonov and Rauh (2020); Bacchetta, Tieche
and Van Wincoop (2020); Dahlquist and Ibert (2021)).
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(1997); Park and Stice (2000); Barber et al. (2001); Brav and Lehavy (2003); Irvine (2003); Asquith,
Mikhail and Au (2005); Kerl and Walter (2008); Fang and Yasuda (2014); Ishigami and Takeda
(2018)). Unlike such previous literature, I measure the causal effect of investor, not analyst, growth
expectations on prices, using analyst reports as information shocks to investor growth expectations.
I am thus not directly concerned with analyst expectations; I simply use analyst expectations to
instrument for investor beliefs.

2 Fixing Ideas: Two Directions of Causality

Contrary to the interpretation adopted by much of the beliefs literature, the strong correlation of
surveyed growth expectations and asset prices might not imply a large causal effect of investor
growth expectations on prices. First, two directions of causality might give rise to this strong
correlation: 1) a causal effect of growth expectations on prices and 2) reverse causality, a causal
effect of prices on growth expectations. Second, investors’ true growth expectations might not align
perfectly with surveyed growth expectations, which usually come from equity research analysts due
to a lack of surveys on investor growth expectations.

The following system of simultaneous equations captures these two directions of causality and
this growth expectations misalignment:

P = MgG
I + ε (1)

GI = βGA + ν (2)
GA = αP + u, (3)

where GI and GA are investor and analyst subjective growth expectations, respectively, and P

is log price. For simplicity, assume ε, ν, and u are uncorrelated. I do not make this assumption
empirically; much of the empirical strategy is dedicated to constructing exogenous price and growth
expectation shifters. To convey the intuition, this section considers a representative investor whose
growth expectations do not depend on prices, though Section 5 relaxes these assumptions.

Mg represents the causal effect of investor subjective growth expectations on prices: how much
would prices rise due to a 1% rise in growth expectations driven by ν holding other determinants of
prices fixed (e.g., a rise in growth expectations due to the “animal spirits” of Keynes (1937)).4 β is
the passthrough of analyst expectations to investor expectations, reflecting potential misalignment

4As discussed in Section 5, Mg captures any amplification of price impact due to investor learning from prices
(i.e., investor growth expectations rise, which raises price and further raises investor growth expectations, etc., as
in Bastianello and Fontanier (2021b)). Mg does not capture amplification of price impact due to analyst learning
from prices (i.e. investor growth expectations rise, which raises price, which raises analyst growth expectations,
which further raises investor growth expectations, etc.). The parameter that captures this amplification channel is
Mg/(1 −Mgβα). However, this channel is empirically weak. I find Mg ≈ 0.1, β = 0.06, and α ≈ 0.4, and so this
channel amplifies Mg by only a factor of 1.002.
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between these expectations. α denotes the causal effect of prices on analyst growth expectations
(i.e., reverse causality): how much would analyst growth expectations rise due to a 1% rise in price
driven by ε holding other determinants of growth expectations fixed (e.g. a rise in price due to
exogenous supply shocks as in Grossman and Stiglitz (1980)).

The literature that explains variation in asset prices with measured subjective growth expecta-
tions (e.g., Bordalo et al. (2019, 2022); Nagel and Xu (2021); De La O and Myers (2021)) interprets
the correlation of analyst growth expectations (GA) and prices (P ) as evidence of a large Mg.
This literature uses analyst growth expectations as a proxy for the expectations of a representative
investor. This interpretation assumes:

1. α = 0: There is no causal effect of prices on analyst growth expectations. The class of
models that uses measured subjective growth expectations to match asset pricing moments
does not feature rational learning from prices (e.g. Grossman and Stiglitz (1980)) or price
extrapolation.5 However, these mechanisms raise the possibility that, empirically, α 6= 0.

2. β = 1 and ν = 0: Investor expectations are the same as analyst growth expectations. The class
of models that uses measured subjective growth expectations to match asset pricing moments
features a representative investor and so admits only one set of beliefs. However, a large
literature finds evidence of belief heterogeneity6, which raises the possibility that investors
and analysts disagree.

Under these two assumptions, the correlation of analyst growth expectations with prices does provide
evidence of the core mechanism in subjective belief models: a large causal effect of investor growth
expectations on prices (a large Mg). In this case, any behavioral biases observed in analyst growth
expectations reflect biases in investor expectations and significantly distort asset prices. However,
previous work has not justified these assumptions by quantifying α or β. If α > 0, analyst growth
expectations could correlate strongly with prices, even if Mg is small.

This paper empirically challenges the mechanism in subjective belief models. Using exogenous
shocks to prices (ε in (1)), I find evidence of reverse causality (α > 0), which necessitates direct
measurement of Mg to quantify the strength of the mechanism in subjective belief models. Mea-
suring Mg entails two empirical difficulties. First, since I observe only analyst, not investor, growth
expectations, I must identify the passthrough of analyst expectations to investor expectations β
separately from Mg. Second, the presence of reverse causality implies that I must extract exoge-
nous shocks to observed analyst growth expectations not driven by price changes (u in (3)). I find

5For example, Hong and Stein (1999); Barberis et al. (2018); Bastianello and Fontanier (2021a); see Barberis
(2018) for a survey

6Malmendier and Nagel (2016); Landvoigt (2017); Ben-David et al. (2018); Meeuwis et al. (2018); Bailey et al.
(2019); D’Acunto et al. (2019); Giglio et al. (2021a); Das, Kuhnen and Nagel (2020); Leombroni et al. (2020);
Kindermann et al. (2021); Weber, Gorodnichenko and Coibion (2022)

9



that Mg is empirically an order of magnitude smaller than assumed in standard models. In this
sense, subjective growth expectations matter far less for asset prices than assumed in these models.

3 Data

This paper uses three main sources of data: equity research analyst growth expectations, stock
prices, and institutional investor holdings.

I use I/B/E/S analyst earnings-per-share (EPS) forecasts to construct one-year growth expec-
tations. I/B/E/S reports EPS forecasts at the quarter × horizon × analyst institution × analyst ×
stock level. For example, I see the time series of Apple EPS forecasts issued by all equity research
analysts at Goldman Sachs for multiple horizons. Forecast horizons range from one quarter up to
ten fiscal years ahead, with varying degrees of coverage. For each forecast horizon, I average EPS
forecasts for each stock within each quarter at the level of their parent institutions (e.g., I average
the EPS forecasts for one fiscal year ahead for Apple made by all Goldman Sachs analysts during
the third quarter of 2022).7 I then interpolate among horizons to construct fixed one-year horizon
EPS forecasts.8 I scale by trailing one-year EPS to obtain annual EPS growth expectations and
take quarter-over-quarter changes.9 Thus, I obtain a stock × analyst institution × quarter panel
of quarterly changes in one-year EPS growth expectations.10

I obtain stock price data from CRSP and accounting data to construct firm characteristics from
the Compustat North America Fundamentals Annual and Quarterly Databases.

I use institutional holdings data from two sources. First, to construct the flow-induced trading
instrument of Lou (2012), I use mutual fund holdings from the Thomson Reuters S12 database
and mutual fund flows from the CRSP Mutual Fund database. Second, to cover a broader set
of investors I use institutional holdings data from SEC Form 13F, provided by Thomson Reuters
through WRDS. The SEC requires all institutional investors with at least $100 million in assets
under management (AUM) to report itemized stock-level long holdings quarterly.11 I allocate all
remaining stock holdings to a residual “household” sector, which includes both direct stock holdings
by households and those by non-13F institutions (i.e. institutions with less than $100 million AUM).

The final dataset spans 1984-01:2021-12 and contains 2, 173, 492 quarterly changes in analyst-

7I use analyst institution-level variation instead of analyst-level variation to attain greater efficiency when esti-
mating the within-quarter latent factor model in Section 6 to extract idiosyncratic shocks to analyst beliefs, since
each analyst institution rates far more stocks per quarter than each analyst.

8This interpolation proves necessary because analysts report EPS forecasts by fiscal year. For example, during
June 2022, an analyst reports an EPS forecast for Apple for fiscal years 2022 and 2023. To obtain the one-year EPS
forecast from June 2022 to June 2023, I interpolate between the fiscal year 2022 and 2023 EPS forecasts. De La O
and Myers (2021) follow the same interpolation procedure.

9If the trailing one-year EPS is negative, I use its absolute value. All results prove robust to removing firms with
negative trailing one-year EPS.

10I winsorize these final values at the 5% level to remove some extremely large outliers.
11Short positions are not reported in 13F data.
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reported annual growth expectations for 14, 734 stocks and 1, 150 equity research institutions, and
51, 438, 573 investor-stock-quarter holdings changes for 7, 572 unique investors. The availability of
the I/B/E/S EPS forecast data constrains the starting point of the time period.

4 Reexamining Existing Evidence: Reverse Causality

This section presents evidence of reverse causality: a causal effect of prices on subjective growth
expectations. This result undermines interpretation of the correlation of growth expectations with
prices as evidence of the core mechanism in subjective beliefs models: a large causal effect of
growth expectations on prices. Reverse causality also necessitates a more structured approach to
measuring the causal effect of growth expectations on prices, since OLS regressions do not yield
consistent estimates.

As discussed in Section 2, the reverse causality concern is that prices and growth expectations
are jointly determined in equilibrium, leading to the classic simultaneous equations problem. Let
∆Ga,n,t be the quarterly change in analyst institution a’s annual growth expectation for stock n
from quarter t − 1 to quarter t. Let ∆pa,n,t be the price change between the release of analyst
institution a’s growth expectations for stock n in quarters t− 1 and t.12 Thus, ∆Ga,n,t and ∆pa,n,t
cover the same time period. We have the following system of simultaneous equations:

∆pa,n,t = C∆Ga,n,t +Mza,n,t + εa,n,t (4)
∆Ga,n,t = α∆pa,n,t + νa,n,t. (5)

Analyst growth expectations have a causal effect on prices (C), and vice versa (α). C in (4) is
the causal effect of analyst growth expectations on prices, not the causal effect of investor growth
expectations on prices. Using the notation from Section 2, C = Mgβ. Both prices and growth
expectations experience unobserved and possibly correlated shocks (εa,n,t and νa,n,t, respectively).

I test for the presence of a causal effect of prices on growth expectations: α 6= 0 in (5). Thus, I
need an instrument za,n,t that provides exogenous variation in prices. This instrument must satisfy:

1. (Relevance) M 6= 0 in (4): the instrument has an effect on price.

2. (Exclusion) E[za,n,tνa,n,t] = 0: the instrument affects growth expectations only through price,
and it does not correlate with other determinants of growth expectations.

I obtain exogenous price changes using several instruments based on the mutual fund flow-induced
trading (FIT) instrument from Lou (2012). Section 4.1 justifies the standard FIT instrument and

12If analyst institution a reports more than one growth expectation for stock n during each of quarter t− 1 and
quarter t (about 25% of (analyst institution, stock, quarter) observations fall into this category), I use the dates
corresponding to the first announcement in t− 1 and the last announcement in t to construct ∆pa,n,t.
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Section 4.2 reports estimates of α. Section 4.3 considers a series of robustness checks to address
endogeneity concerns about the standard FIT instrument. This section also introduces a modified
version of the FIT instrument that exploits within stock-quarter variation in the timing of analyst
report releases. These alternate specifications yield quantitatively similar results.

4.1 Exogenous Price Variation: FIT Instrument

I use the Lou (2012) mutual fund flow-induced trading instrument to obtain the exogenous variation
in prices needed to test for reverse causality. Section 4.3 considers refinements and extensions of
the instrument.

Flow-induced trading (FIT) provides exogenous price variation in the cross section of stocks.
A literature dating back to Frazzini and Lamont (2008) finds that stock-level mutual fund trading
that is induced by inflows and outflows is uninformed: mutual funds tend to scale up or down their
preexisting holdings proportionally to their preexisting portfolio weights. For example, a $1 inflow
would induce an S&P 500 index fund to mechanically allocate about five additional cents to Apple,
since the market cap weight of Apple in the S&P 500 is about 5%. This predicted mechanical
component of cross-sectional trading induced by flows is uninformed.

To construct the FIT instrument, I first calculate the quarterly flow to mutual fund i as

Flow i,t = TNAi,t − TNAi,t−1 · (1 + Reti,t)
TNAi,t−1

where TNAi,t is the total net assets of mutual fund i in quarter t and Reti,t is the mutual fund
return from quarter t − 1 to quarter t. The predicted mechanical trading by fund i in stock n

induced by this quarterly flow is then:13

FITi,n,t = SharesHeld i,n,t−2 · Flow i,t.

Using the number of shares held from quarter t − 2 instead of from quarter t − 1 bolsters the
credibility of the exclusion restriction, as described below. I aggregate this flow-induced trading
in stock n across all funds, and I scale by the total number of shares outstanding to obtain the
predicted flow-induced trading in stock n in quarter t14:

13It does not matter whether the passthrough of flows to trading is not one-to-one. Let FITTruei,n,t be the true,
unobserved flow-induced trading by fund i in stock n due to flows in quarter t. Let FITTruei,n,t = bFITi,n,t + ei,n,t. It
does not matter if b 6= 1 or ei,n,t 6= 0, as long as the relevance condition holds (i.e., the observed FITn,t impacts
price) and exclusion restriction E[FITn,tνa,n,t] = 0 holds. That is, it does not matter if the observed FIT instrument
is “measured with error” with respect to the true, unobserved FIT instrument. b 6= 1 or ei,n,t 6= 0 bias the estimate
of the first-stage coefficient M/(1 − αC) in (4), but does not affect the consistency of the second-stage estimate of
α, since the reduced-form coefficient is biased to exactly the same extent as the first-stage coefficient, and thus the
bias cancels out when computing the second-stage α estimate.

14This specification is closer to that in Li (2021) than to the original specification in Lou (2012) in that I do not
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FITn,t =
∑

fund i FITi,n,t

SharesOutstandingn,t−2
. (6)

As a shift-share instrument, the identifying variation in the FIT instrument comes from hetero-
geneous ownership shares (Goldsmith-Pinkham, Sorkin and Swift (2020)):

Si,n,t−2 = SharesHeld i,n,t−2

SharesOutstandingn,t−2
.

Sn,i,t−2 represents the proportion of all shares of stock n owned by mutual fund i in quarter t− 2.
The identifying assumption is that these ex-ante ownership shares (from quarter t − 2) do not
correlate with non-price determinants of growth expectations updates (from quarter t− 1 to t):

E [Si,n,t−2νa,n,t | Controls] = 0, (7)

where controls include stock and quarter fixed effects, and stock characteristics. (7) is a sufficient
condition for E [FITn,tνa,n,t | Controls] = 0.15 For example, in the cross-section of stocks within each
quarter, analyst growth expectation updates (from quarter t− 1 to t) should not be more positive
for stocks with larger Vanguard Explorer Fund ownership shares from quarter t− 2.

This assumption is reasonable because changes in growth expectations depend on new informa-
tion (in quarters t − 1 or t), which by construction cannot affect ex-ante ownership shares (from
quarter t − 2). Any information in the ex-ante ownership shares is already incorporated in the
lagged expectation Ga,n,t−1, and so is differenced out in ∆Ga,n,t. Old information (from quarter
t − 2) can correlate with old (from quarter t − 1) and new (from quarter t) expectations, but old
information does not correlate with changes in expectations (from quarter t− 1 to quarter t).

This identification strategy does not require mutual fund flows to be exogenous. Thus, al-
though previous work documents correlations of flows with surveyed beliefs (Greenwood and Shleifer
(2014)), past performance (Ippolito (1992); Chevalier and Ellison (1997); Sirri and Tufano (1998)),
and past flows (Lou (2012)), none of these correlations threatens this strategy. I assume only that
the ex-ante ownership shares do not correlate with non-price determinants of growth expectations.

multiply the numerator summand by a “partial scaling factor” to reflect the fact that mutual funds may buy or sell
less than one dollar in existing positions per dollar of flow they receive due to liquidity or other constraints. However,
while Li (2021) scales by the total number of shares held by all mutual funds in the previous quarter, I scale by the
number of shares outstanding so FITn,t = 0.01 can be interpreted as buying 1% of stock n’s shares.

15The intuition for why exogeneity of the ex-ante ownership shares proves sufficient for E [FITn,tνa,n,t | Controls] =
0, is that using the actual FIT instrument is equivalent to using the ownership shares Si,n,t−2 as instruments in an
overidentified GMM system with a particular weighting matrix (Goldsmith-Pinkham, Sorkin and Swift (2020)).
Appendix A.1 provides a simple one-period, one-analyst, two-fund example to illustrate this argument.
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4.2 Empirical Results

Using the FIT instrument, I run a two-stage least-squares regression and find α > 0: there is a
causal effect of prices on subjective growth expectations.

Specifically, I run the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t. (8)

The first stage regresses price changes between analyst reports (∆pa,n,t) on the FIT instrument
(FITn,t). The second stage regresses analyst growth expectations changes (∆Ga,n,t) on instrumented
price changes (∆p̂a,n,t). Xn,t represents controls, including stock and quarter fixed effects, and one-
quarter lagged (i.e., from quarter t− 1) stock characteristics motivated by Fama and French (2015)
and used by Koijen and Yogo (2019): log book equity, profitability, investment, market beta, and
the dividend-to-book equity ratio (instead of the market-to book equity ratio, which would contain
price).16

Table 1 reports the regression results. The OLS regressions of growth expectations on prices in
columns 1 and 2 display a strong correlation between these objects, as previous work documents
(Bordalo et al. (2019, 2022); Nagel and Xu (2021); De La O and Myers (2021)). The first stage
regressions in columns 3 and 4 are strong, with F -statistics of over 15 (partial F -statistics of 16 and
15, respectively). The reduced-form regressions of expectations changes on the FIT instrument in
columns 5 and 6 are also significant. The second-stage α estimates in columns 7 and 8 reveal a sta-
tistically and economically significant causal effect of prices on growth expectations: an exogenous
1% increase in price raises one-year growth expectations by 41 basis points.17

Appendix A.4 repeats two-stage least squares regression (8) using the long-term earnings growth
(LTG) expectations focused on by Bordalo et al. (2019, 2022) and Nagel and Xu (2021). There
is a causal effect of prices on LTG expectations: an exogenous 1% increase in price raises LTG
expectations by 16 basis points.

This reverse causality result undermines the common interpretation of the correlation of growth
expectations with prices. This correlation does not provide evidence of the core mechanism in
subjective belief models: a large causal effect of growth expectations on prices. Quantifying the
strength of that mechanism requires direct measurement of this causal effect. However, measuring

16Appendix Figure A1 displays binscatter plots for the first-stage and reduced-form regressions in (8).
Profitability is the ratio of operating profits over book equity. Investment is the log annual growth rate of assets.

Market beta is constructed from 60-month rolling regressions using returns in excess of the one-month Treasury bill
rate. Profitability, investment, and market beta are winsorized at the 2.5th and 97.5th percentiles. Since dividends
and book equity are non-negative, I winsorize them at the 97.5th percentile.

17Appendix Figure A2 illustrates that these results prove robust to alternative specifications.
To determine whether the effect of prices on growth expectations reverts at longer horizons, I add lagged price

changes to (8). I find no significant evidence of reversal, as reported in Appendix Table A1.
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this causal effect demands a more structured approach, since OLS regressions of prices on growth
expectations cannot yield consistent estimates due to reverse causality.

There are multiple potential mechanisms that might underlie this causal effect of prices on
analyst growth expectations. For example, analysts might learn from prices because they believe
prices reflect private information known to investors, as in Grossman and Stiglitz (1980). In this case
α reveals how informative about fundamentals analysts perceive prices to be. Analysts might also
extrapolate fundamentals from prices.18 Alternatively, analysts might simply adjust their growth
expectations to justify prevailing stock prices. In this case α reveals analysts’ perceived persistence
of growth expectations.19 I do not take a stance on the mechanism in this paper. Regardless of
the mechanism, this reverse causality result undermines the interpretation of the correlation of
subjective growth expectations with prices in much of the beliefs literature.

4.3 Refining the Instrument

This section discusses robustness checks and extensions of the standard FIT instrument that I use
to assuage endogeneity concerns.

The key threat to identification is the possibility that analyst expectation updates depend on
lagged information. This situation can arise only if analysts fail to incorporate all available infor-
mation from quarter t − 2 into growth expectations during quarter t − 1. For example, ex-ante
ownership shares might depend on ex-ante stock characteristics:

Si,n,t−2 = b
′

iXn,t−2 + S̃i,n,t−2.

At the same time, if analysts form expectations sub-optimally (i.e., in a non-Bayesian manner),
then analyst expectation updates might also depend on lagged stock characteristics:

∆Ga,n,t = α∆pa,n,t + λ′Xn,t−2 + ν̃a,n,t︸ ︷︷ ︸
≡νa,n,t

, (9)

because analysts did not incorporate this information fully inGa,n,t−1. In this situation, the exclusion
restriction is violated: E [Si,n,t−2νa,n,t] 6= 0.

The next two sections consider robustness checks and extensions to address this concern.

18Behavioral models in which prices affect expectations typically involve expectations in the current period that
depend on past price changes (e.g. Hong and Stein (1999) or Barberis et al. (2018); see Barberis (2018) for a survey).
Fontanier (2021) features fundamental extrapolation from the current price.

19α = 0.41 implies an annual perceived AR(1) persistence of 0.62 (see Appendix (A.2) for details).
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4.3.1 Robustness Checks for Standard FIT Instrument

First, I control for stock characteristics in regression (8). As Table 1 reports, controlling for char-
acteristics from quarter t− 1 does not change the second-stage α estimate. Table A.3 in Appendix
A2 additionally controls for characteristics (log book equity, profitability, investment, market beta,
and dividend-to-book equity ratio) from quarter t − 2, which absorbs the variation in expectation
updates driven by the lagged characteristics (λ′Xn,t−2) in (9). Doing so yields essentially the same
second-stage α estimate as in Table 1 (42 basis points instead of the baseline 41 basis points), which
suggests that endogeneity due to sluggish updating might not be a serious concern.

Second, in Appendix A.3 I construct the FIT instrument using earlier lags of the ownership
shares. Whereas the baseline specification finds α = 41 basis points using ownership shares lagged
by two quarters, Table A3 reports that lagging the ownership shares as far as four quarters delivers
similar α estimates (41 to 44 basis points). The similarity of the second-stage α estimates across
lags also suggests that endogeneity due to sluggish updating might not be a serious concern.

4.3.2 Alternate Instrument Using Within Stock-Quarter Variation

I develop a modified version of the FIT instrument that exploits within stock-quarter variation
in the timing of analyst report releases. This strategy allows for use of stock-quarter fixed ef-
fects, which absorb variation in expectation updates driven by stock characteristics (lagged and
contemporaneous) in (9). This section outlines this strategy. See Appendix A.5 for details.

Multiple analyst institutions issue growth expectations for each stock in each quarter and gen-
erally not on the same day. Consider the timing in Figure 1. Institution b reports expectations for
stock n later than institution a in quarters t− 1 and t. Thus, b’s inter-announcement price change
∆pb,n,t is exposed more to FITn,t and less to FITn,t−1 than is ∆pa,n,t. This variation in analyst
report timing allows construction of an analyst-stock-quarter specific instrument20:

FITa,n,t = # days elapsed in t− 1 since Ga,n,t−1

92︸ ︷︷ ︸
≡w1

a,n,t

·FITn,t−1+# days elapsed in t until Ga,n,t

92︸ ︷︷ ︸
≡w2

a,n,t

·FITn,t.

As a shift-share instrument, the identifying variation in FITa,n,t comes from within stock-quarter
variation in the timing weights w1

a,n,t and w2
a,n,t across analysts. The identifying assumption is that

the within stock-quarter analyst timing is uncorrelated with non-price determinants of expectation

20In this section I construct FITn,t using ownership share weights from quarter t − 1 (Si,n,t−1) instead of those
from t − 2 (Si,n,t−2) as in Section 4.1. Doing so improves power. Using Si,n,t−1 in Section 4.1 would potentially
violate the exclusion restriction there because Si,n,t−1 (measured at the end of quarter t− 1) occurs in the middle of
the expectation update from quarter t− 1 to quarter t. In this section, however, the endogeneity of Si,n,t−1 is not a
problem: the identifying assumption is now En,t [wa,n,t−1νa,n,t] = En,t [wa,n,tνa,n,t] = 0, not En,t [Si,n,t−1νa,n,t] = 0.
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Figure 1: Within Stock-Quarter Timeline

Ga,n,t−1 Ga,n,tGb,n,t−1 Gb,n,t

∆pa,n,t

∆pb,n,t

FITn,t−1 FITn,t

Staggered timing of expectation releases for two analyst institutions, a and b, for stock-quarter pair (n, t).
Institution b reports expectations for stock n later than institution a in both t − 1 and t, so ∆pb,n,t is
exposed more to FITn,t and less to FITn,t−1 than is ∆pa,n,t.

updates:
E
[
w1
a,n,tνa,n,t | Fixed Effectn,t

]
= En,t

[
w2
a,n,tνa,n,t | Fixed Effectn,t

]
= 0,

For example, Goldman Sachs reporting expectations for Apple before J.P. Morgan does not predict
these institutions’ non-price determinants of growth expectations. If institutions pick announcement
dates ex-ante (e.g., during the previous quarter) and do not deviate from that preset schedule based
on new information that affects growth expectations, then this assumption is satisfied.

The α estimates from this strategy (30 to 31 basis points in Appendix Table A5) are quantita-
tively similar to those in Table 1 (41 basis points), which again suggests that dependence of growth
expectation updates on lagged information may not be a serious identification concern.

To address concerns about the endogeneity of analyst report timing in this within stock-quarter
strategy, I conduct a version of this strategy using only ex-ante predictable variation in the timing
of analyst reports in Appendix A.5.1. This strategy also yields significantly positive α estimates
(α = 99 to 110 basis points, although these point estimates are not statistically distinguishable
from 41 basis points at the 95% confidence level).

5 A Framework for Demand, Beliefs, and Prices

This section constructs a theoretical framework for thinking about asset demand, beliefs, and prices
in equilibrium in order to formally define the parameter of interest: the causal effect of subjective
growth expectations on prices. At a high level, shocks to growth expectations shift asset demand
curves and prices must adjust to clear markets. This framework motivates the empirical strategies
I use to measure this causal effect in Sections 6 and 7.

Before introducing the causal effect of subjective growth expectations on prices, I must first
define asset demand (Section 5.1) and shocks to growth expectations (Section 5.2). Section 5.3
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defines the causal effect of subjective growth expectations on prices. Section 5.4 explains how
insensitivity of demand to expected returns generates both inelastic demand and a small causal
effect of growth expectations on prices. Section 5.5 presents the benchmark value for this causal
effect in standard models. These sections all consider a representative investor. Section 5.6 explains
how the framework easily generalizes to multiple, heterogeneous investors.

5.1 Asset Demand

This section builds on the setup of Gabaix and Koijen (2020b) to construct a tractable asset demand
system. This framework explains how beliefs shift asset demand, and thus lays the groundwork for
defining the causal effect of subjective growth expectations on prices in Section 5.3.

Assume there is a representative investor, N stocks, and one outside asset (labeled n = 0). Time
is indexed by quarter t since I observe investor holdings quarterly. The investor demands portfolio
weight in stock n of θn,t.

To match the empirical lognormal distribution of portfolio weights in the 13F data (Koijen and
Yogo (2019)), I use the following functional form for the portfolio weight demand function motivated
by Gabaix and Koijen (2020b):

θn,t =


θ̂n,t

1+
∑N

m=1 θ̂m,t
, n = 1, . . . , N

1
1+
∑N

m=1 θ̂m,t
, n = 0

θ̂n,t = exp
[
κµn,t + εDn,t

]
, n = 1, . . . , N.

µn,t is the quarterly subjective excess expected return at time t for stock n. εDn,t accounts for all
other sources of asset demand (e.g., risk, risk aversion, nonpecuniary preferences, etc.).21 Thus,

θn,t = exp

κµn,t + εn,t︸︷︷︸
≡εDn,t+ξt

 , n = 1, . . . , N (10)

ξt = − log
[
1 +

N∑
m=1

θ̂m,t

]
.

Current price and growth expectations enter portfolio weight demanded through the expected
return. Letting Pn,t+1 be next period’s price, Dn,t+1 be next period’s dividend, and Rf

t be the gross

21For example, in mean-variance portfolio choice εDn,t captures asset n’s variance, its covariances with all other
assets, and the expected returns on all other assets. More generally, εDi,n,t can incorporate hedging demand (Merton
(1973)), time-varying risk aversion (e.g. Campbell and Cochrane (1999)), time-varying risk (e.g. Bansal and Yaron
(2004); Wachter (2013)), institutional frictions (e.g. He and Krishnamurthy (2013)), non-pecuniary preferences (e.g.
Pástor, Stambaugh and Taylor (2021)), etc.
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risk-free rate, the definition of excess expected return for stock n is

µn,t = Ẽt[Pn,t+1 +Dn,t+1]
Pn,t

−Rf
t . (11)

Ẽt is the conditional expectation under the investor’s subjective measure. I place no restrictions on
subjective beliefs. The investor can have rational expectations or exhibit behavioral biases.

κ is the sensitivity (i.e., semi-elasticity) of asset demand to expected return

∂ log θn,t
∂µn,t

= κ.

κ represents the percentage change in demand (e.g., θn,t = 0.1 to θn,t = 0.101 would be 1%) due to
a one percentage point rise in expected return (e.g., from µn,t = 4% to µn,t = 5%). Since growth
expectations enter demand through expected return, κ plays a key role in defining the causal effect
of subjective growth expectations on prices in Section 5.3.

5.2 Subjective Growth Expectations

This section defines “shock to subjective growth expectations.” I divide the current period t into
two sub-periods: t− and t+. The investor begins in the ex-ante equilibrium at t− and then receives
new information at t+ that shocks his growth expectations. Empirically, this new information is
analyst-reported growth expectations. As a result, demand shifts and prices adjust to clear markets,
as discussed in the next section. Since I am considering a representative investor here, I do not
allow the investor to learn from prices, though Section 5.6 relaxes this assumption.

In subperiod t−, the investor believes that realized quarterly dividend growth gn,t+1 ≡ Dn,t+1
Dn,t

−1
has the following dynamics22:

gn,t+1 = xn,t− + εgn,t+1 (12)
xn,(t+1)− = x̄+ ρ(xn,t− − x̄) + εxn,t+1

where xn,t− represents time-t− conditional subjective growth expectation for quarter t+1 and stock
n. I model xn,t− as an AR(1) process with persistence ρ. Appendix B.1 estimates ρ in the term
structure of analyst growth expectations and finds a quarterly persistence of ρ = 0.7.

At t+, the investor obtains new information (i.e. the analyst expectation) and updates his

22I assume Ẽt[εgn,t+s] = 0,∀s > 0, Ẽt[εgn,tε
g
n,t+s] = 0,∀s 6= 0, Ẽt[εxn,tεxn,t+j ] = 0,∀j 6= 0, and Ẽt[εgn,t+sεxn,t+s′ ] =

0,∀s, s′ . All expectations are taken under the investor’s subjective beliefs.

20



subjective growth expectation for quarter t+ 1:

xn,t+ = xn,t− + ∆xt.

Both εgn,t+1 and εxn,t+1 have conditional expectations of zero at t− and t+.23 As a result, the investor
now believes that realized quarterly dividend growth has the following dynamics:

gn,t+1 = xn,t+ + εgn,t+1

xn,(t+1)+ = x̄+ ρ(xn,t+ − x̄) + εxn,t+1.

Empirically, I work with shocks to one-year growth expectations, since the one-year horizon has
better coverage in I/B/E/S than does the one-quarter horizon. Denote annual realized dividend
growth from quarter t + 1 to t + 4 as Gn,t+4 = Π4

s=1(1 + gt+s) − 1. The shock to the investor’s
one-year subjective growth expectation due to ∆xt is:

∆Ge
n,t = Ẽt+ [Gn,t+4]− Ẽt− [Gn,t+4] ≈

(
1 + ρ+ ρ2 + ρ3

)
∆xt, (13)

where the approximation follows from log(1 + a) ≈ a.24

5.3 Causal Effect of Subjective Growth Expectations on Prices: Mg

This section formally defines the causal effect of subjective growth expectations on prices. This
definition motivates the regressions used to identify this causal effect in Section 6, where I assume
homogeneous demand functions across investors.

The shock to subjective growth expectations shifts the investor’s asset demand curve. Appendix
B.2 linearizes portfolio weight demand function (10) (around small changes in price, expected return,

23One could consider an alternative specification in which the investor learns about εgn,t+1 instead of xn,t. The
difference is that learning about εgn,t+1 does not cause updates to future growth expectations. Thus, learning about
xn,t generally implies larger effects of growth expectations on demand and prices. How much larger these effects are
depends on persistence ρ. The conservative benchmark value of Mg = 1 I use in Section 5.5 assumes ρ = 0, in which
case learning about εgn,t+1 has the same price impact as learning about xn,t.

24I assume this annual growth expectation shock is driven by a shock to the growth expectation for quarter t+ 1
(∆xt). You could make alternative assumptions, such as the shock to annual growth expectation is driven by a shock
to the growth expectation for quarter t+4. For a fixed persistence ρ, a larger shock to quarterly growth expectations
is required in t+ 4 than in t to generate a fixed ∆Gen,t. For ρ = 0.7 a 1% shock to quarterly growth expectation in
quarter t+ 4 or a shock of 1

1+ρ+ρ2+ρ3 = 0.4% in quarter t+ 1 both generate an annual growth expectation shock of
∆Gen,t = 1%. Assuming the shock to quarterly growth expectations occurs earlier in the year yields smaller (more
conservative) model-implied effects of annual growth expectations on prices. The conservative benchmark value of
Mg = 1 I use in Section 5.5 assumes ρ = 0. If ρ = 0, then 1% quarterly growth expectations shocks in both quarters
t+ 1 and t+ 4 generate an annual growth expectations shock of ∆Gen,t = 1%. The only difference is that assuming
the shock occurs one year in the future weakens the price impact today by a discount factor of slightly below one, so
Mg is slightly less than 1 (e.g. 0.96 for a risk-free rate of 4%).
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and other asset demand shocks from t− to t+) and plugs in the dividend growth dynamics from
(12) to obtain the following demand function for stock n:

∆qn,t = −ζ∆pn,t + κg∆Ge
n,t + ∆εn,t. (14)

∆qn,t and ∆pn,t are the percentage changes in quantity of shares demanded and price (pinned down
by market clearing) from t− to t+. ∆Gn,t is the annual growth expectation shock from Section
5.2. ζ is the price elasticity of demand, expressed as a positive number. κg is the causal effect of
subjective growth expectations on asset demand; it represents how much the demand curve shifts
in response to a 1% increase in one-year growth expectation. ∆εn,t is the residual demand shock; it
comprises all sources of asset demand, except changes in growth expectations.

Parameters κg and Mg are functions of the structural parameters κ (demand sensitivity to
expected return), ḡ (average dividend growth), ρ (subjective growth expectation persistence), and
θn,t− (ex-ante portfolio weight). Proposition 1 in the next section discusses these functional forms.

The demand curve shift caused by the subjective growth expectations shock induces a market-
clearing price change. Assume fixed supply, which means ∆qn,t = 0 because there is a representative
investor. Solving for the market clearing price change from t− to t+ yields:

∆pn,t = κg

ζ
∆Ge

n,t + 1
ζ

∆εn,t. (15)

The causal effect of subjective growth expectations on prices, denoted Mg, is thus:

Mg = κg

ζ
.

Mg represents how much the equilibrium price rises in response to a 1% rise in annual subjective
growth expectation. Mg equals the demand shift caused by the change in expectations (κg) divided
by the price elasticity of demand (ζ). Figure 2 illustrates the graphical intuition for Mg.

5.4 Inelastic Demand and Small Mg

This section explains how the low sensitivity of asset demand to expected returns found in previous
work generates both inelastic demand and a small causal effect of subjective growth expectations
on prices. This result relates to the notion of “myopia” in inelastic markets introduced by Gabaix
and Koijen (2020b).

I express sensitivity of demand to growth expectations (κg), price elasticity (ζ), and the effect
of growth expectations on prices (Mg) as functions of the sensitivity of demand to expected return
(κ). Proposition 1 (proven in Appendix B.1) describes these functions under some simplifying
assumptions that yield simple analytical expressions. Proposition 2 in Appendix B.1 relaxes these
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Figure 2: Equilibrium Price Change due to Subjective Growth Expectations Shock
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Graphical illustration of demand shift and price change caused by a subjective growth expectations shock.
The investor begins at equilibrium A at t− and receives new information that raises his annual growth
expectation by 1%. The demand curve shifts right by κg percent. The price must rise by Mg = κg/ζ

percent to clear the market at the new equilibrium of B at t+.

assumptions and describes the general functions, which convey no essential additional intuition.25

Proposition 1 (κg, ζ, and Mg Under Simplifying Assumptions). For zero persistence in growth
expectation xt (ρ = 0), zero average dividend growth (ḡ = 0), and small portfolio weights (θn,t− ≈ 0):

κg = κδ (16)
ζ = 1 + κδ (17)

Mg = κg

ζ
= κδ

1 + κδ
, (18)

where δ is the average dividend-price ratio.

From (16), demand shifts due to growth expectations shocks (κg) are small when κ is small.
Holding price fixed, a 1% transitory (zero persistence) growth expectations shock (i.e., a permanent
1% increase in the level of expected dividends) raises expected return by δ%. Asset demand rises
by κg = κδ in (16), since κ is the sensitivity of demand to expected return.

From (17), demand is inelastic (ζ is small) when κ is small (as argued by Gabaix and Koijen
(2020b)). When price rises 1%, the investor reduces quantity demanded by 1% to maintain the

25The only new dimension of note is that demand and prices respond more to growth expectations shocks (i.e. κg
and Mg are higher) when the persistence of growth expectations (ρ) is higher.
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same portfolio weight, hence the leading 1 in (17).26 At the same time, a rise in price, holding
fundamentals fixed, lowers expected return and thus reduces the portfolio weight demanded. A 1%
increase in price lowers expected return by δ%, which lowers asset demand by κδ%.

From (18), the causal effect of subjective growth expectations on prices (Mg) is small when κ is
small, since Mg = κδ/(1 + κδ) is an increasing function of κ. Insensitivity of demand to expected
returns generates 1) small demand shifts due to growth expectations shocks, which dampen price
impact, and 2) inelastic demand, which augments price impact. However, these channels do not
cancel out because the demand shift (κg) is more sensitive to κ than is the elasticity (ζ). The
intuition is that price elasticity features two components, only one of which depends on κ. The
strength of the change in portfolio weight demanded when expected returns change due to price
movements depends on κ. However, the mechanical selling of shares when price rises to maintain
a constant portfolio weight does not depend on κ. As an extreme example, if demand is perfectly
insensitive to expected return (κ = 0), then growth expectations shocks do not shift the demand
curve (κg = 0) and have zero price impact (Mg = 0), in spite of demand being very inelastic (ζ = 1).
If κ is positive but small, growth expectations shocks induce small demand curve shifts, which have
only small price impact.

To illustrate this point graphically, Figure 3 plots both the causal effect of subjective growth
expectations on prices (Mg) and price elasticity (ζ) as functions of the the sensitivity of demand to
expected return (κ). The range of κ estimates found in previous work using matched expectations
and holdings data (κ ∈ [0, 16], see Appendix J for details) implies both realistically inelastic demand
(ζ ≈ 1, consistent with previous estimates27) and a small Mg.28 For this range of κ, the model-
implied Mg is in the range of about [0, 0.2], which is far smaller than the benchmark Mg = 1
discussed in the next section. This model-implied range of [0, 0.2] is consistent with the empirical
range of Mg ∈ [0.07, 0.16] I find in Sections 6 and 7.29

26To model investors who seek to maintain a constant number of shares instead of a constant portfolio weight
when price changes (e.g. index funds), one can add a wedge ψ to the demand function so that the elasticity is
ζ = 1 − ψ + κδ. For ψ = 0 and κ = 0, the investor reduces quantity of shares demanded by 1% in response to
a 1% rise in price to maintain a constant portfolio weight. For ψ = 1 and κ = 0, the investor does not change
quantity of shares demanded in response to a 1% rise in price. See Appendix G.3. in Gabaix and Koijen (2020b) for
further discussion. Bacchetta, Tieche and Van Wincoop (2020) find, in the context of international mutual funds,
that investors’ desire to rebalance to ex-ante portfolio weights proves stronger than their desire to maintain a fixed
number of shares, which suggests a relatively small ψ.

27Chang, Hong and Liskovich (2014); Pavlova and Sikorskaya (2020); Koijen and Yogo (2019); Gabaix and Koijen
(2020b); Schmickler and Tremacoldi-Rossi (2022)

28Previous work usually regresses portfolio weights (θ) on expected returns (µ) and so measures ∂θ/∂µ. However,
κ = ∂ log θ/∂µ = ∂θ/∂µ · 1/θ in (10). Appendix J details the assumptions about the average portfolio weights that
I use to convert estimates of ∂θ/∂µ to estimates of κ = ∂ log θ/∂µ for each of the papers used to establish the gray
shaded range in Figure 3.

29One caveat to this calibration is that previous work has measured κ at the asset class level. In principle, κ could
be larger in the cross section of stocks (i.e. within an asset class) due to the greater substitutability of individual
stocks (e.g. Apple and Google are more substitutable than the stock market and the bond market). How large κ is in
the cross section of stocks is an empirical question. TheMg values I find in Sections 6 and 7, and the average κg value
I find in Section 7, are consistent with the stock-level κ being of the same order of magnitude as the asset class-level
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Figure 3: Mg and ζ as a Function of κ

Plot ofMg and ζ values implied by Proposition 1 as a function of κ, calibrating average quarterly dividend-
price ratio δ = 0.01 to match the historical average for the aggregate equity market. The gray shaded area
indicates the range of κ estimates found in previous work (see Appendix J for details).

The result that Mg is small when κ is small is related to the “myopia” in inelastic markets
discussed in Gabaix and Koijen (2020b). When demand is insensitive to expected returns, asset
demand in the current period depends less on beliefs about what will happen in the future. Thus,
demand and prices today adjust less in response to changes in beliefs about future fundamentals.
This behavior is equivalent to investors discounting changes in beliefs about future fundamentals
at a rate that is “too high.” That is, investors act myopically. Appendix B.5 formally links Mg to
this notion of myopia.

5.5 Benchmark Value for Mg

The benchmark value to which I compare my empirical results is Mg = 1.
Consider a standard consumption CAPM model. The representative investor has CRRA utility

over consumption:
U(Ct) = Ct

1−γ

1− γ .

Quarterly consumption growth is i.i.d. Quarterly dividend growth dynamics for stock n are as
described in Section 5.2. Assume both dividend and consumption growth are normally distributed.

κ. Moreover, a stock-level κ large enough to bring Mg close to 1 would imply counterfactually high stock-level price
elasticities, as illustrated in Figure 3.
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The price of stock n satisfies:

Pn,t = Et
[
β
(
Ct+1

Ct

)−γ
(Pn,t+1 +Dn,t+1)

]
, (19)

To convey the intuition, I consider the case of zero persistence in subjective growth expectation
xt (ρ = 0), which provides a conservative benchmark value for Mg, as discussed below. Since the
only state variable in this economy is xt, one can easily show the log price-dividend ratio takes the
following form (as proven in Appendix B.4):

log (Pn,t/Dn,t) = A0 + xt,

for some constant A0. Thus, the percentage change in price from t− to t+ due to an annual growth
expectation shock of ∆Ge

n,t = ∆xt (following (13)) is

∆pn,t = ∆Ge
n,t,

so Mg = 1.
The intuition for Mg = 1 is simple. Since the purely transitory growth expectation shock does

not alter discount rates, it does not impact the forward price-dividend ratio (Pn,t/Et[Dn,t+1]).30 A
1% purely transitory growth expectation shock raises the expected level of all future dividends by
1%. Thus, the 1% purely transitory increase in growth expectation raises price 1%.

Since adding additional state variables to the economy does not alter this logic, most leading
asset pricing models imply Mg = 1, including both rational expectations models (e.g., Campbell
and Cochrane (1999); Bansal and Yaron (2004); Barro (2006); He and Krishnamurthy (2013)) and
behavioral models (e.g., Barberis et al. (2015); Nagel and Xu (2021); Bordalo et al. (2022)).

Persistence in growth expectations (ρ > 0) raises Mg. Appendix B.4 demonstrates Mg = 1.3 in
this model for the empirical persistence of ρ = 0.7 in the I/B/E/S growth expectations data (see
Appendix B.1). Using Mg = 1.3 instead of Mg = 1 does not change my empirical conclusion that
the causal effect of subjective growth expectations on prices is an order of magnitude smaller than
in standard models. Thus, I use the more conservative and simpler benchmark value of Mg = 1.

5.6 Generalizing to Heterogeneous Agents

The representative agent framework presented above generalizes easily to heterogeneous investors.
With heterogeneous investors, Mg is the weighted-average demand shift due to the growth expecta-
tions shock divided by the weighted-average price elasticity (weighted by ownership shares). This

30Since my empirical setting is the cross section of equities, I assume the risk-free rate is exogenous to stock-specific
growth expectations shocks. In models that price consumption claims, the risk-free rate is usually endogenous to
growth expectations shocks due to intertemporal substitution. I rule out these general equilibrium effects.
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generalization motivates the regressions used to identifyMg in Section 7, where I allow for heteroge-
neous demand functions across investors. For simplicity, I assume investors do not learn from prices
in this section. However, this assumption does not impact the empirical strategy, as discussed in
Appendix B.6. Learning from prices changes the functional form of the investor’s price elasticity of
demand, but does not alter the form of the demand curve or the definition of Mg. The estimates
of Mg that I find in Sections 6 and 7 include any amplification of price impact due to investors
learning from prices.

Consider the following generalization of demand function (14):

∆qi,n,t = −ζi∆pn,t + κgi∆Ge
i,n,t + ∆εi,n,t, (20)

with heterogeneous price elasticities (ζi) and sensitivities of demand to growth expectations (κgi )
across investors. ∆Ge

i,n,t captures heterogeneous changes in growth expectations. ∆εi,n,t allows for
heterogeneous demand shocks. The aggregate change in quantity of shares demanded is

∆qS,n,t ≡
∑
i

Si,n,t∆qi,n,t

Si,n,t ≡
Qi,n,t−∑
j Qj,n,t−

.

Qi,n,t− is the ex-ante (time t−) quantity of shares owned by investor i in stock n and Si,n,t is the
ex-ante ownership-share weight.

As in the representative agent case, the aggregate demand curve shift due to the shock to subjec-
tive growth expectations induces a market-clearing price change. Assume all investors experience
the same growth expectations shock (∆Ge

i,n,t = ∆Ge
n,t, ∀i). Market clearing under fixed supply

(∆qS,n,t = 0) implies

∆pn,t = κgS
ζS

∆Ge
n,t + 1

ζS
∆εS,n,t, (21)

where S denotes the ownership-share weighted average (e.g., κgS ≡
∑
i Si,n,tκ

g
i ).

Thus, in general the causal effect of subjective growth expectations on prices is:

Mg = κgS
ζS
. (22)

Mg is still the aggregate demand curve shift (κgS) divided by the aggregate price elasticity (ζS).

6 Effect of Growth Expectations on Prices: Homogeneity

This section measures the causal effect of subjective growth expectations on prices (Mg) under two
assumptions regarding investor homogeneity:
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1. All investors have the same demand sensitivity to growth expectations κgi and price elasticity
ζi.

2. Analyst influence on investor beliefs is the same for all investors.

These homogeneity assumptions allow identification ofMg from price and beliefs data alone. Section
7 relaxes these assumptions and measures Mg under full investor heterogeneity using holdings data.
I find that Mg is small. A one percent increase in investor annual growth expectations raises price
only 7 basis points, an order of magnitude less than the benchmark of 1%. Thus, the core mechanism
in subjective belief models is far weaker empirically than assumed by these models.

As discussed in Section 2, measuring Mg requires solutions to two problems:

1. Measuring the passthrough of analyst influence to investor beliefs.

2. Extracting exogenous variation in observed analyst growth expectations.

First, I measure analyst influence on investor beliefs by modeling investors as Bayesians who learn
from analysts. Bayesian learning implies signal averaging, which allows identification of analyst in-
fluence using cross-sectional variation in the number of analysts who cover each stock. This signal
averaging mechanism appears in a large class of non-Bayesian learning models as well. Second, I
isolate exogenous variation in observed analyst growth expectations by using collaborative filter-
ing to fit a latent factor model to the within-quarter analyst institution × stock panel of growth
expectations. I extract the factor model residuals as exogenous shocks to analyst expectations.

Section 6.1 summarizes the timing of the empirical strategy. Section 6.2 explains how Bayesian
learning enables identification of analyst influence. Section 6.3 details the latent factor model I
fit to analyst expectations. Section 6.4 uses market clearing to motivate the high-frequency panel
regressions I use to measure Mg. Section 6.5 presents the empirical results.

6.1 Timing and Notation

My empirical strategy uses high-frequency windows around analyst growth expectation announce-
ments. Let t denote the current quarter. Following Section 5.2, t− is the ex-ante equilibrium just
before an analyst announcement and t+ is the ex-post equilibrium after investors learn the new
information, demand shifts, and prices adjust to clear markets. Since all of the identification works
within a quarter, I suppress quarter t subscripts. As discussed in Section 3, I group analysts to
their parent institution. Thus, any reference to “analyst” means “analyst institution.”

As displayed in Figure 4, the timing of the empirical strategy involves four steps:

1. During the previous quarter t−1, analyst a reported a growth expectation for stock n: GA,lag
a,n,

(superscript A denotes analyst expectations). Denote the price change from that announce-
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Figure 4: Model Timeline

t− 1 t− t+

Last Quarter Investor Priors,
Ex-Ante Equilibrium

Analyst Reports,
Learning

Market Clearing,
Ex-Post Equilibrium

High-Frequency Window

Timeline of high-frequency identification strategy.

ment until t− as ∆p−n , which is the price change that might affect analyst a’s quarter-over-
quarter expectation update (consistent with the reverse causality evidence in Section 4).

2. At the ex-ante equilibrium t−, investors have priors over annual growth expectations for stock
n. Let ḠI

S,a,n be the ownership-share weighted average prior mean growth expectation before
the announcement by analyst a (superscript I denotes investor expectations).

3. The information shock is the announcement of analyst a’s growth expectation in the current
quarter t: GA

a,n,.

4. Investors update their priors over annual growth expectations for stock n. Asset demand
curves shift and prices adjust to clear markets. ∆q+

i,a,n and ∆p+
a,n represent the equilibrium

changes in quantity demanded by investor i and price in a high-frequency window (several
days) after analyst a’s announcement that engender the ex-post equilibrium at t+.

6.2 Measuring Analyst Influence: Bayesian Learning

This section explains how the signal averaging mechanism implied by Bayesian learning enables
identification of analyst influence on investor beliefs in the cross-section of stocks. This section
assumes homogeneous analyst influence across investors; Section 7 relaxes this assumption. This
section also assumes homogeneous influence across analysts; Section 6.6.1 relaxes this assumption.
Additionally, this section assumes investor prior precisions and analyst signal precisions do not vary
across stocks; Section 6.6.4 relaxes this assumption. All of the identification occurs within a quarter,
so I omit quarter t subscripts.

Prior to the analyst a’s announcement (i.e. at t−), each investor i has the following prior
distribution over the unknown stock-n annual expected growth rate Ge

n:

Ge
n ∼ N(ḠI

i,a,n, τ̄).
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Investors view analyst a’s announced growth expectation GA
a,n as a noisy signal of Ge

n
31:

GA
a,n = Ge

n + εa,n, εa,n ∼ N(0, σ2).

The Bayesian learning update to investor i’s prior mean for stock n due to analyst a’s signal is:

∆GI
i,a,n = σ−2

τ−1 + Anσ−2︸ ︷︷ ︸
≡Bn

(
GA
a,n − ḠI

i,a,n

)
+ νIi,a,n. (23)

νIi,a,n captures any other growth signals investor i learns from in the high-frequency window after
analyst a’s announcement. Bn represents analyst influence on investor beliefs for stock n: the weight
each analyst’s expectation receives in each investor’s posterior. As usual with Gaussian priors and
signals, this posterior weight is the ratio of the signal precision (σ−2) to the posterior precision
(τ−1 + Anσ

−2, where τ−1 = τ̄−1 + σ−2
ν includes the signal precision of νIi,a,n ).

To elucidate the identifying variation, I linearize analyst influence Bn around the average number
of analysts per stock in the current quarter (A = E[An]):

Bn ≈ β︸︷︷︸
≡ σ−2
τ−1+Aσ−2

−β2 Ãn︸︷︷︸
An−A

. (24)

Ãn = An −A is the demeaned number of analysts who cover stock n. β is the level of influence for
the average stock. β2 represents how much influence shrinks per additional analyst added.32

The functional form for analyst influence (24) allows identification of β in the cross section
of stocks. Bayesian learning implies signal averaging. The more signals (analyst expectations) a
Bayesian learner observes, the less weight (influence) any particular signal receives in the posterior,
which is why Bn is decreasing in Ãn in (24). Moreover, signal averaging links the level of influence
(β) with how much influence shrinks as additional signals are added (β2).

For example, consider the flat prior (and no other signals) case: τ−1 = 0. In this case, Bn = 1/An:
investors take an equal-weighted average of all analyst signals. For the average stock, Bn = β = 1/A:
influence is one over the average number of analysts. Since the derivative of 1/x is −1/x2, influence
shrinks at a rate of β2 = 1/A2 per additional analyst.

The functional form of analyst influence in (24) proves robust to a wide range of deviations from
Bayesian learning, as discussed in Appendix C.3.

31As written, investors view analyst expectations as uncorrelated signals. However, allowing analyst expectations
to be correlated across analysts does not change the functional form of influence in (24).

32Appendix C.2 describes an alternative specification for analyst influence that exploits variation in the order of
analyst report releases. This specification collapses to a functional form similar to (24) under some approximations.
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6.3 Exogenous Variation in Analyst Expectations: Latent Factor Model

This section explains how I extract exogenous variation in analyst expectations by using collabo-
rative filtering to fit a latent factor model to the within-quarter analyst × stock panel of growth
expectation updates. All identification occurs within a quarter, so I omit quarter t subscripts.

I model quarterly changes33 in annual analyst growth expectations as having a factor structure:

∆GA
a,n = (αa + αn)∆p−n + λ′aηn + ua,n. (25)

Quarterly analyst expectation updates (∆GA
a,n = GA

a,n −GA,lag
a,n ) can depend on:

1. Contemporaneous price changes: ∆p−n (consistent with the reverse causality evidence from
Section 4). Both ∆GA

a,n and ∆p−n are changes from quarter t− 1 to quarter t.

2. Stock characteristics: ηn. Characteristics may include public signals (e.g., earnings surprises,
monetary policy announcements, or COVID news), firm characteristics, etc.34

3. Uncorrelated idiosyncratic shocks: ua,n.

This factor structure can be microfounded with a simple Grossman and Stiglitz (1980)-type model
featuring public signals (ηn), private signals observed by analysts (ua,n,), and private signals ob-
served by investors that motivate analysts to learn from prices (∆p−n ). See Appendix D.1 for details.

The idiosyncratic shocks ua,n capture within stock-quarter variation in growth expectations
across analysts and so provide exogenous variation in analyst expectations. I assume ua,n are
uncorrelated across analysts and stocks.

I do not take a stance on the identity of the stock characteristics ηn. Instead I fit a latent factor
model to the within-quarter analyst-by-stock panel of growth expectation updates to estimate ua,n.
Since I estimate factor model (25) within each quarter, all factors, loadings, and idiosyncratic shocks
vary over time.

What is an idiosyncratic analyst growth expectation shock? A natural candidate is
private information obtained by analyst a about the future cash flows of stock n.35 This information
need not have any bearing on other sources of demand (e.g., subjective risk perceptions, hedging

33Changes (versus levels) better isolate new information and have greater price impact (e.g., Brav and Lehavy
(2003)).

34Factor structure (25) can also incorporate analyst or stock-specific biases (i.e., fixed effects). An analyst-quarter
fixed effect is an element of λa constrained to load on a constant ηn,f = 1 and a stock-quarter fixed effect is an
element of ηn,t constrained to be loaded on by λa,f = 1.

35The notion that equity research analysts communicate private information to markets through their reports is
well-established in the previous literature (e.g. Chen and Matsumoto (2006); Mayew, Sharp and Venkatachalam
(2013)).
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demand, or non-pecuniary preferences) and so will be uncorrelated with other contemporaneous
demand shocks. Moreover, information observed only by analyst a is uncorrelated with investor
priors, since investors cannot yet have not learned it, and with other contemporaneous growth
signals.

Extracting idiosyncratic shocks with collaborative filtering. I operationalize factor model
(25) using tools from collaborative filtering, a branch of machine learning that learns models of
individual-specific “preferences” over objects from reported preferences. The canonical example is
Netflix learning individual-specific models of movie preferences from partial cross sections of ratings.
I learn analyst-specific models of growth expectations from partial cross-sections of covered stocks.

To fit the factor model, I reexpress structural factor model (25) in reduced form as

∆GA
a,n = λ̃

′

aη̃n + ua,n. (26)

This representation subsumes the price term (αa + αn)∆p−n from (25).36 I fit latent factor model
(26) quarter-by-quarter using the regularized singular value decomposition technique of Funk (2006).
This method decomposes the analyst-by-stock matrix of growth expectation updates (G =

[
∆GA

a,n

]
a,n

)
into the product of a matrix of factor loadings (Λ = [λa]a) with a matrix of factors (H = [η̃n]n).
Given the sparsity of the data (most analysts do not cover most stocks), I use L2 (i.e. ridge)
regularization to estimate the factor model more efficiently. Regularization biases the factor and
loading estimates toward zero in order to reduce the variance of these estimates. The baseline
specification uses five latent factors, but all results prove robust to using alternative numbers of
factors (see Section 6.6.2). After estimating the factors (η̃n) and loadings (λ̃a), one can recover
estimates of the factor model residuals ua,n. Figure 5 plots the histogram of idiosyncratic analyst
growth expectations shocks across all analyst institutions, stocks, and quarters.37 Appendix D.2
discusses implementation details.

6.4 Identifying Mg: Market Clearing

This section explains how I use high-frequency panel regressions to estimate Mg given the form of
analyst influence from Section 6.2 and exogenous variation in analyst expectations from Section 6.3.

The information shock from the analyst announcement shifts investors’ demand curves. From
(20), the percentage change in quantity of shares demanded by investor i for stock n in the high-

36This notation assumes all analysts learn from the same price change ∆p−n , even if they report expectations
at different times in each quarter. Analysts might learn from slightly different price changes due to the staggered
timing of analyst reports. However, this scenario does not pose significant challenges. See Appendix D.3 for a full
discussion.

37For clarity, I truncate the histogram range to [−100%, 100%], which contains over 99.5% of observations.
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Figure 5: Histogram of Idiosyncratic Analyst Growth Expectations Shocks

Histogram of estimated idiosyncratic analyst growth expectations shocks.

frequency window after analyst a’s announcement is:

∆q+
i,a,n = −ζ∆p+

a,n + κg∆GI
i.a,n + ∆εi,a,n. (27)

∆p+
a,n is the price change in the high-frequency window (not to be confused with the lagged, low-

frequency price change ∆p−n in (25)), ∆GI
i.a,n represents the shock to investor i’s annual growth

expectation for stock n, and ∆εi,a,n includes other high-frequency demand shocks.
Aggregating the change in demand across investors and imposing fixed supply (∆q+

S,a,n = 0)
yields the market-clearing price change in this window (∆p+

a,n) from (21):

∆p+
a,n = Mg∆GI

S,a,n + 1
ζ

∆εS,a,n (Market Clearing)

∆GI
S,a,n = Bn

(
GA
a,n − ḠI

S,a,n

)
+ νIS,a,n (Bayesian Update)

Bn = β − β2Ãn (Bayesian Analyst Influence)
∆GA

a,n = (αa + αn)∆p−n + λ′aηn + ua,n (Analyst Factor Structure)

where S denotes ownership-share weighted averages. Plugging in the Bayesian-learning implied
investor growth expectation update from (23), the Bayesian-learning form of analyst influence from
(24), and the factor structure on analyst expectations from (25) yields:

∆p+
a,n = Mgβua,n −Mgβ

2ua,nÃn + ea,n. (28)
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The structural error term ea,n comprises five components: 1) other determinants of analyst expec-
tations, 2) investors’ prior expectations, 3) lagged analyst growth expectations, 4) other contempo-
raneous growth signals investors learn from, and 5) other demand shocks (see E.1 for details).

Although all identification occurs in the cross-section of stocks within a quarter, I pool across
all quarters to obtain more power. Thus, I run the following panel regression motivated by market-
clearing expression (28) (I add time t subscripts to emphasize that I pool across quarters):

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 +Xn,t + ea,n,t. (29)

The left-hand side represents the price change shortly after analyst a’s announcement for stock n in
quarter t (5 days in the baseline specification, but Section 6.6.3 finds similar results using alternative
window lengths).38 The right-hand side includes the idiosyncratic analyst growth expectation shock
ua,n,t and its interaction with the lagged demeaned number of analysts Ãn,t−1.39 Xn,t includes stock,
quarter, and stock-quarter fixed effects.

Regression (29) estimates two reduced-form coefficients, which jointly identify the causal effect
of investor subjective growth expectations on prices (Mg).

1. c1 is average analyst price impact. A 1% higher analyst-reported expectation raises price c1%
for the average stock. Exogenous variation in analyst expectations (ua,n) identifies c1.

2. c2 is the shrinkage rate of analyst price impact as the number of analysts grows and influence
shrinks. Adding an analyst to stock n reduces price impact by c2%, in absolute terms. The
interaction of ua,n with cross-sectional variation in the number of analysts identifies c2.

The reduced-form coefficients c1 and c2 jointly identify analyst influence β and the causal effect of
investor growth expectations on prices Mg:

β = c2

c1

Mg = c1

β
= c2

1
c2
. (30)

The intuition is that signal averaging links the level of analyst price impact (c1) and the shrinkage
rate of price impact as the number of analysts grows (c2): c2 = βc1. This link arises from the link

38If analyst institution a reports multiple expectations for stock n during quarter t (≈ 25% of (institution,
stock, quarter) observations are in this category, though some of these still occur on the same day), I use the first
announcement in quarter t as the first day in ∆p+

a,n,t. Using the first announcement for each (institution, stock,
quarter) yields the largest analyst price impact estimates. Other options include using the price change after the
last or median announcement, or using the sum, mean, or median of price changes after all announcements for this
(institution, stock, quarter).

39I use the lagged demeaned number of analysts to avoid potential endogeneity issues with analysts initiating (or
ending) coverage due to particularly good, or bad, information. Irvine (2003) discusses some of these concerns.
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Table 2: Summary Statistics

∆p+
a,n,t An,t ∆GA

a,n,t ua,n,t ∆qi,n,t
Count 2145713 2173492 2173492 2173492 51438573
Mean 0.00 10.03 -0.01 0.00 0.02
Std. Dev. 0.09 7.23 0.53 0.18 0.67
Min -0.99 1.00 -4.43 -4.89 -1.00
25th Percentile -0.04 4.00 -0.12 -0.04 -0.15
Median 0.00 8.00 0.00 0.00 -0.00
75th Percentile 0.04 14.00 0.11 0.04 0.08
Max 11.00 49.00 3.63 4.65 2.00

Summary statistics for price changes five days after analyst report releases (∆p+
a,n,t), the number of analyst

institutions who cover each stock (An,t), the quarter-over-quarter change in annual analyst growth expec-
tations (∆GAa,n,t), the idiosyncratic analyst growth expectations shocks (ua,n,t), and quarterly percentage
changes in quantity of shares held by investor i in stock n (∆qi,n,t). ∆p+

a,n,t,∆GAa,n,t, ua,n,t, and ∆qi,n,t are
all expressed in absolute terms (i.e. 0.01 is 1%). The time period is 1984-01:2021-12.

between the level of influence (β) and how much influence shrinks with additional analysts (β2).
The two moment conditions required to identify c1 and c2 are:

E [ua,nea,n] = 0 (31)
E
[
ua,nÃnea,n

]
= 0. (32)

I have two instruments (ua,n and ua,nÃn), two moment conditions ((31) and (32)), and two structural
parameters to identify (Mg and β). The identifying assumption is:

Assumption 1 (Identifying Assumption for Price Regression). Any common variation between
analyst growth expectation updates (∆GA

a,n) and 1) investor prior expectations (ḠI
S,a,n), 2) lagged

analyst expectations (GA,Lag
a,n ), 3) other contemporaneous signals (νIS,a,n), and 4) other demand shocks

(∆εS,a,n), is spanned by stock-quarter characteristics.

If Assumption 1 holds, then the latent factor model removes all common variation between
∆GA

a,n and both ea,n and Ãn. In this case, both moment conditions (31) and (32) hold.

6.5 Empirical Results

This section reports estimates for the causal effect of subjective growth expectations on prices (Mg)
under assumptions regarding investor homogeneity. Mg is small, an order of magnitude smaller
than the benchmark Mg = 1. Table 2 reports summary statistics for the data used in this analysis.
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Figure 6: High-Frequency Price Changes vs. Idiosyncratic Analyst Growth Expectations Shocks

Binscatter of five-day post announcement price changes (∆p+
a,n,t) versus idiosyncratic analyst growth ex-

pectations shocks (ua,n,t).

I first provide reduced-form results to justify the model structure. Figure 6 displays the bin-
scatter plot of five-day post-announcement price changes versus idiosyncratic analyst growth expec-
tations shocks. Prices respond to exogenous variation in analyst expectations, which immediately
implies analysts do influence investor beliefs (β 6= 0).

Figure 7 displays overlapping binscatter plots of five-day post announcement price changes
versus idiosyncratic analyst growth expectations shocks. The red binscatter represents analyst-
stock-quarter observations (a, n, t) for which the demeaned number of analysts covering stock n

in the previous quarter (Ãn,t−1) is in the bottom quintile. Similarly, the blue binscatter represents
observations for which the demeaned number of analysts is in the top quintile. Analyst price impact
is positive for both quintiles, but is much smaller for the top quintile: analysts impact prices less
for stocks covered by more analysts. Appendix Figure G10 demonstrates that analyst price impact
is monotonically decreasing in the quintile of the demeaned number of analysts. These results are
consistent with the signal averaging mechanism detailed in Section 6.2.

Table 3 reports the estimated reduced-form coefficients c1 and c2 from (29). Across columns,
the c1 and c2 estimates prove insensitive to the inclusion of stock, quarter, and stock-quarter fixed
effects, which implies the latent factor model removes variation in analyst growth expectations
coming from these sources. The c1 = 0.457 estimate in column 4 implies that a 1% higher analyst-
reported annual growth expectation raises stock price by about 0.5 basis points. The c2 = 0.0282
estimate implies that analyst price impact falls about 0.03 basis points (i.e., about 6% of the average
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Figure 7: Analyst Price Impact for Top and Bottom Quintiles of Number of Analysts

Binscatters of five-day post announcement price changes (∆p+
a,n,t) versus idiosyncratic analyst growth

expectations shocks (ua,n,t) for analyst-stock-quarter observations (a, n, t) in the top (blue) and bottom
(red) quintile based on the demeaned number of analysts covering stock n in quarter t− 1 (Ãn,t−1).

price impact) per additional analyst who covers stock n.40

Table 4 reports the β and Mg estimates implied by the c1 and c2 estimates in Table 3. The
analyst influence estimate β = 0.06 (robust to inclusion of various fixed effects across columns)
is significantly positive, which means that investors do learn from analysts. A 1% higher analyst-
reported annual growth expectation raises investor growth expectations by 6 basis points. This
estimate of β implies that investors view analyst expectations as noisy signals (see Appendix G.2
for a full discussion).

The causal effect of investor subjective growth expectations on prices is Mg = 0.07 (robust
to inclusion of various fixed effects across columns). This estimate implies a 1% rise in one-year
investor, not analyst, growth expectations raises price only 7 basis points. This estimate of Mg =
0.07 is an order of magnitude smaller than the benchmark value of Mg = 1 from Section 5.5.

Thus, the causal effect of subjective growth expectations on prices is far smaller than suggested
by standard models. The core mechanism in subjective belief models is far weaker empirically
than assumed by these models. As Section 5.4 discusses, this small causal effect is quantitatively
consistent with the low sensitivities of demand to expected returns and the small price elasticities
of demand found in previous work.

40These values are broadly consistent with (if slightly smaller than) analyst price impact estimates from previous
work (details in Appendix F ).
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Table 3: c1 and c2 Estimates

(1) (2) (3) (4)
c1 0.458*** 0.459*** 0.457*** 0.457***

(0.0534) (0.0545) (0.0546) (0.0549)

c2 0.0287*** 0.0287*** 0.0286*** 0.0282***
(0.00408) (0.00411) (0.00411) (0.00406)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 1530391 1530391 1530391 1530391
R-Squared 0.0000556 0.0218 0.0515 0.583
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table reports regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and Ãn,t−1 is the
demeaned number of analyst institutions that cover stock n in the previous quarter t− 1. Xn,t represents
various fixed effects. All estimates represent the marginal effect in basis points of a 1 percentage point
increase in analyst growth expectations. The time period is 1984-01:2021-12.
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Table 4: Mg and β Estimates Under Investor Homogeneity

(1) (2) (3) (4)
β 0.0626*** 0.0625*** 0.0625*** 0.0616***

(0.00719) (0.00717) (0.00721) (0.00724)

Mg 0.0731*** 0.0734*** 0.0732*** 0.0741***
(0.0133) (0.0135) (0.0136) (0.0140)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 1530391 1530391 1530391 1530391
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t

β = c2
c1

and Mg = c2
1
c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation for

stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1 is the demeaned number
of analyst institutions that cover stock n in quarter t. Xn,t represents various fixed effects. All estimates
represent the marginal effect in percentage points of a 1 percentage point increase in growth expectations
(analyst expectations for β and investor expectations for Mg). The time period is 1984-01:2021-12.
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6.6 Robustness

This section summarizes the robustness checks I conduct for the baseline results in Tables 3 and 4.

6.6.1 Allowing for Analyst Heterogeneity

Appendix G.3 relaxes the assumption of homogeneous influence for all analyst institutions and finds
similar results. I derive the general linearized form of analyst influence Ba,n with heterogeneous
signal precisions σ−2

a . All of the intuition from Section 6.2 carries over. The full approximation
simply adjusts (24) to account for the greater loss of influence due to adding a highly influential
(high signal precision) analyst to stock n versus adding a non-influential (low signal precision)
analyst. Thus, identifying heterogeneous influence requires cross-sectional variation in the set —
not the number — of analysts who cover each stock (e.g., Goldman Sachs and J.P. Morgan cover
Apple while Goldman Sachs and Morgan Stanley cover Google). This analysis finds Mg = 0.05,
which is close to the baseline Mg = 0.07.

6.6.2 Alternative Numbers of Latent Factors

Appendix G.4 conducts this analysis using alternative numbers of latent factors and finds similar
results. The largest Mg estimate among these alternative numbers of latent factors is Mg = 0.08,
which is close to the baseline Mg = 0.07.

6.6.3 Alternative Post-Announcement Window Lengths

Appendix G.5 runs this analysis with alternative post-announcement window lengths other than 5
days and finds similar results. The largest Mg estimate among these alternative window lengths
is Mg = 0.21, which is still far smaller than the benchmark of Mg = 1 and statistically indis-
tinguishable from the upper end of the range I argue for (Mg ∈ [0.07, 0.16]). Unfortunately the
post-announcement window cannot be lengthened far beyond five days in this empirical strategy.
The idiosyncratic growth expectations shocks (ua,n,t) represent within stock-quarter variation in
analyst expectations. For long horizons, there is no variation in post-announcement price changes
across analysts within stock-quarter. For example, the one-year post-announcement price changes
for two analysts who report expectations one week apart for Apple during quarter t are nearly
the same. Thus, at longer horizons regression (29) cannot identify c1 (or Mg) because it features
essentially a within stock-quarter constant on the left-hand side. See Appendix G.5 for a full dis-
cussion. The empirical strategy in Section 7 operates at a lower frequency (quarterly) and finds
similar results to those in Table 4.
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6.6.4 Allowing β to Vary by Stock

Appendix G.6 relaxes the assumption from Section 6.2 that β does not vary across stocks. I allow
investor prior precisions and analyst signal precisions to vary across stocks by modeling stock-specific
βn as a function of stock characteristics. This parametric approach still allows for identification
of Mg and β (i.e., the average βn) from cross-sectional variation in the number of analysts that
cover each stock. I find Mg estimates in the range of 0.10 to 0.11 across specifications including
different stock characteristics. These estimates are statistically indistinguishable from the baseline
Mg = 0.07 estimate and are within theMg ∈ [0.07, 0.16] range I argue for. Thus, this analysis yields
the same economic conclusion: the causal effect of subjective growth expectations on prices is an
order of magnitude smaller than suggested by standard models. Moreover, I find little evidence
that βn varies across stocks.

6.6.5 Allowing Mg to Vary by Stock

Appendix G.7 relaxes the assumption that Mg does not vary across stocks. I allow the sensitiv-
ity of demand to expected return (κ) and price elasticity (ζ) to vary across stocks by modeling
stock-specific Mg,n as a function of stock characteristics. This parametric approach still allows for
identification of Mg (i.e., the average Mg,n) and β from cross-sectional variation in the number of
analysts that cover each stock. I find Mg estimates in the range of 0.10 to 0.14 across specifications
including different stock characteristics. These estimates are statistically indistinguishable from the
baseline Mg = 0.07 estimate and are within the Mg ∈ [0.07, 0.16] range I argue for. Thus, this
analysis yields the same economic conclusion: the causal effect of subjective growth expectations
on prices is an order of magnitude smaller than suggested by standard models.

6.6.6 LTG expectations

Appendix G.8 finds consistent results using the long-term earnings growth (LTG) expectations
focused on by Bordalo et al. (2019, 2022) and Nagel and Xu (2021). Since LTG expectations
represent the analyst’s forecast for average EPS growth over the next 3− 5 years, the price impact
of investor “long-term” growth expectations should be roughly 3 − 5 times as large as the price
impact of annual growth expectations (see Appendix G.8.1 for a full discussion). Appendix G.8.2
finds a 1% rise in investor long-term growth expectations raises price by about 23 basis points,
which is 3− 4 times the Mg = 0.07 estimate in Table 4 and an order of magnitude smaller than the
benchmark price impact of investor long-term growth expectations. Since the number of analyst
institutions that issue LTG expectations does not vary that much across stocks, I cannot obtain a
precise estimate of c2 in regression (29) and so I cannot measure analyst influence on investor beliefs
(β) for LTG expectations. Instead, I estimate average analyst price impact for LTG expectations
(c1) and scale by the baseline β = 0.06 estimate from Table 4 (see Appendix G.8.2 for details).
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6.6.7 Nonlinear Estimation

Appendix G.9 estimates Mg without linearizing analyst influence Bn and finds consistent results.
The market-clearing expression (28) with the full analyst influence expression from (23) is:

∆p+
a,n = MgBnua,n + ea,n

= Mg
x

1 + xAn
ua,n + ea,n,

where x = σ−2/τ−1 is the ratio of analyst signal precision to prior precision. Mg and x can be
estimated via a nonlinear regression of post-announcement price changes ∆p+

a,n on the idiosyncratic
analyst growth expectations shocks ua,n where the coefficient depends nonlinearly on the number of
analysts An. This regression yields Mg = 0.04, which is close to the baselineMg = 0.07. Evaluating
β = x/(1 + xE[An]) using the estimated x and the average number of analysts E[An] = 10 from
Table 2 yields β = 0.07, which is close to the baseline β = 0.06 estimate.

7 Effect of Growth Expectations on Prices: Heterogeneity

This section relaxes the homogeneity assumptions in Section 6 and measures the causal effect
of subjective growth expectations on prices (Mg) under investor heterogeneity. I allow investor
heterogeneity in price elasticities (ζi), sensitivities of demand to growth expectations (κgi ), and
analyst influence (βi), which necessitates the use of investor-level holdings data. As in Section 6, I
findMg is small. A 1% rise in investor annual growth expectations raises prices only 16 basis points
– an order of magnitude less than the benchmark of 1%. Thus, the core mechanism in subjective
belief models is far weaker empirically than assumed by these models.

Section 7.1 explains the new identification problem introduced by investor heterogeneity and
why holdings data prove necessary to identify Mg. Section 7.2 details the empirical strategy for
measuring Mg while allowing for investor heterogeneity. Section 7.3 presents the empirical results.

7.1 New Identification Problem Created by Investor Heterogeneity

I allow heterogeneous price elasticities (ζi), sensitivities of demand to growth expectations (κgi ),
and analyst influence (βi). I suppress quarter t subscripts because all identification occurs within a
quarter. The high-frequency investor-level demand curve from (27) becomes:

∆q+
i,a,n = −ζi∆p+

a,n + κgi∆GI
i.a,n + ∆εi,a,n

∆GI
i,a,n = Bi,n(GA

a,n − ḠI
i,a,n) + νIi,a,n

Bi,n = βi − β2
i Ãn.
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This heterogeneity yields a slightly different market-clearing expression (analogous to (28)):

∆p+
a,n = (κg· β·)S

ζS︸ ︷︷ ︸
≡c1

ua,n −
(κg· β2

· )S
ζS︸ ︷︷ ︸
≡c2

ua,nÃn + ea,n, (33)

where subscript S indicates the ownership-share weighted average. c1 and c2 still represent analyst
price impact for the average stock and the shrinkage rate of analyst price impact. However, now
ratios of c1 and c2 do not identify Mg = κgS/ζs (from (22)) or βS.

Moreover, assuming homogeneity in the presence of heterogeneity might bias the estimate ofMg

downward. With heterogeneity, the estimator for Mg assuming homogeneity from (30) is:

M̂g = c2
1
c2

= (κgSβS + CovS(κgi , βi))
2

κgS (β2
S + VS[βi]) + CovS(κgi , β2

i )
1
ζS
,

where subscript S indicates variances and covariances are being taken in the cross section of investors
under the ownership-share weighted measure. M̂g identifies Mg only if analysts have the same
influence on all investors so VS[βi] = CovS(κgi , βi) = 0. If the covariance terms are small, then

c2
1
c2
≈ β2

S

β2
S + VS[βi]

κgS
ζS
≤ κgS
ζS
.

In this case, heterogeneity in analyst influence across investors (i.e., VS[βi] > 0) implies the estimator
for Mg assuming homogeneity (M̂g = c2

1/c2) underestimates the true parameter.
Thus, to identify Mg under investor heterogeneity, I separately identify κgS and ζS and take

their ratio. To this end, I measure both κgi and ζi at the investor level. Measuring these quantities
requires investor-level holdings data: investor-level demand shifts and price elasticities cannot be
identified from equilibrium price changes alone.

7.2 Empirical Strategy

This section explains how I identify Mg accounting for investor heterogeneity. I use holdings data
to identify both the sensitivity of demand to growth expectations κgi and the price elasticity ζi at
the investor level. Mg is the ratio of the ownership-share weighted averages of these quantities. All
of the identification works within a quarter, so I suppress quarter t subscripts.

To identify κgi and ζi, I use the following low-frequency (quarterly) demand curve:

∆qi,n = −ζi∆pn + κgi∆GI
i,n + ∆εi,n, (34)

Since I observe investor holdings quarterly, all of these objects are quarterly changes (as opposed
to the high-frequency analysis in Section 6). ∆qi,n is the quarterly percentage change in quantity of
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shares demanded by investor i for stock n. ∆GI
i,n is the quarterly shock to annual investor growth

expectations. ∆εi,n accounts for (unobserved) demand shocks in the quarter.
Identifying κgi and ζi requires two steps. The key identification problem is that both the low-

frequency growth expectations shock (∆GI
i,n) and the low-frequency demand shock (∆εi,n) correlate

with the low-frequency price change (∆pn) through market clearing. Thus, step one (detailed in
Section 7.2.1) is to isolate the quarterly demand curve shift (∆qi,n + ζi∆pn) from the equilibrium
change in quantity demanded (∆qi,n). Doing so requires estimates of investor-level price elasticities
ζi, which I obtain from the approach of Koijen and Yogo (2019). Step two (detailed in Section
7.2.2) is then to substitute the Bayesian learning form of analyst influence (from Section 6.2) and
the analyst expectations factor structure (from Section 6.3) into the unobserved investor growth
expectations shock ∆Gi,n, as in Section 6. Doing so allows identification of κgi (detailed in Section
7.2.3). Given κgi and ζi at the investor level,Mg is the ratio of the ownership-share weighted averages
of these quantities: Mg = κgS/ζS. Section 7.2.4 discusses some estimation details.

7.2.1 Isolating Demand Curve Shifts from Equilibrium Changes in Quantities

To address the correlation of growth expectations shocks ∆Gi,n with price changes ∆pn, I measure
each investor’s elasticity (ζi) and remove the price term from the equilibrium quantity change:

∆qi,n + ζi∆pn = κgi∆GI
i,n + ∆εi,n. (35)

The left-hand side (∆qi,n + ζi∆pn) represents investor i’s quarterly demand curve shift: the equi-
librium change in quantity demanded (∆qi,n) minus movement along the demand curve (−ζi∆pn).
The right-hand side decomposes this demand shift into the part due to growth expectation shocks
(κgi∆Gi,n) and the part due to other (unobserved) demand shocks (∆εi,n).

I follow the approach of Koijen and Yogo (2019) to measure investor-specific price elasticities
of demand ζi. Koijen and Yogo (2019) use cross-sectional variation in investment mandates across
investors to obtain exogenous variation in price levels, which allows identification of price elasticities
from portfolio weight levels. Appendix H provides details of this procedure.

Given price elasticity estimates, the demand shift ∆qi,n+ζi∆pn can be calculated using observed
changes in equilibrium quantities ∆qi,n from investor holdings data and prices ∆pn.

7.2.2 Substitute for Unobserved Investor Growth Expectation Shock

From (23), the high-frequency update to investor i’s growth expectations around the release of
analyst a’s report is

∆GI
i,a,n = Bi,n(GA

a,n − ḠI
i,a,n) + νIi,a,n,
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where ḠI
i,a,n is investor i’s prior growth expectation immediately before analyst a’s report release

and νIi,a,n captures any other signals from which the investor contemporaneously learns.
Over the entire quarter, the low-frequency update to i’s growth expectation (∆GI

i,n) is the sum
of the high-frequency updates (∆GI

i,a,n), plus any updates due to other signals:

∆GI
i,n = βi

∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn + eGi,n, (36)

where An is the set of analysts who cover stock n. This equation follows from plugging in the
Bayesian learning form of analyst influence from (24) and the factor structure for analyst expecta-
tions from (25). The structural error term eGi,n comprises four components: 1) other determinants of
analyst expectations, 2) investors prior expectations, 3) lagged analyst expectations, and 4) other
signals from which investors learn (see E.2 for details).

7.2.3 Identifying κgi

I identify κgi from regressions of quarterly demand shifts on the idiosyncratic analyst growth ex-
pectations shocks and their interaction with the demeaned number of analysts. All identification
occurs in the cross-section of holdings within an (investor, quarter) pair.

The expressions for the demand curve shift and the substituted investor growth expectation
shock motivate a low-frequency holdings regression. Plugging in the low-frequency investor expec-
tation update (36) into the quarterly demand curve shift (35) yields

∆qi,n + ζi∆pn = b1,i︸︷︷︸
≡κgi βi

Sn − b2,i︸︷︷︸
≡κgi β

2
i

SnÃn + κgi e
G
i,n + ∆εi,n︸ ︷︷ ︸
≡εi,n

. (37)

Sn = ∑
a∈An ua,n is the sum of the idiosyncratic analyst growth expectations shocks for stock n.

(37) identifies two reduced-form coefficients, which jointly identify the sensitivity of demand to
growth expectations κgi :

1. b1,i is average analyst demand impact. A 1% higher analyst expectation raises demand b1,i%
for the average stock. Exogenous variation in analyst beliefs (Sn) identifies b1,i.

2. b2,i is the shrinkage rate of analyst demand impact as the number of analysts grows due to the
corresponding shrinkage in analyst influence. An additional analyst covering stock n reduces
analyst demand impact by b2,i% (in absolute terms). The interaction of Sn with cross-sectional
variation in the number of analysts identifies b2,i.
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b1,i and b2,i jointly identify βi and κgi :

βi = b2,i

b1,i

κgi =
b2

1,i

b2,i
.

Thus, a regression of the quarterly demand shift (∆qi,n + ζi∆pn) on the sum of idiosyncratic
analyst growth expectations shocks (Sn) and its interaction with the demeaned number of analysts
(Ãn) identifies both κgi and βi. The moment conditions for identifying κgi and βi in regression (37)
are

E [Snεi,n] = 0 (38)
E
[
SnÃnεi,n

]
= 0 (39)

I have two instruments (Sn and SnÃn), two moment conditions ((38) and (39)), and two structural
parameters to identify (κgi and βi). The identifying assumption is:

Assumption 2 (Identifying Assumption for Holdings Regression). Any common variation between
analyst growth expectation updates (∆GA

a,n) and 1) investor prior expectations, 2) other contempora-
neous signals at low and high frequencies, and 3) other demand shocks, is spanned by stock-quarter
characteristics.

If Assumption 2 holds, the latent factor model removes all common variation between ∆GA
a,n

and both εi,n and Ãn in (37). In this case, both moment conditions (38) and (39) hold.
The investor-level κgi and ζi identify the causal effect of investor annual growth expectations on

prices Mg = κgS/ζS. I also calculate the ownership-share weighted average analyst influence: βS.

7.2.4 Estimation Details

Although (37) identifies κgi and βi within an (investor, quarter) pair, the regression lacks power
since the holdings data are noisy. To improve precision, I run one constrained regression pooled
across all investors and quarters41:

41To raise the volatility of Sn,t and gain more power, I use the sum of idiosyncratic shocks to the 5 largest
institutions, ranked by number of expectations reported in the quarter, instead of the sum of shocks for all institutions
in An,t. All results are robust to using other numbers of institutions. See Appendix I.2 for details.
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∆q̂i,n,t = b1,iSn,t − b2,iSn,t · Ãn,t−1 +Xn,t + FEi,t + ei,n,t (40)
s.t. ∆q̂i,n,t = ∆qi,n,t + ζi∆pn

0 ≤ b2,i ≤ b1,i (enforces 0 ≤ βi ≤ 1) (41)
b1,S = c1ζS (definition of c1) (42)
b2,S = c2ζS (definition of c2), (43)

where subscript S denotes ownership-share weighted averages.42 Xn,t represents one-quarter lagged
stock characteristics motivated by Fama and French (2015) and used by Koijen and Yogo (2019) (log
book equity, profitability, investment, market beta, and the dividend-to-book equity ratio). These
controls absorb residual variation and increase power. FEi,t is an investor-quarter fixed effect.43

The three constraints further improve estimation efficiency. Constraint (41) enforces 0 ≤ βi ≤ 1,
as implied by the definition of βi from Bayesian learning (24) (since b1,i = κgiβi and b2,i = κgiβ

2
i ).

Constraints (42) and (43) enforce market clearing. From the market clearing expression (33) in
Section 7.1, the analyst price impact coefficients c1 and c2 have the following relationship with the
the reduced-form analyst demand impact coefficients b1,i and b2,i:

c1 = b1,S

ζS

c2 = b2,S

ζS
.

To further improve precision, I apply an L2 penalty to b1,i and b2,i to shrink these coefficients
toward b1,S = c1ζS and b2,S = c2ζS, respectively. I choose the regularization parameter through
cross validation to allow for the maximum amount of heterogeneity in b1,i and b2,i that the data

42I use the average AUM-share distribution over investors (averaging across quarters) to proxy for the ownership-
share distribution for the average stock in the average quarter.

43Empirically I use the following calculation of the percentage change in quantity of shares held

∆qi,n,t = max

{
−1, Q̂i,n,t − Q̂i,n,t−1

1
2 (Q̂i,n,t + Q̂i,n,t−1)

}

where Q̂i,n,t−1 = Hi,n,t−1 is the dollar holdings of investor i in stock n in the previous quarter t − 1, and Q̂i,n,t =
Hi,n,t/(1 + RXn,t−1→t) is the dollar holdings of investor i in stock n in this quarter t adjusted for the ex-dividend
return (i.e., the price change) since last period RXn,t−1→t. The denominator maps the expression into the range
[−2, 2]. Since a holdings change of less than −100% has no economic meaning, I censor changes at −100%. The
motivation for this calculation is that the 13F filings available from Thomson Reuters through WRDS contain some
measurement error (i.e., data entry errors) in the number of shares (e.g., failure to adjust for stock splits). Using
dollar holdings circumvents these issues. Adjusting the denominator essentially winsorizes large positive percentage
changes.
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Table 5: Estimation Results Allowing for Investor Heterogeneity

βS κgS Mg

Point Estimate 0.0982*** 0.062*** 0.163***
95% Confidence Interval (0.086, 0.121) (0.043, 0.245) (0.114, 0.634)
* p<0.10, ** p<0.05, *** p<0.01

This table reports the estimated κgS , βS , and Mg from (40). Point estimates are bootstrapped sampling
distribution medians. Confidence intervals are bootstrapped (see Appendix I.3 for details). All estimates
represent the marginal effect in percentage points of a 1 percentage point increase in growth expectations
(analyst expectations for βS and investor expectations for κgS andMg). The time period is 1984-01:2021-12.

support.44

Appendix I provides further estimation details.

7.3 Empirical Results

This section reports estimates of the causal effect of subjective growth expectations on prices (Mg)
allowing for investor heterogeneity. Mg is small, an order of magnitude smaller than the benchmark
Mg = 1. Table 2 reports summary statistics for the data used in this analysis.

Table 5 displays the estimated κgS, βS, and Mg from regression (40). While these results differ
from those estimated assuming investor homogeneity in Table 4, the economic conclusions drawn
from both sets of results are the same.

The ownership-share weighted average analyst influence is βS = 0.10, which implies a 1% higher
analyst-reported annual growth expectation raises the average investor’s growth expectation by
10 basis points. While this estimate proves larger than the β = 0.06 estimate under investor
homogeneity from Table 4, both sets of estimates imply that investors do learn from analysts.

The weighted average sensitivity of demand to growth expectations is κgS = 0.06, which means a
1% increase in annual investor growth expectation raises the average investor’s quantity demanded
by 6 basis points. Figure 8 illustrates that this sensitivity of demand to growth expectations is
quantitatively consistent with the small sensitivities of demand to expected returns documented
in previous work, including work using matched expectations and holdings data. Recall from
Proposition 1 in Section 5.4 the structural form of κg = κδ, where κ is the sensitivity of demand to
expected return and δ is the average dividend-price ratio. Calibrating average quarterly dividend-
price ratio δ = 0.01 to match the historical average for the aggregate equity market implies κ = 6,
which accords with previous estimates.45

The causal effect of subjective growth expectations on prices is Mg = 0.16, which means a 1%

44Koijen, Richmond and Yogo (2020) follow a similar regularization approach in a different setting.
45Previous work usually regresses portfolio weights (θ) on expected returns (µ) and so measures ∂θ/∂µ. However,

κ = ∂ log θ/∂µ = ∂θ/∂µ · 1/θ in (10). Appendix J details the assumptions about the average portfolio weights I use
to convert estimates of ∂θ/∂µ to estimates of κ = ∂ log θ/∂µ for each of the papers in Figure 8.
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Figure 8: Comparison of κ Implied by κgS to Previous Literature

Comparison of the sensitivity of demand to expected return (κ) implied by the estimate κgS = 0.06 to
values found in previous work (see Appendix J for details, including discussions of the interpretation of
the results from Bacchetta, Tieche and Van Wincoop (2020) and Dahlquist and Ibert (2021)).

increase in investors’ annual growth expectations raises price by 16 basis points. While this estimate
proves larger than that in Table 4 assuming investor homogeneity (Mg = 0.07), Mg = 0.16 is still
an order of magnitude smaller than the benchmark value of Mg = 1 from Section 5.5. Thus, these
results support the conclusion that the causal effect of subjective growth expectations on prices is
empirically far smaller than assumed in subjective belief models.

8 Conclusion

Subjective belief models assume a large causal effect of subjective growth expectations on prices
and use the strong correlation of analyst growth expectations with prices as evidence of this causal
effect. However, reverse causality contaminates this interpretation of the correlation of growth
expectations with prices: prices cause growth expectations. A 1% rise in price raises annual growth
expectations 41 basis points. The true causal effect of subjective growth expectations on prices
is an order of magnitude smaller than assumed in subjective belief models. A 1% rise in annual
investor growth expectations raises price only 7 to 16 basis points compared to the benchmark of
1%. Hence, the core mechanism in subjective belief models is far weaker empirically than assumed
by these models. In this sense, subjective growth expectations matter far less for asset prices than
standard models suggest.

This small causal effect of subjective growth expectations on prices arises due to the low sen-
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sitivity of demand to expected return and is consistent with inelastic demand. A low sensitivity
of demand to expected return implies both small demand curve shifts due to growth expectations
shocks, and inelastic demand. These small demand curve shifts due to growth expectations shocks
have only a small impact on price, even though demand is inelastic.

These results pose significant implications for asset pricing and macro-finance. The small causal
effect of subjective growth expectations on prices raises the possibility that biased beliefs have
limited impact on asset prices and the real economy. Yet this small causal effect proves consis-
tent with inelastic demand, which amplifies the importance of other demand shocks (e.g., shocks
to risk aversion, intermediary leverage, higher moment beliefs, nonpecuniary preferences, etc.).
Thus, while my empirical results raise the possibility that subjective growth expectations cannot
quantitatively resolve asset pricing and macro-finance puzzles, they open the door to other chan-
nels. If biased growth expectations cannot quantitatively explain excess price volatility, perhaps
inelasticity-amplified shocks to higher moment beliefs or nonpecuniary preferences can. If extrap-
olative expectations about fundamentals cannot quantitatively explain stylized facts about credit
cycles, perhaps acknowledging the inelastic demand of constrained intermediaries can. These pos-
sibilities, and others like them, represent promising directions for future research.

If subjective growth expectations do significantly distort asset prices, such distortion must op-
erate through dynamic amplification mechanisms that lie outside existing models. The empirical
analysis in this paper quantifies the standard mechanism through which subjective growth expec-
tations distort asset prices and finds that it is far weaker empirically than assumed in standard
models. Yet there could be other mechanisms that existing models and the current analysis do
not address. For example, growth expectations might only strongly impact asset demand, and so
prices, at substantial lags. My empirical results motivate augmentation of existing models with
these alternative mechanisms. The empirical methodology developed in this paper offers a general
framework for using data on beliefs, prices, and holdings to tackle these possibilities and shed new
light on the intersection of subjective beliefs, asset demand, and asset prices.
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A Reverse Causality Supplements

A.1 Identification from Ownership Shares Illustrative Example

This example follows directly from the argument in Goldsmith-Pinkham, Sorkin and Swift (2020).
Assume there are only two mutual funds, one analyst (so drop subscript a), and one time period

(so drop subscript t).
We have a simultaneous system of equations

∆pn = C∆Gn +MFITn + εn

∆Gn = α∆pn + νn,

where

FITn = S1,nf1 + S2,nf2.

Si,n is the ex-ante ownership share (i.e. from quarter t − 2) of fund i in stock n and fi is the
inflow into fund i (in quarter t) expressed as a percentage of fund i’s ex-ante total net assets. For
simplicity, assume

S1,n + S2,n = 1,∀n,

although this assumption is not necessary.
The exclusion restriction is

E [FITnνn] = 0.

I claim the following assumption proves sufficient for this exclusion restriction to hold:

E [Si,nνn] = 0.

The point is using the actual FIT instrument (composed of the ownership shares and flows) is
equivalent to using the ownership shares as instruments. To see why, consider the following five
steps:
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1. Reexpress the simultaneous system of equations in reduced-form:

∆pn = M

1− αC︸ ︷︷ ︸
≡γ

FITn + 1
1− αC εn︸ ︷︷ ︸
≡ε̃pn

+ C

1− αC νn︸ ︷︷ ︸
≡ν̃pn

∆Gn = αM

1− αC︸ ︷︷ ︸
≡αγ

FITn + α

1− αC εn︸ ︷︷ ︸
≡ε̃gn

+ 1
1− αC νn︸ ︷︷ ︸
≡ν̃gn

2. Reexpress the reduced-form equations in terms of the ownership shares

∆pn = γ (S1,nf1 + S2,nf2) + ε̃pn + ν̃pn

= (γf1)︸ ︷︷ ︸
≡γ1

S1,n + (γf2)︸ ︷︷ ︸
≡γ2

S2,n + ε̃pn + ν̃pn

= γ2 + (γ1 − γ2)S1,n + ε̃pn + ν̃pn (44)
∆Gn = αγ (S1,nf1 + S2,nf2) + ε̃gn + ν̃gn

= (αγf1)︸ ︷︷ ︸
≡αγ1

S1,n + (αγf2)︸ ︷︷ ︸
≡αγ2

S2,n + ε̃gn + ν̃gn

= αγ2 + α(γ1 − γ2)S1,n + ε̃gn + ν̃gn. (45)

3. The first-stage cross-sectional regression of price changes (∆pn) on fund 1’s ownership shares
(S1,n) (44) identifies γ1 − γ2.

4. The reduced-form cross-sectional regression of growth expectation changes (∆Gn) on fund 1’s
ownership shares (S1,n) (45) identifies α(γ1 − γ2).46

5. Thus, I have identified α (given γ1 − γ2 and α(γ1 − γ2)) with no assumptions about the
exogeneity of flows f1 and f2.

46Note that E [Si,nεn] 6= 0 is not a problem. In this case, the first-stage regression (44) obtains

b1 = γ1 − γ2 + Cov (S1,n, ε̃
g
n)

V ar [S1,n] = γ1 − γ2 + 1
1− αC

Cov (S1,n, εn)
V ar [S1,n]

The reduced-form regression (45) obtains

b2 = α(γ1 − γ2) + Cov (S1,n, ε̃
g
n)

V ar [S1,n] = α(γ1 − γ2) + α

1− αC
Cov (S1,n, εn)
V ar [S1,n] = αb1.

Thus, I still identify α from the ratio of reduced-form and first-stage coefficients

α = b2

b1
.
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To summarize, the identifying variation is cross-sectional variation in ownership shares. Hence, the
ownership shares provide the variation that must satisfy the exclusion restriction (i.e. the ownership
shares must be uncorrelated with non-price determinants of growth expectations νn).

Nothing changes with multiple mutual funds, time periods, or analysts.
With I > 2 funds, the system of equations (44) and (45) will be overidentified: there will be I−1

instruments but only one structural parameter to identify (α). Per Proposition 1 in Goldsmith-
Pinkham, Sorkin and Swift (2020), using the actual FIT instrument is equivalent to using the
ownership shares as instruments in GMM with a particular weighting matrix.

With T > 1 time periods, reduced-form coefficients γ1 and γ2 become γ1,t and γ2,t, which can be
identified by interacting the ownership shares S1,n,t−2 with time dummies. Thus, α can be identified
from the following first-stage and reduced-form regressions:

∆pn,t = γ2,s +
∑
s

(γ1,s − γ2,s)1t=sS1,n,t−2 + ε̃pn,t + ν̃pn,t (First Stage)

∆Gn,t = αγ2,s + α
∑
s

(γ1,s − γ2,s)1t=sS1,n,t−2 + ε̃gn,t + ν̃gn,t. (Reduced Form)

Per Appendix D in Goldsmith-Pinkham, Sorkin and Swift (2020), using the actual FIT instrument in
this setting is equivalent to using the ownership shares interacted with time dummies as instruments
in an overidentified GMM system with a particular weighting matrix.

Extending to multiple analysts just involves replacing ∆Gn with ∆Ga,n. As long as the corre-
sponding identifying assumption (E [Si,nνa,n] = 0) holds, all of the same arguments still apply.

A.2 Interpretation of α if Analysts Update Growth Expectations to
Justify Prices

From the log price-dividend approximation of Campbell and Shiller (1988)

log(Pt/Dt) = k

1− φ +
∑
j≥0

φjEt[Gt+1+j]−
∑
j≥0

φjEt[rt+1+j]

where φ = 1/(1 + exp[Et[log(Dt/Pt]]) and k = − ln(φ)− (1− φ) ln(1/φ− 1).
Assume analysts believe annual growth has the following dynamics

Gt+1 = xt + εGt+1

xt+1 = x̄+ ρ(xt − x̄) + εxt+1

and that analysts update growth expectations to exactly match prices (i.e. they believe in constant
discount rates and so view all changes in log(Pt/Dt) as coming from Et[Gt+1+j]). In this case,

3



analysts believe
log(Pt/Dt) = k

1− φ + φ

1− φρ︸ ︷︷ ︸
≡1/α

xt −R,

where R = ∑
j≥0 φ

jEt[rt+1+j]. So
α = 1

φ
− ρ.

Van Binsbergen and Koijen (2010) estimate φ = 0.969 at the annual frequency. Thus, α = 0.41
implies a perceived persistence in annual growth expectations of ρ = 0.62.

4
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A.3 Supplements to Baseline Specification

Figure A1: Binscatter Plots for First Stage and Reduced Form of Baseline Specification
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + b1FITn,t +Xn,t + e2,n,t.

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading instrument
(FITn,t). The reduced form regresses quarterly changes in annual growth expectations (∆Ga,n,t) on the
flow-induced trading instrument (FITn,t). Xn,t includes stock and quarter fixed effects as well as the
following stock characteristics: log book equity, profitability, investment, market beta, and the dividend to
book equity ratio. The time period is 1984-01:2021-12.
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Figure A2: Alternative Specifications Using Standard FIT Measure

This figure displays results for different specifications of the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t.

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading instrument
(FITn,t). The second stage regresses quarterly changes in annual growth expectations (∆Ga,n,t) on the
instrumented price change (∆p̂a,n,t). Stock characteristics are log book equity, profitability, investment,
market beta, and the dividend to book equity ratio. The time period is 1984-01:2021-12.
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Table A1: Causal Effect of Prices on Growth Expectations — Lagged Price Changes

(1) (2) (3) (4) (5) (6) (7) (8)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

∆pa,n,t 0.673*** 0.659*** 0.674** 0.666** 0.722** 0.716** 0.809** 0.800**
(0.238) (0.237) (0.282) (0.281) (0.348) (0.346) (0.378) (0.375)

∆pa,n,t−1 -0.304 -0.304 -0.216 -0.228 -0.241 -0.249 -0.285 -0.298
(0.185) (0.188) (0.272) (0.271) (0.340) (0.339) (0.406) (0.404)

∆pa,n,t−2 -0.150 -0.142 -0.222 -0.223 -0.167 -0.155
(0.289) (0.292) (0.454) (0.451) (0.531) (0.524)

∆pa,n,t−3 0.221 0.238 0.158 0.146
(0.391) (0.394) (0.583) (0.577)

∆pa,n,t−4 0.148 0.191
(0.376) (0.375)

Stock Characteristics Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
Quarter-Clustered SE Y Y Y Y Y Y Y Y
N 893672 893672 646570 646570 507873 507873 406493 406493
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆Ga,n,t = b0 +
h∑
s=0

αs∆p̂a,n,t−s +Xn,t + e2,n,t,

where each ∆p̂a,n,t−s is instrumented with FITn,t, . . . ,FITn,t−h. The time period is 1984-01:2021-12.
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Table A2: Causal Effect of Prices on Growth Expectations — Controlling for Lagged Characteristics

(1) (2) (3) (4)
OLS First Stage Reduced Form 2SLS

∆pa,n,t 0.310*** 0.424**
(0.0249) (0.177)

FITn,t 2.434*** 1.032**
(0.598) (0.475)

Investmentt−1 -0.0833*** -0.0286*** -0.0921*** -0.0800***
(0.0229) (0.0104) (0.0235) (0.0237)

D/BEt−1 0.221* -0.181* 0.165 0.241*
(0.114) (0.104) (0.125) (0.123)

Market Betat−1 0.0409 0.00179 0.0416 0.0408
(0.0340) (0.0308) (0.0416) (0.0316)

Log BEt−1 -0.0277*** -0.0178*** -0.0333*** -0.0257***
(0.00888) (0.00443) (0.00950) (0.00957)

Profitabilityt−1 -0.150*** 0.00203 -0.150*** -0.150***
(0.0229) (0.00911) (0.0236) (0.0228)

Investmentt−2 0.0524*** -0.00737 0.0501*** 0.0532***
(0.0175) (0.00739) (0.0175) (0.0178)

D/BEt−2 -0.125 -0.00847 -0.128 -0.124
(0.0899) (0.0984) (0.101) (0.0881)

Market Betat−2 -0.0343 -0.00646 -0.0363 -0.0335
(0.0310) (0.0292) (0.0384) (0.0288)

Log BEt−2 0.0257*** -0.00343 0.0247*** 0.0261***
(0.00848) (0.00416) (0.00888) (0.00824)

Profitabilityt−2 0.121*** 0.00737 0.123*** 0.120***
(0.0197) (0.00870) (0.0206) (0.0193)

Stock Characteristics Y Y Y Y
Quarter FE Y Y Y Y
Stock FE Y Y Y Y
Quarter-Clustered SE Y Y Y Y
N 1240412 1240412 1240412 1240412
F 20.15 11.60 6.875 7.393
R-Squared 0.0938 0.232 0.0806
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t.

The first stage regresses percentage price changes between analyst institution a’s report releases for stock
n in consecutive quarters t − 1 and t (∆pa,n,t) on the flow-induced trading instrument (FITn,t). The
second stage regresses quarterly changes in annual growth expectations (∆Ga,n,t) on the instrumented
price changes (∆p̂a,n,t). Stock characteristics are log book equity, profitability, investment, market beta,
and the dividend to book equity ratio from quarters t− 1 and t− 2. The time period is 1984-01:2021-12.
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Table A3: Causal Effect of Prices on Growth Expectations — Further Lagged Ownership Shares

(1) (2) (3)
t− 2 Shares t− 3 Shares t− 4 Shares

FITn,t 2.449*** 2.117*** 1.545***
(0.620) (0.640) (0.584)

Quarter FE Y Y Y
Stock FE Y Y Y
Quarter-Clustered SE Y Y Y
N 1311394 1311394 1311394
F 15.60 10.94 7.000
R-Squared 0.226 0.225 0.224
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

(1) (2) (3)
t− 2 Shares t− 3 Shares t− 4 Shares

∆pa,n,t 0.417** 0.436** 0.414*
(0.169) (0.187) (0.247)

Quarter FE Y Y Y
Stock FE Y Y Y
Quarter-Clustered SE Y Y Y
N 1311394 1311394 1311394
F 6.066 5.438 2.812
R-Squared 0.0124 0.0117 0.0125
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t,

where FITn,t is constructed from different lags s of the ownership shares:

FITn,t =
∑

fund i SharesHeld i,n,t−s · Flow i,t

SharesOutstandingn,t−s
.

The first stage (top panel) regresses percent price changes between analyst reports (∆pa,n,t) on the flow-
induced trading instrument (FITn,t). The second stage (bottom panel) regresses quarterly changes in
annual growth expectations (∆Ga,n,t) on the instrumented price change (∆p̂a,n,t). The time period is
1984-01:2021-12.

A.4 LTG Results

I replicate the baseline analysis using the I/B/E/S long-term earnings growth (LTG) expectations
used by Bordalo et al. (2019, 2022) and Nagel and Xu (2021). The LTG expectations reflect analysts’

10



average annual EPS growth expectations for the next 3− 5 years.
Using the standard FIT instrument discussed in Section 4.1, I run the following two-stage least

squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆LTGa,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t, (46)

where ∆LTGa,n,t is the quarter-over-quarter change in LTG expectation reported by analyst institu-
tion a for stock n in quarter t and ∆pa,n,t is the price change that occurs between these two reports
in quarters t − 1 and t. The first stage regresses price changes between analyst report releases
(∆pa,n,t) on the quarterly flow-induced trading instrument (FITn,t). The second stage regresses the
change in LTG expectations (∆LTGa,n,t) on the instrumented price change (∆p̂a,n,t). Xn,t represents
controls including stock and quarter fixed effects as well as one-quarter lagged stock characteristics
motivated by Fama and French (2015) (log book equity, profitability, investment, market beta, and
the ratio of dividend-to-book equity).47

Table A4 displays the results of this regression. The OLS regressions of LTG expectations on
prices in columns 1 and 2 display a strong correlation between these objects, as documented in
previous work (Bordalo et al. (2019, 2022); Nagel and Xu (2021)). The first stage regressions of
price changes on the FIT instrument in columns 3 and 4 are strong with F -statistics of over 10
(partial F -statistics of 17 and 12, respectively). The reduced form regressions of LTG expectations
on the FIT instrument in columns 5 and 6 are also significant. The second-stage estimates of α
in column 7 and 8 reveal a statistically and economically significant causal effect of prices on LTG
expectations: a 1% increase in price raises LTG expectations by 16 basis points. Thus, the reverse
causality issue raised in Section 4 exists in the LTG expectations data as well.

47Appendix Figure A3 displays residualized binscatter plots for the first-stage and reduced-form regressions in
(46).
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Figure A3: Binscatter Plots for First Stage and Reduced Form of LTG Specification
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆LTGa,n,t = b0 + b1FITn,t +Xn,t + e2,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced trading
instrument (FITn,t). The reduced form regresses quarterly changes in LTG expectations (∆LTGa,n,t) on the
flow-induced trading instrument (FITn,t). Xn,t includes stock-quarter, analyst-quarter, and stock-analyst
fixed effects. The time period is 1982-04:2021-12.
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Figure A4: Within Stock-Quarter Timeline

Ga,n,t−1 Ga,n,tGb,n,t−1 Gb,n,t

∆pa,n,t

∆pb,n,t

FITn,t−1 FITn,t

Illustration of staggered timing of analyst expectation releases for two analysts a and b for the same
stock n and quarter t.

A.5 Exploiting Within Stock-Quarter Variation

I construct an analyst-stock-quarter specific FIT measure, as opposed to the standard stock-quarter
specific FIT measure in Section 4.1. Multiple analyst institutions issue growth expectations for each
stock in each quarter and generally not on the same day. Thus, the timing of analyst report releases
creates variation across analysts in exposure to the stock-quarter FIT instrument.

Consider the timing illustrated in Figure A4. Analyst institutions a and b both report expecta-
tions for stock n in quarters t− 1 and t. Analyst institution b reports later than a in both quarters.
Thus, b’s inter-announcement price change (∆pb,n,t) is more exposed to FITn,t and less exposed to
FITn,t−1 than that of analyst institution a. This variation in analyst report timing allows us to
construct an analyst-stock-quarter specific FIT measure48:

FITa,n,t = # days elapsed in t− 1 since Ga,n,t−1

92︸ ︷︷ ︸
≡w1

a,n,t

·FITn,t−1+# days elapsed in t until Ga,n,t

92︸ ︷︷ ︸
≡w2

a,n,t

·FITn,t.

48In this section I use a different construction for FITn,t than in Section 4.1:

FITn,t =
∑

fund i SharesHeld n,i,t−1 · Flow i,t

SharesOutstandingn,t−1
.

Here I use the ownership share weights from quarter t− 1

Si,n,t−1 = SharesHeld n,i,t−1

SharesOutstandingn,t−1
.

instead of those from quarter t−2 in 4.1. Doing so improves power (although using Si,n,t−2 also yields similar results
to those in Table A5). Using Si,n,t−1 in Section 4.1 would potentially violate the exclusion restriction there because
Si,n,t−1 (measured at the end of quarter t− 1) occurs in the middle of the growth expectation update from quarter
t− 1 to quarter t. In this section, however, the endogeneity of Si,n,t−1 is not a problem: the identifying assumption
is now En,t [wa,n,t−1νa,n,t] = En,t [wa,n,tνa,n,t] = 0, not En,t [Si,n,t−1νa,n,t] = 0.
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This measure allows exploitation of within stock-quarter variation. For example, assume for
a fixed stock n and quarter t FITn,t > FITn,t−1, i.e. there is more flow-induced price pressure
in quarter t than in t − 1. Analyst institutions that report later in quarter t (e.g. b in Figure
A4) are exposed to more flow-induced price pressure than those that report earlier. This within
stock-quarter variation across analysts allows for cleaner identification of the causal effect of prices
on growth expectations α.

Returning to the system of simultaneous equations (4) and (5), the exclusion restriction is
En,t [FITa,n,tνa,n,t] = 0, where En,t denotes the expectation taken across analysts a within stock-
quarter pair (n, t). Following the logic of shift-share instruments, the identifying variation is within
stock-quarter variation in the timing weights w1

a,n,t and w2
a,n,t. Thus, the identifying assumptions is:

En,t
[
w1
a,n,tνa,n,t

]
= En,t

[
w2
a,n,tνa,n,t

]
= 0.

That is, the timing of analyst report releases is not correlated with non-price determinants of
growth expectations. In other words, analyst institutions who report later than average for stock
n in quarter t are not more (or less) bullish than average on stock n. To give a concrete example,
Goldman Sachs reporting expectations for Apple before J.P. Morgan does must not correlate with
the non-price determinants of Goldman Sachs’s growth expectation update for Apple relative to J.P.
Morgan. If analyst institutions pick announcement dates ex ante (i.e. in the previous quarter) and
do not deviate from that preset schedule based on new information that affects growth expectations,
then this assumption is satisfied.

To assuage any concerns about the potential endogeneity of analyst announcement timing, Ap-
pendix A.5.1 conducts a version of this within stock-quarter identification strategy that exploits
only predictable variation in analyst announcement timing based on ex-ante information. In this
case, the identifying assumption is that the historical tendency of Goldman Sachs to report expec-
tations for Apple before J.P. Morgan does not predict Goldman Sachs’s growth expectation shock
(ν) for Apple relative to J.P. Morgan in quarter t. This alternative strategy also finds significant α
estimates.

Table A5 displays the results of the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FITa,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xa,n,t + e2,n,t,

whereXa,n,t represents controls, including stock-quarter and analyst institution-quarter fixed effects.
The first stage regressions of price changes on the FIT instrument in columns 3 and 4 are strong
with F -statistics of over 24 (partial F -statistic of 24 for both). The reduced form regression of
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growth expectations on the FIT instrument in columns 5 and 6 are also strong. The second-stage
estimates of α in columns 7 and 8 are quantitatively similar to that in Table 1: a 1% increase in price
raises annual growth expectations by 30−31 basis points instead of 41 basis points in Table 1. Note
that this within stock-quarter specification has more power than the within quarter specification
(the second-stage coefficient standard errors are 0.06 and 0.14, respectively) since the stock-quarter
and analyst institution-quarter fixed effects here soak up much more residual variation than the
stock and quarter fixed effects in Table 1. Figure A5 displays residualized binscatter plots for the
first-stage and reduced-form regressions.

The quantitative similarity of the α estimates from the within-quarter specification in Table 1
and the within-stock quarter specification in Table A5 assuage concerns about the potential threats
to identification laid out in Section 4.3.
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Figure A5: Binscatter Plots for First Stage and Reduced Form of Within Stock-Quarter Specifica-
tion
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITa,n,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + b1FITa,n,t +Xn,t + e2,n,t.

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the analyst-specific flow-
induced trading instrument (FITa,n,t). The reduced form regresses quarterly changes in annual growth
expectations (∆Ga,n,t) on the analyst-specific flow-induced trading instrument (FITa,n,t). Xn,t includes
stock-quarter and analyst-quarter fixed effects. The time period is 1984-01:2021-12.
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A.5.1 Exploiting Only Ex-Ante Predictable Variation in Analyst Timing

To assuage any concerns about a violation of the sufficient condition for exclusion

En,t
[
w1
a,n,tνa,n,t

]
= En,t

[
w2
a,n,tνa,n,t

]
= 0

due to the endogeneity of analyst announcement timing, I consider a robustness check using only
predictable variation in the timing weights w1

a,n,t and w2
a,n,t based on ex-ante information. This

strategy also yields significant α estimates.
The predicted timing weights based on ex-ante information do not correlate with quarter-t

expectations updates. When using the realized timing in the previous section, one may be concerned
both analyst timing and belief shocks (ν) both respond to stock-specific news in quarter t. For
example, J.P. Morgan may receive positive private information about Apple that both raises its
growth expectations and induces it to report later (than other analyst institutions) in this quarter.
This concern does not arise when using the predicted timing. To undermine the identification
strategy with predicted timing, one must believe that the historical (prior to quarter t − 1) order
in which analyst institutions report growth expectations for stock n (i.e. the within stock-quarter
variation in the timing weights) correlates with the growth expectations shocks in the current
quarter (t). This concern proves implausible. For example, J.P. Morgan historically reporting
growth expectations for Apple after Goldman Sachs reports implies nothing about these institutions
update their expectations about Apple in the current quarter. If good news raised J.P. Morgan’s
growth expectations in quarter t−2 and induced it to report later than Goldman Sachs, the predicted
timing weights for quarter t will depend on news from quarter t − 2. However, by definition news
is uncorrelated over time (i.e. the nature of shocks is that they are unpredictable). Thus, the
predicted weights are uncorrelated with news in quarter t that impacts growth expectations (νa,n,t)
in quarter t.

Due to the difficulty of predicting within stock-quarter variation in the timing weights w1
a,n,t and

w2
a,n,t, I use the following three sets of predictors:

1. The lagged weights between quarter t− 2 and quarter t− s for s ∈ [2, 16]:

w1,s,lag
a,n,t = w1

a,n,t−1−s

w̄2,s,lag
a,n,t = w2

a,n,t−1−s

2. Weights constructed based on the previous quarter’s announcement date and the lagged gap
between quarterly announcement dates between quarter t− 2 and quarter t− s for s ∈ [2, 16].
Let da,n,t be the analyst report date for analyst institution a and stock n in quarter t. Let
ga,n,t = da,n,t − da,n,t−1 be the gap in days between analyst report date for analyst institution
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a and stock n in consecutive quarters. The predicted announcement days in quarters t − 1
and t are then

d̂sa,n,t−1 = da,n,t−2 + ga,n,t−1−s

d̂sa,n,t = da,n,t−1 + ga,n,t−1−s.

The corresponding predicted weights are then

w1,s,gap
a,n,t =

# days elapsed in t− 1 since d̂sa,n,t−1

92

w2,s,gap
a,n,t =

# days elapsed in t until d̂sa,n,t
92 .

3. Weights constructed based on the current quarter’s EPS announcement date and the average
number of days between EPS announcements and analyst report releases between quarter
t− 2 and quarter t− s for s ∈ [2, 16]. Let en,t be the EPS announcement date for stock n in
quarter t. Let g̃a,n,t = da,n,t − en,t be the gap in days between analyst report date for analyst
institution a and stock n and the EPS announcement for stock n in quarter t. The predicted
announcement days in quarters t− 1 and t are then

d̃sa,n,t−1 = en,t−1 + 1
s

s∑
k=1

g̃a,n,t−1−s

d̃sa,n,t = en,t + 1
s

s∑
k=1

g̃a,n,t−1−s.

Note that d̂sa,n,t−1 and d̂sa,n,t are constructed using only ex-ante information since the EPS
announcement dates in quarters t − 1 and t are prescheduled. The corresponding predicted
weights are then

w1,s,EPS
a,n,t =

# days elapsed in t− 1 since d̃sa,n,t−1

92

w2,s,EPS
a,n,t =

# days elapsed in t until d̃sa,n,t
92 .

I run predictive regressions of the true weights on these ex-ante predictors

wia,n,t =
∑

j∈{avg,gap,EPS}

16∑
s=2

bij,sw
i,s,j
a,n,t + FEn,t + εia,n,t
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and use the fitted values ŵ1
a,n,t and ŵ2

a,n,t to construct FITpred
a,n,t:

FITpred
a,n,t = ŵ1

a,n,t · FITn,t−1 + ŵ2
a,n,t · FITn,t.

Crucially this regression includes stock-quarter fixed effects because I need a good prediction of the
within stock-quarter variation in analyst timing. Tables A6 and A7 present the results of these
predictive regressions.

Table A8 displays the results of the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FITpred
a,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xa,n,t + e2,n,t,

whereXa,n,t represents controls, including stock-quarter and analyst institution-quarter fixed effects.
The first stage regressions of price changes on the FIT instrument in columns 3 and 4 are strong
with F -statistics (and partial F -statistics) of 16 and 14, respectively. The reduced form regressions
of growth expectations on the FIT instrument in columns 5 and 6 are also strong. The second-stage
estimates of α in columns 7 and 8 are significantly positive: a 1% increase in price raises annual
growth expectations by 98 − 110 basis points. While these point estimates prove larger than the
baseline estimate of 41 basis points in Table 1, note that this specification has less power than that
in Table A5 due to noise in the constructed instrument stemming from the predicted weights not
perfectly correlating with the true weights. Statistically, the larger point estimates in Table A8
cannot be distinguished from the baseline point estimate of 41 basis points at the 95% confidence
level. Moreover, taking the point estimates at face value, the α estimates from this predicted-timing
strategy are larger than those from Table A5 above. These larger point estimates provide evidence
against the concern that the significant α estimates from the realized-timing version of this strategy
arise from a positive correlation of announcement timing and non-price determinants of growth
expectations (En,t

[
wia,n,tνa,n,t

]
> 0). If there is a correlation of announcement timing and non-price

determinants of expectations, it appears to be negative, which means the α estimates from the
realized-timing version of this strategy are actually biased downwards.

Figure A6 displays residualized binscatter plots for the first-stage and reduced-form regressions.
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Table A6: Timing Predictive Regression w1
a,n,t = ∑

j∈{avg,gap,EPS}
∑16
s=2 b

1
j,sw

1,s,j
a,n,t + FEn,t + ε1a,n,t

w1
a,n,t

w1_a, n, t1,1,gap 0.262*** (0.00919)
w1_a, n, t1,2,gap 0.0416*** (0.00153)
w1_a, n, t1,3,gap -0.0230*** (0.00119)
w1_a, n, t1,4,gap -0.0149*** (0.00145)
w1_a, n, t1,5,gap -0.0178*** (0.00144)
w1_a, n, t1,6,gap -0.00599*** (0.00149)
w1_a, n, t1,7,gap -0.00350** (0.00165)
w1_a, n, t1,8,gap -0.00360* (0.00183)
w1_a, n, t1,9,gap -0.00609*** (0.00231)
w1_a, n, t1,10,gap -0.00257 (0.00203)
w1_a, n, t1,11,gap -0.00282 (0.00202)
w1_a, n, t1,12,gap 0.000133 (0.00215)
w1_a, n, t1,13,gap -0.00291 (0.00201)
w1_a, n, t1,14,gap -0.00218 (0.00275)
w1_a, n, t1,15,gap -0.00176 (0.00276)
w1_a, n, t1,16,gap -0.00117 (0.00343)
w1_a, n, t1,1,lag 0.0813*** (0.0139)
w1_a, n, t1,2,lag 0.0561*** (0.0169)
w1_a, n, t1,3,lag 0.0607*** (0.0220)
w1_a, n, t1,4,lag 0.0836*** (0.0232)
w1_a, n, t1,5,lag -0.0271 (0.0279)
w1_a, n, t1,6,lag -0.0179 (0.0399)
w1_a, n, t1,7,lag 0.0403 (0.0276)
w1_a, n, t1,8,lag 0.101** (0.0472)
w1_a, n, t1,9,lag 0.0154 (0.0486)
w1_a, n, t1,10,lag 0.0724 (0.0569)
w1_a, n, t1,11,lag 0.0369 (0.0406)
w1_a, n, t1,12,lag -0.0242 (0.0630)
w1_a, n, t1,13,lag -0.0733 (0.0775)
w1_a, n, t1,14,lag 0.0120 (0.0587)
w1_a, n, t1,15,lag 0.0347 (0.0810)
w1_a, n, t1,16,lag 0.211** (0.0916)
w1_a, n, t1,1,EPS -0.000627 (0.0141)
w1_a, n, t1,2,EPS 0.0412** (0.0169)
w1_a, n, t1,3,EPS -0.0338 (0.0219)
w1_a, n, t1,4,EPS -0.0336 (0.0237)
w1_a, n, t1,5,EPS 0.0511* (0.0274)
w1_a, n, t1,6,EPS 0.0460 (0.0398)
w1_a, n, t1,7,EPS -0.00868 (0.0279)
w1_a, n, t1,8,EPS -0.0577 (0.0471)
w1_a, n, t1,9,EPS 0.0118 (0.0491)
w1_a, n, t1,10,EPS -0.0548 (0.0571)
w1_a, n, t1,11,EPS -0.0192 (0.0412)
w1_a, n, t1,12,EPS 0.0609 (0.0622)
w1_a, n, t1,13,EPS 0.0927 (0.0764)
w1_a, n, t1,14,EPS 0.00675 (0.0591)
w1_a, n, t1,15,EPS -0.0194 (0.0811)
w1_a, n, t1,16,EPS -0.183** (0.0912)
Stock x Quarter FE Y
N 1945611
Within R-Squared 0.0676
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the timing predictive regression of w1
a,n,t on the three sets of predictors

discussed in Appendix A.5.1. The time period is 1984-01:2021-12.
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Table A7: Timing Predictive Regression w2
a,n,t = ∑

j∈{avg,gap,EPS}
∑16
s=2 b

2
j,sw

2,s,j
a,n,t + FEn,t + ε2a,n,t

w2
a,n,t

w2,2,lag
a,n,t 0.0412** (0.0167)

w2,3,lag
a,n,t 0.0200 (0.0225)

w2,4,lag
a,n,t 0.0501* (0.0255)

w2,5,lag
a,n,t 0.0153 (0.0232)

w2,6,lag
a,n,t -0.0242 (0.0280)

w2,7,lag
a,n,t -0.0234 (0.0302)

w2,8,lag
a,n,t -0.00387 (0.0366)

w2,9,lag
a,n,t -0.0497 (0.0397)

w2,10,lag
a,n,t 0.101** (0.0476)

w2,11,lag
a,n,t -0.0234 (0.0448)

w2,12,lag
a,n,t -0.0460 (0.0610)

w2,13,lag
a,n,t -0.0247 (0.0591)

w2,14,lag
a,n,t 0.0710 (0.0727)

w2,15,lag
a,n,t -0.0730 (0.0791)

w2,16,lag
a,n,t -0.0246 (0.0739)

w2,2,gap
a,n,t 0.0120*** (0.00172)

w2,3,gap
a,n,t 0.00594*** (0.00182)

w2,4,gap
a,n,t 0.00757*** (0.00240)

w2,5,gap
a,n,t 0.00102 (0.00228)

w2,6,gap
a,n,t 0.00227 (0.00249)

w2,7,gap
a,n,t 0.00369 (0.00262)

w2,8,gap
a,n,t 0.000149 (0.00307)

w2,9,gap
a,n,t -0.00792** (0.00317)

w2,10,gap
a,n,t 0.000209 (0.00344)

w2,11,gap
a,n,t 0.00211 (0.00384)

w2,12,gap
a,n,t -0.000419 (0.00482)

w2,13,gap
a,n,t 0.00777 (0.00481)

w2,14,gap
a,n,t -0.00456 (0.00544)

w2,15,gap
a,n,t 0.00278 (0.00556)

w2,16,gap
a,n,t -0.00661 (0.00538)

w2,2,EPS
a,n,t 0.0108 (0.0168)

w2,3,EPS
a,n,t 0.0313 (0.0219)

w2,4,EPS
a,n,t 0.0222 (0.0260)

w2,5,EPS
a,n,t 0.0287 (0.0244)

w2,6,EPS
a,n,t 0.0573** (0.0280)

w2,7,EPS
a,n,t 0.0602** (0.0304)

w2,8,EPS
a,n,t 0.0574 (0.0359)

w2,9,EPS
a,n,t 0.0880** (0.0387)

w2,10,EPS
a,n,t -0.0719 (0.0469)

w2,11,EPS
a,n,t 0.0464 (0.0453)

w2,12,EPS
a,n,t 0.0791 (0.0621)

w2,13,EPS
a,n,t 0.0400 (0.0596)

w2,14,EPS
a,n,t -0.0488 (0.0728)

w2,15,EPS
a,n,t 0.0955 (0.0788)

w2,16,EPS
a,n,t 0.0692 (0.0753)

Stock x Quarter FE Y
N 1945611
Within R-Squared 0.0121
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the timing predictive regression of w2
a,n,t on the three sets of predictors

discussed in Appendix A.5.1. The time period is 1984-01:2021-12.
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Figure A6: Binscatter Plots for First Stage and Reduced Form of Within Stock-Quarter Specifica-
tion Using Predicted Timing
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITpred
a,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + b1FITpred
a,n,t +Xa,n,t + e2,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the analyst-specific flow-
induced trading instrument using the predicted timing of analyst reports (FITpreda,n,t). The reduced form
regresses quarterly changes in annual growth expectations (∆Ga,n,t) on the analyst-specific flow-induced
trading instrument using the predicted timing of analyst reports (FITpreda,n,t). Xn,t includes stock-quarter
and analyst-quarter fixed effects. The time period is 1984-01:2021-12.

25



B Supplemental Material for Section 5

B.1 Measuring Persistence in I/B/E/S Expectations

Let Gh
n,t represent one-year dividend growth starting h−1 years from quarter t so that 1 +Gh

n,t+1 =∏4
s=1(1 + gn,t+4(h−1)+s). For example, G1

n,t+1 is the growth rate over the next year starting next
quarter, G2

n,t+1 is the growth rate in the year after that, and so on.
I measure ρ by running the following regression using the I/B/E/S analyst EPS forecasts:

Gh,A
a,n,t+1 = ρannualGh−1,A

a,n,t+1 +Xn,t + εha,n,t+1.

Gh,A
a,n,t+1 is analyst a’s expectation of Gh

n,t+1. That is, within the term structure of growth expecta-
tions made by analyst a for stock n in quarter t, I regress consecutive annual growth expectations.
For example, for h = 2 I would regress analyst a’s annual growth expectation starting one year
from now (i.e. from quarter t + 5 to quarter t + 8) on the annual growth expectation for the next
year (i.e. from quarter t+ 1 to quarter t+ 4). Xn,t includes stock and/or time fixed effects.

Table B9 displays the results of this regression. I am use the ρ estimate without stock fixed
effects: ρannual ≈ 0.24. I then convert ρannual into a quarterly persistence ρ:

ρannual = ρ4,

which yields ρ = 0.7.

Table B9: ρannual Estimates

(1) (2) (3) (4)
ρannual 0.238*** 0.244*** 0.141*** 0.143***

(0.00625) (0.00561) (0.00565) (0.00502)
Quarter FE Y Y
Stock FE Y Y
Quarter-Clustered SE Y Y Y Y
Stock-Clustered SE Y Y Y Y
N 2374716 2374715 2373814 2373813
R-Squared 0.117 0.133 0.331 0.340
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

B.2 Derivation of Expressions and Propositions in Section 5.3

This Appendix derives (14)
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∆qn,t = −ζ∆pn,t + κg∆Ge
n,t + ∆εn,t,

as well as the structural forms of ζ, κg, and their ratio Mg = κg/ζ.
The proof uses the following three lemmas, which I prove in Appendix B.3.

Lemma 1 (Linearization of Portfolio Weight Demanded (10)). Starting in the ex-ante equilibrium
at t−, consider small percentage deviations in excess expected return (∆µn,t = µn,t+ − µn,t−), price
(∆pn,t = pn,t+ − pn,t−), and other sources of asset demand (∆εn,t = εn,t+ − εn,t−) around the time
t− quantities:

θn,t+ = θn,t− exp [κ∆µn,t + ∆εn,t] .

Linearizing around (∆µn,t,∆pn,t,∆εn,t) = (0, 0, 0) yields percentage change in quantity of shares
demanded (from t− to t+):

∆qn,t ≈ (θn,t− − 1)∆pn,t + κ∆µn,t + ∆εn,t. (47)

See Appendix B.3.1 for a proof of this linearization.

Lemma 2 (Linearization of Expected Return (11)). Starting in the ex-ante equilibrium at t−, con-
sider small percentage deviations in: 1) current price ∆pn,t (from Pn,t− to Pn,t+), 2) expected next pe-
riod price ∆pen,t,1 (from Ẽt−[Pn,t+1] to Ẽt+[Pn,t+1]), and 3) expected next period dividend ∆den,t,1 (from
Ẽt−[Dn,t+1] to Ẽt+[Dn,t+1]). Linearizing around (∆pn,t,∆pen,t,1,∆den,t,1) = (0, 0, 0) yields change in
expected return:

∆µn,t ≈ (−1− δ)(1 + ḡ)∆pn,t + δ(1 + ḡ)∆den,t,1 + (1 + ḡ)∆pen,t,1. (48)

where δ is the average dividend-price ratio and ḡ is average dividend growth rate.

See Appendix B.3.2 for a proof of this approximation.

Lemma 3 (Quarterly Expected Dividend Growth Shock Impact on Price Expectation). A shock to
annual growth expectation of ∆Ge

n,t induces the following change in the expectation of next period’s
price:

∆pen,t,1 = ∆pn,t +Mµδ
ρ

1−Mµρ

1
1 + ρ+ ρ2 + ρ3 ∆Ge

n,t,

where
Mµ = κ(1 + ḡ)

ζ + κ(1 + ḡ) = κ(1 + ḡ)
1− θn,t− + κ(1 + δ)(1 + ḡ) .

See Appendix B.3.3 for a proof of this lemma.
In deriving (14), I also prove the following proposition, which provides the general expressions

for ζ and κg. At the end of the proof, I specialize to the case of zero persistence in expected cash flow
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growth xt (ρ = 0), zero average dividend growth (ḡ = 0), and small portfolio weights (θn,t− ≈ 0),
which provides the expressions in Proposition 1 in Section 5.4.

Proposition 2 (κg, ζ, and Mg in General). In general, we have:

κg = κ(1 + ḡ)δ
[

1
1 + ḡ

+ Mµρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3

ζ = 1− θn,t− + κ(1 + ḡ)δ

Mg = κg

ζ

Proof of Proposition 2 and derivation of (14). Plugging the expected return linearization (48) into
the linearized demand function (47) yields the following demand function:

∆qn,t = (θn,t− − 1− κ(1 + δ)(1 + ḡ)) ∆pn,t + κ(1 + ḡ)
[
δ∆den,t,1 + ∆pen,t,1

]
+ ∆εn,t. (49)

We need to substitute for ∆den,t,1 and ∆pen,t,1. Since the shock to annual growth expectations at
quarter t is assumed to be driven by a shock to expected dividend growth in quarter t+ 1, we have

∆den,t,1 =
∆Ge

n,t

1 + ḡ
.

See the Proof of Lemma 3 in Appendix B.3.3 for a proof of this expression. The shock to dividend
growth also changes the expectation of next period price. By Lemma 3, the change in expectation
of next period’s price driven by ∆Ge

n,t is

∆pn,t +Mµδ
ρ

1−Mµρ

1
1 + ρ+ ρ2 + ρ3 ∆Ge

n,t. (50)

Plugging this last expression into the demand function (49) yields

∆qn,t = (θn,t− − 1− κ(1 + ḡ)δ)︸ ︷︷ ︸
≡−ζ

∆pn,t + κ(1 + ḡ)δ
[

1
1 + ḡ

+ Mµρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3︸ ︷︷ ︸
≡κg

∆Ge
n,t + ∆εn,t,

(51)
as desired.

For the special case of ρ = ḡ = θn,t− = 0, we have

ζ = 1 + κδ

κg = κδ,

as desired for Proposition 1.
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B.3 Supporting Proofs For Appendix B.2

B.3.1 Proof of Lemma 1

Proof. This proof follows from Gabaix and Koijen (2020b).
The true percentage change in quantity of shares demanded is

∆qDn,t =
QD
n,t+

QD
n,t−
− 1

= Wi,t+

Wi,t−

Pn,t−
Pn,t+

θn,t+
θn,t−

− 1

= Wi,t+

Wi,t−

Pn,t−
Pn,t+

exp[κ∆µn,t + ∆εn,t]− 1

= 1 + ∆wt
1 + ∆pn,t

exp[κ∆µn,t + ∆εDn,t]− 1.

Linearizing the last equation around (∆wt,∆pn,t,∆µn,t,∆εDn,t) = (0, 0, 0, 0) yields:

∆qDn,t ≈ ∆wt −∆pn,t + κ∆µn,t + ∆εDn,t. (52)

Note that the dollar change in wealth is

Wt+ −Wt− = (Pn,t+ − Pn,t−)QD
n,t−,

so

∆wt = Wi,t+ −Wt−

Wt−
=

(Pn,t+ − Pn,t−)QD
n,t−

Wt−
= (Pn,t+ − Pn,t−)

Wt−

θn,t−Wt−

Pn,t−
= θn,t−∆pn,t. (53)

where the third equality follows since the ex-ante equilibrium quantity of shares demanded is

QD
n,t− = θn,t−Wt−

Pn,t−
.

29



Plugging this expression for ∆wt into (52) yields49:

∆qDn,t ≈ θn,t−∆pn,t −∆pn,t + κ∆µn,t + ∆εn,t
= (θn,t− − 1)∆pn,t + κ∆µn,t + ∆εn,t.

B.3.2 Proof of Lemma 2

Proof. This proof follows from Gabaix and Koijen (2020b).
The definition of the expected return is

µn,t = Ẽt[Pn,t+1 +Dn,t+1]
Pn,t

−Rf
t .

So at time t− we have
µn,t− = Ẽt−[Pn,t+1 +Dn,t+1]

Pn,t−
−Rf

t ,

and at time t+ we have
µn,t+ = Ẽt+[Pn,t+1 +Dn,t+1]

Pn,t+
−Rf

t .

Rewriting definition of the expected return in terms of deviations from the t− equilibrium yields:

Rf
t + µn,t− + ∆µn,t =

Ẽt−[Pn,t+1](1 + ∆pen,t,1) + Ẽt−[Dn,t+1](1 + ∆den,t,1)
Pn,t−,(1 + ∆pn,t)

, (54)

where ∆pn,t, ∆pen,t,1, and ∆den,t,1 represent percentage deviations from the time-t− equilibrium:
∆pn,t is the percentage deviation in current price: ∆pn,t = Pn,t+

Pn,t−
− 1

∆pen,t,1 is the percentage deviation in expected next period price: ∆pen,t,1 = Ẽt+[Pn,t+1]
Ẽt−[Pn,t+1] − 1

∆den,t,1 is the percentage deviation in expected next period dividend: ∆den,t,1 = Ẽt+[Dn,t+1]
Ẽt−[Dn,t+1] − 1

49Strictly speaking, ∆ξt in ∆εn,t = ∆εDn,t + ∆ξt depends on ∆µn,t through θ̂n,t.

∂ξt
∂µn,t

∣∣∣∣
θ̂m,t=θ̂m,t−,∀m

= −

∑N
m=1

∂θ̂m,t

∂µn,t

∣∣∣
θ̂m,t=θ̂m,t−

1 +
∑N
m=1 θ̂m,t−

= −θn,t−κ.

Taking this dependence into account yields the following demand function

∆qn,t ≈ (θn,t− − 1)∆pn,t + κ(1− θn,t−)∆µn,t + ∆εDn,t + ∆ξn,t,

where ∆ξn,t = ∆ξt + θn,t−κ∆µn,t. Since θn,t− is small for individual stocks, I use the simpler approximation (47).
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Now linearize the right-hand side of (54) around (∆pn,t,∆pen,t,1,∆den,t,1) = (0, 0, 0):

Rf
t + µn,t− + ∆µn,t ≈

Ẽt−[Pn,t+1]
Pn,t−,

(1 + ∆pen,t,1 −∆pn,t) + Ẽt−[Dn,t+1]
Dn,t

Dn,t

Pn,t−
(1 + ∆den,t,1 −∆pn,t)

= (1 + ḡ)(1 + ∆pen,t,1 −∆pn,t) + (1 + ḡ)δ(1 + ∆den,t,1 −∆pn,t),

where (1 + ḡ) = Ẽt−[Dn,t+1]
Dn,t

, so ḡ is the average equilibrium growth rate of dividends (i.e. on average
Ẽt−[Pn,t+1]

Pn,t−
= (1+ ḡ) under the assumption that the discount rate doesn’t change), and δ = Ẽt−[Dn,t+1]

Pn,t−

is the average dividend-price ratio.
Now rearrange to obtain:

Rf
t + µn,t− + ∆µn,t ≈ (1 + ḡ)(1 + δ) + (1 + ḡ)

[
∆pen,t,1 −∆pn,t + δ(∆den,t,1 −∆pn,t)

]
. (55)

As noted by Gabaix and Koijen (2020b), the first right-hand-side term (zeroth order term) gives
the Gordon growth formula:

Rf
t + µn,t− = (1 + ḡ)(1 + δ)↔ (Rf

t − 1) + µn,t− − ḡ = (1 + ḡ)δ = Ẽt−[Dn,t+1]
Pn,t−

.

Thus, from (55) we obtain:

∆µn,t ≈ (−1− δ)(1 + ḡ)∆pn,t + δ(1 + ḡ)∆den,t,1 + (1 + ḡ)∆pen,t,1,

as desired.

B.3.3 Proof of Lemma 3

The proof uses the following present value relation, which I prove in Appendix B.3.4.

Lemma 4 (Present Value Relation). Let ∆den,t,s = Et+[Dn,t+s]
Et−[Dn,t+s] − 1 represent the percentage change

between t− and t+ in the expectation of the dividend in period t+s and ∆εen,t,s = Et+[εDn,t+s+ξt+s]−
Et−[εDn,t+s + ξt+s] represent change between t− and t+ in the expectation of the residual demand
shock in period t+ s. We have the following expression for price change today (∆pn,t) as a function
of changes in long-run expected dividends and demand shocks:

∆pn,t = Mµδ
∞∑
s=0

M s
µ∆den,t,s+1 +

∞∑
s=0

M s
µ

1
ζ + κ(1 + ḡ)∆εen,t,s, (56)

where
Mµ = κ(1 + ḡ)

ζ + κ(1 + ḡ) = κ(1 + ḡ)
1− θn,t− + κ(1 + δ)(1 + ḡ) .

The proof also uses the following lemma, which I prove in Appendix B.3.5.
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Lemma 5 (Quarterly Expected Dividend Growth Shock Price Impact). A shock of ∆Ge
n,t to annual

expected dividend growth requires a shock of ∆xn,t to quarterly expected dividend growth, where:

∆xn,t ≡
∆Ge

n,t

1 + ρ+ ρ2 + ρ3 .

Proof of Lemma 3. First I derive the price impact of a quarterly growth expectation shock:

Ẽt+ [gn,t+1]− Ẽt− [gn,t+1] = ∆xn,t.

At the end I plug in the quarterly growth expectation shock implied by an annual growth expectation
shock from Lemma 5:

∆xn,t =
∆Ge

n,t

1 + ρ+ ρ2 + ρ3 .

Let ge−n,t+s = Ẽt− [gt+s] . The percentage increase in the expected level of next period’s dividend
is:

∆den,t,1 =
1 + g−n,t+1 + ∆xn,t

1 + g−n,t+1
− 1.

The percentage increase in the expected level of dividend two periods from now is:

∆den,t,2 =
(1 + ge−n,t+1 + ∆xn,t)(1 + ge−n,t+2 + ρ∆xn,t)

(1 + ge−n,t+1)(1 + ge−n,t+2) − 1.

For s+ 1 periods from now we have

1 + ∆den,t,s+1 =
∏s
j=0

(
1 + ge−n,t+j+1 + ρj∆xn,t

)
∏s
j=0

(
1 + ge−n,t+j+1

)
→ ∆d̃n,t,s+1 ≈ log

(
1 + ∆d̃n,t,s+1

)
=

s∑
j=0

log
(
1 + ge−n,t+j+1 + ρj∆xn,t

)
−

s∑
j=0

log
(
1 + ge−n,t+j+1

)

≈
s∑
j=0

ρj∆xn,t

= 1− ρs+1

1− ρ ∆xn,t. (57)

Plugging this last result (57) into the present-value identity from Lemma 4 (and setting all
other demand shock expectations ∆εen,t,s = 0 for brevity) yields the following market-clearing price
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change50:

∆pn,t = Mµδ
∞∑
s=0

M s
µ∆den,t,s+1

= Mµδ
∞∑
s=0

M s
µ

[
1− ρs+1

1− ρ

]
∆xn,t

= Mµ
δ

1− ρ

[
1

1−Mµ

− ρ

1− ρMµ

]
∆xn,t. (58)

Now plug in the quarterly dividend growth shock implied by an annual dividend growth shock
from Lemma 5

∆xn,t =
∆Ge

n,t

1 + ρ+ ρ2 + ρ3 ,

to obtain
∆pn,t = Mµ

δ

1− ρ

[
1

1−Mµ

− ρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3 ∆Ge
n,t.

Projecting the present-value identity (56) from Lemma 4 forward one period in time, we have

50This framework can handle non-zero demand shocks ∆εen,t,s as well. If the residual demand shock in period t
(∆εn,t ≡ ∆εDn,t + ξt) is permanent (i.e. ∆εen,t,s = ∆εn,t,∀s > 0), then the result of this lemma (60) holds exactly.

If the residual demand shock today has some persistence or reversion, then (60) will have an additional term that
is a function of ∆εn,t. Denote this additional term as ωn,t. In this case, an additional term of κ(1+ ḡ)ωn,t will appear
in the final demand curve (14):

∆qn,t = −ζ∆pn,t + κg∆νn,t + ∆εn,t + κ(1 + ḡ)ωn,t︸ ︷︷ ︸
New Residual Demand Shock

.

In this case, redefine ∆εn,t to be the sum of the original residual demand shock ∆εn,t and κ(1 + ḡ)ωn,t.
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the change in expected next period price is:

∆p̃n,t,1 = δ
∞∑
s=1

M s
µ∆den,t,s+1

= δ
∞∑
s=1

M s
µ

1− ρs+1

1− ρ ∆xn,t

= δMµ

∞∑
s=0

M s
µ

1− ρs+2

1− ρ ∆xn,t

= Mµ
δ

1− ρ

[
1

1−Mµ

− ρ2

1− ρMµ

]
∆xn,t

= ∆pn,t +
[
Mµ

δ

1− ρ
ρ

1− ρMµ

−Mµ
δ

1− ρ
ρ2

1− ρMµ

]
∆xn,t (59)

= ∆pn,t +Mµ
δ

1− ρ
ρ

1− ρMµ

[1− ρ] ∆xn,t

= ∆pn,t +Mµδ
ρ

1− ρMµ

∆xn,t

= ∆pn,t +Mµδ
ρ

1− ρMµ

1
1 + ρ+ ρ2 + ρ3 ∆Ge

n,t, (60)

where (59) follows from (58). The last line follows from plugging in the quarterly dividend growth
shock implied by an annual dividend growth shock: ∆xn,t = ∆Gen,t

1+ρ+ρ2+ρ3 from Lemma 5.

B.3.4 Proof of Lemma 4

Proof. In general, I use ∆den,t,s to denote the percentage change between Ẽt−[Dn,t+s] and Ẽt+[Dn,t+s].
Similarly, I use ∆pen,t,s to denote the percentage change between Ẽt−[Pn,t+s] and Ẽt+[Pn,t+s]. ∆εen,t,s
is the change between t− and t+ in the expectation of the residual demand shock in period t+ s.

Plugging the expected return linearization (48) into the linearized demand function (47) yields
the following demand function:

∆qn,t = (θn,t− − 1− κ(1 + δ)(1 + ḡ)) ∆pn,t + κ(1 + ḡ)
[
δ∆den,t,1 + ∆pen,t,1

]
+ ∆εn,t.

Market clearing under fixed supply (∆qn,t = 0) implies:

∆pn,t = κ(1 + ḡ)
1− θn,t− + κ(1 + δ)(1 + ḡ)︸ ︷︷ ︸

≡Mµ

(
δ∆den,t,1 + ∆pen,t,1

)
+ 1

1− θn,t− + κ(1 + δ)(1 + ḡ)∆εn,t. (61)

Note that
1

1− θn,t− + κ(1 + δ)(1 + ḡ) = 1
ζ + κ(1 + ḡ) ,

for ζ as defined in Proposition 2.
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Rolling (61) one period forward, we see next period’s actual price change ∆pn,t+1 can be written
as:

∆pn,t+1 = Mµ

(
δ∆den,t+1,1 + ∆pen,t+1,1

)
+ 1
ζ + κ(1 + ḡ)∆εn,t+1,

where den,t+1,1 and ∆pen,t+1,1 are the changes in expected dividend and price for two periods from
now (at t+ 2) that occur one period from now (at t+ 1) and ∆εn,t+1 is the residual demand shock
one period from now (at t+ 1).

Thus, the change in tomorrow’s (i.e. period t+ 1) expected price that occurs today is:

∆pen,t,1 = Mµ

(
δ∆den,t,2 + ∆pen,t,2

)
+ 1
ζ + κ(1 + ḡ)∆εen,t,1,

by the law of iterated expectations.
Iterating this process forward, we see

∆pen,t,1 = δMµ∆den,t,2 + δM2
µ∆den,t,3 + δM3

µ∆den,t,4 + . . .

+ 1
ζ + κ(1 + ḡ)∆εen,t,1 +Mµ

1
ζ + κ(1 + ḡ)∆εen,t,2 +M2

µ

1
ζ + κ(1 + ḡ)∆εen,t,3 + . . . , (62)

= δ
∞∑
s=1

M s
µ∆den,t,s+1 +

∞∑
s=0

M s
µ

1
ζ + κ(1 + ḡ)∆εen,t,s+1. (63)

Thus, we have

δ∆den,t,1 + ∆pen,t,1 = δ
∞∑
s=0

M s
µ∆den,t,s+1 +

∞∑
s=0

M s
µ

1
ζ + κ(1 + ḡ)∆εen,t,s+1. (64)

So the change in price today from (61) becomes:

∆pn,t = Mµδ
∞∑
s=0

M s
µ∆den,t,s+1 +

∞∑
s=0

M s
µ

1
ζ + κ(1 + ḡ)∆εen,t,s, (65)

as desired.

B.3.5 Proof of Lemma 5

Proof. Starting with the definition of annual realize dividend growth, we have

1 +Gn,t+1 =
4∏
s=1

(1 + gn,t+s)

↔ Gn,t+1 ≈
4∑
s=1

gn,t+s,
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using log(1 + x) ≈ x for small x. Gn,t+1 is annual realized growth from quarter t+ 1 to t+ 4. Now
plug in the dynamics for quarterly dividend growth gn,t from (12) into the second expression:

Gn,t+1 ≈
4∑
s=1

gn,t+s

=
4∑
s=1

xn,t+s−1 +
4∑
s=1

εgn,t+s.

Thus,

Ẽt [Gn,t+1] =
4∑
s=1

Ẽt [xn,t+s−1] +
4∑
s=1

Ẽt
[
εgn,t+s

]

=
4∑
s=1

Ẽt [xn,t+s−1] .

Note that

xn,t+s−1 = x̄+ ρ(xn,t+s−2 − x̄) + εxn,t+s−1
...

= x̄(1− ρ)
s−2∑
j=1

ρj + ρs−1xn,t +
s−1∑
j=1

ρs−1−jεxn,t+s−1.

Therefore,

Ẽt [Gn,t+1] = xn,t(1 + ρ+ ρ2 + ρ3) + x̄(1− ρ)
[
1 + (1 + ρ) + (1 + ρ+ ρ2)

]
→ ∆Ge

n,t ≡ Ẽt+ [Gn,t+1]− Ẽt− [Gn,t+1] = (xn,t+ − xn,t−) (1 + ρ+ ρ2 + ρ3)
= ∆xn,t(1 + ρ+ ρ2 + ρ3)

↔ ∆xn,t =
∆Ge

n,t

1 + ρ+ ρ2 + ρ3 ,

as desired.

B.4 Mg in a Standard Model

The representative investor has CRRA utility over consumption:

U(Ct) = Ct
1−γ

1− γ .
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Log consumption growth is i.i.d.

∆ct+1 = µc + εct+1.

From Section 5.2, realized (quarterly) log dividend growth for stock n has the following dynamics:

∆gn,t+1 = xn,t + εgn,t+1

xn,t+1 = x̄+ ρ(xn,t − x̄) + εxn,t+1,

εct+1 and εgn,t+1 are arbitrarily correlated but εxn,t+1 is uncorrelated with both.
The representative investor’s stochastic discount factor (SDF) is:

Mt+1 = β
(
Ct+1

Ct

)−γ
(66)

↔ mt+1 ≡ logMt+1 = log β − γ∆ct+1,

for subjective discount factor β.
Gross returns Rn,t+1 must satisfy

Et
[
β
(
Ct+1

Ct

)−γ
Rn,t+1

]
= 1. (67)

I derive an approximate log-linearized solution using the decomposition of Campbell and Shiller
(1988), under which log returns have the following form:

rn,t+1 = κ0 + κ1zn,t+1 − zn,t + ∆dn,t+1, (68)

where rn,t+1 = logRn,t+1, zn,t = log(Pn,t/Dn,t), and κ1 = 1
1+exp[E[−zn,t]] and κ0 = − log κ1 + (1 −

κ1) log
(

1
κ1
− 1

)
are constants that depend only on the average level of zn,t.

I solve the model by guess and verify. I conjecture the following form for zn,t:

zn,t = A0 + A1xn,t.

Plugging this expression into
Et [exp[mt+1 + rn,t+1]] = 1 (69)
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yields

A1 = 1
1− κ1ρ

A0 = 1
1− κ1

[
log β − γµc + κ0 + A1κ1x̄(1− ρ) + V

[
κ1A1ε

x
n,t+1 + εgn,t+1 − γεcn,t+1

]]
.

From (13), an annual growth expectation shock of ∆Ge
n,t corresponds to a quarterly shock of

∆xn,t = 1
1 + ρ+ ρ2 + ρ3 ∆Ge

n,t.

Thus, the percentage price change from t− to t+ due to shock ∆xn,t is

∆pn,t ≈ log (Pt+/Dt)− log (Pt−/Dt)
= zn,t+ − zn,t−
= A1∆xn,t

= A1

1 + ρ+ ρ2 + ρ3︸ ︷︷ ︸
≡Mg

∆Ge
n,t,

so
Mg = 1

1− κ1ρ

1
1 + ρ+ ρ2 + ρ3 .

For ρ = 0, this equation collapses to Mg = 1. For the estimated ρ = 0.7 in the I/B/E/S data
(see Appendix B.1), Mg ≈ 1.3 (calibrating κ1 = 1/1.01, since the historical average quarterly
dividend-price ratio for the aggregate market is about 0.01).

B.5 Formal Link to “Myopia” from Gabaix and Koijen (2020b)

Lemma 4 from Appendix B.3.3 features the following present-value identity that expresses the
price change in the current period t (∆pn,t) as a function of changes in future expected dividends
(∆den,t,s+1):

∆pn,t = Mµδ
∞∑
s=0

M s
µ∆den,t,s+1 (70)

Mµ = κ(1 + ḡ)
ζ + κ(1 + ḡ) = κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ) .

For simplicity, consider the case where portfolio weights are small (θn,t− ≈ 0) and quarterly
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expected dividend growth rate is zero (ḡ = 0). In this case, the effective discount factor is

Mµ = κ

ζ + κ
= κ

1 + κ(1 + δ) ,

where δ is the average dividend-price ratio.
Gabaix and Koijen (2020b) discuss the “effective discount rate,” which I denote ρdisc (ρ in Gabaix

and Koijen (2020b)):

ρdisc = ζ

κ
= δ + 1

κ

Mµ = 1
1 + ρdisc

.

If the change in beliefs about future fundamentals is fully incorporated into prices on impact (i.e.
the κ =∞ case), then ρdisc = δ. Thus, when demand is insensitive to expected return (κ is small),
the effective discount rate ρdisc is larger and the effective discount factor Mµ is smaller. So when κ
is small, changes in expectations of future dividends have less of an impact on price today because
investors effectively discount those changes in expectations at a higher rate.

Mg is a function of ρdisc. If there is no persistence in growth expectations, then a 1% increase
in growth expectation is the same as a 1% permanent increase in the level of all future expected
dividends: ∆den,t,s+1 = 1%. Thus, from (70):

∆pn,t = Mµδ
1

1−Mµ

= δ

ρdisc

= κδ

1 + κδ

= Mg,

where the last equation follows from (18).
Since stocks are long-lived assets (i.e. dividend-price ratio δ is small), a little per-period excess

discounting can lower Mg significantly. Figure (B7) plots Mg as a function of the excess effective
discount rate ρdisc − δ (top panel) and as a function of the effective discount factor Mµ (bottom
panel). For a calibrated quarterly dividend-price ratio of δ = 0.01, the upper end of the range I
argue for (Mg = 0.16 ) corresponds to an excess effective discount rate of 5.25% and an effective
discount factor of Mµ = 0.94.
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Figure B7: Mg as a Function of Excess Discount Rate and Effective Discount Factor

For shorter-lived assets (which have higher δ), reducing κ will have a smaller effect onMg because
the impact of this myopia is smaller at shorter horizons. By this logic, the impact of beliefs about
future resale values (i.e. beliefs about next period price) on price today remains large even when κ
is small. Indeed, this impact equals Mµ. A small κ does reduce Mµ, but quantitatively much less
than it reduces Mg because, again, the impact of myopia is smaller at shorter horizons. Thus, while
my empirical estimate of Mg = 0.16 is much smaller than the benchmark of Mg = 1, the implied
Mµ = 0.94 is only slightly smaller than the benchmark Mµ = 1/(1 + δ) = 0.99 (which corresponds
to κ =∞).

B.6 Learning from Prices

Learning from prices changes the investor’s price elasticity of demand. Investor i’s demand curve
is still as in (20), but the price elasticity has a different functional form.
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Let the equilibrium change in growth expectation be

∆G̃e
i,n,t = αi∆pn,t + ∆Ge

i,n,t,

so ∆Ge
i,n,t is still the shock to growth expectation and αi∆pn,t captures the endogenous expectation

update due to learning from prices. Investor i’s demand curve is then:

∆qi,n,t = −(ζi − κgiαi)︸ ︷︷ ︸
≡ζ̃i

∆pn,t + κgi∆Ge
i,n,t + ∆εi,n,t,

where ζi and κgi are as described in Propositions 1 and 2. Holding all else (i.e. demand sensitivity
to expected return κi) constant, learning from prices makes demand more inelastic.51 In this case,
the causal effect of subjective growth expectations on prices is Mg = κgS/ζ̃S and incorporates price
impact amplification due to learning from prices (as in Bastianello and Fontanier (2021b)).

My empirical strategy does not take a stance on if investors learn from prices. In Section 6, I
identify Mg in reduced-form from prices and analyst beliefs. In Section 7, I identify κgi and price
elasticity in reduced form at the investor level from prices, analyst beliefs, and investor holdings.
The elasticity I identify is in general ζ̃i, which will be ζi if investors do not learn from prices.

51Davis, Kargar and Li (2022) discuss this mechanism.
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C Alternative Learning Specifications

C.1 General Linearization of Analyst Influence Bi,a,n with Analyst and
Investor Heterogeneity

In this appendix I derive the general form of analyst influence Bi,a,n under investor and analyst
heterogeneity. With this heterogeneity, the definition of analyst influence from (23) becomes

Bi,a,n =
σ−2
i,a

τ−1
i +∑

a′∈An σ
−2
i,a′
,

where σ−2
i,a is the signal precision of analyst a’s growth expectation as perceived by investor i and

An is the set of analysts who issue expectations for stock n. Rewrite this equation in reduced form
as:

Bi,a,n =
σ−2
i,a

τ−1
i +∑

a′∈An σ
−2
i,a′

= xi,a
1 +∑

a′∈An xi,a′
,

where xi,a ≡ σ−2
i,a /τ

−1
i is the scaled signal precision of analyst a as perceived by investor i. Let

An = |An| represent the number of analysts that rate stock n. Linearizing the last equation around
the average scaled signal precision xi,a = xi and the average number of analysts to rate a stock
An = A yields

Bi,a,n ≈ βi︸︷︷︸
≡ xi

1+Axi

−β2
i Ãn + yi,a︸︷︷︸

≡
xi,a−xi
1+Axi

−βi
∑
a′∈An

yi,a′ (71)

Note that analyst influence depends on:

1. βi: The average analyst influence on investor i across all analysts a and stocks n.

2. yi,a: The gap between analyst a’s influence on investor i and the average influence level βi for
the average stock.

3. An: The set of analysts that rate stock n. An enters (71) in two places:

(a) β2
i Ãn: Each additional analyst added to the rating set reduces the influence of analyst
a. Ãn is the demeaned number of analysts in An .

(b) −βi
∑
a′∈An yi,a′ : Analyst a’s influence falls by more when higher-influence analysts

(higher yi,a′ ) enter An.

The special case with no heterogeneity in scaled signal precisions across analysts follows from setting
yi,a = 0,∀a:

Bi,a,n = Bi,n ≈ βi − β2
i Ãn.
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Further restricting all investors to agree on a single analyst signal precision yields the baseline
specification (24):

Bi,a,n = Bn ≈ β − β2Ãn.

(71) can be taken to the data. In general, βi and all yi,a can be identified using beliefs, price, and
holdings data. If we suppress investor-level heterogeneity, β and all ya can be identified from beliefs
and price data. The baseline specification (28) uses only idiosyncratic growth expectations shocks
and their interaction with the demeaned number of analysts. To allow for heterogeneous influence
across analysts, you would also need to include interactions with analyst-specific indicators.

C.2 Identifying Analyst Influence Using Order of Analyst Reports

An alternative identification strategy is to exploit the order in which analysts report their expecta-
tions. Let τ̄ be investor i’s prior precision before the first analyst reports. After learning from the
first analyst, investor i’s posterior precision is τ̄−1 + σ−2. After learning from k analysts, investor
i’s posterior precision is τ̄−1 + kσ−2. Thus for the k-th analyst to report this quarter for stock n,
investor i’s belief update is

∆GI
i,a,n = σ−2

τ̄−1 + kσ−2︸ ︷︷ ︸
≡Bn,k

(
GA
a,n − ḠI

i,a,n

)
.

So the influence of the k-th analyst to report is

Bn,k = σ−2

τ̄−1 + kσ−2

≈ σ−2

τ̄−1 + k̄nσ−2
−
(

σ−2

τ̄−1 + k̄nσ−2

)2

(k − k̄n)

≈ σ−2

τ̄−1 + k̄σ−2
−
(

σ−2

τ̄−1 + k̄σ−2

)2

(k − k̄)

≈ σ−2

τ̄−1 + k̄σ−2
−
(

σ−2

τ̄−1 + k̄σ−2

)2

(k̄n − k̄) (72)

The second line follows from a first-order approximation around k = k̄n ≡ (An+1)
2 , the average

analyst order rank for stock n (i.e. k̄n ≡ 1
An

(1 + 2 + . . .+ An)). The third line follows from a first-
order approximation around k̄n = k̄ ≡ E[k̄n]. Either of these specifications can be taken directly to
the data.

The fourth line follows from a first-order approximation around k = k̄n again. This final ap-
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proximation implies

Bn,k = Bn = β︸︷︷︸
= σ−2

(τ̄)−1+k̄σ−2

− β2︸︷︷︸
=
(

σ−2
(τ̄)−1+k̄σ−2

)2

Ãn
2︸︷︷︸

=k̄n−k̄

.

Thus (72) implies that my baseline specification underestimates β by a factor of 2 and so
overestimates Mg by a factor of 2.

C.3 Deviations from Bayesian Learning

I consider a general class of deviations from Bayesian learning using the conceptual framework of
Benjamin (2019).

In the notation from Section 6.2, Benjamin (2019) use the following specification of the posterior
distribution for the unknown growth rate Gn that investor i is learning about:

P (Ge
n | {Ga,n}a∈An) =

P
(
{GA

a,n}a∈An | Ge
n

)c
P
(
Ge
n | ḠI

i,a,n

)d
∫
Ge′n

P
(
{GA

a,n}a∈An | Ge′
n

)c
P
(
Ge′
n | ḠI

i,a,n

)d .
Parameters c and d capture over or underweighting of signals and the prior, respectively.

• Bayesian learning corresponds to the special case where c = d = 1.

• c < 1 represents “underinference” —the learner puts less weight on signals than a Bayesian
would.

• c > 1 represents “overinference” —the learner puts more weight on signals than a Bayesian
would.

• d < 1 represents “base-rate neglect” —the learner puts less weight on the prior than a Bayesian
would.

• d < 1 represents “base-rate over-use” —the learner puts more weight on the prior than a
Bayesian would.

Thus, this specification of the posterior captures wide range of deviations from Bayesian learning.
Given the Gaussian prior and signal structure in Section 6.2, one can easily show that the

posterior mean growth expectation after learning from An analysts is

cσ−2

cσ−2An + dτ−1

∑
a∈An

GA
a,n + dτ−1

cσ−2An + dτ−1 Ḡ
I
i,a,n,

44



and so the update to mean growth expectation is

cσ−2

cσ−2An + dτ−1

∑
a∈An

(
GA
a,n − ḠI

i,a,n

)
.

Thus we have analyst influence

Bn = cσ−2

cσ−2An + dτ−1

≈ β − β2(An − A)

β = cσ−2

cσ−2A+ dτ−1 ,

where A = E[An] is the average number of analyst institutions that cover each stock. We get the
same functional form for Bn as in (24) in Section (6.2). The underlying structure of average influence
β has changed. However, the way analyst influence Bn varies in the cross section of equities has
not changed.

Thus, my identification strategy does not rely on investors acting as perfect Bayesian learners.
They may exhibit any of the wide range of behavioral biases listed above. The functional form of
analyst influence (Bn = β − β2(An −A)) proves robust to these deviations from Bayesian learning.
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D Analyst Expectation Factor Model Details

D.1 Microfoundation

Figure D8: Model Timing
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Consider a Grossman and Stiglitz (1980)-type economy with a representative investor. I focus
on a single quarter, stock, and analyst, and so I drop the t, n, and a subscripts. Assume both
the investor and analyst are Bayesians. In the previous quarter, the analyst in question had the
prior Ge ∼ N(GA

0 , τA,0) and reported annual growth expectation GA
0 . The investor posterior in the

previous quarter after incorporating that analyst signal is Ge ∼ N(ḠI
0, τI,0) . In the current quarter

there is:

1. A public signal (e.g. the reported expectation of a different analyst, an earnings surprise, etc.)
about the annual growth expectation

s = Ge + νs, νs ∼ N(0, σ2
s).

2. A private signal observed only by the investor

sI = Ge + νI , νI ∼ N(0, σ2
I ).

3. A private signal observed only by the analyst

sA = Ge + νA, νA ∼ N(0, σ2
A).

4. An exogenous demand shock that changes price by εpercent for ε ∼ N(0, σ2
ε ).

All signals and shocks are uncorrelated. After all of these signals and shocks have been realized,
the representative investor has posterior Ge ∼ N(ḠI

1, τI,1) and the analyst has posterior Ge ∼
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N(ḠA
1 , τA,1). Then the analyst reports his growth expectation for the current quarter: ḠA

1 . The
price change from after the analyst report in the previous quarter until before the analyst report in
this quarter is ∆p−. This timing is summarized in Figure D8.

The representative investor’s growth expectation update is

ḠI
1 − ḠI

0 = σ−2
s

τ−1
I,0 + σ−2

s + σ−2
I

s+ σ−2
I

τ−1
I,0 + σ−2

s + σ−2
I

sI − σ−2
s + σ−2

I

τ−1
I,0 + σ−2

s + σ−2
I

ḠI
0.

So the price change strictly between analyst announcements is

∆p− = Mg

(
ḠI

1 − ḠI
0

)
+ ε.

This price change is a noisy signal of growth expectations since it contains the investor’s private
information sI . Thus, the analyst learns from ∆p−.

The update to the analyst’s growth expectation is

GA
1 −GA

0 = α∆p− + λ1s+ λ2G
A
0 + λ3s

A, (73)

where the coefficients α, λ1, λ2, and λ3 are functions of the signal variances σ2
s , σ

2
I , σ

2
A and the demand

shock variance σ2
ε and reflect the fact that some of the signals (∆p− and s) are correlated.

In the notation from Section 6.3, let η′ = [s,GA
0 ] since in the current quarter both s and the

previous quarter’s analyst expectation GA
0 are “public signals”. Let λ = [λ1, λ2] and u = λ3s

A.
Then (73) can be rewritten as

∆GA = α∆p− + λ′η + u,

which matches the factor structure I use empirically: (25) from Section 6.3.

D.2 Singular Value Decomposition Implementation Details

In this appendix, I discuss some implementation details involved in applying the Funk (2006)
singular value decomposition to the latent factor model

Gt = ΛtHt + ut,

where Gt is the A × N matrix of reported expected returns for number of analyst institutions A
and number of stocks N , Λt ∈ RA×F is the stacked matrix of institution-specific loading vectors
λ̃a,t ∈ RF , Ht ∈ RF×N is the stacked matrix of stock-specific characteristic vectors η̃n,t ∈ RF , and
ut is the A×N matrix of idiosyncratic residual expected return shocks.
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One can estimate matrices Λt and Ht as the minimizers of the following loss function

min
Λt,Ht

∑
a,n

(
∆GA

a,n,t −∆Ĝa,n,t

)2

s.t. ∆ĜA
a,n,t = λ̃

>
a,tη̃n,t

= ba,t + cn,t + λ>a,tηn,t

where λa,t and ηn,t are the unconstrained components of λ̃a,t and η̃n,t, while ba,t is the element of
λ̃a,t constrained to load on a constant η̃n,t,f = 1 (i.e. an analyst institution-quarter fixed effect) and
cn,t is the element of η̃n,t constrained to be loaded on by λ̃a,t,f = 1 (i.e. a stock-quarter fixed effect).

Empirically, each institution only covers a small subset of stocks in each quarter (in the average
quarter roughly 2% of the entries in Gt are filled). For this reason, I can attain more efficient
estimates of Λt and Ht by adding L2 penalties to the least-squares loss function (Funk (2006); Bai
and Ng (2019)):

min
Λ∗,H∗

∑
a,n

(
∆GA

a,n,t −∆ĜA
a,n,t

)2
+ γ1,tb

2
a,t + γ2,tc

2
n,t + γ3,t ‖λa,t‖2 + γ4,t

∥∥∥ηn,t∥∥∥2

s.t. ∆ĜA
a,n,t = ba,t + cn,t + λ>a,tηn,t,

In the baseline analysis, I use five latent factors. Since I fit the factor model quarter by quarter,
all regularization parameters can vary over time. I conduct three-fold cross-validation within each
quarter to choose regularization parameters γ3,t and γ4,t. Since the fixed effects ba,t and (especially)
cn,t are responsible for absorbing the price terms in the ∆ĜA

a,n,t, I do not regularize them (γ1,t =
γ2,t = 0) in order to avoid biasing the estimated fixed effects toward zero and thereby leaving some
price variation in the estimated residuals ûa,n,t.52

D.3 Factor Structure with Staggered Analyst Releases

Analysts may learn from slightly different price changes due to the staggered timing of analyst
reports. In this case, we have the following structural factor model: ∆GA

a,n = (φa + φn)∆p−a,n +
λ
′

aηn + ua,n. Let Da,n be the set of days that elapse between the two report releases of GLag
a,n

last quarter and Ga,n in the current quarter. If day d occurs in at least two sets Da,n and Db,n,
the price change on day d is a common factor that η̃n can capture. Let all such days belong
to set Dn. Then we can decompose ∆p−a,n = λ

′

a,T iming∆p−n + ∆p̃−a,n, where ∆p−n is the vector of
price changes for days d ∈ Dn and ∆p̃−a,n is the sum of price changes over days in Da,n \ Dn. Thus,

52Nevertheless, since the fixed effects ba,t and cn,t are jointly estimated with the factors ηn,t and loadings λa,t,
regularizing ηn,t and λa,t will somewhat affect the estimates of ba,t and cn,t. To avoid this issue, one could remove
analyst-quarter and stock-quarter fixed effects from ∆GAa,n,t before estimating the factor model.
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(φa+φn)∆p−a,n = φaλ
′
a,T iming∆p−n +λ′a,T iming (φn∆p−n )+φa∆p̃−a,n+φn∆p̃−a,n. λ̃

>
a η̃n can absorb the first

two terms (φaλ
′
a,T iming∆p−n +λ′a,T iming (φn∆p−n )) , but not the second two terms (φa∆p̃−a,n+φn∆p̃−a,n).

The second two terms would appear in the estimated residual ûa,n. These price changes prove
unlikely to cause problems for two reasons. First, only the first analyst to report in the previous
quarter and the last analyst to report in the current quarter can have non-empty sets Da,n \Dn and
so non-zero ∆p̃−a,n. Second, for these two analysts, ∆p̃−a,n proves unlikely to strongly correlate with
ea,n in (28) because there is little high-frequency serial correlation in returns.

As an additional robustness check, one could also not include the analyst-stock pairs (a, n)
corresponding to the first analyst to report in the previous quarter and the last analyst to report
in this quarter for each stock n when estimating (28).
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E Decomposition of Structural Error Terms

E.1 Market Clearing with Homogeneity (28) Error Term Decomposi-
tion

The full version of market clearing expression (28) is:

∆p+
a,n = Mgβua,n −Mgβ

2ua,nÃn

+MgBn

 (αa + αn)∆p−n + λ′aηn︸ ︷︷ ︸
Other Determinants of Analyst Expectations


−MgBn( ḠI

S,a,n︸ ︷︷ ︸
Investors’ Prior Expectations

− GLag
a,n︸ ︷︷ ︸

Lagged Analyst Expectation

)

+Mg νIS,a,n︸ ︷︷ ︸
Other Contemporaneous Signals

+ 1
ζ

∆εS,a,n︸ ︷︷ ︸
Other Demand Shocks

= Mgβua,n −Mgβ
2ua,nÃn + ea,n.

E.2 Low-Frequency Growth Expectation Update (36) Error Term De-
composition

The full version of low-frequency (quarterly) growth expectation update (36) is:

∆GI
i,n =

∑
a∈An

∆GI
i,a,n + νIi,n

= βi
∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn

+
(
βi − β2

i Ãn
) ∑
a∈An

 (αa + αn)∆p−n + λ′aηn︸ ︷︷ ︸
Other Determinants of Analyst Expectations



−
(
βi − β2

i Ãn
) ∑
a∈An

 ḠI
i,a,n︸ ︷︷ ︸

Investor Prior Expectations

− GLag
a,n︸ ︷︷ ︸

Lagged Analyst Expectation


+
∑
a∈An

νIi,a,n︸ ︷︷ ︸
Other High-Frequency Signals

+ νIi,n︸︷︷︸
Other Low-Frequency Signals

= βi
∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn + eGi,n.
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F Analyst Price Impact Estimates from Previous Work

Figure F9 graphically compares my analyst price impact estimate c1 ≈ 0.5 basis points to values
found in previous work. Table F10 provides details of estimates from previous work.

My analyst price impact estimate is slightly smaller than what the previous literature has found.
I offer five potential reasons to reconcile these estimates:

1. Previous estimates may suffer from omitted variable bias. Analyst EPS growth expectations
announcements tend to cluster around actual EPS announcements by firms. If positive EPS
surprises cause positive high-frequency price changes (potentially at a lag due to post-earnings
announcement drift) and positive analyst growth expectations updates, then regressions of
price changes on analyst growth expectations updates will suffer from positive omitted variable
bias. My identification strategy strips out all variation in analyst growth expectation updates
due to stock-quarter characteristics (including public signals like EPS surprises) and so does
not suffer from this omitted variable bias.

2. The previous literature uses a different specification than this paper. This paper focuses on
how growth expectations impact prices, so I scale analyst fixed one-year horizon EPS forecasts
by the trailing level of EPS to obtain EPS growth forecasts and take quarterly differences. The
previous literature uses the percentage change in EPS forecasts for the current fiscal year. So
both the measure and horizon used by the previous literature are different. If the percentage
change in fixed-year (instead of fixed-horizon) EPS forecast has more influence on investor
expectations (i.e. higher β), this measure will have greater price impact than my c1 ≈ 0.5.
This scenario does not change the interpretation of my Mg estimate. The β I estimate is
the analyst influence of a particular piece of information in analyst reports. Other pieces
of information having different β values (e.g. due to different perceived signal precisions)
does not invalidate the β I measure. For this reason, the Mg I measure is unaffected. I
prefer my empirical measure of fixed-horizon EPS growth forecasts since it proves closer to
the theoretical framework in Section 5.

3. Analyst influence β may be lower in my sample than in previous work. Much of the previous
literature studies analyst price impact prior to the introduction of the SEC Regulation Fair
Disclosure (“Red FD”) in 2000, which limited the ability of firm managers to disclose infor-
mation solely to particular analysts before revealing that information publicly. My sample
extends through 2021. Thus, to the extent that analyst influence β is lower after the intro-
duction of Red FD because the perceived signal precision of analyst expectations has fallen,
analyst price impact will also be lower post-2000.

4. Mg may be lower in my sample than in previous work. Koijen and Yogo (2019) document that
price elasticities of demand have fallen over time (e.g. due to the rise of passive investing).
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Figure F9: Comparison of Average Analyst Price Impact c1 to Previous Literature

Graphical comparison of my analyst price impact estimate (c1 ≈ 0.5 basis points from Table 3) to
values found in previous work. See Table F10 for details of previous estimates.

As discussed in Section 5.4, the price impact of investor beliefsMg is low when price elasticity
is low. Thus, to the extent that Mg is lower in my sample than in previous work, my analyst
price impact estimate will also be lower.

5. Statistically, my estimate proves consistent with the smaller estimates from the previous
literature. My c1 = 0.5 basis points estimate is within the 95% confidence interval for the
analyst price impact estimate from Park and Stice (2000). The lower estimate of 2 basis
points from Asquith, Mikhail and Au (2005) is not statistically significant.
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G Supplements to Empirical Results in Section 6.5

G.1 Non-Parametric Evidence of Signal Averaging

Figure G10: Analyst Price Impact by Quintile of Number of Analysts

Plot of regression coefficients and 95% confidence intervals for

∆p+
a,n,t =

5∑
k=1

bk1
(
Ãn,t−1 ∈ Quintile k

)
ua,n,t + ea,n,t.

G.2 Alternative β Magnitudes

The baseline β = 0.06 from Table 4 is a plausible value for analyst influence. One may be concerned
that this β estimate implies analyst influence is unrealistically large and so the Mg = 0.07 estimate
is too small. However, given the c1 = 0.46 basis points estimate from Table 3, β would have to be
implausibly small to raise Mg close to the benchmark of Mg = 1.

How noisy are analyst expectations perceived to be given β = 0.06? Recall the functional form
of β from (24): β = σ−2/(τ−1 + Aσ−2),where σ is investors’ perceived analyst signal standard
deviation, τ is investors’s prior variance, and A is the average number of analyst institutions that
cover each stock (10 in Table 2). β = 0.06 implies the perceived analyst signal standard deviation
is about 2.5 times investors’ prior standard deviation: σ/τ 1/2 ≈ 2.5. This ratio is plausible and
does not imply that investors view analysts as unrealistically accurate. For example, if an investor’s
prior mean annual growth expectation is 10% with a standard deviation of 5%, β = 0.06 implies
a perceived signal standard deviation of σ = 12.5%. A 10% annual analyst expectation would be
viewed by investors as a signal that the true growth expectation is between −15% and 35% with

54



95% probability. Thus, the β = 0.06 estimate implies investors view analyst expectations as very
noisy signals. For this reason, β = 0.06 is not an unrealistically large estimate of analyst influence.

How noisy would analyst expectations have to be perceived in order to lower β sufficiently to raise
Mg to 1, given the c1 = 0.46 basis points estimate? Obtaining Mg = 1 from c1 = 0.46 basis points
requires β = 0.0046. This β value implies σ/τ 1/2 ≈ 14. In the above example, this ratio corresponds
to a perceived signal standard deviation of σ = 70%, which means a 10% annual analyst expectation
would be viewed by investors as a signal that the true growth expectation is between −130% and
150% with 95% probability. Thus, a β small enough to yield Mg = 1 given c1 = 0.46 basis points
would imply that investors essentially view analyst expectations as completely uninformative. This
implication would be at odds with a large literature that finds analyst expectations are informative
(Brown and Rozeff (1978); Collins and Hopwood (1980); Brown et al. (1987); Chen and Matsumoto
(2006); Mayew, Sharp and Venkatachalam (2013)). Moreover if analyst expectations are actually
viewed by investors as so uninformative, then the beliefs literature’s use of analyst expectations as
a proxy for investor expectations (e.g. Bordalo et al. (2019, 2022); Nagel and Xu (2021); De La O
and Myers (2021)) proves ill-justified.

G.3 Allowing for Analyst Heterogeneity

This appendix extends the baseline analysis in Section 6 to allow for heterogeneous influence across
analyst institutions.

As discussed in Appendix C.1, allowing for heterogeneous signal precisions across analysts (but
maintaining homogeneity across investors) yields the following form for analyst a’s influence for
stock n:

Ba,n ≈ β − β2Ãn + ya − β
∑
a′∈An

ya′ ,

β is the average analyst’s influence for the average stock. ya is the deviation of a’s influence for the
average stock from β, so the sum of ya across all analysts is zero.

With this general form of analyst influence, the analogous market-clearing expression to (29) is

∆p+
a,n,t = Mg

∑
a′

(β + ya′ ) 1a′=aua,n,t−Mgβ
∑
a′

(β + ya′ ) 1a′∈An,t−1
ua,n,t+MgβAt−1ua,n,t+ea,n,t, (74)

where At−1 is the average number of analyst institutions per stock in quarter t− 1. Note that if all
ya′ = 0 so there is no analyst heterogeneity, (74) collapses to (29).

In the baseline analysis, cross-sectional variation in the number of analysts that cover each
stock identifies the the shrinkage rate of analyst price impact as the number of analysts grows and
influence declines (c2 = Mgβ

2). Combined with average analyst price impact (c1 = Mgβ), I identify
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both Mg and β.
In this general case, cross-sectional variation in the set — not the number — of analysts covering

each stock identifies how much a’s price impact for the average stock shrinks when adding analyst a′

(Mgβ (β + ya′ )). Note that adding more influential (higher ya′ ) analysts will reduce a’s price impact
to a greater extent. Combined with analyst a′ ’s price impact for the average stock (Mg (β + ya′ )), I
identify β. Since all ya sum to zero, the sum of analyst-specific price impacts for the average stock
(∑aMg (β + ya)) identifies the average analyst’s price impact on the average stock (Mgβ). Given
β and Mgβ, I identify Mg.

I fit (74) as a nonlinear regression of post-announcement price changes (∆p+
a,n,t) on the idiosyn-

cratic growth expectations shocks interacted with analyst-specific dummies (1a′=aua,n,t) and on the
idiosyncratic growth expectations shocks interacted with dummies capturing the set of analysts
who cover stock n in the previous quarter (1a′∈An,t−1

ua,n,t).53 If there are A total analysts, then
there are A + 1 total structural parameters to identify: Mg, β, and A − 1 of ya (since the ya sum
to zero). There are 2A instruments: A of 1a′=aua,n,t and A of 1a′∈An,t−1

ua,n,t. Thus, the system is
overidentified with the following set of moment conditions

E [1a′=aua,n,tea,n,t] = 0,∀a′

E
[
1a′∈An,t−1

ua,n,tea,n,t
]

= 0,∀a′ .

Due to computational limitations, I run regression (74) using only analyst institutions that report
at least 100 expectations in the full sample. This filter leaves 1, 513, 888 analyst institution-stock-
quarter observations (out of 1, 530, 391 in the baseline analysis) from 413 analyst institutions (out
of 1, 150 in the baseline analysis).

Table G11 displays the estimated Mg and β from regression (74). Both the β = 0.04 and
Mg = 0.05 estimates are quantitatively similar to the baseline results from Table 4 (β = 0.06 and
Mg = 0.07).

G.4 Alternative Numbers of Latent Factors

The baseline specification in Section 6.5 uses 5 latent factors. Figures G11 and G12 display estimates
for reduced-form coefficients c1 and c2 as well as structural parameters β and Mg for alternative
numbers of latent factors. All results prove robust to using alternative numbers of latent factors.

Figure G13 displays the cumulative percentage variation in ∆GA
a,n,t explained as a function of the

number of latent factors. The first 5 latent factors (along with stock-quarter and analyst-quarter
fixed effects) explain 88% of the variation in ∆GA

a,n,t. Adding more factors explains only marginally

53As in the baseline analysts, I use the lagged coverage set to avoid any potential endogeneity issues with analysts
initiating (or ending) coverage due to particularly bullish (or bearish) information. Irvine (2003) discusses some of
these concerns.
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Table G11: Estimation Results Allowing for Investor Heterogeneity

βS Mg

Point Estimate 0.044*** 0.046***
95% Confidence Interval (0.031, 0.12) (0.0095, 0.098)
* p<0.10, ** p<0.05, *** p<0.01

This table displays the estimated β and Mg from (74). Point estimates are the medians of the block-
bootstrapped sampling distributions (I sample quarters). Confidence intervals report the 2.5th and 97.5th
quantiles of the are block-bootstrapped sampling distributions. All estimates represent the marginal effect
in percentage points of a 1 percentage point increase in growth expectations (analyst expectations for β
and and investor expectations for Mg). The time period is 1984-01:2021-12.

more variation: 5 more factors (for a total of 10) explain less than 1% additional variation in ∆GA
a,n,t.
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Figure G11: c1 and c2 Results for Numbers of Latent Factors

Estimates of reduced-form parameters c1 and c2 from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over different windows from 1 to 10 days. Zero factors corresponds to

using the full analyst growth expectation update ∆GA
a,n,t.
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Figure G12: β and Mg Results for Numbers of Latent Factors

Estimates of implied structural parameters β and Mg from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t +Xn,t + ea,n,t,

where ∆p+
a,n,t is measured over different windows from 1 to 10 days. Zero factors corresponds to

using the full analyst growth expectation update ∆GA
a,n,t.
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Figure G13: Percentage Variation in ∆GA
a,n,t Explained

Percentage variation in ∆GA
a,n,t explained as a function of the number of latent factors. Zero factors

corresponds to the percentage variation explained by just stock-quarter and analyst-quarter fixed
effects.

G.5 Alternative Price Reaction Windows

The baseline specification in Section 6.5 uses the 5-day return following an analyst report to measure
the high-frequency price change ∆p+

a,n,t. Figures G14 and G15 display estimates for reduced-form
coefficients c1 and c2 as well as structural parameters β and Mg using reaction windows of different
lengths. TheMg results for windows of 1−5 days prove similar and all are roughly within the range
of 7− 16 basis points that I argue for, especially after accounting for standard errors.

I use 5-days for the baseline specification to account for the possibility of a delayed investor
reaction to analyst reports. Ideally, I would like to go out further than 5 days but, as Figures G14
and G15 exhibit, past 5 days regression (29) lacks power. In particular, the estimate of analyst
price impact for the average stock (c1) lacks power. The intuition for this decay in power is that
the regression uses within stock-quarter variation in analyst expectations to identify c1. When
constructing the idiosyncratic analyst growth expectations shocks ua,n, the factor model removes
analyst-quarter and stock-quarter fixed effects. Thus, the high-frequency price reactions ∆p+

a,n,t

need to vary across analysts a within the (stock n, quarter t) pair. For example, if all analysts
reported on the same day so ∆p+

a,n,t = ∆p+
n,t,∀a, then the regression

∆p+
n,t = c1ua,n,t + c2ua,n,tÃn,t + ea,n,t

would not be able to identify c1. Essentially, this regression would be trying to explain a within
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stock-quarter constant on the left-hand side since the latent factor model removes all stock-quarter
variation from ua,n,t. ua,n,tÃn,t, on the other hand, does have stock-quarter variation, which is
presumably why the c2 estimates in Figure G14 vary less as the window expands.

For short windows, ∆p+
a,n,t has variation across analysts a within the (stock n, quarter t) pair.

However, as the window expands, the post-report price changes ∆p+
a,n,t overlap significantly across

analysts, since analyst reports tend to cluster temporally within a quarter. For a 10-day window,
stock-quarter fixed effects explain 63% of the variation in ∆p+

a,n,t. The remaining variation proves
insufficient to pin down c1.

61



Figure G14: c1 and c2 Results for Different Price Reaction Windows

Estimates of reduced-form parameters c1 and c2 from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.
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Figure G15: β and Mg Results for Different Price Reaction Windows

Estimates of implied structural parameters β and Mg from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over post-announcement different windows from 1 to 10 days.

To provide further evidence that the within stock-quarter lack of variation in ∆p+
a,n,t is the

problem (as opposed to price reversal at longer horizons or some other reason), I run the following
regression:

∆p+
a,n,t = c1∆Ga,n,t + c2∆Ga,n,tÃn,t + FEn + FEt + ea,n,t. (75)
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Figures G16 and G17 display the regression results for price reaction windows of 1 to 10 days. This
regression uses the entire analyst update ∆Ga,n,t instead of just the idiosyncratic analyst growth
shock ua,n,t. Unlike ua,n,t, ∆Ga,n,t has within-quarter variation across stocks. Thus, even if for longer
windows ∆p+

a,n,t does not have much variation across analysts within stock-quarter, regression (75)
can still estimate c1. For this reason, the c1 estimates in Figure G16 are all significant stable across
window lengths.54

Of course, ĉ1 and ĉ2 from (75) are not consistent estimates of the parameters c1 and c2 because
∆Ga,n,t likely does not satisfy moment conditions (31) and (32):

E [∆Ga,n,tea,n] 6= 0 (76)
E
[
∆Ga,n,tÃnea,n

]
6= 0. (77)

Nevertheless, the Mg estimates implied by ĉ1 and ĉ2 from (75) actually prove broadly consistent (if
slightly larger) with those from the baseline regression (29). The Mg estimates in Figure G17 range
from 20 to 27 basis points, and so are roughly in line with the range of 7 − 16 basis points that I
argue for, especially after accounting for standard errors. The larger Mg estimates from (29) also
yield the same economic conclusion: the causal effect of subjective growth expectations on asset
prices is far smaller than in standard models (i.e. far smaller than the benchmark value Mg = 1).

54If ex-post reversal explained the insignificance of the c1 estimates from the baseline regression (29), we would
not see stable c1 estimates across window lengths from regression (75).
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Figure G16: c1 and c2 Results for Different Price Reaction Windows and Full ∆GA
a,n,t

Estimates of reduced-form parameters c1 and c2:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

∆Ga,n,t + c2︸︷︷︸
≡Mgβ2

∆Ga,n,tÃn,t + FEn + FEt + ea,n,t.

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.
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Figure G17: β and Mg Results for Different Price Reaction Windows and Full ∆GA
a,n,t

Estimates of reduced-form parameters implied structural parameters β and Mg from the following
regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

∆Ga,n,t + c2︸︷︷︸
≡Mgβ2

∆Ga,n,tÃn,t + FEn + FEt + ea,n,t.

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.

G.6 Allowing β to Vary by Stock

In this section I relax the assumption that β does not vary across stocks. This analysis yields
the same economic conclusion as the baseline specification: the causal effect of subjective growth
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expectations on prices is an order of magnitude smaller than suggested by standard models.
Consider a generalization of (24) where investor prior precisions and analyst signal precisions

are allowed to vary by stock:
Bn ≈ βn︸︷︷︸

≡ σ−2
n

τn−1+Aσ−2
n

−β2
n Ãn︸︷︷︸
An−A

.

In this case, I model βn as a function of stock characteristics

βn = f(Xn)

≈ β +
∑
k

∂fk
∂Xk,n

∣∣∣∣∣
X̄︸ ︷︷ ︸

≡γk

X̃k,n︸ ︷︷ ︸
≡Xk,n−X̄k

,

where the second line follows from a first-order approximation. β is the average βn across stocks n,
X̃k,n is the cross-sectionally demeaned characteristic k for stock n, and γk captures how βn varies
with characteristic k.

Given this structure, (29) becomes

∆p+
a,n,t = c1,n︸︷︷︸

≡Mgβn

ua,n,t − c2,n︸︷︷︸
≡Mgβ2

n

ua,n,tÃn,t−1 + ea,n,t

= Mg

(
β + γ ′X̃n,t−1

)
ua,n,t −Mg

(
β + γ ′X̃n,t−1

)2
ua,n,tÃn,t−1 + ea,n,t

= c1︸︷︷︸
≡Mgβ

ua,n,t − c1︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + c′5X̃
2
n,t−1ua,n,tÃn,t−1

+
∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t. (78)

Thus, I can identify Mg = c2
1/c2 and β = c2/c1 from a regression of post-announcement price

changes (∆p+
a,n,t) on the interaction of the idiosyncratic analyst growth expectations shocks (ua,n,t)

with cross-sectionally demeaned stock characteristics (X̃n,t−1 and a constant)55, and the interaction
of ua,n,t with both the demeaned number of analysts that cover each stock (Ãn,t−1) and a second-
order polynomial of demeaned stock characteristics (including a constant).56 Strictly speaking, the
structure on βn imposes cross-coefficient restrictions on the reduced-form parameters c1, c2, c3, c4, c5,

55I lag stock characteristics by one quarter to ensure these characteristics are exogenous to quarter t growth
expectations shocks.

56The full regression is

∆p+
a,n,t = Mgβua,n,t −Mgβ

2ua,n,tÃn,t−1 +Mg

∑
k

γkX̃k,nua,n,t − 2Mgβ
∑
k

γkX̃k,nua,n,tÃn,t−1 −Mg

∑
k

γ2
kX̃

2
k,nua,n,tÃn,t−1

− 2Mg

∑
k

∑
k 6=l

γkγlX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t.
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and c6 in (78). To keep the estimation as simple as possible, I do not impose these restrictions
(although doing so might improve estimation efficiency).

I use five stock characteristics motivated by Fama and French (2015) and used by Koijen and
Yogo (2019): log book equity, profitability, investment, market beta, and the dividend-to-book
equity ratio.

Table G12 displays the reduced-form results from regression (78). Each column adds an ad-
ditional characteristic. The c1 estimate is stable across specifications. The c2 estimate is broadly
stable across specifications, although the regression starts to lose power in columns 5 and 6. More
importantly, the c4, c5, and c6 coefficients in (78) on interactions of ua,n,tÃn,t−1 with the second-
order polynomial of stock characteristics are insignificant across specifications. For this reason, I do
not find significant evidence that c2,n varies across stocks n, which suggests βn does not vary across
stocks based on these characteristics.57

Table G13 presents the implied Mg and β from regression (78). I find β ≈ 0.04 across specifi-
cations, which is statistically indistinguishable from the baseline β = 0.06 in column 1 (again, the
regression starts to lose power in columns 5 and 6). The Mg estimates range from 0.10 to 0.11,
which implies a 1% rise in one-year investor (not analyst) growth expectations raises price 10 to 11
basis points. These estimates are statistically indistinguishable from the baseline Mg = 0.07 esti-
mate and yield the same economic conclusion: the causal effect of subjective growth expectations
on prices is an order of magnitude smaller than suggested by standard models.

57Note that the c3 coefficient on the interaction of ua,n,t with log book equity (size) is significant and neg-
ative while all all other c3, c4, c5, and c6 coefficients are insignificant. This pattern is consistent with βn be-
ing constant but Mg varying by stock (i.e. Mg is Mg,n) and being smaller for big stocks. Note that if both
Mg,n and βn are linear functions of firm characteristics, then the market clearing expression will have the same
reduced-form as in (78) but with third-order interactions of stock characteristics interacted with ua,n,tÃn,t−1 (i.e.∑
k

∑
l>k

∑
m>l c7,k,l,mX̃k,nX̃l,nX̃m,nua,n,tÃn,t−1). SinceMg is smaller when demand is more inelastic (as explained

in Section 5.4), this result would be consistent with the result from Haddad, Huebner and Loualiche (2021): investors
are more elastic for stocks in which other investors are more elastic (i.e. small stocks since inelastic passive investors
own large shares of large stocks).
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Table G12: Reduced-Form Estimates with Stock-Specific βn
(1) (2) (3) (4) (5) (6)

ua,n,t 0.452*** 0.454*** 0.462*** 0.468*** 0.465*** 0.442***
(0.0560) (0.0563) (0.0576) (0.0589) (0.0600) (0.0615)

ua,n,t × Ãn,t−1 -0.0284*** -0.0200** -0.0204** -0.0213** -0.0186* -0.0172
(0.00434) (0.00837) (0.00884) (0.00978) (0.0102) (0.0113)

ua,n,t × LNben,t−1 -0.0988** -0.0981** -0.101** -0.101** -0.100**
(0.0409) (0.0424) (0.0422) (0.0393) (0.0402)

ua,n,t × Ãn,t−1 × LNben,t−1 0.00301 0.00503 0.00484 0.00338 0.00328
(0.00585) (0.00586) (0.00598) (0.00633) (0.00631)

ua,n,t × Ãn,t−1 × LNbe2
n,t−1 -0.000358 -0.000752 -0.000760 -0.000878 -0.000683

(0.00120) (0.00130) (0.00133) (0.00143) (0.00148)
ua,n,t ×MktBetan,t−1 -0.0360 -0.0369 -0.0378 -0.0548

(0.0734) (0.0741) (0.0749) (0.0709)
ua,n,t × Ãn,t−1 ×MktBetan,t−1 0.0116 0.00783 0.00624 0.0101

(0.0127) (0.0131) (0.0137) (0.0149)
ua,n,t × Ãn,t−1 × LNben,t−1 ×MktBetan,t−1 -0.00630 -0.00568 -0.00407 -0.00342

(0.00557) (0.00578) (0.00632) (0.00652)
ua,n,t × Ãn,t−1 ×MktBeta2

n,t−1 -0.00421 -0.00436 -0.00548 -0.00540
(0.00577) (0.00565) (0.00535) (0.00529)

ua,n,t ×Gatn,t−1 -0.140 -0.133 -0.173
(0.215) (0.213) (0.217)

ua,n,t × Ãn,t−1 ×Gatn,t−1 -0.0339 -0.0353 -0.0362
(0.0370) (0.0398) (0.0412)

ua,n,t × Ãn,t−1 × LNben,t−1 ×Gatn,t−1 0.0140 0.00947 0.0122
(0.0139) (0.0155) (0.0164)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 ×Gatn,t−1 0.0252 0.0315 0.0338
(0.0267) (0.0276) (0.0282)

ua,n,t × Ãn,t−1 ×Gat2n,t−1 0.0526 0.0634* 0.0590
(0.0388) (0.0382) (0.0394)

ua,n,t × profitn,t−1 -0.0198 0.0229
(0.184) (0.192)

ua,n,t × Ãn,t−1 × profitn,t−1 0.0280 0.0353
(0.0267) (0.0269)

ua,n,t × Ãn,t−1 × LNben,t−1 × profitn,t−1 0.00606 0.00270
(0.00821) (0.00872)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 × profitn,t−1 -0.0187 -0.0263
(0.0199) (0.0219)

ua,n,t × Ãn,t−1 ×Gatn,t−1 × profitn,t−1 0.0335 0.0357
(0.0447) (0.0465)

ua,n,t × Ãn,t−1 × profit2n,t−1 -0.00599 -0.00386
(0.0131) (0.0135)

ua,n,t ×D/Bn,t−1 -0.0323
(0.0219)

ua,n,t × Ãn,t−1 ×D/Bn,t−1 -0.0431
(0.257)

ua,n,t × Ãn,t−1 × LNben,t−1 ×D/Bn,t−1 0.143*
(0.0792)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 ×D/Bn,t−1 0.313
(0.287)

ua,n,t × Ãn,t−1 ×Gatn,t−1 ×D/Bn,t−1 -0.00561
(0.584)

ua,n,t × Ãn,t−1 × profitn,t−1 ×D/Bn,t−1 0.0933
(0.212)

ua,n,t × Ãn,t−1 × (D/Bn,t−1)2 -0.110
(0.0187)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
R-Squared 0.0000524 0.0000604 0.0000625 0.0000664 0.0000696 0.0000731
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + c′5X̃

2
n,t−1ua,n,tÃn,t−1

+
∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t.

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and Ãn,t−1 is the
demeaned number of analyst institutions that cover stock n in the previous quarter t − 1. X̃n,t−1 is a
vector of demeaned stock characteristics: log book equity (LNbe), market beta (MktBeta), profitability
(profit), investment (Gat), and the dividend-to-book equity ratio (D/B). All estimates represent the
marginal effect in basis points of a 1 percentage point increase in analyst growth expectations. The time
period is 1984-01:2021-12.
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Table G13: Mg and β Estimates with Stock-Specific βn

(1) (2) (3) (4) (5) (6)
β 0.0627*** 0.0439*** 0.0441** 0.0455** 0.0399* 0.0389

(0.00733) (0.0170) (0.0173) (0.0194) (0.0209) (0.0242)

Mg 0.0721*** 0.103** 0.105** 0.103** 0.117* 0.114
(0.0134) (0.0408) (0.0409) (0.0439) (0.0614) (0.0701)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + c′5X̃

2
n,t−1ua,n,tÃn,t−1

+
∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t

β = c2
c1

and Mg = c2
1
c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1 is the demeaned
number of analyst institutions that cover stock n in quarter t. X̃n,t−1 is a vector of demeaned stock
characteristics: log book equity, profitability, investment, market beta, and the dividend-to-book equity
ratio. All estimates represent the marginal effect in percentage points of a 1 percentage point increase in
growth expectations (analyst expectations for β and investor expectations for Mg). The time period is
1984-01:2021-12.

G.7 Allowing Mg to Vary by Stock

In this section I relax the assumption that Mg does not vary across stocks. This analysis yields
the same economic conclusion as the baseline specification: the causal effect of subjective growth
expectations on prices is an order of magnitude smaller than suggested by standard models.

Consider a generalization in which the sensitivity of demand to expected return κ from Section
5.1 varies across stocks. Then the sensitivity of demand to growth expectations κg and the price
elasticity of demand ζ from Section 5.3 will also vary across stocks, and thus so will Mg = κg/ζ. In
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this case, I model Mg,n as a function of stock characteristics

Mg,n = h(Xn)

≈Mg +
∑
k

∂hk
∂Xk,n

∣∣∣∣∣
X̄︸ ︷︷ ︸

≡πk

X̃k,n︸ ︷︷ ︸
≡Xk,n−X̄k

,

where the second line follows from a first-order approximation. Mg is the averageMg,n across stocks
n, X̃k,n is the cross-sectionally demeaned characteristic k for stock n, and πk captures how Mg,n

varies with characteristic k.
Given this structure, (29) becomes

∆p+
a,n,t = c1,n︸︷︷︸

≡Mg,nβ

ua,n,t − c2,n︸︷︷︸
≡Mg,nβ2

ua,n,tÃn,t−1 + ea,n,t

=
(
Mg + π′X̃n,t−1

)
βua,n,t −

(
Mg + π′X̃n,t−1

)
β2ua,n,tÃn,t−1 + ea,n,t

= c1︸︷︷︸
≡Mgβ

ua,n,t − c1︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t. (79)

Thus, I can identify Mg = c2
1/c2 and β = c2/c1 from a regression of post-announcement price

changes (∆p+
a,n,t) on the interaction of the idiosyncratic analyst growth expectations shocks (ua,n,t)

with cross-sectionally demeaned stock characteristics (X̃n,t−1 and a constant)58, and the interaction
of ua,n,t with both the demeaned number of analysts that cover each stock (Ãn,t−1) and demeaned
stock characteristics (including a constant).59 Strictly speaking, the structure on Mg,n imposes
cross-coefficient restrictions on the reduced-form parameters c1, c2, c3, and c4 in (79). To keep the
estimation as simple as possible, I do not impose these restrictions (although doing so might improve
estimation efficiency).

I use five stock characteristics motivated by Fama and French (2015) and used by Koijen and
Yogo (2019): log book equity, profitability, investment, market beta, and the dividend-to-book
equity ratio.

Table G14 displays the reduced-form results from regression (79). Each column adds an ad-
ditional characteristic. The c1 estimate is stable across specifications. The c2 estimate is broadly

58I lag stock characteristics by one quarter to ensure these characteristics are exogenous to quarter t growth
expectations shocks.

59The full regression is

∆p+
a,n,t = Mgβua,n,t −Mgβ

2ua,n,tÃn,t−1 +Mg

∑
k

πkX̃k,nua,n,t − β2
∑
k

πkX̃k,nua,n,tÃn,t−1 + ea,n,t.
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stable across specifications, although the regression starts to lose power in columns 5 and 6. The c3

coefficient on the interaction of ua,n,t with firm size (log book equity) is significantly negative, which
suggests c1,n is smaller for bigger stocks. This result is consistent with the results from Haddad,
Huebner and Loualiche (2021), which finds that price elasticities of demand are smaller for bigger
stocks. From Section 5.4, Mg is smaller when demand is less elastic and so Mg should be smaller
for bigger stocks. Thus, it makes sense that c1,n = Mg,nβ is smaller for bigger stocks.

Table G15 presents the implied Mg and β from regression (79). I find β = 0.03 to 0.04 across
specifications, which is statistically indistinguishable from the baseline β = 0.06 in column 1 (again,
the regression starts to lose power in columns 5 and 6). The Mg estimates range from 0.10 to 0.14,
which implies a 1% rise in one-year investor (not analyst) growth expectations raises price 10
to 14 basis points. These estimates are statistically indistinguishable from the baseline Mg = 0.07
estimate and yield the same economic conclusion: the causal effect of subjective growth expectations
on prices is an order of magnitude smaller than suggested by standard models.
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Table G14: Reduced-Form Estimates with Stock-Specific Mg,n

(1) (2) (3) (4) (5) (6)
ua,n,t 0.452*** 0.456*** 0.467*** 0.469*** 0.468*** 0.441***

(0.0560) (0.0550) (0.0560) (0.0571) (0.0578) (0.0576)

ua,n,t × Ãn,t−1 -0.0284*** -0.0198** -0.0183** -0.0184* -0.0171 -0.0136
(0.00434) (0.00835) (0.00887) (0.00948) (0.0104) (0.0104)

ua,n,t × LNben,t−1 -0.100** -0.102** -0.104** -0.104*** -0.0992**
(0.0418) (0.0428) (0.0427) (0.0392) (0.0403)

ua,n,t × Ãn,t−1 × LNben,t−1 0.00185 0.00147 0.00151 0.000991 0.000679
(0.00368) (0.00381) (0.00397) (0.00413) (0.00416)

ua,n,t ×MktBetan,t−1 -0.0396 -0.0407 -0.0417 -0.0543
(0.0727) (0.0731) (0.0741) (0.0712)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 -0.00211 -0.00201 -0.00169 -0.000812
(0.00894) (0.00911) (0.00907) (0.00909)

ua,n,t ×Gatn,t−1 -0.120 -0.116 -0.151
(0.218) (0.215) (0.217)

ua,n,t × Ãn,t−1 ×Gatn,t−1 0.00876 0.00593 0.0111
(0.0257) (0.0273) (0.0279)

ua,n,t × profitn,t−1 -0.00528 0.0275
(0.185) (0.193)

ua,n,t × Ãn,t−1 × profitn,t−1 0.00730 0.00561
(0.0164) (0.0167)

ua,n,t ×D/Bn,t−1 -0.0328
(0.0212)

ua,n,t × Ãn,t−1 ×D/Bn,t−1 0.336**
(0.147)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
R-Squared 0.0000524 0.0000603 0.0000610 0.0000612 0.0000615 0.0000634
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and Ãn,t−1 is the
demeaned number of analyst institutions that cover stock n in the previous quarter t − 1. X̃n,t−1 is a
vector of demeaned stock characteristics: log book equity (LNbe), market beta (MktBeta), profitability
(profit), investment (Gat), and the dividend-to-book equity ratio (D/B). All estimates represent the
marginal effect in basis points of a 1 percentage point increase in analyst growth expectations. The time
period is 1984-01:2021-12.
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Table G15: Mg and β Estimates with Stock-Specific Mg,n

(1) (2) (3) (4) (5) (6)
β 0.0627*** 0.0435*** 0.0392** 0.0391** 0.0365* 0.0309

(0.00733) (0.0168) (0.0172) (0.0187) (0.0210) (0.0223)

Mg 0.0721*** 0.105*** 0.119** 0.120** 0.128* 0.143
(0.0134) (0.0405) (0.0508) (0.0560) (0.0726) (0.101)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c′3X̃n,t−1ua,n,t + c′4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t.

β = c2
c1

and Mg = c2
1
c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1 is the demeaned
number of analyst institutions that cover stock n in quarter t. X̃n,t−1 is a vector of demeaned stock
characteristics: log book equity, profitability, investment, market beta, and the dividend-to-book equity
ratio. All estimates represent the marginal effect in percentage points of a 1 percentage point increase in
growth expectations (analyst expectations for β and investor expectations for Mg). The time period is
1984-01:2021-12.

G.8 Evidence from LTG Expectations

This appendix extends the baseline analysis in Section 6 to measure the causal effect of long-term (as
opposed to one-year) growth expectations on prices using the I/B/E/S long-term earnings growth
(LTG) expectations. The results of this analysis prove quantitatively consistent with those from
Section 6.5. Appendix G.8.1 provides a simple benchmark range for the causal effect of long-term
growth expectations on prices (Appendix G.8.3 considers alternative benchmark ranges). Appendix
G.8.2 presents the empirical results.

G.8.1 Benchmark Price Impact with Long-Term Growth Expectations

The benchmark range for the price impact of long-term growth expectations, denoted MLTG, is

MLTG ∈ [3, 5].
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LTG expectations represent the analyst’s forecast for average EPS growth over the next 3 − 5
years. For example, an LTG expectation of 5% represents a forecast of 5% annual EPS growth in
the average year over the next 3 − 5 years. So a 1% increase in LTG expectation represents a 1%
higher forecasted annual EPS growth for the average year over the next 3− 5 years.

How much price rises today in response to a change in 3− 5 year growth expectations depends
(somewhat) on the timing of the quarterly growth expectations shocks over that time period. The
simplest assumption is that the entire increase in average forecasted growth is driven by a higher
growth expectation in the next quarter. For example, if LTG expectations represent 3 year average
growth expectations, the assumption is a 1% increase in LTG captures a 3% increase in next-
quarter’s growth expectation and zero change is growth expectations thereafter. In this case, the
price impact of long-term growth expectations, denoted MLTG, is just

MLTG = H ·Mg,

where Mg is still the price impact of one-year growth expectations and H is the horizon of the
long-term growth expectations (so empirically H ∈ [3, 5] years). Thus, under this assumption we
have a benchmark range for MLTG of between 3 and 5, since we have a benchmark Mg = 1 from
Section 5.5.

Other timing assumptions do not significantly alter this benchmark range, as discussed in Ap-
pendix G.8.3 below. The minimum possible benchmark range for MLTG is

MLTG ∈ [2.7, 4.1],

which corresponds to the entire change in average forecasted growth over the next H years being
driven by a shock to quarterly growth expectation in the last quarter of that time period (i.e.
quarter t+ 4H).

G.8.2 Empirical Results

The key empirical challenge raised by the LTG expectations is the lack of coverage. Specifically,
the baseline analysis in Section 6 crucially relies on observing growth expectations from multiple
analyst institutions for the same (stock, quarter) pair for two reasons:

1. To remove time-varying stock characteristics ηn in the latent factor model (25) when extract-
ing the idiosyncratic analyst growth expectation shocks ua,n.

2. To pin down the shrinkage rate of analyst price impact as the number of analysts rises (c2 in
regression (29)) using the instrument ua,nÃn, where Ãn is the demeaned number of analysts
that rate stock n.
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As displayed in Table 2, the average stock in the average quarter has one-year growth expectations
reported by 10 analyst institutions with a standard deviation of 7 institutions. On the other hand,
the average stock in the average quarter has LTG expectations from only 2 analyst institutions
with a standard deviation of 1 institution. For this reason, extracting exogenous variation in LTG
expectations and separately identifying Mg from β (which requires a precise estimate of c2) prove
difficult using the LTG expectations.

Thus, I measure c1 = MLTGβ using the same regression as in Section 6:

∆p+
a,n,t = c1︸︷︷︸

≡MLTGβ

∆LTGa,n,t − c2︸︷︷︸
≡MLTGβ2

∆LTGa,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆LTGa,n,t the full LTG expectation update, not an idiosyncratic shock. Since the c2 estimate
will not be significant (due to lack of variation in Ãn,t−1), I use the estimated analyst influence
β = 0.06 from Table 4 to back out MLTG from c1.

Table G16 displays the regression results. The specification in column 4 proves most likely to
satisfy moment conditions (31) and (32) since it includes stock-quarter fixed effects. The c1 =
1.4 estimate implies a 1% higher analyst-reported LTG expectation raises price 1.4 basis points.
Dividing c1 = 1.41 by the estimated β = 0.06 from Table 4 (and dividing again by 100 to convert
from basis points to percentages) yields

MLTG = 0.23.

A 1% rise in investor long-term growth expectations raises price by 23 basis points, which is an order
of magnitude smaller than the benchmark range MLTG ∈ [3, 5]. Thus, using the LTG expectations
data I again find the causal effect of investor growth expectations on prices proves far smaller than
suggested by standard models.

In fact, MLTG = 0.23 is a little more than three times as large as Mg = 0.07 from Table 4, which
is consistent with investors interpreting analyst LTG expectations as 3−4 year growth expectations,
as discussed in Appendix G.8.1.

Since ∆LTGa,n,t likely does not satisfy moment conditions (31) and (32):

E [∆LTGa,n,tea,n] 6= 0
E
[
∆LTGa,n,tÃnea,n

]
6= 0,

I run the same regression using the idiosyncratic LTG shock ua,n,t extracted from factor model (25)
using 5 latent factors. Table G17 reports the regression results. This regression has less power than
that using the full LTG expectation update due to the difficulty in estimating the factor model
discussed above. Nevertheless, the c1 point estimates are similar to that reported column 4 of in
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Table G16, which includes stock-quarter fixed effects. The c1 = 1.7 estimate in column 4 and
β = 0.07 implies

MLTG = 0.28,

which is still an order of magnitude smaller than the benchmark range MLTG ∈ [3, 5].

Table G16: c1 and c2 Estimates Using Full LTG Updates

(1) (2) (3) (4)
c1 3.00** 3.10*** 2.78*** 1.41**

(1.18) (0.960) (0.922) (0.686)

c2 -0.783 -0.615 -0.672 -0.516
(0.494) (0.479) (0.453) (0.498)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 65428 65428 65428 65428
R-Squared 0.000953 0.0230 0.102 0.615
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1∆LTGa,n,t − c2∆LTGa,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an LTG expectation for stock n

in quarter t, ∆LTGa,n,t is the corresponding quarter-over-quarter change in LTG expectation, and Ãn,t−1
is the demeaned number of analysts that cover stock n in the previous quarter t − 1. Xn,t represents
controls, including stock, quarter, and stock-quarter fixed effects. All estimates represent the marginal
effect in basis points of a 1 percentage point increase in analyst growth expectations. The time period is
1982-01:2021-12.
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Table G17: c1 and c2 Estimates Using Idiosyncratic LTG Shocks

(1) (2) (3) (4)
c1 1.81* 1.81* 1.81* 1.68*

(0.986) (0.985) (1.00) (0.971)

c2 -0.926 -0.923 -0.921 -0.876
(0.601) (0.601) (0.614) (0.608)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 65428 65428 65428 65428
R-Squared 0.0000415 0.0221 0.102 0.615
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an LTG expectation for stock

n in quarter t, ua,n,t is the corresponding estimated idiosyncratic LTG shock, and Ãn,t−1 is the demeaned
number of analysts that cover stock n in the previous quarter t − 1. Xn,t represents controls, including
stock, quarter, and stock-quarter fixed effects. All values are expressed in basis points (i.e. 1.0 is one basis
point). The time period is 1982-01:2021-12.

G.8.3 Other Benchmark Ranges for MLTG

From the present-value identity in Lemma 4 in Appendix B.3.3, the general price impact of a change
in expected future dividends is:

∆pn,t = Mµδ
∞∑
s=0

M s
µ∆d̃n,t,s+1, (80)

where ∆d̃n,t,s+1 is the percentage change in the expected dividend level in period t+ s+ 1 and the
benchmark value of Mµ is60

Mµ = 1
1 + δ

,

60From Lemma 4, we have
Mµ = κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ) .

As discussed in Section 5.5, the benchmark case corresponds to κ =∞, in which case

Mµ = 1
1 + δ

.
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for average dividend-price ratio δ.
Since Mµ < 1, the smallest price impact occurs when the long-term growth expectations shock

is driven by quarterly growth expectations shocks as far into the future as possible. Generating a
1% increase in average expected growth over the next H years requires a growth expectations shock
of H% (assuming no persistence in expected dividend growth). Thus, the smallest possible value of
MLTG corresponds to an H% increase in expected dividend growth in quarter t+4H and no change
in expected dividend growth in any other quarter. This shock proves the same as H% increase in
the expected dividend level in every quarter starting in t+ 4H61:

∆d̃n,t,s = 0%, 1 ≤ s < 4H
∆d̃n,t,s = H%, s ≥ 4H.

The price impact of this shock is

MLTG = Mµδ
∞∑

s=4H−1
M s

µH

= M4H
µ δ

∞∑
s=0

M s
µH

= M4H
µ

δ

1−Mµ

H

= M4H
µ (1 + δ)H.

Calibrating δ = 0.01 to match the historical average quarterly dividend-price ratio for the aggregate
equity market yields:

MLTG =

2.7, H = 3 years

4.1, H = 5 years

G.9 Nonlinear Estimation

I run the following nonlinear regression

61For simplicity assume average quarterly dividend growth is small (ḡ ≈ 0). In general (assuming no persistence
in expected dividend growth, ρ = 0) the full change in expected future dividend levels is

∆d̃n,t,s = 0%, 1 ≤ s < 4H

∆d̃n,t,s = H%
1 + ḡ

, s ≥ 4H,

as discussed in Appendix B.3.3.
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∆p+
a,n,t = Mg

x

1 + xAn,t−1
ua,n,t + ea,n,t.

Table G18 displays the results. I calculate β as analyst influence for the average stock (i.e. analyst
influence for a stock with the average number of analysts):

β = x

1 + 10x,

since E[An,t−1] = 10 in Table 2.

Table G18: c1 and c2 Estimates Using Full LTG Updates

(1)
Mg 0.0390***

(0.0143)

x 0.235
(0.157)

β 0.0701***
(0.0140)

Quarter-Clustered SE Y
N 1530391
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = Mg

x

1 + xAn,t−1
ua,n,t + ea,n,t.

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth expectation

for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and An,t−1 is the
number of analyst institutions that cover stock n in the previous quarter t−1. I calculate β = x/(1+10x).
All estimates represent the marginal effect in percentage points of a 1 percentage point increase in growth
expectations (analyst expectations for β and investor expectations for Mg). The time period is 1984-
01:2021-12.
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H Details of Koijen and Yogo (2019) Price Elasticity of
Demand Measurement

To measure price elasticities of demand at the investor level, I follow the approach of Koijen and
Yogo (2019). Since all of the identification happens in the cross section of equities, I drop all quarter
t subscripts. The estimated price elasticities vary by investor, stock, and quarter: ζi,n,t.

Koijen and Yogo (2019) place additional structure on the asset demand function from (10) and
model the portfolio weight demanded in stock n as a function of stock characteristics, including the
market equity (i.e. price, denoted men) of the stock:

log θi,n = α0,imen +
K−1∑
k=1

αk,ixk,n + FEi + εDi,n,

where xk,n are stock characteristics (log book equity, profitability, investment, dividends to book
equity, and market beta). The coefficient on market equity (α0,i) maps directly into the price
elasticity of demand. However, since other asset demand shocks (εDi,n) are correlated with equilibrium
prices, we need exogenous cross-sectional variation in market equity to consistently estimate α0,i.

To this end, Koijen and Yogo (2019) construct an instrument for market equity based on cross-
sectional variation in which investors’ investment universes stock n falls into. Specifically, the
instrument is

m̂ei,n = log
∑
j 6=i

Aj
1j(n)

1 +∑N
m=1 1j(m)

 ,
where 1j(n) is an indicator for if stock n falls into the investment universe of investor j and Aj is
the assets under management of investor j. One can interpret this instrument as the counterfactual
market equity of stock n if all investors held an equal-weighted portfolio of the stocks in their
investment universe. This instrument exploits only the wealth distribution and the investment
universes of other investors, both of which I take as exogenous. This assumption proves reasonable
because investment universes are defined by investment mandates, which are predetermined rules
that don’t change in response to current demand shocks (εDi,n). Thus, if stock n exogenously falls
into the investment universe of more or larger investors, it will face greater demand and will have
greater market equity. Koijen and Yogo (2019) measure the investment universe of investor i as the
set of all stocks this investor currently holds or has ever held in the previous eleven quarters.

One can estimate α0,i, and the other αk,i coefficients, via GMM using the following moment
condition:

E
[
εDi,n | m̂ei,n,xn

]
= 0.

The price elasticities of demand for investor i (ζi) can then be computed as the diagonal elements
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of
∂qi
∂p′

= −I + α0,i (diagθi)−1
(
diagθi − θiθ

′

i

)
, (81)

where qi is the vector of log shares held, p is the vector of log prices, and θi is the vector of log
portfolio weights.62

62Strictly speaking, the price elasticities from (81) vary by investor and stock (i.e. ζi,n) since portfolio weights
differ across stocks n for each investor i. In practice, since individual stock portfolio weights are small, ζi,n does not
vary much across stocks n for each investor i. Empirically I use the corresponding ζi,n,t for each stock n.
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I Holdings Regression Estimation Details

This appendix provides details of estimating holdings regression (40).

I.1 Optimization Problem

I solve the following optimization problem:

min
{b1,i,b2,i}i

∑
i,n

[
∆q̃i,n,t −

(
b1,iSn,t − b2,iSn,t · Ãn,t−1

)]2
+ λ

∑
i

(b1,i − b1,S

b1,S

)2

+
(
b2,i − b2,S

b2,S

)2
 (82)

s.t. q̃i,n,t = ∆qi,n + ζi,n,t∆pn,t
b2,i ≤ b1,i (enforces βi ≤ 1)
b1,S = c1ζS (definition of c1)
b2,S = c2ζS (definition of c2)

The first term in (82) is the standard least-squares loss function. The second term is the L2 penalty.
I regularize deviations of b1,i and b2,i from their ownership-share weighted averages b1,S = c1ζS and
b2,S = c2ζS to enable more efficient estimation. In particular, I regularize percentage deviations of
b1,i and b2,i from b1,S and b2,S. L2 regularization is scale-dependent: it penalizes larger coefficients
to a greater extent than smaller coefficients. This asymmetric shrinkage would cause problems since
b1,i is larger in magnitude than b2,i (since b2,i = βib1i and βi < 1) and I want to take ratios of these
coefficients. Thus, I express the penalty in terms of percentage deviations from b1,S1 and b2,S to
ensure both b1,i and b2,i are penalized to the same extent.

I choose the regularization parameter λ via 10-fold cross-validation. In this way, I use the level
of heterogeneity in b1,i and b2,i that best fits the data.

This optimization can be solved efficiently as a quadratic program with linear constraints using
OSQP (Stellato et al. (2020)).

I use ζS = 0.38, the average stock-level, ownership-share weighted price elasticity of demand
in my sample using the estimated investor price elasticities from the approach of Koijen and Yogo
(2019).

I.2 Subset of Analyst Institutions

While I use all institutions in each quarter to estimate factor model (25) and to estimate the
analyst price impact panel regression (29), to estimate the investor-level regression (40) I retain
only the idiosyncratic expected growth shocks associated with the 5 largest analyst institutions in
each quarter (by number of expectations issued). Since, as discussed in Appendix D.2, I remove
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stock-quarter and analyst institution-quarter fixed effects when estimating the idiosyncratic shocks
ua,n, the sum of all ua,n would be zero by construction. Dropping smaller institutions, therefore,
raises the volatility of Sn and so provides more power when estimating κgi and βi. Using 5 analyst
institutions maximizes power. As displayed in Figure I18, the results prove robust to using other
numbers of analyst institutions.

Retaining only the idiosyncratic growth shocks of the largest analyst institutions has a flavor of
the granular instrumental variable estimator of Gabaix and Koijen (2020a).
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Figure I18: Investor-Level Results for Varying Number of Analyst Institutions

This figure displays the estimated κgS, βS, and Mg from (40) using different numbers of analyst
institutions. Point estimates are the medians of the bootstrapped sampling distributions. 95%
confidence intervals are bootstrapped (see Appendix I.3 for details). The time period is 1984-01:2021-
12. 85



I.3 Bootstrapped Standard Errors

I compute bootstrapped confidence intervals for κgS, βS, and Mg as follows.
Let Nt be the number of unique stocks in quarter t. In each quarter t:

1. Pick a stock n.

2. For all investors i that holds stock n in quarter t, collect holdings changes ∆qi,n,t.

3. Repeat steps 1 and 2 a total of Nt times.

I compute regression (40) on this bootstrapped dataset and calculate κgS, βS, and Mg from the
estimated κgi and βi. I repeat this process 500 times and report 2.5th, 50th, and 97.5th percentile
estimates of each parameter κgS, βS, and Mg.
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