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Abstract

We investigate the effects of market fragmentation on price impact. Using a newly
launched exchange as a quasi-natural experiment, we find that an exogenous increase in
market fragmentation leads to a higher price impact of equity trading in the primary
U.S. equity exchanges. Our IV estimates suggest a one-standard-deviation increase in
market fragmentation of a stock will induce approximately 26.5 bps increases in NBBO
price impact and much more significant increases in each exchange-based price impact for
trading that stock. In addition, we also find the market depth at each existing lit exchange
is negatively associated with the total order volume submitted to the new exchange. Our
results are providing supportive evidence to the recent theories such as Chen and Duffie
(2021) that market fragmentation decreases market depth at each exchange level, increases
the aggressiveness of order submissions, and makes order book slope more inelastic thus
leading to the increases in price impact under a multi-market setting.
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1 Introduction

In the past decade, there are ongoing debates in the market design literature on whether

financial assets should be traded in a centralized market where a single market clears all the

transactions, or in a decentralized market where the same assets can be traded through separate-

in-location but informational-connected-coexisting exchanges. The proponents of the “decen-

tralized” market design advocate that market fragmentation is beneficial in two aspects. On the

one hand, market fragmentation yields higher welfare as a result of the higher price informative-

ness and the increased allocation efficiency as market participants can infer more information

on the intrinsic values of the assets from the multiple informational-connected prices across

the exchanges (Malamud and Rostek, 2017; Wittwer, 2021). On the other hand, a fragmented

market, intuitively, may also have smaller transaction costs and improved execution quality by

facilitating the competition among the trading venues (O’Hara and Ye, 2011; Daures-Lescourret

and Moinas, 2020; Cespa and Vives, 2022). The opponents of market fragmentation, however,

concern that the gains from the competition may be offset by the costs associated with the

increased number of trading venues. For example, market fragmentation may increase adverse

selection costs by encouraging cross-venue arbitrage among traders with speed differentials

(Pagnotta and Philippon, 2018; Lee, 2019; Malinova and Park, 2020; Baldauf and Mollner,

2021; Aquilina et al., 2022). Market fragmentation may also reduce the market depth at each

trading venue, and therefore may possibly induce a higher price impact of trading (Malamud

and Rostek, 2017; Chen and Duffie, 2021). In addition, the differences in fees structure across

the proliferated trading venues may also give rise to inefficiency in execution quality (Colliard

and Foucault, 2012).

In this paper, we shed light on the empirical question of whether market fragmentation is

beneficial or detrimental to market participants in the U.S. equity market by exploiting the

event of a newly launched exchange, the members exchange (MEMX). We posit that exploring

this event adds two important insights to the literature. First, the quasi-natural setting of

the launch of MEMX allows us to investigate the causal effects of market fragmentation. As

we show in Figure 1, the launch of MEMX induces exogenous market fragmentation. Our

estimates suggest that the introduction of MEMX leads to a 1.66% increase in the level of

market fragmentation for U.S. stocks. Second, our focus is on the introduction of a new lit

exchange. Although numerous studies (Comerton-Forde and Putniņš, 2015; Kwan et al., 2015;

Foley and Putniņš, 2016; Hatheway et al., 2017; Menkveld et al., 2017; Buti et al., 2017) have

investigated the effects of dark pool trading on market quality, the impact of launching a new

but important lit exchange which accounts for more than 4% of equity trading volume in the

U.S. by the end of February 2022 remains surprisingly unexplored. From the market design

perspective, it is crucial for regulators to evaluate the costs and the benefits of adding another

new lit exchange to thus far fragmented U.S. equity market.

[Figure 1]

A recent theory developed by Chen and Duffie (2021) has several predictions on the effects
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of the lit market fragmentation—the increase in the number of exchanges. In their model, both

strategic traders and liquidity traders may alter their order submission strategies as the number

of exchanges increases. For strategic traders, the option of order-splitting and the order flow

shifting to the new lit exchange reduce the market depth on the existing lit exchanges. This

option to split orders across different exchanges also reduces the inhibiting effect of price-impact

avoidance on total order submission in the equilibrium of the market setting. In equilibrium,

these inhibiting effects will encourage strategic traders to submit more aggressive orders as they

seek to obtain optimal executions. Therefore, Chen and Duffie (2021) predicts while market

fragmentation may increase (reduce) price impact (market depth) at each exchange level, the

increased order aggressiveness may improve overall price efficiency.

We find that a higher market fragmentation level leads to an increase in the price impact of

trading in the U.S. equity markets. Our results suggest if a stock i experienced a one-standard-

deviation increase in market fragmentation due to the launch of MEMX, the price impact for

trading that stock will increase by approximately 26.5 bps if the price impact is measured

based on National Best Bid and Best Offer (NBBO). We also document similar effects of

market fragmentation on price impact using our exchange-based price impact measure which

captures the dynamic variations in price impact at each lit exchange level.1 Consistent with

the theoretical predictions from Malamud and Rostek (2017) and Chen and Duffie (2021), we

find the launch of MEMX affects the price impact of other existing lit venues. Of all 13 existing

lit exchanges, 11 exchanges that account for 96.43% of market shares exhibit positive effects

of market fragmentation on price impact though the magnitude ranges from 40.8 bps to 3,090

bps. To access the economic significance of our results, we note that for a stock with a price of

49.59 USD and with a trading volume of 1.731 million shares per day, the estimated increase

in transaction costs is about 24,550 USD if the stock experiences a 1.1% exogenous increase in

market fragmentation. The costs resulting from the increased price impact would be larger if

we measure the price impact exchange-wise using our exchange-based price impact measures.

In contrast with the predictions from the exchange competition models (Daures-Lescourret and

Moinas, 2020; Cespa and Vives, 2022) where they lean to the equilibrium that the competition

among the exchanges will enhance the liquidity provision in the equity markets, the empirical

results from our paper are supporting the predictions from (Chen and Duffie, 2021) that market

fragmentation actually deteriorates a particular dimension of liquidity—price impact.

Our methodology to estimate the causal effects is motivated by the staggered implementa-

tion of trading on MEMX for each individual stock around the early phase after the MEMX

is launched.2 At the individual stock level, the exogenous change in market fragmentation

depends on whether the order flows of stock are shifted from other existing lit markets or in a

1To measure the price impact of trades, we follow Holden and Jacobsen (2014). Our modified version of
exchange-based price impact captures the dynamic variations in liquidity on each local exchange. For stock i
on each day t, we obtain 13 exchange-wise price impact observations. We also include the price impact based
on NBBO quotes which is also calculated following Holden and Jacobsen (2014). The details are discussed in
Section 3.4.2.

2See Figure 1.
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more detectable way whether the stocks are actually traded on MEMX.3 Therefore, our iden-

tification strategy builds upon an instrumental variable (IV) approach. To be more precise on

our estimation method, we instrument the first-difference of market fragmentation (1-HHI) on

the first-difference of whether a stock is traded on MEMX on a trading day around the launch

of the MEMX. And in the second-stage, the instrumented variables are then regressed against

the first-difference of price impact.

Our IV identification strategy distinguishes from the previous studies such as Degryse et al.

(2015) and Gresse (2017) but is in the same spirit of Haslag and Ringgenberg (2021) where

they use the level of the number of market centers as the instrument for the level of market

fragmentation. We have two major differences. First, we calculate our fragmentation based on

lit exchanges only. In DTAQ data, we are unable to calculate the market fragmentation within

the dark pools where the trading volume are aggregated.4 Second and more importantly, we

estimate the model in a first-difference specification around the launch of the new exchange. The

instrumental variables in most of our cases–the first-difference of whether a stock i is traded on

MEMX on the trading day t–only have variations in the early phases after the launch of MEMX.

This is important because whether a stock trades on MEMX is unlikely to be correlated with

the unobserved characteristics that may affect the price impact at other existing lit exchanges

in the second-stage regression. Therefore, our approach satisfies the exclusive restriction of

IV method better. In addition, our instrument variable also has an economic interpretation

as it only takes the values from the set of {−1, 0, 1}. In the first-stage regression, all of the

coefficients are positively significant at the 1% level and they can be interpreted as the effects

of adding one additional lit exchange on the stock-level of market fragmentation.

We validate our main results by conducting a set of robustness tests. Our robustness tests

address several concerns with regard to the validity of our main results. Specifically, we consider:

whether our results are robust by using the alternative measures of market fragmentation and

price impact; whether there are any heterogeneous effects of market fragmentation on price

impact across stocks; whether reverse causality and endogenous venue choice problem may bias

our estimates; whether our results apply under the current market structure of trading—order

routing and NMS Order Protection Rule; and the external validity using the introduction of

another lit exchange. The results from these robustness tests are quantitatively similar to our

main results. We summarize them in Table 4 and provide the details in Appendix A.

In addition to the robustness tests, we conduct a placebo test as follows: For trading days

between October 29, 2020, and 20 days after the calendar days when stocks are first traded

on MEMX, we generate Bernoulli random variables to replace the true indicators of whether a

stock i is traded on MEMX. Then we use these generated variables to run our two-stage least

3The master file of DTAQ data has an indicator variable labeled as “TradedOnMEMX” which indicates
whether a stock is traded on MEMX on a particular trading day after July 24, 2020.

4This means when calculating the measure of market fragmentation, we exclude the off-exchange trades
in DTAQ trades files with PARTICIPANT IDs starting with “D”, “S” and “W”. We also exclude the trades
that don’t have the null timestamp for the column of “Trade Reporting Facility(TRF) Timestamp”. This
will not only exclude all the trades with “Exchange” as “D” but also exclude trades that are disseminated
by FINRA Alternative Display Facility (ADF) or FINRA Trade Reporting Facility (TRF) which are trades
executed off-exchange.
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square regressions as we do in our main regressions. Not surprisingly, we find no significant

results for ten different generated pseudo series suggesting that our estimated causal effects are

unlikely driven by chance.

We next gauge the impact of order flow shifted to MEMX on the market depth of the other

existing lit exchanges. When a new exchange is introduced, traders may split their limit orders

to the new exchange aiming at obtaining better exposure to liquidity. Are the order flows

migrated to MEMX when it is launched? To answer this question, we calculate 13 exchange-

wise market depth defined as the time-weighted number of shares at best bid (ask) prices for

each stock i and day t. For each stock-day around the launch of MEMX, we also obtain the

total number of shares of all orders submitted to MEMX from SEC market structure files.5 We

find that higher order volume on MEMX is associated with decreased market depth for almost

all the existing lit exchanges around the launch of MEMX. The negative correlations between

order volume submitted to MEMX and market depth are stronger for primary exchanges such

as NASDAQ, ARCA, NYSE, BZX, EDGX, and IEX than peripheral exchanges such as EDGA,

BYX, BX, National, PSX, Chicago, and AMEX. The results are consistent with our conjectures

and the theories that market depth is reduced with increased market fragmentation partly due

to the shifting of order flows from existing exchanges to the new exchange MEMX.

Next, we discuss three potential order book-level mechanisms through which market frag-

mentation can lead to a higher price impact of trading. First, we test the changes in order

aggressiveness around the introduction of MEMX. Empirical evidence from Griffiths et al.

(2000) suggests that order aggressiveness is positively associated with the price impact. If the

introduction of MEMX is associated with the increases in overall order aggressiveness, which is

predicted by Chen and Duffie (2021), then the increased price impact that we observe can be

attributed to the increased order aggressiveness due to the introduction of new lit exchange. To

test this potential channel, we use NASDAQ TotalView-ITCH data to calculate the percentage

of aggressive orders and unaggressive orders following the approach in Biais et al. (1995). We

find the introduction of MEMX is associated with the increases in the proportion of the orders

in the aggressive order types but is negatively associated with the proportion of the orders in

the unaggressive types suggesting that the introduction of MEMX does increase overall order

aggressiveness. Therefore, this channel could possibly explain the increased price impact that

we observe when trading is more fragmented.

Our second possible channel that may explain the higher price impact of equity trading

after the introduction of MEMX for more fragmented stocks is the changes in the slopes of the

limit order book around the introduction of MEMX. As predicted by Chen and Duffie (2021)’s

model and also in our simplified version of his model shown in Figure 2 in the next section,

the slope of the (inverse) demand schedule will become less steep and more inelastic in the

fragmented markets compared with the centralized market. If the launch of MEMX decreases

the steepness of the slopes in the limit order book for each local exchange, the price impact

will be larger for executing the same quantities that walk the book. By constructing two stock-

5See https://www.sec.gov/opa/data/market-structure/market-structure-data-security-and-exchange.html.
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day level measures of order book slopes based on Kalay et al. (2004) and Næs and Skjeltorp

(2006), we test the changes in order book slopes around the introduction of MEMX. We find the

slopes become less steep and more inelastic after the introduction of MEMX and thus support

the channel that the changes in the slopes of the limit order book around the launch of new

exchange also contribute to the observed increasing price impact in a more fragmented market.

Our third channel considers the liquidity supply and demand dynamics around the launch

of MEMX. We conjecture that strategic traders will take advantage of the advent of MEMX

and split orders from existing lit exchanges to the new exchange in order to gain optimal

execution as predicted by the mechanical channel of Chen and Duffie (2021)’s model. Thus,

on the liquidity-supplying side, we should observe a reduction in market depth following the

launch of MEMX. While from the liquidity-demanding side, the liquidity traders who demand

liquidity and submit marketable orders are not affected much by fragmentation.6 Therefore,

we should also find relatively small or insignificant changes in trade sizes compared with the

changes in market depth following the introduction of MEMX. With a relatively larger trade

size of liquidity trades (market orders) compared with the size of market depth (unmarketable

limit orders) when trading becomes more fragmented, it is more likely that trades will exhaust

the depth of the order book and move the price dramatically. Thus, the price impact will

increase mechanically at each existing exchange.7

To verify our conjectures, we investigate the liquidity supply and demand dynamics for

primary exchanges using market depth at best bid prices as the proxy for liquidity supply and

trade sizes as well as trade sizes of Intermarket Sweep Order (ISO) trades as the proxies for liq-

uidity demand.8 From the liquidity-supplying side perspective, we document sharp decreases in

market depth for major exchanges immediately after the introduction of MEMX. For instance,

the market depth decreases about 9.33%, 5.15%, 8.67%, 2.33%, and 4.35% within 20 days

after the launch of MEMX for NASDAQ, ARCA, NYSE, BZX, and EDGX–the five primary

exchanges which comprise 81.88% dollar volume for all of the lit exchanges–respectively. In

contrast, we find different results on the liquidity-demanding side. First, we find trade sizes

remain relatively unchanged around the launch of MEMX for these major exchanges discussed

above. Second, we find that despite some exchanges experiencing significant decreases in the

trade sizes of ISO trades, their magnitudes are small compared with the decreases in the supply

side–market depth at the bid. Our findings suggest it is the asymmetric impacts on the liquidity

demand and supply due to the launch of a new lit exchange that induces a higher price impact

6In Chen and Duffie (2021)’s model, “liquidity traders” submit aggregated market orders at each lit ex-
change. The quantities (trade sizes) are exogenous random variables, independently and identically distributed
across exchanges and periods.

7See Figure 2. The market depth at exchange A in case 1 is 200 shares, and there will be a 50% of reduction
after the introduction of new exchange B if the trader decides to evenly split the orders. However, if the trade
sizes of the exogenous trade (σQ) only reduce from 300 to 250, then the price impact will increase from 0.3 in
case 1 to 0.5 in case 2 for that trade.

8ISO is an order that automatically executes in a designated market center even if there exists better price
at other venues (Chakravarty et al., 2012). We believe the ISO trades, which can be identified in our data,
are a good proxy for the liquidity trades to a specific exchange as discussed in the model of Chen and Duffie
(2021). In Chen and Duffie (2021)’s model, they argue that the liquidity trades are i.i.d across liquidity traders.
Liquidity traders collectively submit exogenous quantities to a specific exchange.
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of trading.

Collectively, these channels point towards that the introduction of a new exchange may

alter the current structure of the limit order book which may induce unexpected consequences

on the market liquidity, especially in a multi-market setting.

Related literature. We contribute to the literature by providing empirical evidence to recent

theoretical papers deliberated on market designs (Malamud and Rostek, 2017; Bernales et al.,

2018; Pagnotta and Philippon, 2018; Lee, 2019; Üslü, 2019; Bernales et al., 2020; Daures-

Lescourret and Moinas, 2020; Baldauf and Mollner, 2021; Chen and Duffie, 2021; Rostek and

Yoon, 2021; Wittwer, 2021; Aquilina et al., 2022; Cespa and Vives, 2022).9 While economists

debate theoretically on whether markets should be designed to be centralized and fragmented,

empirical evidence on this aspect is elusive given the intricate causes and consequences of market

fragmentation.10 Our paper helps to improve the understanding of this elusive concept using an

exogenous shock in market fragmentation arising from the launch of a new lit exchange. This

is important because as shown by Babus and Parlatore (2021), market fragmentation may be

endogenously determined by investors’ disagreement on the values of the underlying assets.11

Specifically, our paper tests the theoretical model proposed by the work of Chen and Duffie

(2021) where they predict lit market fragmentation will induce lower market depth, higher price

impact, and order aggressiveness. Our paper provides supportive evidence for their model.

Previous studies (Battalio, 1997; Comerton-Forde and Putniņš, 2015; Kwan et al., 2015; Foley

and Putniņš, 2016; Hatheway et al., 2017; Menkveld et al., 2017; Buti et al., 2017; Saint-Jean,

2021) have extensively focused on the effects of increased fragmentation arising from the off-

exchange dark pool or broker-dealer’s trading on market quality, while our focus is exclusively

on the impact of establishing a new lit market which is relatively unexplored in the literature.12

In this context, we are among the first to provide the empirical evidence that increasing one

additional lit exchange leads to a higher price impact of other existing lit exchanges. Thus, our

paper illustrates the consequences of launching a new lit exchange which is crucial to regulators.

9An earlier strand of literature investigates the effects of multi-market trading on trading volume, price
formation, price informativeness and the correlation between the cross-exchange trading volume (Mendelson,
1987; Chowdhry and Nanda, 1991; Stoll, 2001; Baruch et al., 2007).

10Among the abovementioned theoretical literature, Pagnotta and Philippon (2018), Bernales et al. (2018),
Daures-Lescourret and Moinas (2020), Baldauf and Mollner (2021) and Cespa and Vives (2022) along with
earlier studies such as Hamilton (1979), Parlour and Seppi (2003) and Rust and Hall (2003) study the impact
of fragmentation using an exchange-based or an agent-based (imperfect) competition model. In contrast, Lee
(2019) and Aquilina et al. (2022) investigate the impact of fragmentation from the speed differential perspective.
Empirical studies also show contradictory conclusions with regard to how market fragmentation affects market
quality. For example, the earlier empirical work by O’Hara and Ye (2011) finds that more fragmented stocks
have lower transaction costs and faster execution speeds. While later studies by Gresse (2017) and Haslag and
Ringgenberg (2021) observe a dichotomy between the impacts of market fragmentation on small stocks and the
impacts on large stocks. They find market fragmentation is detrimental to the liquidity of small stocks.

11Also, liquidity and fragmentation may be co-determined, with not only fragmentation impacting liquidity
but also liquidity determining fragmentation. Liquid stocks are more likely to be traded at multiple exchanges
than illiquid stocks as traders could shred their parent orders not just into smaller child orders (Obizhaeva
and Wang, 2013) but also submit the child orders across exchanges to gain a reduction in transaction costs
(Menkveld et al., 2017).

12The only one exception is De Fontnouvelle et al. (2003) in which they documented effective and quoted
bid–ask spreads decrease significantly after some equity options have changed from a single exclusive listing
exchange to multiple listings in August 1999.
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While our paper is not testing all the consequences13 that may occur when markets switch from

centralized to fragmented, but at least we partially support the conclusions that fragmentation

does induce a larger price impact in equity trading, mechanically.

Empirically, we contribute to the growing literature investigating how market fragmenta-

tion affects market quality. A bunch of empirical papers (Foucault and Menkveld, 2008; O’Hara

and Ye, 2011; Degryse et al., 2015; Boneva et al., 2016; Gresse, 2017; Hatheway et al., 2017;

Upson and Van Ness, 2017; Malinova and Park, 2020; Haslag and Ringgenberg, 2021) examine

the effects of market fragmentation on market liquidity, market efficiency, and market quality

under various settings. Especially, our paper examines the determinants of price impact—an

important but less studied dimension of liquidity—in a multi-market setting. Thus, our paper

complements previous empirical studies and provides additional evidence on the determinants

of price impact (Dufour and Engle, 2000; Chiyachantana et al., 2004; Cont et al., 2014; Chiy-

achantana et al., 2017; Malinova and Park, 2020) by testing a unique mechanical channel—the

effects from launching a new lit exchange.

Our paper is closely related to two contemporary studies and we complement them in

various ways. Malinova and Park (2020) investigates the price impact of split trades arising

from order-splitting activities across multiple exchanges in Canada. Using a proprietary trader-

level dataset, they find that the increased price impact for the split trades is accrued to a group

of fourteen faster traders. Their findings suggest these faster traders are more informative and

in a multi-market setting they can react faster to stale quotes. Therefore, trades from this

type of trader are generally more informed and thus have a larger price impact. Our paper

focuses on a more general mechanical channel—the change in price impact originating from

launching a new exchange which affects all existing stocks traded on the U.S. lit exchanges

rather than a small subsample of the stocks. Therefore, our paper provides additional insights

into the determinants of price impact in the multi-market setting complementing the work of

Malinova and Park (2020). Another notable empirical work by Haslag and Ringgenberg (2021)

investigates the variations in liquidity provision from 2003 to 2016 where the implementation

of Regulation National Market System (NMS) rule 611 during this period requires orders to

receive best execution prices across all exchanges thus inducing market fragmentation. They

show that the improved liquidity is associated with the increased market fragmentation during

this period but most of the improvements in liquidity are accrued to large stocks. Our paper

has two major differences compared with Haslag and Ringgenberg (2021). First, we focus on a

short-term period after the introduction of MEMX—the event that induces exogenous market

fragmentation. Second, Haslag and Ringgenberg (2021) are extensively focused on market

quality measures such as turnover ratio, effective spread, trade size as well as variance ratio.

Our paper complements their work by exploring a relatively unexplored but important aspect

of market liquidity—price impact—at each lit exchange level.

Finally, we contribute to empirical market microstructure literature by proposing exchange-

based measures of price impact and market depth using public big datasets. These new

13For example, price informativeness and welfare effects. See Bernales et al. (2020) for details.
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exchange-wise measures capture the variations of some key market microstructure variables at

each local exchange level. To our best knowledge, this is novel to empirical market microstruc-

ture literature. Our proposed measures should have growing importance as recent studies such

as Irtisam and Sokolov (2021), and Shkilko et al. (2021) are examining the market quality of

the U.S. markets at each exchange level. Our exchange-based measures can serve as the bench-

mark metrics for the research investigating market quality at the exchange level. In addition,

computing these variables require the usage of High-Performance Computing (HPC) facilities

which allow us to conduct computing-extensive tasks, in our case, merging quotes files and

trades files at each exchange level.14 As discussed in a recent survey paper by Goldstein et al.

(2021), future finance research may involve intensive interactions with big data. Therefore, our

paper is also contributing to this strand of literature.

2 Institutional Details and Hypotheses Development

This section discusses the institutional details of the new lit exchange MEMX (Section 2.1)

and our hypotheses development (Section 2.2) based on Chen and Duffie (2021). We illustrate

some stylized facts about the new exchange and the growing importance of this new exchange.

We summarize the major predictions based on Chen and Duffie (2021).

2.1 Institutional details of MEMX

Supported by large financial institutions such as BlackRock and Fidelity, MEMX was ini-

tially launched with seven pilot symbols on September 21, 2020. After one month of testing

period and completion of the U.S. stock exchange rollout, MEMX started to trade all NMS

symbols on October 29, 2020. Being one of the fastest-growing exchanges in the U.S., the mar-

ket share of MEMX has steadily increased over time.15 By the end of April 2022, the trading

volume of MEMX ranks 6th across all lit exchanges in the U.S, and the market shares of MEMX

has reached 6.4%. In addition, quotes from MEMX appear, on average, 36.2% of the time in

NBBO files following NASDAQ (65.0%), ARCA (42.9%), and NYSE (39.2%). There are 1,650

tickers that are mainly quoted by MEMX.16 MEMX had 49 active member firms (institutions)

with 55% of volume executed as principal and 45% executed on an agency or riskless principal

basis in April 2022.

The rapid growth in trading volume may be attributed to the uniqueness of MEMX in three

aspects–low access fees, diversified order types, and less internal competition. First, MEMX

has very low access fees. For both professional and non-professional traders, access to real-time

market data at the same low price of $0.01. As discussed by the CEO of MEMX, Jonathan

14We use the HPC at the University of Memphis to calculate the exchange-based stock-day measures. It takes
approximately two months to complete the computing process using approximately one year of raw DTAQ data.

15See Figure C.1.
1675% of NBBO quotes are from MEMX. Sources are from https://memx.com/exchange-

highlights-robust-quote-performance-and-diverse-participation-across-order-types/,
https://www.businesswire.com/news/home/20210921005373/en/MEMX-Reaches-Record-4-Market-Share-
in-Year-One and https://memx.com/news/.
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Kellner:“Our new fee schedule is an example of how we are working to improve upon the

exchange experience for all participants. By introducing one low price for both professional and

non-professional consumers, we hope to democratize access to our market data and minimize

the friction for retail brokers associated with categorizing investors and how they are using

stock exchange data.” Second, MEMX has diversified order types including midpoint peg

orders, limit reverse orders, and primary peg orders. The diversified order types offer traders

with the flexibility to implement complex trading strategies. Third, MEMX also emerges as the

largest independently operated exchange in the U.S. Irtisam and Sokolov (2021) discusses the

ownership structure of the U.S. exchanges and the strategy that the peripheral exchange will

employ to compete with the core exchange within the same group. In absence of this conflict,

MEMX can adopt any effective strategy that may attract the order flows from other existing

lit exchanges.

2.2 Hypotheses development

Our paper is directly testing the theory from Chen and Duffie (2021). They model the order

submissions strategies and demand schedules in the context of trading in multiple exchanges

with liquidity traders submitting exogenous market orders and strategic traders submitting

limit orders (demand schedules) to multiple exchanges simultaneously. Conjecturing the order

submission strategies of other traders, strategic traders maximize their expected discounted

profits. In equilibrium, the price impact of all exchanges increases, and the depth at each

exchange decreases with fragmentation as order volume is split across a greater number of

trading venues. Figure 2 illustrates the simplified version of the mechanism proposed by Chen

and Duffie (2021). We consider two scenarios: Case 1, the asset is traded on a centralized

exchange. Case 2, the asset is traded on two exchanges. In the upper half of the figure,

a trader submits limit orders from 19.0 to 20.0 with 200 shares at each price level forming a

downward step-wise demand schedule (black solid line).17 Suppose we assume that the expected

size for an exogenous liquidity trade is 300 shares (σQ = 300) and the current market price

is 20.0 (blue vertical line), a 300-shares market order will move the price from 20.0 to 19.7

provided the demand schedule is continuous rather than step-wise. In case 2, we consider the

simplest case that the trader shreds the previous limit orders into two halves at each price level

and submits orders to the two exchanges separately. In this case, the depth at each price level

drops from 200 shares to 100 shares for exchange A. If a 250-shares market order arrives at

exchange A, it will deplete the market depth at the best two bid prices driving the price down

from 20.0 to 19.5, thus increasing the price impact of the trade in general.18

[Figure 2]

17The demand schedule is based on the information, for instance, σQ, that the trader obtains at the time
he/she submits the limit orders. σQ is the expected exogenous liquidity trade size. See details in Section II of
Chen and Duffie (2021).

18The 250-shares market order is just a simple example, the trade size of the exogenous market order will be
important to determine the price impact.
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In theory, the equilibrium demand schedules submitted by trades depend on each trader’s

maximization of his/her total expected discounted cash compensation received for executed

orders, net of the present value of asset holding costs (Chen and Duffie, 2021). In our sim-

plified version, we observe a change in both depth and the slope of the demand schedule if

the asset is traded on multiple exchanges rather than on the centralized market. Suppose this

trader alters his demand schedule ex-ante in both exchanges, the slope of the (inverse) demand

schedule becomes less steep and the depth at each price level decreases compared to the central-

ized exchange. Consequently, the overall price impact of marketable orders increases in more

fragmented markets.

Using the launch of a new stock exchange in the U.S.—the members exchange (MEMX)

as a quasi-natural experiment, we directly investigate the impacts of fragmentation through

a new lit exchange on the existing lit exchanges. We hypothesize that the launch of the

new stock exchange, MEMX, induces a higher market fragmentation level and

lower market depth of the existing lit exchanges. This increase in the level of

market fragmentation leads to a higher price impact for equity trading across all

the existing lit exchanges.

3 Data, Sample Selection and Research Design

This section discusses the datasets that we use throughout this paper, the sample selection

process that we take, and the research design we employ. Specifically, we illustrate the filters

that we have employed on our datasets and the number of stocks eliminated at each merging

process in Section 3.1. We then briefly explain the identification of staggered event time at

the stock level in Section 3.2. Section 3.3 and Section 3.4 show the empirical measures that

we use for both market fragmentation and price impact. Section 3.5 illustrates the exogenous

change in market fragmentation around the introduction of MEMX. Section 3.6 discusses the

instrumental variable (IV) approach used in this paper.

3.1 Sample construction

We collect the share code, exchange code, ticker, trading status, delisting code, price, share

volume, share outstanding and return without dividends for each security from the CRSP

universe from June 1, 2020 to May 28, 2021. We select all U.S. common stocks (share codes

10 and 11). We exclude stocks that changed the listing venues during our sample period based

on the change of exchange code. We drop delisted stocks with delisting codes equal to 100 or

with no delisting code information on the last trading day. Finally, we remove stocks where

the number of observations for returns (return without dividends) or trading volume (share

volume) is less than 200. We merge the CRSP data with SEC market structure file and our

summarized DTAQ data which comprises our exchange-based measures of price impact, depth,

market fragmentation, and trade size detailed in Section 3.4. In addition, we use NASDAQ

TotalView-ITCH data to conduct order-level analysis in Section 5. Our final sample has 1,176
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NYSE-listed stocks, 132 AMEX-listed stocks, and 2,100 NASDAQ-listed stocks. Table 1 shows

the procedures of our stock selections and sample characteristics.

[Table 1]

3.2 Identify the calendar days when stocks were first traded on

MEMX

We use the DTAQ master file to identify the time when a stock was first traded on MEMX.

From July 24, 2020, the DTAQ master file started to report an indicator variable “Trade-

dOnMEMX” documenting whether a stock is traded on MEMX. In this paper, we define this

variable as OnMEMXi,t for each stock-day observation. In Figure 1, we define the event day

(Ed
i ) for a stock as the first day when it was traded on MEMX.19 Although all NMS tickers

can be traded on MEMX since October 29, 2020, the exact first day of trading varies across

stocks with an initial batch of seven symbols on September 21, 2020. Figure 3 illustrates the

time distribution of the first days of trading on MEMX for the stocks in our sample. The figure

shows that more than 800 stocks were first traded on MEMX on October 29, 2020. While more

than 80% of the stocks in our sample have been traded on MEMX by mid-November, 2020, it

is not until late April 2021 that all stocks in our sample have been traded once in a specific

trading day on MEMX.

Stocks in our sample also exhibit varied trading patterns after they were first traded on

MEMX. In fact, 46.3% of the stocks in our sample were not traded on MEMX on the second

calendar day after the first days that they reported trading on MEMX. We illustrate the

percentage of stocks traded on MEMX across the days relative to event date in Appendix

Table A.2. As we will discuss in Section 3.6, this variation facilitates the estimation of the

causal effects using an instrumental variable approach.

[Figure 3]

3.3 The measure of market fragmentation

Following Haslag and Ringgenberg (2021), we construct the measure of lit market fragmen-

tation as one minus the Herfindahl Hirschman Index (HHI). Suppose in a trading day t, a stock

i trades at the lit exchange ψ with trading volume V olumeψi,t. Then, we define the market share

at the exchange ψ for this stock i at trading day t as:

sψi,t :=
V olumeψi,t∑
ψ V olume

ψ
i,t

(1)

19The following article (https://www.businesswire.com/news/home/20201029006270/en) also points out “the
exchange launched with seven symbols on September 21, 2020 and has methodically added new symbols in four
phases since then”.
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Our measure of market fragmentation based on trading volume can be written as follows:

Fragvolumei,t := 1−
∑
ψ

(sψi,t)
2 (2)

where
∑

ψ(s
ψ
i,t)

2 is the Herfindhal-Hirschman Index (HHI) which captures the market concen-

tration of trading for the stock i at trading day t. Similarly, we also construct the measure of

market fragmentation based on the number of trades across the lit exchanges, Fragtradei,t .20

3.4 The measure of price impact, depth, and other market quality

measures

This section introduces our measures of price impact that are used throughout this paper.

We construct both price impact measures based on NBBO and each exchange-based price

impact for 13 lit markets. We use DTAQ data to construct our price impact measures.

3.4.1 The measure of price impact based on NBBO

Following Holden and Jacobsen (2014), we construct the dollar-weighted percentage price

impact for each stock i at trading day j:

PIψi,t =
∑
κ

2Dψ
κP

ψ
κ Vκ(X

ψ,mid
κ+5 −Xψ,mid

κ )

Xψ,mid
κ

∑
κ P

ψ
κ V

ψ
κ

(3)

Where Dψ
κ is +1 for a buyer-initiated trade κ and −1 for a seller-initiated trade κ based on

Lee and Ready (1991) algorithm at exchange ψ. Pψ
κ is the price for trade κ at exchange ψ, and

V ψ
κ is the trading volume for that trade at exchange ψ. Xψ,mid

κ is the average of BBO bid price

and ask price after the trade κ at exchange ψ. Xψ,mid
κ+5 is the average of BBO bid price and ask

price 5 minutes after the trade κ for exchange ψ.

3.4.2 The measure of price impact based on each exchange

We construct our exchange-based price impact measure similar to Holden and Jacobsen

(2014). However, we differ from the previous study in the following: First, we obtain BBO

quotes for each lit exchange ψ from DTAQ quotes files and merge them with the trades which

are executed at the same exchange.21 If the trade κ is executed at NYSE (N), for instance,

20To illustrate, suppose a stock traded on three lit exchanges with trading volume as 100 shares, 300 shares,
and 400 respectively. The value of HHI for this stock on this trading day is 0.40625. Thus, the market
fragmentation, Fragvolumei,t is equal to 0.59375. An alternative measure used by Gresse (2017) and (Lausen
et al., 2021) is the reciprocal of the Herfindhal-Hirschman Index (HHI). We define the alternative variables as:

FragvolumeInvi,t :=
1∑

ψ(s
ψ
i,t)

2
and FragtradeInvi,t .

21Specifically, we consider the following lit exchanges: NASDAQ (Q+T), ARCA (P), NYSE (N), BZX (Z),
EDGX (K), IEX (V), EDGA (J), BYX (Y), BX (B), National (C), PSX (X), Chicago (M), and AMEX (A).
We also calculate the trading statistics for the new exchange–the members exchange–MEMX(U). The details
of these exchanges are discussed in Appendix Table A.1]
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Holden and Jacobsen (2014)’s measure will merge this trade with the previous NBBO quote, to

calculate the midpoint price,Xmid
κ , the average of the national best bid price and offer price.22 In

other words, the quote matched with this trade can originate from any lit exchange. In contrast,

our exchange-based price impact is calculated based on exchange-to-exchange matches between

trades and quotes. For a trade executed at NYSE, our approach is to merge this trade with the

previous BBO quotes at the NYSE order book regardless of the NBBO quotes. We believe our

exchange-based price impact measures capture the variations of the price impact on different ex-

changes. The details for the computation of the variables are discussed in Appendix C. As shown

in Panel A, Table 2, the mean price impact measures for the lit exchanges during our sample

period range from 0.144% (Chicago (M)) to 3.010% (National (C)). This is not surprising as the

average trade sizes and the average depth at the best bid price are also varied across exchanges.23

[Table 2]

Figure 4 compares the cross-sectional average of price impact one day before the event days

and on event days for primary exchanges. For NBBO price impact and primary exchange-based

price impacts, we can observe a small amount of increase before (in grey) and after (in black)

the event days for most of the price impact measures.

[Figure 4]

Panel B, Table 2 shows the summary statistics for variables from CRSP or from our DTAQ

summarization dataset based on NBBO. The average of our market fragmentation variables,

Fragtradei,t and Fragvolumei,t for 854,973 stock-day observations are 0.752 and 0.714, respectively.

The mean price impact based on NBBO is 0.284% lower than most of the exchange-based price

impact. We include four control variables–trading volume, volatility24, market capitalization,

and stock price directly from CRSP daily securities files.

3.5 The exogenous change in market fragmentation

This section discusses the exogenous change of the market fragmentation measures Fragtradei,t

and Fragvolumei,t used in this paper. Figure 1 shows the changes in market fragmentation around

the launch of MEMX. Following the notations in econometric literature (De Chaisemartin and

d’Haultfoeuille, 2020; Borusyak et al., 2021; Sun and Abraham, 2021; Athey and Imbens, 2022),

we denote Ed
i as the first trading day when stock i is traded on MEMX. Stocks with the same

event date Ed
i are referred to as cohorts. We define the relative days to event day for stock i

22We are aware that a recent study by Hagströmer (2021) suggests that there exists bias when using the
midpoint price to estimate the effective spreads. We verify our main results using his weighted midpoint price
estimator in Table A.7 the results are similar to our main results in Table 3.

23We also calculate the exchange-based trade size and exchange-based market depth at the best bid price.
we define TradeSizeψi,t as the average trade sizes and Depthψi,t as the time-weighted average of the number of
shares on the best bid price for each stock i at trading day t.

24Defined as the standard deviation of squared daily returns over the past 20-trading days.
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as ldi,t := t − Ed
i . To capture the dynamic treatment effects, we construct binary variables for

different relative days. For example, we construct indicators D0
i,t = 1{ldi,t = 0} for the event

day of stock i, D−1
i,t = 1{ldi,t = −1} for one day before the event day and D1

i,t = 1{ldi,t = 1} for

one day after the event day. For distant relative days, we may construct the binning indicators

such as D10+
i,t = 1{ldi,t > 10} and D−10−

i,t = 1{ldi,t < −10}. Our baseline where αi is the stock

fixed effects, λt is the day fixed effects and X
′
i,t are time-varying controls. K and J are the

cutoff relative days that determine how to construct the binning indicators. Intuitive cutoffs

are (K = 5, J = −5) and (K = 10, J = −10).

Specifically, we run the following staggered two-way fixed effects regressions:

Frag∗i,t = αi + λt +
−1∑
j=J

γjD
j
i,t +

K∑
k=0

βkD
k
i,t + γJ−D

J−
i,t + βK+D

K+
i,t +X

′

i,tΓ + ϵi,t (4)

Where the coefficients of interest are γj and βk–the estimated coefficients for the relative days

to the event day that stocks are first traded on MEMX.

Figure 1 suggests that on the first day when stocks are traded on MEMX, the market

fragmentation for those stocks, on average, increases by about 1.32% (0.0099 / 0.752). We also

verify the similar magnitude of increase in market fragmentation as shown in Table A.4 where

we present the estimated coefficient of regressing the market fragmentation on the event day

indicators D0
i,t. We also consider alternative specifications proposed by Borusyak et al. (2021)

where they address treatment heterogeneity effects with a three-step imputation method. The

estimated coefficients do not change much from our baseline two-way fixed effect model.

While we observe an exogenous shock in market fragmentation on the event day, the fact

that insignificant but positive coefficients following the sharp spike on the event day suggest the

effects of the change in market fragmentation is partially accrued to the variable construction.

This is because all stocks in our sample will be traded on MEMX at some time within our

sample period time from June 1, 2020, to May 28, 2021, and by construction, all stocks will

have the event days, D0
i,t, set to 1 on the calendar days t when they are first traded on MEMX.

However, those stocks are not guaranteed to be traded on MEMX for the second day, the

third day, or those early days after the launch of MEMX. Appendix Table A.2 shows that only

46.2% of the stocks have been traded on the second days after the first days they are traded

on MEMX. The proportion of stocks that are traded on MEMX is monotonically increasing as

the relative days increase. On the twentieth day after first traded on MEMX, 84.6% of stocks

in our sample are traded on MEMX.

3.6 Instrumental variable approach

Motivated by the variation in whether a stock is traded on MEMX in the early phase after

the launch of MEMX, we estimate the causal effects of market fragmentation on price impact

in an Instrumental Variable (IV) approach. We estimate the causal effects in a first-difference

specification. For each stock i in our sample, we take the first-difference of the indicator variable
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of “TradedOnMEMX” denoted as ∆OnMEMXi,t. Our ∆OnMEMXi,t takes on the values of

{-1, 0, 1}. In the early phase after the launch of MEMX, we observe more observations of

{−1, 1} than {0} as stocks are changing the status of the indicator variable OnMEMXi,t

frequently, from either “traded on MEMX” (OnMEMXi,t = 1) to “not traded on MEMX”

(OnMEMXi,t = 0) and vice versa.

Specifically, we run the following two-stage least square regression:

∆Frag∗i,t = ∆λt + δ∆OnMEMXi,t +∆X
′

i,tΦ +∆ϵi,t (5)

∆PIψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′

i,tΓ +∆ϵi,t (6)

Where equation (5) represents the first-stage regression and equation (6) represents the second-

stage regression. Where ∆ is the first difference operator, OnMEMXi,t is the indicators if the

stock i is traded on MEMX at day t, ̂∆Frag∗i,t is the predicted value from the first-stage

regression, and X
′
it are controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t and

Pricei,t. ψ denotes the exchange.

We have two main reasons to justify the use of the IV approach rather than using the

static difference-in-differences or the staggered difference-in-differences to estimate the treat-

ment effects of market fragmentation on price impact. First, the fact that all stocks can be

potentially traded on MEMX after the introduction of the new exchange poses a challenge for

assigning the stocks in our sample to either the treatment group or the control group. Despite

all stocks having been traded at least for one trading day on MEMX by the end of April 2021

after the introduction of MEMX, the exact calendar days of the first trading days vary across

stocks. This staggered feature at the stock-level rules out the possibility to obtain appropriate

treatment effects from the static difference-in-differences estimators. Furthermore, as we show

in Table A.2, after stocks were first traded on MEMX, about 46.3% of them were not traded

on the second calendar day. Even if we estimate the treatment effects using Callaway and

Sant’Anna (2021)’s staggered difference-in-differences estimator, we may fail to capture the ef-

fects of market fragmentation on price impact at the stock level if we consider the first trading

day on MEMX as the event day. This is because, from the individual stock perspective, the

fragmentation level may decrease when a stock is not traded on MEMX due to other factors

which may or may not be related to the market conditions for that particular stock.

Second, we have several advantages using the IV approach in our setting. By estimating the

model in a first-difference specification, we can capture the variation in market fragmentation at

the stock level due to the plausibly exogenous variation in whether a stock is traded on MEMX

(∆OnMEMXi,t) in the early days when stocks were traded on MEMX. The coefficient in the

equation (5) also has an economic interpretation—the effects of adding additional exchange on

stock-level market fragmentation.

One concern of our instrumental variable approach is that whether a stock is traded on

MEMX may be related to the market conditions of the other existing lit exchanges–probably
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the price impact–raising the reverse causality concerns. To address this concern, we calculate

the Pearson Correlation Coefficients between our exchange-based price impact PIψi,t and whether

a stock is traded on MEMX (OnMEMXi,t) after the introduction of MEMX on October 29,

2020, stock-wise. Table A.5 reports the total number of stocks in each direction (positive or

negative) of the correlations. In each correlation direction, we report the number of stocks

that the p-values of the null hypotheses—the two variables are independent—are larger than

0.01% or smaller than 0.01%, respectively. For example, there are 1,321 (1,422) stocks that

have positive (negative) correlations between the price impact in the EDGA (J) exchange and

whether the stock is traded on MEMX after the introduction of MEMX. Of these 1299 (1,266)

stocks, the correlations of 22 (156) stocks are positively (negatively) significant at the 1% level.

The results provide evidence that the reverse causality is unlikely to bias our estimates using

our instrumental variable approach. Besides, we also conduct additional robustness tests in

Section 4.2 to address the endogeneity issue.

4 Empirical Findings

This section illustrates our main empirical findings. Section 4.1 shows the effects of market

fragmentation on price impact. Section 4.2 shows our robustness tests which aim to address a

variety of concerns with regard to the validity of our main results in Section 4.1. We conduct

a placebo test in Section 4.3. Section 4.4 documents the correlations between market depth at

each exchange and the total order volume submitted to MEMX.

4.1 The effects of market fragmentation on price impact

Table 3 reports the effects of market fragmentation on price impact around the launch of

MEMX exchange. We run 2SLS regressions of change in price impact on change in market

fragmentation as shown in Equation (5) and Equation (6). In the first stage, we use the first-

difference of whether a stock is traded on MEMX, OnMEMXi,t, as the instrument for our

market fragmentation measures, Fragtradei,t and Fragvolumei,t , respectively. In the second stage,

we then regress the NBBO-based price impact and our proposed exchange-based price impact

on the predicted values of (first-difference) market fragmentation. We report the estimated

coefficients µ in the second-stage regressions for the independent variables of ∆Fragtradei,t and

∆Fragvolumei,t , separately. We also present the first-stage coefficients δ and weak IV test statistics

of Kleibergen and Paap (2006) (K-P) rk F statistics.

We find the change of market fragmentation positively affects the change of price impact

around the launch of MEMX across most of the lit exchanges. A one-standard-deviation (0.102)

increase in market fragmentation (Fragtradei,t ) will induce approximately 26.5 bps (0.102×0.026×10,000)

increase in NBBO price impact. The effects are not only statistically significant at the 1% level

but also economically significant. For a stock with a price of 49.59 USD and with a trading

volume of 1.731 million shares per day, the estimated increase in transaction costs due to the

increased price impact is about 24,550 USD if the stock experiences a 1.1% exogenous increase
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in market fragmentation.

Perhaps the most striking finding in Table 3 is the fact that price impact at each existing lit

exchange is also affected by market fragmentation. A stock exhibiting more fragmentation in

trading due to the launch of MEMX will suffer an increase in price impact for 11 out of 13 lit

existing exchanges. The magnitude of the effects ranges from 40.8 bps to (in NASDAQ (Q+T))

3,090 bps (in BX (B)). The results are similar with regards to both market fragmentation

measure based on trade (Fragtradei,t ) and measure based on volume (Fragvolumei,t ).

Our results are consistent with the theoretical predictions proposed by Malamud and Rostek

(2017) and Chen and Duffie (2021) of how market fragmentation, to be more precise, the

increase in a number of exchanges will affect the price impact of trading. In the equilibrium

of their models, the price impact in all existing exchanges will increase if the total number of

exchanges increases. Our results support their predictions as we show that 11 out of 13 lit

exchanges exhibit positively significant coefficients in our second-stage regressions.

[Table 3]

4.2 Robustness tests

We conduct several robustness tests to address the concerns with regard to the validity of

our main results in Table 3. First, we use different measures of market fragmentation and price

impact to conduct our main regressions to address the concern that different measures may lead

to contradicted results. Our results in Table A.6 using the inverse of HHI index proposed by

Gresse (2017) and Lausen et al. (2021), in Table A.7 using the weighted midpoint proposed by

Hagströmer (2021) to calculate the price impact, and in Table A.8 using the 15-second-based

price impact jointly confirm that our main findings in Table 3 are unlikely to be driven by the

measures that we choose.

Second, we address the concerns that there may exist heterogeneous effects of fragmentation

on price impact across stocks. Evidence from Haslag and Ringgenberg (2021) suggests that

market fragmentation may impair liquidity for small stocks. Since these small stocks are more

likely to be listed at the NASDAQ stock exchange, we also separate our sample into sub-

samples where stocks are grouped by their listing exchanges. Table A.9 shows the effects of

market fragmentation on price impact are stronger for stocks listed on NASDAQ and on AMEX

than stocks listed on NYSE, though the coefficients of our main regressions are still positively

significant at major stock exchanges regardless of the listing exchanges. In addition, following

Haslag and Ringgenberg (2021), we also add market capitalization quintile interacted with

market fragmentation to our main regression equations to capture if the effects of the exogenous

change of market fragmentation on price impact differ across different sizes of stocks. Table

A.10 illustrates that after controlling for the sizes of the stock, we can still find the positive

relations between market fragmentation and price impact.

The third concern about the validity of our main findings results from the endogeneity

problem in our specification. While the introduction of MEMX on October 29, 2020, is a
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plausibly exogenous event, trading stock for the first time on MEMX sometimes multiple days

after the launch is probably not exogenous. There exists the possibility that our instruments—

∆OnMEMXi,t—may be linked to market conditions on other exchanges. thus biasing our

estimates. For example, the reverse causality will be a problem if the high price impact on other

existing lit exchanges encourages the broker-dealers to route orders to MEMX for execution.

Though, as shown in Table A.5, we observe weak correlations between whether a stock is

traded on MEMX after the introduction of MEMX and the exchange-based price impact, we

still provide robustness tests in the regressions setting. We deal with the issue by restricting our

sample period from 10 trading days (October 15, 2020) before the introduction of MEMX, to

October 29, 2020. We include 945 stocks that were traded on the first day (October 29, 2020)

when the MEMX are introduced. By restricting the sample for the first day when MEMX is

introduced, we can resolve the reverse causality concern that price impact can affect the decision

to trade on MEMX. Table A.11 shows that among 13 exchanges, 8 exchanges exhibit positively

significant coefficients of market fragmentation on price impact. Among those 5 insignificant

coefficients, 4 of them are positive.

We summarize our robustness tests in Table 4. Readers can find the details of our results

for these robustness tests in our Appendix A.

[Table 4]

4.3 Placebo tests

To validate our main results, we conduct placebo tests that falsify our true indicator variable,

OnMEMXi,t. Specifically, we generate a Bernoulli random variable, ˜OnPLACEBOi,t, with

the probability of 1/3 (2/3) that the variable will be 0 (1) after October 29, 2020 when MEMX

starts to trade all NMS symbols.25 We also assume that all stocks will be always traded on

MEMX after 20 days when they are first traded on MEMX. This means for t > Ed
i + 20

we manually set the values of ˜OnPLACEBOi,t to be 1. In total, we generate ten series of

˜OnPLACEBOi,t.

Table 5 reports the results of our placebo tests. We run 2SLS regressions of price impact on

market fragmentation similar to the regression in Table 3. In the first-stage, instead of instru-

menting first-difference of market fragmentation on the true indicator variable, ∆OnMEMXi,t,

we instrument ∆Frag∗i,t on the randomly generated variable, ∆ ˜OnPLACEBOi,t. We use ten

different generated series of ˜OnPLACEBOi,t and report the number of second-stage estimated

coefficients µ in four categories–positively not significant at 10% level (+), positively significant

at 10% level (+∗), negatively not significant at 10% level (−) and negatively significant at 10%

level (−∗).

The results in Table 5 suggest that our estimated causal effects of market fragmentation

on price impact in Table 3 are unlikely driven by chance. All of our estimated coefficients in

25The values of ˜OnPLACEBOi,t before October 29, 2020 are all set to 0.
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regressions based on ten different generated random variables across all lit exchanges are not

significant at the 10% level. The coefficients are also roughly equally distributed in + and

− categories suggesting if we falsify the dates when stocks are traded on MEMX, we cannot

observe any significant effects of market fragmentation on price impact.

[Table 5]

4.4 Market depth and total order volume submitted to MEMX

In this section, we investigate the impact of order flow shifting to MEMX on market depth for

each lit exchange around the launch of MEMX. Chen and Duffie (2021) predicts that introducing

a new exchange facilitates traders to split orders across different exchanges, therefore, reducing

the market depth of existing lit markets. We use the total order volume (in millions) submitted

to MEMX as a proxy for the order flow shifting to MEMX. For each stock i at trading day t, we

obtain the total order volume on MEMX, denoted as ORDERV OLMEMX
i,t , from SEC market

structure files where they summarize the total order volume for each lit exchange, separately.

We then run the following regressions to gauge the impact of order flow shifting to MEMX on

market depth:

lnBIDDepthψi,t = αi + λt + πORDERV OLMEMX
i,t +X

′

itΓ + ϵi,t (7)

lnASKDepthψi,t = αi + λt + πORDERV OLMEMX
i,t +X

′

itΓ + ϵi,t (8)

Where lnBIDDepthψi,t (lnASKDepthψi,t) is the natural logarithm of time-weighted market

depth for the best bid (ask) prices for stock i at trading day t. ORDERV OLMEMX
i,t is the

total volume (in million) for all orders submitted to MEMX for tock i at trading day t. X
′
it are

controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. αi is the stock

fixed effect and λt is the day fixed effect.

As we show in our simplified example (from one exchange to two exchange) in Figure 2, the

practice of shredding the parent order into two equal child orders lead to a 50% of reduction

in the market depth in Exchange A. However, in reality, we have a much more complicated

situation where the number of exchanges increases from 13 to 14. Our results in Table 6 doc-

ument a negative association between the market depth at other existing lit exchanges and

the order flow shifting to MEMX in the early days after the launch of the exchange. We es-

timate the coefficients π with different estimation windows, for example, thirty days pre and

post (-10, 9), fifty days pre and post (-20, 19), and twenty days pre and post (-60, 59). We

find most of the estimated coefficients of ORDERV OLMEMX
i,t , π, are negative and significant.

The negative correlations are stronger for primary exchanges such as NASDAQ, ARCA, NYSE,

BZX, EDGX, and IEX than peripheral exchanges such as EDGA, BYX, BX, National, PSX,

Chicago, and AMEX. The results hold for both market depth at the best bid side and the

best ask side. Besides, our results also suggest economic significance. For example, a one mil-

lion additional order volume submitted to MEMX is associated with an approximately 1.20%
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(1.34%) decrease in market depth at the best bid (ask) side for NASDAQ. For each estimation

window, we also report the average R-squared across 13 regressions. Although the average R-

squared decreases as the estimation windows increases, the variations of our key dependent vari-

able, ORDERV OLMEMX
i,t , along with other control variables such as V olatilityi,t, V olumei,t,

Marketcapi,t and Pricei,t explain approximately 70% of the variation in market depth. Our

results validate the prediction proposed by the model of Chen and Duffie (2021) that market

depth is reduced as a consequence of order-splitting activities and order flow shifting when

MEMX is introduced.

[Table 6]

5 Discussion of mechanisms

The previous sections have provided empirical evidence that exogenous changes in market

fragmentation arising from launching a new exchange induce a larger price impact in equity

trading. This section discusses the probable mechanisms through which the introduction of

a new lit exchange may affect price impact. We consider three potential explanations: the

change in order aggressiveness, the change in order book slope and the asymmetric changes in

liquidity supply and demand around the launch of MEMX. All three explanations support that

the change of order book structure around the introduction of MEMX may result in an increase

in price impact. We use NASDAQ TotalView-ITCH data to conduct order-level analysis in this

section.

5.1 Change in order aggressiveness

One possible channel through which market fragmentation leads to a higher price impact

of trading may be attributed to the changes in order aggressiveness around the introduction of

MEMX. Chen and Duffie (2021) predicts that fragmentation increases overall order aggressive-

ness due to traders’ order-splitting activities and their objective is to maximize the payoff of

their demand schedules. Also, empirical evidence from Griffiths et al. (2000) suggests that or-

der aggressiveness is positively associated with the price impact. If the introduction of MEMX

increases the overall order aggressiveness of the orders that submit to the limit order book, then

it is very likely that the increased price impact that we observe can be, at least partially, at-

tributed to this channel. Our results which we will discuss in the following paragraphs support

this channel.

We test this potential channel using NASDAQ TotalView-ITCH data. The dataset com-

prises all orders that are entered into the NASDAQ trading system. After reconstructing the

limit order book whose procedure is discussed in detail in Appendix C, we follow the approach

of Biais et al. (1995) and classify orders which result in inside BBO trades, large trades (mar-

ketable orders walk the LOB in NASDAQ), small trades (orders executed at BBO but with

trade size smaller than the depth at BBO), and improvement in BBO (either order improving
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the BBO price or improving the BBO depth) into aggressive orders. We also classify orders

that result in addition in LOB, revision in LOB, cancellation in LOB, and deletion in LOB

into unaggressive orders. For each stock-day observation, the variables are in percentage and

their summary statistics are reported in Appendix B, Table B.1. We then run the following

regression for each order aggressiveness type:

%Order∗i,t = αi + λt + ω1(t >= Ed
i ) +X

′

itΓ + ϵi,t (9)

Where %Order∗i,t represents the percentage of orders in that category, for instance, the percent-

age of orders that result in large trades. Ed
i is the calendar day that when stock i is first traded

on MEMX. 1 represents the indicator function. X
′
it are controls which comprise of V olatilityi,t,

V olumei,t,Marketcapi,t and Pricei,t. We select the sample with trading days t between Ed
i −20

and Ed
i + 19. The estimate ω, which captures the changes in the percentage of orders in each

category is of our interest.

Table 7 presents the results of the changes in order aggressiveness around the launch of

MEMX. Panel A reports the results on the buy (bid) side and Panel B reports the results

on the sell (ask) side. We find the introduction of MEMX is associated with the increases in

the proportion of the orders in the aggressive order types. For example, on the buy side, the

introduction of MEMX is associated with 0.15%, 0.13%, and 0.67% increases for aggressive

orders that result in large trades, small trades, and improvement in BBO, respectively. The

regression coefficients are all significant at 1% level. On the contrary, we find the introduction

of MEMX is negatively associated with the proportion of the orders in the unaggressive types

though the magnitude of the association is weaker than that for the aggressive orders types.

For robustness tests, we select the sample with a longer estimation window and report the

results in Appendix B, Table B.2. The results in Table B.2 are similar to the results in Table

7. R-Squared in Table B.2 is all slightly smaller than those in Table 7 suggesting that there are

more noises in the unobserved error terms of the models if we expand the estimation window.

Similarly, we conduct a falsified test where we select the sample with trading days t between

Ed
i −60 and Ed

i −21. The results are reported in Table B.3. Not surprisingly, we find almost no

significant associations between the falsified introduction of MEMX and the proportion of the

orders in aggressive order types. These results confirm that the increased order aggressiveness

after the introduction of MEMX could possibly explain the increased price impact that we

observe when trading is more fragmented.

[Table 7]

5.2 Change in orderbook slope

Our second possible channel that may explain the higher price impact after the introduction

of MEMX for more fragmented stocks is the changes in the slopes of the limit order book around

the launch of the new exchange. As we show in Figure 2, the slope of the (inverse) demand
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schedule becomes less steep in the two exchanges case compared to the centralized exchange

case. If the introduction of MEMX decreases the steepness of the slopes (more inelastic) in the

limit order book for each local exchange, the price impacts will be larger for executing the same

quantities that walk the book in the more exchanges case than the centralized exchange case.

To test this channel, we follow Kalay et al. (2004) and Næs and Skjeltorp (2006), and

construct two stock-day level measures of order book slopes for both the bid side and the ask

side of the limit order book in NASDAQ stock exchange. We only show the formulas for the

ask side since the computation procedure for the bid side is the same as the ask side.

Specifically, we denote the order book status, including prices p and quantities v at a

particular time during the regular trading hours as s. We denote τ as the tick level with τ = 0

representing the bid-ask midpoint and τ = 1 representing the best quote. Furthermore, let pA0

denote the bid-ask midpoint price and let pAτ denote the price at tick level τ . We also denote

νA0 as the accumulated total quantities (shares) at tick level τ . Then, we then calculate the

average slope for the ask side at order book status s for stock i on the trading day t as:

SENS
i,t,s =

1

10
(

νA1
pA1 /p

A
0 − 1

+
10∑
τ=1

νAτ+1/ν
A
τ − 1

pAτ+1/p
A
τ − 1

) (10)

Suppose we observe the total number of status s for stock i on the trading day t, and denote

it as NSE
i,t,s. Then, our measure for the stock-day level measure of the order book slope can be

written as:

SLOPEASKNS
i,t =

SENS
i,t,s

NSE
i,t,s

(11)

The superscript NS represents this measure is based on Næs and Skjeltorp (2006).

Alternatively, we also construct the slope measure based on Kalay et al. (2004). We first

calculate the average slope at order book status s for stock i on trading day t as:

SEKalay
i,t,s =

1

10
(

10∑
τ=0

(νAτ+1 − νAτ )/TQi,t,s

pAτ+1/p
A
τ − 1

) (12)

Where TQA
i,t,s denotes the total shares supplied within τ = 10 ticks on the ask side of the

orderbook status s for stock i on trading day t. Then, our measure based on Kalay et al. (2004)

could be written as:

SLOPEASKKalay
i,t =

SEKalay
i,t,s

NSE
i,t,s

(13)

One major difference between the method proposed by Næs and Skjeltorp (2006) and us

is that we don’t take the average of the slope in the bid side, SLOPEBID∗
i,t, and the slope

in the ask side, SLOPEASK∗
i,t to get the average “stock-day” slope. Therefore, our calcu-

lated SLOPEBID∗
i,t are negative while SLOPEBID∗

i,t are positive for most of the stock-day

observations throughout our sample period. When the slopes are less steep, the values of the

slopes for the bid side will become larger (less negative) and the values of the slopes for the ask

side will become smaller (less positive). We run the following four regressions for two different
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estimation windows:

SLOPEBIDNS
i,t = αi + λt + ρ1(t >= Ẽd

i ) +X
′

itΓ + ϵi,t (14)

SLOPEBIDKalay
i,t = αi + λt + ρ1(t >= Ẽd

i ) +X
′

itΓ + ϵi,t (15)

SLOPEASKNS
i,t = αi + λt + ρ1(t >= Ẽd

i ) +X
′

itΓ + ϵi,t (16)

SLOPEASKKalay
i,t = αi + λt + ρ1(t >= Ẽd

i ) +X
′

itΓ + ϵi,t (17)

Where Ẽd
i represents the first day that the stock i is quoted on MEMX. 1 represents the

indicator function. X
′
it are controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t

and Pricei,t. The regression coefficients ρ which captures the changes in average orderbook

slopes is of our interest. We expect the ρ is negative for the bid side and positive for the ask

side if the introduction of MEMX makes the orderbook slopes less steep and more inelastic.

Table 8 reports the results of the changes in orderbook slope around the launch of MEMX.

As we expect, the introduction of MEMX decreases the steepness of limit orderbook slopes

for stocks trading on the NASDAQ exchange. For two different estimation windows, we find

the values of slopes for the bid side are becoming larger (less negative) and the values of the

slopes for the ask side are become smaller (less positive) suggesting that orderbook slopes are

becoming less steep and the demand schedules are becoming more inelastic. These results

support the channel that the changes in the slopes of the limit orderbook around the launch

of new exchange also contributes to the observed increasing price impact in a more fragmented

market.

[Table 8]

5.3 Asymmetric changes in liquidity supply and demand

The third possible channel that we propose is the asymmetric changes in liquidity supply

and demand around the introduction of MEMX. When a new lit exchange is introduced, Chen

and Duffie (2021) predicts that strategic traders will split orders from existing lit exchanges

forming different demand schedules (limit orders) as we show in Figure 2. We conjecture

that the liquidity supply–the depth of limit orders resting on the limit order book at each

tick (price level)–will decrease as the increasing number of lit exchanges. In contrast, on the

liquidity demand side, “liquidity traders” submit aggregated market orders at each lit exchange

in Chen and Duffie (2021)’s model. The quantities (trade sizes) are exogenous random variables,

independently and identically distributed across exchanges and periods. Therefore, we should

also find relatively small or insignificant changes in trade sizes compared with the changes

in market depth following the introduction of MEMX. With a relatively larger trade size of

liquidity trades (market orders) compared with the size of market depth (unmarketable limit

orders) when trading becomes more fragmented, it is more likely that trades will exhaust the

depth of the order book and move the price dramatically. Thus, the price impact will increase
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mechanically at each existing exchange. Empirically, we use the market depth at best bid prices

as the proxy for liquidity supply and use the (ISO) trade sizes as the proxy for liquidity demand.

ISO is an order that automatically executes in a designated market center even if there exists

better prices at other venues (Chakravarty et al., 2012). We believe the ISO trades, which can

be identified in our data, are good proxies for the liquidity trades to a specific exchange as

discussed in the model of Chen and Duffie (2021). In Chen and Duffie (2021)’s model, they

argue that the liquidity trades are i.i.d across liquidity traders. Liquidity traders collectively

submit exogenous quantities to a specific exchange.

Table 9 reports the liquidity supply and liquidity demand dynamics around the launch

of MEMX. We calculate the average of market depth at the best bid price (BIDDepthΨi,t),

trade size (TradeSizeΨi,t), and ISO trade size (ISOTradeSizeΨi,t), respectively before the intro-

duction of MEMX (PRE) for major exchanges. Similarly, we calculate the average of these

variables after the introduction of MEMX (POST ). We also calculate the percentage differ-

ences (DIFF%) and absolute differences between the PRE and POST . ∗, ∗∗, ∗ ∗ ∗ indicates

statistical significance at the 1%, 5%, and 10% level for two sample t-test, respectively between

PRE and POST . We also validate our results using different estimation windows. We find

that in the liquidity supply side there are sharp decreases in market sharp decreases in market

depth for major exchanges immediately after the introduction of MEMX. For instance, the

market depth decreases about 9.33%, 5.15%, 8.67%, 2.33% and 4.35% within 20 days after the

launch of MEMX for NASDAQ, ARCA, NYSE, BZX, and EDGX—the five primary exchanges

which comprise 81.88% dollar volume for all of the lit exchanges–respectively. First, we find

trade sizes remain relatively unchanged around the launch of MEMX for these major exchanges

discussed above. Second, we find that despite some exchanges experiencing significant decreases

in the trade sizes of ISO trades, their magnitudes are small compared with the decreases in the

supply side–market depth at the bid. Our results suggest the increased price impact of trading

can be attributed to such asymmetric impacts on the liquidity demand and liquidity supply

arising from the launch of MEMX.

[Table 9]

6 Conclusions

In this paper, we document positive causal effects of market fragmentation on price impact

using a newly launched exchange as a quasi-natural experiment. We find the launch of the

MEMX exchange causes the exogenous increase in market fragmentation which induces the

increase of price impact in other existing lit markets. While previous studies have extensively

examined the effects of dark pools on market quality. We have little evidence that what would

be the consequence of adding another new exchange on top of the existing 13 exchanges. Our

paper fills this gap and provides evidence supporting the theoretical model proposed by Chen

and Duffie (2021), at least, in part.
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But we should be cautious about the policy implications of the results presented in this

paper. Price impact is just one aspect of market quality. It is also a particular dimension of

market liquidity. As shown in the model of Chen and Duffie (2021), although price impact will

increase in more fragmented markets which seems to be detrimental for traders, the aggregated

price informativeness is, on the contrary, an increase in the multi-market setting. In addition,

Malamud and Rostek (2017) shows that fragmented markets surprisingly yield higher welfare

than centralized markets. We encourage future research deliberates on these topics as equity

markets deserve to be well-designed and serve the purpose of enhancing the economy.
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Comerton-Forde, C. and Putniņš, T. J. (2015). Dark trading and price discovery. Journal of

Financial Economics, 118(1):70–92.

Cont, R., Kukanov, A., and Stoikov, S. (2014). The price impact of order book events. Journal

of financial econometrics, 12(1):47–88.

Daures-Lescourret, L. and Moinas, S. (2020). Fragmentation and strategic market-making.

Available at SSRN 2498277.

De Chaisemartin, C. and d’Haultfoeuille, X. (2020). Two-way fixed effects estimators with

heterogeneous treatment effects. American Economic Review, 110(9):2964–96.

De Fontnouvelle, P., Fishe, R. P., and Harris, J. H. (2003). The behavior of bid-ask spreads

and volume in options markets during the competition for listings in 1999. The Journal of

Finance, 58(6):2437–2463.

Degryse, H., De Jong, F., and Kervel, V. v. (2015). The impact of dark trading and visible

fragmentation on market quality. Review of Finance, 19(4):1587–1622.

Dufour, A. and Engle, R. F. (2000). Time and the price impact of a trade. The Journal of

Finance, 55(6):2467–2498.
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Figure 1: This figure reports the coefficients, γj and βk estimated from the following staggered event-study regressions: Frag∗it = αi + λt +∑−1
j=J γjD

j
it +

∑K
k=0 βkD

k
it + γJ−D

J−
it + βK+D

K+
it + X

′
itΓ + ϵit. Where Frag∗i,t is the market fragmentation for stock i at trading day t either

based on the number of trades or trading volume. Dj
i,t, and D

k
i,t are the indicators for j or k days relative to the event day–the first days that

stocks trade on MEMX. DJ−
it and DK+

it are binning indicators for the relative days larger than J and K. X
′
it are controls which comprise of

V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. Details are discussed in Section 3.5. Figure (A) reports the case when K = 5 and J = −5
while figure (B) reports the case when K = 10 and J = −10.
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Figure 2: This figure presents the change of demand schedules from one exchange to two exchanges.
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Figure 3: This figure presents the time distribution of the events–the first days that the stocks
are traded on MEMX.
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Figure 4: This figure presents the mean price impact one-day before the event days and on the
event days–the first calendar days when stocks trade on MEMX.

33



Table 1. Stock filters and sample selections
This table presents our stock filters and samples. Panel A shows the stock
filters that we employ to construct our sample starting from June 1, 2020
to May 28, 2021. We select all U.S. common stocks (share codes 10 and 11
in CRSP) from all securities listed on the NYSE, the American Stock Ex-
change(AMEX), and the NASDAQ. During our sample period, we exclude
delisted stocks, stocks that changed the listing exchange, and stocks where
the number of the observations in returns or trading volume are less than
200. We merge the filtered CRSP data with our summarized TAQ data.
Panel B shows the daily average stocks and total stock-day observations
of our samples. Full sample comprises all observations during our sample
period. Details are discussed in Section 3.1

Panel A: Stock filters

CRSP filters NYSE AMEX NASDAQ

Common stocks listed on NYSE,
NASDAQ and AMEX at the last
trading day in our sample period

1,382 153 2,696

Stocks that changed the listing
exchange

−4 −5 −38

Stocks that were delisted −13 −2 −31

Stocks with less than 200
observations of returns or trading
volume

−181 −13 −487

1,184 133 2,140
TAQ filters

After merging with TAQ −8 −1 −40
1,176 132 2,100

Panel B: Samples
Full sample

Daily average stocks 3392.8

Total stock-day observations 854,973
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Table 2. Descriptive statistics
This table reports the descriptive statistics. Panel A reports by exchange trading statistics. For each lit exchange ψ, we
report the average dollar volume (DollarV olumeψt ) and the average number of trades (Tradeψt ) over our sample period
from June, 1, 2020 to May, 28, 2021. We report mean (Mean), median (p50), and the number of observations (N) for
our calculated variables: price impact (PIψi,t), depth at best bid (BIDDepthψi,t) and trade size (TradeSizeψi,t). Panel B
reports CRSP and NBBO-based statistics. We report mean (Mean), standard deviation (STD), 1 percentile (p1), median
(p50), 99 percentiles (p99) and the number of observations for the following variables: Fragtradei,t , market fragmentation
based on the number of trades across lit exchanges; Fragvolumei,t market fragmentation based on the trading volume;
OnMEMXi,t, the indicators if the stock i is traded on MEMX at trading day t; PIi,t, price impact based on NBBO;
BIDDepthi,t, depth at national best bid; V olumei,t, trading volume in shares (in thousand) from CRSP; V olatilityi,t,
the standard deviation of squared returns over the past 20-trading days; Marketcapi,t, the product of the number of
shares outstanding and share price (in million); Pricei,t the closing price from CRSP.

Panel A: By Exchange Trading Statistics

Exchange(ψ) DollarV olumeψt PIψi,t (Price Impact) BIDDepthψi,t (Bid) TradeSizeψi,t
Name (DTAQ Code) Market% Mean p50 N Mean p50 N Mean p50 N

NASDAQ (Q+T) 32.13% 0.345% 0.174% 831,573 692.7 209.5 834,529 100.2 65.21 852,604
ARCA (P) 15.56% 0.444% 0.287% 818,696 488.2 170.9 833,499 93.03 58.44 839,708
NYSE (N) 12.70% 0.462% 0.164% 743,705 471.9 169.9 807,655 115.4 78.09 770,168
EDGX (K) 10.88% 0.684% 0.386% 820,922 639.0 268.9 831,391 108.8 68.73 842,914
BZX (Z) 10.61% 0.414% 0.225% 812,563 329.7 143.3 834,011 76.06 52.99 834,157
IEX (V) 5.48% 0.518% 0.142% 689,641 228.8 146.7 678,831 87.15 75.25 813,854
EGDA (J) 2.97% 0.814% 0.526% 775,284 131.0 104.8 827,060 64.85 55.72 795,623
BYX (Y) 2.67% 0.642% 0.404% 794,356 149.7 104.2 829,492 67.37 52.89 815,679
BX (B) 1.51% 1.040% 0.372% 706,585 147.3 108.4 728,813 67.97 51.24 774,183
National (C) 1.50% 3.010% 0.968% 702,374 138.3 101.3 727,236 62.52 51.00 758,275
PSX (X) 1.39% 1.970% 0.498% 656,811 218.7 122.1 735,222 88.80 74.17 688,593
Chicago (M) 1.03% 0.144% 0.000% 395,321 309.6 100.4 689,647 680.1 79.80 419,131
AMEX (A) 0.53% 0.409% 0.146% 624,317 167.1 100.5 725,177 62.57 44.3 660,934
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continue

Panel B: CRSP and NBBO-based Statistics

Variables Mean STD p1 p50 p99 N

Fragtradei,t 0.752 0.102 0.368 0.771 0.883 854,973

Fragvolumei,t 0.714 0.117 0.188 0.740 0.852 854,973

FragtradeInvi,t 4.547 1.468 1.581 4.371 8.515 854,976

FragvolumeInvi,t 3.915 1.179 1.231 3.840 6.746 854,976

OnMEMXi,t 0.490 0.500 0 0 1 854,973

PINBBOi,t 0.284% 0.534% −0.278% 0.157% 2.190% 839,332

Depthi,t 1,045 4,802 111.3 276.2 13,483 854,869

V olumei,t 1,822 8,632 0.906 363.5 25,066 854,973

V olatilityi,t 0.038 0.037 0.008 0.030 0.153 854,858

Marketcapi,t 10,356 62,343 11.46 880.0 174,396 854,973

Pricei,t 55.13 150.0 0.630 21.60 468.0 854,973

ORDERV OLMEMX
i,t 496.3 2,332 0 26.31 8,397 458,856
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Table 3. The effect of market fragmentation on price impact
This table reports the effects of market fragmentation on price impact. For each exchange ψ, we run a two-stage least
square regression as the following:

First-stage: ∆Frag∗i,t = ∆λt + δ∆OnMEMXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicators if the stock i is traded at MEMX on day t,
̂∆Frag∗i,t is the predicted value from the first-stage regression, and X

′
it are controls which comprise of V olatilityi,t,

V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. N denotes the number of observations. Standard
errors clustered at both stock and day levels are reported in parentheses. We report the second-stage estimates (µ),
first-stage estimates (δ), and weak IV test statistics. Kleibergen and Paap (2006) (K-P) rk F statistics are reported. *,
**, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.

Second-stage First-stage

Dependent: Independent: Estimates Tests

∆PIψi,t
̂∆Fragtradei,t

̂∆Fragvolumei,t Controls Day FE N δ K-P

NBBO
0.0260∗∗∗ (0.003) Y Y

834,156
0.0140∗∗∗ 199.6

0.0241∗∗∗ (0.003) Y Y 0.0150∗∗∗ 169.2

NASDAQ (Q+T)
0.0400∗∗∗ (0.007) Y Y

824,218
0.0134∗∗∗ 195.3

0.0376∗∗∗ (0.007) Y Y 0.0143∗∗∗ 164.2

ARCA (P)
0.0554∗∗∗ (0.007) Y Y

805,977
0.0106∗∗∗ 225.2

0.0491∗∗∗ (0.006) Y Y 0.0120∗∗∗ 170.3

NYSE (N)
0.0768∗∗∗ (0.015) Y Y

714,984
0.0066∗∗∗ 152.6

0.0660∗∗∗ (0.013) Y Y 0.0077∗∗∗ 111.9

BZX (Z)
0.0771∗∗∗ (0.009) Y Y

798,129
0.0093∗∗∗ 207.2

0.0691∗∗∗ (0.008) Y Y 0.0104∗∗∗ 158.4

EDGX (K)
0.0590∗∗∗ (0.007) Y Y

808,862
0.0119∗∗∗ 213.1

0.0534∗∗∗ (0.007) Y Y 0.0131∗∗∗ 169.0

IEX (V)
0.0562∗∗ (0.026) Y Y

644,892
0.0063∗∗∗ 140.7

0.0524∗∗ (0.024) Y Y 0.0068∗∗∗ 75.4

EDGA (J)
0.0785∗∗∗ (0.017) Y Y

756,034
0.0082∗∗∗ 204.1

0.0713∗∗∗ (0.016) Y Y 0.0090∗∗∗ 125.3

BYX (Y)
0.0763∗∗∗ (0.014) Y Y

774,033
0.0085∗∗∗ 192.6

0.0669∗∗∗ (0.013) Y Y 0.0097∗∗∗ 139.5

BX (B)
0.1894∗∗∗ (0.052) Y Y

684,579
0.0056∗∗∗ 117.8

0.1671∗∗∗ (0.047) Y Y 0.0064∗∗∗ 74.6

National (C)
−0.0925 (0.100) Y Y

680,021
0.0050∗∗∗ 100.0

−0.0816 (0.089) Y Y 0.0057∗∗∗ 62.5

PSX (X)
0.3033∗∗ (0.121) Y Y

613,467
0.0045∗∗∗ 69.7

0.2744∗∗ (0.108) Y Y 0.0050∗∗∗ 50.1

Chicago (M)
−0.0004 (0.029) Y Y

299,690
0.0038∗∗∗ 32.6

−0.0005 (0.030) Y Y 0.0037∗∗∗ 24.3

AMEX (A)
0.0869∗∗∗ (0.025) Y Y

571,535
0.0058∗∗∗ 83.1

0.0804∗∗∗ (0.025) Y Y 0.0062∗∗∗ 51.9
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Table 4. Robustness Tests
This table summarizes the robustness tests that we conduct. We address several concerns with regard to the validity of our main
results by conducting various robustness tests. We illustrate the details of how we address them and the results are reported in the
tables in Appendix A.

Concerns Details Tables

Alternative Fragmentation Measures Inverse of HHI index used by Gresse (2017) and Lausen et al. (2021) Table A.6

Alternative Price Impact Measures
Price impact based on Hagströmer (2021) estimator Table A.7

Price impact based on the 15-seconds interval after a trade Table A.8

Heterogeneous Effects across Stocks
Sub-sample analysis based on the listing exchange Table A.9

Small stocks versus large stocks Table A.10

Reverse Causality & Endogenous Venue Choice
Observations from October 15th to October 29th, 2020 for 935 stocks

Table A.11
traded on MEMX on the first day when MEMX is introduced

Order Routing & NMS Order Protection Rule Price impact based on ISO trades only Table A.12

External Validity The introduction of MIAX Pearl Equities Exchange (MIAX) Table A.13
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Table 5. Placebo tests.
This table reports the placebo tests of the results in our main table, Table 4.
We construct ten random indicators which we use as artificial indicators if the
stock i is traded on MEMX at day t. We denote them as ˜OnPLACEBOi,t.
The construction of the placebo indicators is discussed in detail in Section 4.2.
Specifically, we run the following two-stage least (2SLS) regression using the

random generated variable ∆ ˜OnPLACEBOi,t in replace of the ∆OnMEMXi,t

in the first-stage:

First-stage: ∆Frag∗i,t = ∆λt + δ∆ ˜OnPLACEBOi,t +∆X
′
itΦ +∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

We run ten 2SLS regressions of market fragmentation on price impact using ten
different generated random variables of OnPLACEBOi,t. We classify the esti-
mated coefficients µ in the second-stage regression into four categories–positively
not significant at 10% level (+), positively significant at 10% level (+∗), nega-
tively not significant at 10% level (−) and negatively significant at 10% level (−∗)

Dependent: Independent:

∆PIψi,t
̂∆Fragtradei,t

̂∆Fragvolumei,t

Number of coefficients µ are:
+ +∗ − −∗ + +∗ − −∗

NBBO 8 0 2 0 8 0 2 0
NASDAQ (Q+T) 8 0 2 0 10 0 0 0
ARCA (P) 4 0 6 0 4 0 6 0
NYSE (N) 5 0 5 0 3 0 7 0
BZX (Z) 7 0 3 0 6 0 4 0
EDGX (K) 5 0 5 0 6 0 4 0
IEX (V) 5 0 5 0 7 0 3 0
EDGA (J) 4 0 6 0 4 0 6 0
BYX (Y) 6 0 4 0 5 0 5 0
BX (B) 6 0 4 0 5 0 5 0
National (C) 6 0 4 0 5 0 5 0
PSX (X) 2 0 8 0 2 0 8 0
Chicago (M) 3 0 7 0 5 0 5 0
AMEX (A) 2 0 8 0 2 0 8 0
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Table 6. The effects of order flow shifting to MEMX on market depth.
This table reports the effects on market depth across existing lit exchanges due to order flow shifting to MEMX
around the launch of MEMX. For each lit exchange ψ with a specific estimation window, we estimate the
following regressions:

lnBIDDepthψi,t = αi + λt + πORDERV OLMEMX
i,t +X

′
itΓ + ϵi,t

lnASKDepthψi,t = αi + λt +ΠORDERV OLMEMX
i,t +X

′
itΓ + ϵi,t

Where lnBIDDepthψi,t (lnASKDepthψi,t) is the natural logarithm of time-weighted market depth for the best

bid (ask) prices for stock i at trading day t. ORDERV OLMEMX
i,t is the total volume (in million) for all orders

submitted to MEMX for tock i at trading day t. X
′
it are controls which comprise of V olatilityi,t, V olumei,t,

Marketcapi,t and Pricei,t. αi is the stock fixed effect and λt is the day fixed effect. We select the 10 days,
20 days and 60 days estimation windows around October 29, 2020, which is the official day that all stocks are
allowed to be traded on MEMX. We denote them as (−10, +9), (−20, +19) and (−60, +59). Each cell reports
the coefficient of the regression of the log of market depth at each lit exchange ψ on order volume for MEMX.
Standard errors clustered at both stock and day levels are reported in parentheses. *, **, *** indicates statistical
significance at the 10%, 5%, 1% level, respectively. We report the average of the number of observations (Average
N) and the average of R-squared for the regressions in the same estimation windows.

Estimation Windows

Exchange: ψ (−10, +9) (−20, +19) (−60, +59)
π (Bid) Π (Ask) π (Bid) Π (Ask) π (Bid) Π (Ask)

NASDAQ (Q+T)
−0.0120∗∗∗ −0.0134∗∗∗ −0.0190∗∗∗ −0.0201∗∗∗ −0.0317∗∗∗ −0.0313∗∗∗

(0.0029) (0.0022) (0.0039) (0.0035) (0.0084) (0.0114)

ARCA (P)
−0.0122∗∗∗ −0.0080∗∗∗ −0.0175∗∗∗ −0.0128∗∗∗ −0.0202∗∗∗ −0.0145∗∗

(0.0019) (0.0012) (0.0031) (0.0026) (0.0040) (0.0072)

NYSE (N)
−0.0102∗∗∗ −0.0071∗∗∗ −0.0116∗∗∗ −0.0101∗∗∗ −0.0343∗∗∗ −0.0292∗∗∗

(0.0021) (0.0017) (0.0029) (0.0029) (0.0081) (0.0111)

BZX (Z)
−0.0101∗∗∗ −0.0076∗∗∗ −0.0116∗∗∗ −0.0087∗∗∗ −0.0135∗∗∗ −0.0073∗∗

(0.0023) (0.0019) (0.0023) (0.0020) (0.0025) (0.0029)

EDGX (K)
−0.0108∗∗∗ −0.0046∗∗ −0.0138∗∗∗ −0.0074∗∗∗ −0.0187∗∗∗ −0.0082
(0.0026) (0.0016) (0.0022) (0.0023) (0.0027) (0.0062)

IEX (V)
−0.0128∗∗∗ −0.0046 −0.0155∗∗∗ −0.0091∗∗ 0.0255∗ 0.0304∗∗∗

(0.0020) (0.0049) (0.0025) (0.0043) (0.0131) (0.0109)

EDGA (J)
−0.0052∗∗ −0.0042∗ −0.0117∗∗∗ −0.0100∗∗∗ −0.0159∗∗∗ −0.0128∗∗∗

(0.0021) (0.0023) (0.0034) (0.0030) (0.0022) (0.0036)

BYX (Y)
−0.0043 −0.0071∗ −0.0052∗ −0.0061∗∗ −0.0074∗∗∗ −0.0045∗∗

(0.0032) (0.0038) (0.0028) (0.0029) (0.0026) (0.0021)

BX (B)
−0.0043∗ −0.0037∗∗ −0.0070∗∗∗ −0.0047∗∗ −0.0102∗∗∗ −0.0069∗∗∗

(0.0021) (0.0014) (0.0021) (0.0021) (0.0023) (0.0026)

National (C)
−0.0101∗∗∗ −0.0013 −0.0103∗∗∗ −0.0043 −0.0132∗∗∗ −0.0081∗

(0.0022) (0.0012) (0.0022) (0.0029) (0.0022) (0.0048)

PSX (X)
−0.0109∗∗∗ −0.0017 −0.0080∗∗∗ −0.0036 −0.0073∗∗ −0.0013
(0.0024) (0.0029) (0.0028) (0.0034) (0.0029) (0.0049)

Chicago (M)
−0.0153 −0.0044 −0.0118 −0.0086 −0.0352∗∗∗ −0.0288∗∗∗

(0.0111) (0.0092) (0.0073) (0.0066) (0.0091) (0.0079)

AMEX (A)
−0.0011 −0.0066∗∗ −0.0057∗ −0.0079∗∗ −0.0065∗∗∗ −0.0055
(0.0018) (0.0024) (0.0033) (0.0032) (0.0021) (0.0035)

Average N 60,114 60,114 120,758 120,758 364,296 364,296
Average R-Squared 75.2% 76.2% 74.0% 74.4% 66.0% 60.9%
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Table 7. Changes in order aggressiveness around the introduction of MEMX.
This table presents the changes in order aggressiveness for stocks trading on NASDAQ stock exchange around the launch of MEMX. For each stock i at trading day t, we use
NASDAQ TotalView-ITCH data to classify all the orders entered in the NASDAQ trading system into eight categories based on their aggressiveness. We follow the approach
used by Biais et al. (1995) and classify orders that result in inside BBO trades, large trades (marketable orders walk the LOB in NASDAQ), small trades (orders executed
at BBO but with trade size smaller than the depth at BBO), and improvement in BBO (either order improving the BBO price or improving the BBO depth) into aggressive
orders. We also classify orders that result in addition in LOB, revision in LOB, cancellation in LOB, and deletion in LOB into unaggressive orders. For each stock-day
observation, the variables are in percentage and their summary statistics are reported in Appendix B, Table B.1. We select the sample with trading days t between Edi − 20

and Edi + 19 in this table and report a different estimation window in Appendix B, Table B.2 and a falsified estimation window in Appendix B, Table B.3. We report the
results for the buy side and sell side separately in Panel A and Panel B. We run the following regression for each order aggressiveness type:

%Order∗i,t = αi + λt + ω1(t >= Edi ) +X
′
itΓ + ϵi,t

Where %Order∗i,t represents the percentage of orders in that category, for instance, the percentage of orders that result in large trades. Edi is the calendar day that when

stock i is first traded on MEMX. 1 represents the indicator function. X
′
it are controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. *, **, ***

indicates statistical significance at the 10%, 5%, 1% level, respectively. Standard errors clustered at both stock and day levels are reported in parentheses. N denotes the
number of observations.

Panel A: Buy Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω 0.0039∗∗∗ 0.1478∗∗∗ 0.1355∗∗∗ 0.6694∗∗∗ −0.6230∗∗∗ −0.1633 0.0088 −0.2111∗∗

(0.0015) (0.0259) (0.0243) (0.1559) (0.1520) (0.1670) (0.0177) (0.0891)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 64,558 89,484 130,564 135,738 136,192 136,017 64,458 136,190
R-Squared 35.7% 46.2% 25.1% 65.0% 58.6% 67.4% 43.6% 57.3%

Panel B: Sell Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω 0.0055∗∗∗ 0.1294∗∗∗ 0.1021∗∗∗ 0.6580∗∗∗ −0.5857∗∗∗ −0.1395 −0.0099 −0.2020∗∗

(0.0018) (0.0238) (0.0193) (0.1379) (0.1346) (0.1752) (0.0233) (0.0880)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 64,794 93,242 131,417 135,737 136,192 136,056 67,476 136,190
R-Squared 37.2% 48.5% 22.0% 65.5% 59.8% 73.8% 36.6% 64.4%
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Table 8. Changes in orderbook slope around the introduction of MEMX.
This table presents the changes in order book slopes for stocks trading on the NASDAQ stock
exchange around the launch of MEMX. For each stock i at trading day t, we use NASDAQ
TotalView-ITCH data to reconstruct the limit order book and calculate the order book slopes
for the ask side as well as the bid side following Equation (10) and Equation (12) based on Næs
and Skjeltorp (2006) and Kalay et al. (2004), respectively. We run the following four regressions
for two different estimation windows:

SLOPEBIDNS
i,t = αi + λt + ρ1(t >= Ẽdi ) +X

′

itΓ + ϵi,t
SLOPEBIDKalay

i,t = αi + λt + ρ1(t >= Ẽdi ) +X
′

itΓ + ϵi,t
SLOPEASKNS

i,t = αi + λt + ρ1(t >= Ẽdi ) +X
′

itΓ + ϵi,t
SLOPEASKKalay

i,t = αi + λt + ρ1(t >= Ẽdi ) +X
′

itΓ + ϵi,t
Where Ẽdi represents the first day that the stock i is quoted on MEMX. 1 represents the

indicator function. X
′

it are controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t
and Pricei,t. *, **, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.
Standard errors clustered at both stock and day levels are reported in parentheses. N denotes
the number of observations. All the dependent variables are winsorized at 1% and 99% to
eliminate the outliers.

Bid Side (SLOPEBID∗
i,t) Ask Side (SLOPEASK∗

i,t)
NS Kalay NS Kalay

Ẽdi − 40 < t < Ẽdi + 39

ρ 6011.0∗∗∗ 1.331∗∗∗ −5584.5∗∗∗ −1.532∗∗∗

(1866.0) (0.2692) (1490.8) (0.2545)
Controls Y Y Y Y
Day FE Y Y Y Y
Stock FE Y Y Y Y

N 233,320 233,320 233,320 233,320
R-Squared 83.5% 88.9% 85.7% 89.3%

Ẽdi − 20 < t < Ẽdi + 19

ρ 3349.8∗∗ 0.5732∗∗ −3619.7∗∗ −0.7241∗∗∗

(1679.3) (0.2553) (1384.9) (0.2270)
Controls Y Y Y Y
Day FE Y Y Y Y
Stock FE Y Y Y Y

N 133,961 133,961 133,961 133,961
R-Squared 83.4% 88.7% 86.0% 89.1%
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Table 9. Liquidity supply and demand dynamics around the launch of MEMX.
This table presents the changes in liquidity supply and the changes in liquidity demand across primary lit exchanges
around the launch of MEMX. We use market depth at best bid prices, BIDDepthψi,t, as the proxy for liquidity

supply. We use trade sizes,TradeSizeψi,t, and Intermarket Sweep Orders (ISO) trade sizes, ISOTradeSizeψi,t as the
proxy for liquidity demand. We discuss the proxies in detail in Section 4.3. We select the 20 days and the 60 days
estimation windows around October 29, 2020, which is the official day that all stocks are allowed to be traded on
MEMX. We denote them as (−20, +19) and (−60, +59). We report the averages of market depth at best bid prices,

BIDDepthψi,t, trade sizes, TradeSizeψi,t, and ISO trade sizes, ISOTradeSizeψi,t for PRE (days before October 29,
2020), POST (after October 29, 2020), DIFF% (the differences in percentage between POST and PRE), and DIFF
(differences between POST and PRE), respectively. Standard errors clustered at both stock and day levels are
reported in parentheses. *, **, *** indicates statistical significance at the 10%, 5%, 1% level for two sample t-test,
respectively.

Liquidity-supplying Side: Liquidity-demanding Side:
Market Depth at Bid Trade Size ISO Trade Size

Exchange: ψ (−20, +19) (−60, +59) (−20, +19) (−60, +59) (−20, +19) (−60, +59)

NASDAQ (Q+T)

PRE 726.56 760.69 102.23 103.22 104.85 106.54
POST 658.75 630.14 102.13 101.65 99.98 97.43
DIFF% −9.33% −17.2% −0.10% −1.52% −4.65% −8.55%
DIFF −67.80∗∗∗ −130.55∗∗∗ −0.107 −1.569∗∗∗ −4.872∗∗∗ −9.113∗∗∗

ARCA (P)

PRE 501.79 526.53 97.36 97.45 103.01 104.43
POST 475.95 469.92 99.42 95.90 103.18 98.61
DIFF% −5.15% −10.8% 2.11% −1.60% 0.17% −5.62%
DIFF −25.84∗∗ −56.61∗∗∗ 2.055∗∗ −1.556∗∗∗ 0.172 −5.827∗∗∗

NYSE (N)

PRE 560.24 519.08 115.62 119.23 122.05 120.57
POST 511.68 478.45 121.73 120.48 116.07 116.64
DIFF% −8.67% −7.83% 5.28% 1.05% −4.90% −3.26%
DIFF −48.56∗∗∗ −40.62∗∗∗ 6.109 1.255 −5.979∗∗∗ −3.93∗∗∗

BZX (Z)

PRE 338.25 337.95 77.04 77.92 82.53 83.50
POST 330.36 326.70 77.06 77.61 80.69 80.19
DIFF% −2.33% −3.33% 0.02% −0.40% −2.23% −3.96%
DIFF −7.894 −11.25∗∗∗ 0.015 −0.313 −1.843∗∗∗ −3.305∗∗∗

EDGX (K)

PRE 629.79 649.50 110.22 109.57 114.04 114.81
POST 602.42 634.45 112.09 112.05 113.74 112.80
DIFF% −4.35% −2.32% 1.70% 2.27% −0.26% −1.75%
DIFF −27.37∗∗∗ −15.06∗∗∗ 1.871∗∗ 2.484∗∗∗ −0.299 −2.007∗∗∗
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Appendix A

Table A.1. The description of exchange and its code in DTAQ data.
This table illustrates our abbreviations of lit exchanges (exchange), the partici-
pant id in DTAQ (DTAQ Code), and the full names of the exchange (Description).
Sources are from the NYSE DTAQ client manual.

Exchange DTAQ Code Description

NASDAQ Q NASDAQ Stock Exchange, LLC (in Tape C securities)
NASDAQ T NASDAQ Stock Market, LLC (in Tape A, B securities)
ARCA P NYSE Arca, Inc
NYSE N New York Stock Exchange, LLC
BZX Z Cboe BZX Exchange, Inc
EDGX K Cboe EDGX Exchange
IEX V The Investors’ Exchange, LLC

EDGA J Cboe EDGA Exchange
BYX Y Cboe BYX Exchange
BX B NASDAQ OMX BX, Inc

National C NYSE National, Inc
PSX X NASDAQ OMX PSX, Inc

Chicago M Chicago Stock Exchange, Inc.
AMEX A NYSE American, LLC
MEMX U Members Exchange
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Table A.2. The number of stocks traded on MEMX after they are first
traded on MEMX.
This table reports the number of stocks traded on MEMX after
the event days, Ed

i –the first calendar days that stocks are traded
on MEMX. We report the number of stocks traded on MEMX
(OnMEMX = 1) and the number of stocks not traded on MEMX
(OnMEMX = 0) for the first 20 calendar days after stocks is first
traded on MEMX.

t = OnMEMX = 0 OnMEMX = 1 Total Stocks

Ed
i 0 3,408 3,408

Ed
i + 1 1,576 1,830 3,406

Ed
i + 2 1,684 1,720 3,404

Ed
i + 3 1,654 1,753 3,407

Ed
i + 4 1,577 1,828 3,405

Ed
i + 5 1,389 2,018 3,407

Ed
i + 6 1,305 2,101 3,406

Ed
i + 7 1,279 2,128 3,407

Ed
i + 8 1,110 2,298 3,408

Ed
i + 9 973 2,435 3,408

Ed
i + 10 964 2,439 3,403

Ed
i + 11 925 2,481 3,406

Ed
i + 12 834 2,573 3,407

Ed
i + 13 779 2,625 3,404

Ed
i + 14 686 2,722 3,408

Ed
i + 15 667 2,738 3,405

Ed
i + 16 632 2,773 3,405

Ed
i + 17 540 2,864 3,404

Ed
i + 18 563 2,841 3,404

Ed
i + 19 542 2,861 3,403

Ed
i + 20 526 2,880 3,406
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Table A.3. Paired t-test for the change of cross-sectional market fragmen-
tation around the introduction of MEMX.
This table reports the cross-sectional mean of the market fragmentation,
Fragī,t, and the mean of the first-difference of the market fragmentation,
∆Fragī,t, around the introduction of MEMX. Ed

i is the calendar day that
when stock i is first traded on MEMX. The number of stocks (N) in the
sample is reported. The number in the bracket indicates the total number of
stocks with positive changes in market fragmentation. *, **, *** indicates
statistical significance at the 5%, 1%, 0.1% level, respectively.

t = Fragtradeī,t Fragtradeī,t−1 ∆Fragtradeī,t N

Ed
i 0.773 0.761 0.011∗∗∗ 3,406

(0.002) (0.002) (0.002) [1,950]

Ed + 3 0.763 0.765 −0.002 3,403
(0.002) (0.002) (0.001) [1,667]

Ed − 3 0.761 0.760 0.001 3,402
(0.002) (0.002) (0.002) [1,741]

Ed + 7 0.764 0.762 0.002 3,405
(0.001) (0.002) (0.001) [1,691]

Ed − 7 0.758 0.762 −0.004∗ 3,403
(0.002) (0.002) (0.001) [1,671]

Ed + 20 0.769 0.767 0.002 3,400
(0.001) (0.002) (0.001) [1,709]

Ed − 20 0.753 0.755 −0.002 3,399
(0.002) (0.002) (0.001) [1,635]
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Table A.4. Exogenous change in market fragmentation.
This table shows the magnitude of an exogenous change in market frag-
mentation when stocks are first traded on MEMX. Our results are based on
both TWFE estimates and Borusyak et al. (2021) (BSJ) estimates. Column
(1) and Column (2) report the estimated coefficients based on the following
regressions: Frag∗i,t = αi+λt+β0D

0
i,t+X

′
itΓ+ ϵit. Where D0

i,t is a indicator

variable if the stock i is first traded on MEMX, and X
′
it are controls which

comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. Column (3)
and Column (4) report three-step imputation estimates of Borusyak et al.
(2021). Standard errors are reported in parentheses. For TWFE estimates
the standard errors are clustered at both stock and day levels. For BJS
estimates the asymptotic standard errors are clustered at the stock level. N
denotes the number of observations in regressions. *** indicates statistical
significance at the 1% level.

TWFE BJS

(1) (2) (3) (4)
Fragtradei,t Fragvolumei,t Fragtradei,t Fragvolumei,t

Exogenous Change (β0) 0.0125∗∗∗ 0.0159∗∗∗ 0.0103∗∗∗ 0.0135∗∗∗

(0.0023) (0.0028) (0.0015) (0.0018)

Controls Y Y Y Y

Stock FE Y Y Y Y

Day FE Y Y Y Y

N 854,858 854,858 381,897 381,897
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Table A.5. Validity of the instrumental variables: reverse causality and endogenous venue choice.
This table reports the correlations between exchange-based price impact and whether stocks are traded on MEMX
(OnMEMXi,t) after the introduction of MEMX on October 29, 2020. We select the stocks which are not always traded
on MEMX after the introduction of MEMX. For each stock i, we calculate the Pearson Correlation Coefficients between each
exchange-based price impact (PIψ) and whether the stock is traded on MEMX (OnMEMX) over our sample period from
October 29, 2020, to May 28, 2021. We report the total number of stocks (Total N stocks) which are either positively (+) or
negatively (−) correlated. We also report the total number of stocks that the p-values of the null hypotheses–the two variables
are independent–are larger than 0.01 or smaller than 0.01, respectively. The number in brackets represents the number of stocks.

Null Hypotheses: Two variables are independent
ψ =: Corr(PIψ, OnMEMX) Total N stocks p-values > 0.01 (N stocks) p-values < 0.01 (N stocks)

NASDAQ (Q+T)
+ [1,055] [1,027] [28]
− [1,728] [1,515] [213]

ARCA (P)
+ [1,090] [1,059] [31]
− [1,681] [1,467] [214]

NYSE (N)
+ [996] [969] [27]
− [1,754] [1,513] [241]

BZX (Z)
+ [1100] [1066] [34]
− [1,679] [1,511] [168]

EDGX (K)
+ [990] [958] [32]
− [1,792] [1,557] [235]

IEX (V)
+ [1,599] [1,572] [27]
− [1,066] [938] [128]

EDGA (J)
+ [1,321] [1,299] [22]
− [1,422] [1,266] [156]

BYX (Y)
+ [1,079] [1,061] [18]
− [1,687] [1,480] [207]

BX (B)
+ [1,215] [1,196] [19]
− [1,383] [1,211] [172]

National (C)
+ [1,387] [1,284] [103]
− [1,275] [999] [258]

PSX (X)
+ [1,249] [1,236] [13]
− [1,350] [1,201] [149]

Chicago (M)
+ [1,386] [1,378] [8]
− [956] [845] [111]

AMEX (A)
+ [1,289] [1,281] [8]
− [1,286] [1,199] [87]
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Table A.6. The effect of market fragmentation on price impact based on alternative fragmentation measures.
This table reports the effects of market fragmentation on price impact using the alternative measures of market fragmen-
tation proposed by Gresse (2017) and Lausen et al. (2021)—the reciprocal of the HHI, FragtradeInvi,t and FragvolumeInvi,t .
For each exchange ψ, we run a two-stage least square regression as the following:

First-stage: ∆Frag∗i,t = ∆λt + δ∆OnMEMXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicators if the stock i is traded at MEMX on day t,
̂∆Frag∗i,t is the predicted value from the first-stage regression, and X

′
it are controls which comprise of V olatilityi,t,

V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. N denotes the number of observations. Standard
errors clustered at both stock and day levels are reported in parentheses. We report the second-stage estimates (µ),
first-stage estimates (δ), and weak IV test statistics. Kleibergen and Paap (2006) (K-P) rk F statistics are reported. *,
**, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.

Second-stage First-stage

Dependent: Independent: Estimates Tests

∆PIψi,t
̂∆FragtradeInvi,t

̂∆FragvolumeInvi,t Controls Day FE N δ K-P

NBBO
0.0023∗∗∗ (0.0003) Y Y

834,156
0.1570∗∗∗ 328.5

0.0031∗∗∗ (0.0004) Y Y 0.1185∗∗∗ 236.9

NASDAQ (Q+T)
0.0035∗∗∗ (0.0007) Y Y

824,218
0.1525∗∗∗ 308.0

0.0047∗∗∗ (0.0009) Y Y 0.1141∗∗∗ 220.4

ARCA (P)
0.0042∗∗∗ (0.0006) Y Y

805,977
0.1408∗∗∗ 298.3

0.0055∗∗∗ (0.0007) Y Y 0.1066∗∗∗ 207.2

NYSE (N)
0.0047∗∗∗ (0.0009) Y Y

714,984
0.1092∗∗∗ 171.1

0.0062∗∗∗ (0.0013) Y Y 0.0819∗∗∗ 130.6

BZX (Z)
0.0055∗∗∗ (0.0007) Y Y

798,129
0.1305∗∗∗ 275.5

0.0074∗∗∗ (0.0009) Y Y 0.0977∗∗∗ 191.3

EDGX (K)
0.0047∗∗∗ (0.0006) Y Y

808,862
0.1487∗∗∗ 305.6

0.0063∗∗∗ (0.0008) Y Y 0.1118∗∗∗ 212.5

IEX (V)
0.0035∗∗ (0.0016) Y Y

644,892
0.1013∗∗∗ 160.7

0.0050∗∗ (0.0023) Y Y 0.0719∗∗∗ 95.5

EDGA (J)
0.0052∗∗∗ (0.0011) Y Y

756,034
0.1243∗∗∗ 236.9

0.0071∗∗∗ (0.0015) Y Y 0.0909∗∗∗ 150.7

BYX (Y)
0.0053∗∗∗ (0.0010) Y Y

774,033
0.1224∗∗∗ 246.7

0.0070∗∗∗ (0.0013) Y Y 0.0931∗∗∗ 164.3

BX (B)
0.0109∗∗∗ (0.0030) Y Y

684,579
0.0973∗∗∗ 126.8

0.0150∗∗∗ (0.0042) Y Y 0.0709∗∗∗ 87.2

National (C)
−0.0053 (0.0057) Y Y

680,021
0.0877∗∗∗ 113.6

−0.0073 (0.0080) Y Y 0.0637∗∗∗ 67.7

PSX (X)
0.0165∗∗ (0.0066) Y Y

613,467
0.0833∗∗∗ 75.3

0.0231∗∗ (0.0092) Y Y 0.0595∗∗∗ 56.0

Chicago (M)
−0.0000 (0.0017) Y Y

299,690
0.0657∗∗∗ 35.9

−0.0000 (0.0023) Y Y 0.0484∗∗∗ 25.0

AMEX (A)
0.0044∗∗∗ (0.0013) Y Y

571,535
0.1152∗∗∗ 101.3

0.0063∗∗∗ (0.0019) Y Y 0.0806∗∗∗ 58.5
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Table A.7. The effect of market fragmentation on price impact based on alternative price impact measures.
This table reports the effects of market fragmentation on price impact using the alternative measures of price impact
based on the weighted midpoint prices proposed by (Hagströmer, 2021). For each exchange ψ, we run a two-stage least
square regression as the following:

First-stage: ∆Frag∗i,t = ∆λt + δ∆OnMEMXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆P̃ Iψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicators if the stock i is traded at MEMX on day t,
̂∆Frag∗i,t is the predicted value from the first-stage regression, and X

′
it are controls which comprise of V olatilityi,t,

V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. N denotes the number of observations. Standard
errors clustered at both stock and day levels are reported in parentheses. We report the second-stage estimates (µ),
first-stage estimates (δ), and weak IV test statistics. Kleibergen and Paap (2006) (K-P) rk F statistics are reported. *,
**, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.

Second-stage First-stage

Dependent: Independent: Estimates Tests

∆
˜

PIψi,t
̂∆Fragtradei,t

̂∆Fragvolumei,t Controls Day FE N δ K-P

NASDAQ (Q+T)
0.0455∗∗∗ (0.0089) Y Y

824,218
0.0135∗∗∗ 195.3

0.0428∗∗∗ (0.0085) Y Y 0.0143∗∗∗ 164.2

ARCA (P)
0.0527∗∗∗ (0.0090) Y Y

805,977
0.0106∗∗∗ 225.2

0.0467∗∗∗ (0.0078) Y Y 0.0120∗∗∗ 170.4

NYSE (N)
0.0801∗∗∗ (0.0169) Y Y

714,984
0.0066∗∗∗ 152.6

0.0689∗∗∗ (0.0144) Y Y 0.0077∗∗∗ 111.9

BZX (Z)
0.0898∗∗∗ (0.0101) Y Y

798,129
0.0094∗∗∗ 207.2

0.0805∗∗∗ (0.0090) Y Y 0.0104∗∗∗ 158.4

EDGX (K)
0.0792∗∗∗ (0.0103) Y Y

808,862
0.0119∗∗∗ 213.1

0.0718∗∗∗ (0.0094) Y Y 0.0132∗∗∗ 169.0

IEX (V)
0.0401 (0.0363) Y Y

644,892
0.0063∗∗∗ 140.8

0.0374 (0.0034) Y Y 0.0068∗∗∗ 75.4

EDGA (J)
0.0861∗∗∗ (0.0173) Y Y

756,034
0.0082∗∗∗ 204.1

0.0782∗∗∗ (0.0163) Y Y 0.0090∗∗∗ 125.3

BYX (Y)
0.0802∗∗∗ (0.0159) Y Y

774,033
0.0085∗∗∗ 192.6

0.0703∗∗∗ (0.0142) Y Y 0.0097∗∗∗ 139.5

BX (B)
0.1509∗∗∗ (0.0422) Y Y

684,579
0.0056∗∗∗ 117.8

0.1331∗∗∗ (0.0386) Y Y 0.0064∗∗∗ 74.6

National (C)
−0.0168 (0.0783) Y Y

680,021
0.0050∗∗∗ 100.0

−0.0148 (0.0692) Y Y 0.0057∗∗∗ 62.5

PSX (X)
0.2547∗∗ (0.1151) Y Y

613,467
0.0045∗∗∗ 69.7

0.2305∗∗ (0.1027) Y Y 0.0050∗∗∗ 50.1

Chicago (M)
0.0051 (0.0293) Y Y

299,690
0.0038∗∗∗ 32.6

0.0052 (0.0301) Y Y 0.0037∗∗∗ 24.3

AMEX (A)
0.0974∗∗∗ (0.0278) Y Y

571,535
0.0058∗∗∗ 83.1

0.0901∗∗∗ (0.0265) Y Y 0.0063∗∗∗ 51.9
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Table A.8. The effect of market fragmentation on price impact based on the 15-seconds-based price impact.
This table reports the effects of market fragmentation on price impact using the alternative measures of price impact–the
15-seconds-based price impact PI15. For each exchange ψ, we run a two-stage least square regression as the following:

First-stage: ∆Frag∗i,t = ∆λt + δ∆OnMEMXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆PI15ψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicators if the stock i is traded at MEMX on day t,
̂∆Frag∗i,t is the predicted value from the first-stage regression, and X

′
it are controls which comprise of V olatilityi,t,

V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. N denotes the number of observations. Standard
errors clustered at both stock and day levels are reported in parentheses. We report the second-stage estimates (µ),
first-stage estimates (δ) and weak IV test statistics. Kleibergen and Paap (2006) (K-P) rk F statistics is reported. *,
**, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.

Second-stage First-stage

Dependent: Independent: Estimates Tests

∆PI15ψi,t
̂∆Fragtradei,t

̂∆Fragvolumei,t Controls Day FE N δ K-P

NASDAQ (Q+T)
0.0238∗∗∗ (0.0055) Y Y

824,218
0.0135∗∗∗ 195.3

0.0224∗∗∗ (0.0053) Y Y 0.0143∗∗∗ 164.2

ARCA (P)
0.0341∗∗∗ (0.0054) Y Y

805,977
0.0106∗∗∗ 225.2

0.0302∗∗∗ (0.0047) Y Y 0.0120∗∗∗ 170.4

NYSE (N)
0.0335∗∗∗ (0.0103) Y Y

714,986
0.0066∗∗∗ 152.6

0.0288∗∗∗ (0.0089) Y Y 0.0077∗∗∗ 111.9

BZX (Z)
0.0463∗∗∗ (0.0053) Y Y

798,129
0.0094∗∗∗ 207.2

0.0415∗∗∗ (0.0049) Y Y 0.0104∗∗∗ 158.4

EDGX (K)
0.0313∗∗∗ (0.0047) Y Y

808,862
0.0119∗∗∗ 213.1

0.0283∗∗∗ (0.0042) Y Y 0.0132∗∗∗ 169.0

IEX (V)
0.0191 (0.0210) Y Y

644,892
0.0063∗∗∗ 140.8

0.0178 (0.00198) Y Y 0.0068∗∗∗ 75.4

EDGA (J)
0.0534∗∗∗ (0.0126) Y Y

756,034
0.0485∗∗∗ 204.1

0.0485∗∗∗ (0.0120) Y Y 0.0090∗∗∗ 125.3

BYX (Y)
0.0484∗∗∗ (0.0097) Y Y

774,033
0.0085∗∗∗ 192.6

0.0424∗∗∗ (0.0087) Y Y 0.0097∗∗∗ 139.5

BX (B)
0.0825∗∗ (0.0342) Y Y

684,579
0.0056∗∗∗ 117.8

0.0728∗∗ (0.0304) Y Y 0.0064∗∗∗ 74.6

National (C)
−0.0160 (0.0787) Y Y

680,021
0.0050∗∗∗ 100.0

−0.0141 (0.0696) Y Y 0.0057∗∗∗ 62.5

PSX (X)
0.2582∗∗∗ (0.0887) Y Y

613,467
0.0045∗∗∗ 69.7

0.2336∗∗∗ (0.0772) Y Y 0.0050∗∗∗ 50.1

Chicago (M)
−0.0064 (0.0141) Y Y

299,690
0.0038∗∗∗ 32.6

−0.0066 (0.0148) Y Y 0.0037∗∗∗ 24.3

AMEX (A)
0.0476∗∗ (0.0211) Y Y

571,538
0.0058∗∗∗ 82.9

0.0441∗∗ (0.0200) Y Y 0.0063∗∗∗ 51.9
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Table A.9. The effects of market fragmentation on price impact by the listing exchange.
This table reports the effects of market fragmentation on price impact by the listing exchange. We
separate our sample into three subsamples based on the stock’s listing exchange. As in Table 3., for each
exchange ψ we run a two-stage least square regression as the following:

First-stage: ∆Fragtradei,t = ∆λt + δ∆OnMEMXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Fragtradei,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicator if the stock i is traded at MEMX

on day t, ̂∆Frag∗i,t is the predicted value from the first-stage regression, and X
′
it are controls which

comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. We report
the second-stage estimates (µ), and their standard errors (in parentheses) clustered at both stock and
day levels. N denotes the number of observations. N Stocks [in square bracket] denotes the number
of stocks. The coefficients in bold denotes the exchange of the listing exchange. *, **, *** indicates
statistical significance at the 10%, 5%, 1% level, respectively.

(1) (2) (3)

NYSE-listed NASDAQ-listed AMEX-listed
Exchange (ψ): µ (s.e.) N [N Stocks] µ (s.e.) N [N Stocks] µ (s.e.) N [N Stocks]

NBBO
0.0166∗ 289,278 0.0228∗∗∗ 512,836 0.0749∗∗∗ 32,042
(0.0092) [1,176] (0.0037) [2,100] (0.0152) [132]

NASDAQ (Q+T)
0.0491∗∗∗ 291,998 0.0323∗∗∗ 506,792 0.1296∗∗∗ 25,428
(0.0181) [1,176] (0.0080) [2,100] (0.0346) [131]

ARCA (P)
0.0412∗ 291,325 0.0512∗∗∗ 488,949 0.1143∗∗∗ 25,703
(0.0242) [1,176] (0.0084) [2,100] (0.0271) [131]

NYSE (N)
0.0316∗∗∗ 292,952 0.0851∗∗∗ 407,879 0.2488∗∗ 14,153
(0.0096) [1,176] (0.0197) [2,079] (0.1236) [128]

BZX (Z)
0.0299 290,670 0.0734∗∗∗ 484,158 0.1977∗∗∗ 23,301
(0.0220) [1,176] (0.0101) [2,099] (0.0435) [131]

EDGX (K)
0.0059 291,217 0.0580∗∗∗ 491,954 0.1281∗∗∗ 25,691
(0.0177) [1,176] (0.0077) [2,100] (0.0303) [131]

IEX (V)
0.0773∗∗ 264,169 0.0509 368,564 0.0957 12,159
(0.0315) [1,176] (0.0327) [2,060] (0.1291) [126]

EDGA (J)
0.0402 286,380 0.0758∗∗∗ 450,300 0.1791∗∗ 19,354
(0.0459) [1,174] (0.0166) [2,081] (0.0836) [129]

BYX (Y)
0.0219 289,189 0.0724∗∗∗ 464,658 0.2283∗∗∗ 20,186
(0.0347) [1,176] (0.0148) [2,098] (0.0657) [131]

BX (B)
0.2004∗ 278,791 0.1870∗∗∗ 393,169 0.1670 12,619
(0.1178) [1,170] (0.0587) [1,977] (0.1660) [116]

National (C)
−0.3009 277,936 −0.0494 389,536 −0.0186 12,549
(0.2958) [1,170] (0.1063) [2,019] (0.2595) [121]

PSX (X)
0.1265 261,331 0.3578∗∗∗ 342,234 −0.1460 9,902
(0.3018) [1,165] (0.1299) [1,978] (0.6703) [115]

Chicago (M)
0.0052 142,392 −0.0095 155,148 −0.3688 2,148
(0.0600) [1,149] (0.0295) [1,878] (1.5115) [92]

AMEX (A)
0.1119 248,164 0.0376 296,801 0.1382∗∗∗ 26,570
(0.0680) [1,163] (0.0518) [1,933] (0.0254) [131]

52



Table A.10. The effects of market fragmentation on price impact by the market size quintile.
This table reports the effects of market fragmentation on price impact by the market size quintiles. For each trading day t, we sort the stocks into quintiles and construct quintile dummies for
each stock-day observation following Haslag and Ringgenberg (2021). For each exchange ψ, we run a two-stage least square regression as the following:

First-stage: ∆Fragtradei,t = ∆λt + δ∆OnMEMXi,t +
∑
m ̸=3 ξmQuintilem +

∑
m ̸=3 ϕm∆OnMEMXi,t ×Quintilem +∆X

′
itΦ+∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Fragtradei,t +
∑
m ̸=3 ιm

̂∆Fragtradei,t ×Quintilem +
∑
m ̸=3 ζmQuintilem +∆X

′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMEMXi,t is the indicator if the stock i is traded at MEMX on day t, ̂∆Frag∗i,t is the predicted value from the first-stage regression, and X
′
it

are controls which comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. Quintile is an indicator variable which equals 1 when a firm is in that market
captialization quintile, and zero otherwise, where quintile 5 is the largest firms. We report the second-stage estimates (µ), and their standard errors (in parentheses) clustered at both stock and
day levels. N denotes the number of observations.

∆PINBBOi,t ∆PIQ+T
i,t ∆PIPi,t ∆PINi,t ∆PIZi,t ∆PIKi,t ∆PIVi,t ∆PIJi,t ∆PIYi,t ∆PIBi,t ∆PICi,t ∆PIXi,t ∆PIMi,t ∆PIAi,t

̂∆Fragtradei,t 0.0298∗ 0.0865∗∗ 0.0404∗ 0.0219 0.0430∗∗ 0.0725∗∗ 0.0664∗∗ 0.1306∗∗ 0.0491 0.2407∗ −0.2234 0.8780∗∗ 0.0237 −0.0097

(0.016) (0.043) (0.024) (0.034) (0.020) (0.034) (0.032) (0.060) (0.043) (0.142) (0.271) (0.416) (0.079) (0.039)
̂∆Fragtradei,t ×Quintile1 0.0017 −0.0444 0.0336 0.0917∗∗ 0.0665∗∗∗ −0.0138 0.0107 −0.0413 0.0730 0.0105 0.2479 −0.7141 0.2310 0.1216∗∗

(0.016) (0.045) (0.027) (0.042) (0.025) (0.034) (0.060) (0.061) (0.045) (0.103) (0.305) (0.444) (0.198) (0.058)
̂∆Fragtradei,t ×Quintile2 −0.0176 −0.0575 −0.0146 0.0658 −0.0022 −0.0050 −0.0376 −0.0795 −0.0295 −0.1098 0.0201 −0.6146 0.0052 0.3456∗

(0.017) (0.042) (0.028) (0.043) (0.023) (0.038) (0.047) (0.064) (0.049) (0.179) (0.355) (0.460) (0.104) (0.180)
̂∆Fragtradei,t ×Quintile4 −0.0319∗ −0.0776∗ −0.0336 −0.0155 −0.0145 −0.0474 −0.0222 −0.0933 −0.0179 −0.1556 0.1709 −0.8130 −0.0804 −0.0200

(0.018) (0.045) (0.026) (0.034) (0.020) (0.037) (0.041) (0.060) (0.049) (0.154) (0.280) (0.406) (0.081) (0.056)
̂∆Fragtradei,t ×Quintile5 −0.0283 −0.0767∗ −0.0374 −0.0440 −0.0565∗∗ −0.0943∗∗ −0.0388 −0.0570 −0.0120 −0.1730 0.1959 −0.7729 −0.0838 −0.0069

(0.017) (0.042) (0.026) (0.037) (0.023) (0.039) (0.049) (0.068) (0.046) (0.149) (0.294) (0.443) (0.085) (0.051)∑
m ̸=3Quintilem Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N 834,156 824,218 805,977 714,984 798,129 808,862 644,892 756,034 774,033 684,579 680,021 613,467 299,690 571,535
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Table A.11. The effects of market fragmentation on price impact—addressing reverse causality and endogenous venue choice concerns.
This table reports the effects of market fragmentation on price impact based on a sample of 945 stocks which were traded on MEMX starting from the first day (October 29,
2020) when the MEMX was introduced. The sample period is from October 15, 2020 to October 29, 2020. For each exchange ψ, we run a two-stage least square regression
as the following:

First-stage: Fragtradei,t = αi + λt + δOnMEMXi,t +X
′
itΦ+ ϵit

Second-stage: PIψi,t = αi + λt + µ ̂Fragtradei,t +X
′
itΓ + ϵit

Where OnMEMXi,t is the indicator if the stock i is traded at MEMX on day t, F̂ rag∗i,t is the predicted value from the first-stage regression, and X
′
it are controls which

comprise of V olatilityi,t, V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. In this table, the dependent variables are winsorized at 99% and 1% percentiles.
We report the second-stage estimates (µ), and their standard errors (in parentheses) clustered at stock levels. N denotes the number of observations. We report the
second-stage coefficients estimates, and their standard errors (in parentheses) clustered at both stock level. N denotes the number of observations.

PINBBOi,t PIQ+T
i,t PIPi,t PINi,t PIZi,t PIKi,t PIVi,t PIJi,t PIYi,t PIBi,t PICi,t PIXi,t PIMi,t PIAi,t

̂Fragtradei,t 0.0371∗∗∗ 0.0337∗∗∗ 0.0375∗∗ 0.0501∗∗∗ 0.0632∗∗∗ 0.0440∗∗ 0.1296∗∗ 0.1386∗∗∗ 0.0322 0.0712 0.1000 0.0873 0.1116∗∗ −0.0203

(0.011) (0.013) (0.017) (0.019) (0.017) (0.018) (0.063) (0.035) (0.024) (0.072) (0.098) (0.176) (0.050) (0.036)
Controls Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N 10,187 10,132 10,126 9,977 10,118 10,131 9,661 10,035 10,045 9,751 9,776 9,372 4,263 9,192
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Table A 13. External Validity: The effect of market fragmentation on price impact based on introduction of MIAX
Pearl Equities Exchange (MIAX)
This table reports the effects of market fragmentation on price impact. For each exchange ψ, we run a two-stage least
square regression as the following:

First-stage: ∆Frag∗i,t = ∆λt + δ∆OnMIAXi,t +∆X
′
itΦ+∆ϵit

Second-stage: ∆PIψi,t = ∆λt + µ ̂∆Frag∗i,t +∆X
′
itΓ +∆ϵit

Where ∆ is the first difference operator, OnMIAXi,t is the indicators if the stock i is traded at MIAX on day t,
̂∆Frag∗i,t is the predicted value from the first-stage regression, and X

′
it are controls which comprise of V olatilityi,t,

V olumei,t, Marketcapi,t and Pricei,t. ψ denotes the exchanges. N denotes the number of observations. Standard
errors clustered at both stock and day levels are reported in parentheses. We report the second-stage estimates (µ),
first-stage estimates (δ) and weak IV test statistics. Kleibergen and Paap (2006) (K-P) rk F statistics is reported. *,
**, *** indicates statistical significance at the 10%, 5%, 1% level, respectively.

Second-stage First-stage

Dependent: Independent: Estimates Tests

∆PIψi,t
̂∆Fragtradei,t

̂∆Fragvolumei,t Controls Day FE N δ K-P

NBBO
0.0105 (0.007) Y Y

834,156
0.0036∗∗∗ 149.5

0.0105 (0.007) Y Y 0.0036∗∗∗ 58.8

NASDAQ (Q+T)
0.0073 (0.014) Y Y

824,218
0.0035∗∗∗ 146.2

0.0073 (0.014) Y Y 0.0035∗∗∗ 63.6

ARCA (P)
−0.0125 (0.010) Y Y

805,977
0.0034∗∗∗ 146.6

−0.0123 (0.010) Y Y 0.0034∗∗∗ 67.3

NYSE (N)
0.0261∗ (0.015) Y Y

714,984
0.0032∗∗∗ 134.3

0.0276∗ (0.016) Y Y 0.0030∗∗∗ 62.7

BZX (Z)
0.0217∗∗ (0.009) Y Y

798,129
0.0034∗∗∗ 141.6

0.0224∗∗ (0.010) Y Y 0.0033∗∗∗ 66.3

EDGX (K)
0.0162∗ (0.010) Y Y

808,862
0.0035∗∗∗ 149.1

0.0162∗ (0.010) Y Y 0.0035∗∗∗ 67.2

IEX (V)
0.1407∗∗∗ (0.040) Y Y

644,892
0.0033∗∗∗ 134.1

0.1522∗∗∗ (0.046) Y Y 0.0030∗∗∗ 67.1

EDGA (J)
0.0845∗∗∗ (0.016) Y Y

756,034
0.0034∗∗∗ 142.4

0.0879∗∗∗ (0.019) Y Y 0.0032∗∗∗ 66.7

BYX (Y)
0.0489∗∗∗ (0.013) Y Y

774,033
0.0034∗∗∗ 142.6

0.0507∗∗∗ (0.014) Y Y 0.0032∗∗∗ 67.7

BX (B)
0.1723∗∗∗ (0.050) Y Y

684,579
0.0031∗∗∗ 128.6

0.1691∗∗∗ (0.051) Y Y 0.0032∗∗∗ 72.4

National (C)
0.2807∗∗∗ (0.093) Y Y

680,021
0.0029∗∗∗ 115.0

0.2767∗∗∗ (0.095) Y Y 0.0030∗∗∗ 63.2

PSX (X)
0.0276 (0.093) Y Y

613,467
0.0029∗∗∗ 126.6

0.0276 (0.092) Y Y 0.0029∗∗∗ 65.9

Chicago (M)
0.0614∗ (0.031) Y Y

299,690
0.0026∗∗∗ 63.6

0.0680∗ (0.035) Y Y 0.0023∗∗∗ 29.5

AMEX (A)
0.0826∗ (0.045) Y Y

571,535
0.0025∗∗∗ 101.7

0.0773∗∗∗ (0.042) Y Y 0.0027∗∗∗ 59.8
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Appendix B

Table B.1. Summary statistics for the percentage of orders in different aggressive categories.
This table presents the summary statistics for the percentage of orders in different aggressive cat-
egories. For each stock i at trading day t trading on NASDAQ stock exchange, we use NASDAQ
TotalView-ITCH data to classify all the orders entered in NASDAQ trading system into eight cate-
gories based on their aggressiveness. We follow the approach used by Biais et al. (1995) and classify
orders into which result in inside BBO trades, large trades (marketable orders walk the LOB in NAS-
DAQ), small trades (orders executed at BBO but with trade size smaller than the depth at BBO),
and improvement in BBO (either orders improving the BBO price or improving the BBO depth)
aggressive orders. For unaggressive orders, we classify them into orders that result in addition in
LOB, revision in LOB, cancellation in LOB, and deletion in LOB. We report mean (Mean), standard
deviation (STD), 1 percentile (p1), median (p50), 99 percentiles (p99) and the number of observations
(N) for these different orders categories. The variables are in percentage. We select the sample with
trading days t between Edi − 20 and Edi +19 where the Edi represents the first calendar day that stock
i is traded on MEMX.

%Order∗i,t N Mean STD p1 p50 p99

Aggressive

Buy

Inside BBO Trades 64,764 0.050 0.088 0.002 0.026 0.354
Large Trades 89,552 1.754 1.136 0.239 1.578 5.496
Small Trades 130,582 1.304 1.097 0.102 1.081 5.128
Improvement in BBO 135,762 20.72 7.422 4.732 20.46 38.75

Sell

Inside BBO Trades 64,966 0.0494 0.091 0.002 0.026 0.348
Large Trades 93,292 1.711 1.070 0.245 1.534 5.371
Small Trades 131,437 1.185 1.072 0.111 0.984 4.513
Improvement in BBO 135,753 20.38 7.457 4.395 20.27 38.36

Unaggressive

Buy

Addition in LOB 136,209 24.31 7.157 8.314 24.11 40.63
Revision in LOB 64,631 0.296 0.585 0.007 0.111 2.648
Cancellation in LOB 136,207 42.11 4.163 28.93 42.99 48.03
Deletion in LOB 136,034 9.979 8.252 1.109 7.365 38.23

Sell

Addition in LOB 136,209 24.17 7.089 8.554 23.90 40.37
Revision in LOB 67,641 0.327 0.638 0.007 0.120 2.887
Cancellation in LOB 136,207 41.95 4.481 27.29 43.03 47.98
Deletion in LOB 136,073 10.71 9.120 1.203 7.688 42.14
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Table B.2. Changes in order aggressiveness around the introduction of MEMX (60 days window).
This table presents the changes in order aggressiveness for stocks trading on NASDAQ stock exchange around the launch of MEMX. For each stock i at trading day t, we
use NASDAQ TotalView-ITCH data to classify all the orders entered in NASDAQ trading system into eight categories based on their aggressiveness. We follow the approach
used by Biais et al. (1995) and classify orders that result in inside BBO trades, large trades (marketable orders walk the LOB in NASDAQ), small trades (orders executed at
BBO but with trade size smaller than the depth at BBO), and improvement in BBO (either orders improving the BBO price or improving the BBO depth) into aggressive
orders. We also classify orders that result in addition in LOB, revision in LOB, cancellation in LOB, and deletion in LOB into unaggressive orders. For each stock-day
observation, the variables are in percentage and their summary statistics are reported in Appendix B, Table B.1. We select the sample with trading days t between Edi − 60

and Edi + 59 in this table. We report the results for buy side and sell side separately in Panel A and Panel B. We run the following regression for each order aggressiveness
type:

%Order∗i,t = αi + λt + ω1(t >= Edi ) +X
′
itΓ + ϵi,t

Where %Order∗i,t represents the percentage of orders in that category, for instance, the percentage of orders that result in large trades. Edi is the calendar day that when

stock i is first traded on MEMX. 1 represents the indicator function. *, **, *** indicates statistical significance at the 10%, 5%, 1% level, respectively. Standard errors
clustered at both stock and day levels are reported in parentheses. N denotes the number of observations.

Panel A: Buy Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω 0.0068∗∗ 0.1457∗∗∗ 0.1686∗∗∗ 0.8330∗∗∗ −0.3799∗∗ −0.8807∗∗∗ 0.0035 0.0334
(0.0030) (0.0318) (0.0252) (0.1493) (0.1763) (0.2022) (0.0129) (0.1120)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 204,835 279,830 392,235 406,946 408,382 407,826 194,257 408,365
R-Squared 19.9% 37.9% 19.1% 59.6% 53.2% 58.2% 39.6% 49.4%

Panel B: Sell Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω 0.0051∗∗ 0.1440∗∗∗ 0.1735∗∗∗ 0.8499∗∗∗ −0.3930∗∗ −0.9119∗∗∗ −0.0311 0.0744
(0.0017) (0.0283) (0.0212) (0.1376) (0.1584) (0.2031) (0.0237) (0.1092)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 205,296 288,424 395,086 406,935 408,382 408,032 200,437 408,370
R-Squared 31.2% 40.1% 16.4% 59.3% 52.6% 63.1% 33.7% 54.6%
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Table B.3. Changes in order aggressiveness around a falsified event (20 days window).
This table presents the changes in order aggressiveness for stocks trading on NASDAQ stock exchange around a fasified event. For each stock i at trading day t, we set the
event day as Edi − 40, which is the 40 days prior to the real event date–the first calendar date when stock is traded on MEMX. We use NASDAQ TotalView-ITCH data to
classify all the orders entered in NASDAQ trading system into eight categories based on their aggressiveness. We follow the approach used by Biais et al. (1995) and classify
orders that result in inside BBO trades, large trades (marketable orders walk the LOB in NASDAQ), small trades (orders executed at BBO but with trade size smaller than
the depth at BBO), and improvement in BBO (either orders improving the BBO price or improving the BBO depth) into aggressive orders. We also classify orders that result
in addition in LOB, revision in LOB, cancellation in LOB, and deletion in LOB into unaggressive orders. For each stock-day observation, the variables are in percentage and
their summary statistics are reported in Appendix B, Table B.1. We select the sample with trading days t between Edi − 60 and Edi − 21 in this table. We report the results
for buy side and sell side separately in Panel A and Panel B. We run the following regression for each order aggressiveness type:

%Order∗i,t = αi + λt + ω1(t >= Edi ) +X
′
itΓ + ϵi,t

Where %Order∗i,t represents the percentage of orders in that category, for instance, the percentage of orders that result in large trades. Edi is the calendar day that when

stock i is first traded on MEMX. 1 represents the indicator function. *, **, *** indicates statistical significance at the 10%, 5%, 1% level, respectively. Standard errors
clustered at both stock and day levels are reported in parentheses. N denotes the number of observations.

Panel A: Buy Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω 0.0005 −0.0518 −0.0135 −0.3612∗ 0.2809 0.1509 0.0260∗ −0.0477
(0.0016) (0.0323) (0.0166) (0.1845) (0.1740) (0.2565) (0.0146) (0.1226)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 66,923 95,710 132,272 135,853 136,202 136,171 67,850 136,188
R-Squared 41.4% 42.5% 32.1% 65.8% 61.6% 60.9% 39.8% 54.5%

Panel B: Sell Side
Aggressive orders (%) result in: Unaggressive orders (%) result in:

Inside BBO Trades Large Trades Small Trades Improvement in BBO Addition in LOB Revision in LOB Cancellation in LOB Deletion in LOB

ω −0.0005 −0.0142 −0.0375∗∗ −0.1826 0.3046∗ −0.2517 0.0119 0.1676
(0.0015) (0.0287) (0.0165) (0.1741) (0.1706) (0.2510) (0.0185) (0.1243)

Controls Y Y Y Y Y Y Y Y
Day FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
N 66,807 98,791 133,000 135,893 136,202 136,192 68,779 136,193
R-Squared 38.6% 45.4% 29.6% 64.3% 60.3% 64.6% 35.7% 58.4%
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Appendix C

Trades and quotes filters

We select the sample period from June 1, 2020 to May 28 2021–252 trading days. For

each trading day, we apply four filters to obtain the trades that we use for calculating our

exchange-based measures. They are:

1 Trades with sales condition which are labeled as “ O ”, “ O X”, “ O I”, “@O ”, “@O X”,

and “@O I”. These are opening trades, cross trades, and odd lot trades. This filter eliminates

approximately 0.012% of the total trades.

2 Trades that executed in regular hours from 9:30am to 4:00pm. This filter eliminates about

2.756% of the total trades.

3 Trades with trade correction indicator which are not regular trades–only trades with trade

correction indicator as “00” are included. This filter eliminates about 0.002% of the total

trades.

4 Trades that executed off-exchange. We exclude the trades that have the timestamp for

the column of “Trade Reporting Facility(TRF) Timestamp”. This will not only exclude all

the trades with “Exchange” as “D” but also exclude trades that are disseminated by FINRA

Alternative Display Facility (ADF) or FINRA Trade Reporting Facility (TRF). This filter

eliminates a large proportion of trades which accounts for approximately 28.594% of the total

trades.

After applying for these filters our average number of trades is about 43.8 million during

our sample period. Table C.1 shows the number of trades (in perctage) deleted by our filters

imposed on raw DTAQ trades files.

Similarly, we apply the following filters to our DTAQ raw quotes files. To save comput-

ing time, we didn’t compute the number of quotes deleted when we were computing the our

exchange-based measure. For the trading day of June 6, 2020, we have 1,518,221,158 quotes.

Our quote filters are:

1 We drop duplicated quotes for each symbol at the same exchange at the same timestamp

and keep the last quote.

2 We select quotes during regular trading hours from 9:30am to 4:00pm.

3 We delete quotes with quote condition as “I”, “N”, “U”. These quotes are order imbalance

quotes and non-firm quotes.

4 We delete quotes when either bid price or ask price is zero.

5 We delete quotes with bid-ask spread larger than $10 and the bid(ask) price $5 smaller(larger)

than previous midprice. This is similar to Holden and Jacobsen (2014)’s where they delete

quotes with bid-ask spread larger than $5. We set a larger threshold for deletion. Therefore,

our filter here is more conservative. After applying the filters with both trades files and quote

files, we merge each trade with the quote before that trade and the quote five minutes later

after that trade.
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Table C.1. DTAQ Trade filters.
This table reports the number of trades deleted by our filters imposed on raw DTAQ trades files to
compute our exchange-based measures. Filter #1 drops opening trades, cross trades, and odd lot trades.
Filter #2 drops trades outside regular trading hours. Filter #3 drops trades which are not labeled as
regular. Filter #4 drops the off-exchange trades.

Raw Filter #1 Filter #2 Filter #3 Filter #4 Avg Final

Avg Number of Trades 63,890,638 (7,893) (1,816,750) (1,065) (18,298,492) 43,766,317
Percentage 100% −0.012% −2.756% −0.002% −28.594% 68.636%

Reconstructing the limit orderbook (LOB) for the NASDAQ stock

exchange using NASDAQ TotalView-ITCH data

Decode the raw ITCH files

We extract the messages from ITCH raw files. We are decoding the version 5 of NASDAQ

TotalView-ITCH, and the documentation can be found at the following website. There are four

types of messages in the ITCH data–system related messages, stock related messages, order

related messages, and trade related messages.

System related messages include: “S”, system message recording the status of trading

system of NASDAQ stock exchange.

Stock related messages include: “R”, stock directory messages documenting all the stocks

traded on NASDAQ stock exchange on this trading day; “H”, stock trading action messages

documenting the trading status of all stocks traded on NASDAQ; “Y”, Reg SHO short sale price

test restricted indicator messages recording the short sales restrictions; “L”, market participant

position messages documenting the participants of market makers; “W” market wide circuit

breaker status messages documenting the status of the market-level circuit breaker; “K”, IPO

quoting period update messages; “J”, limit up limit down (LULD) auction collar messages;

“h”, operational halt messages.

Order related messages include: “A”, add order with no MPID attribution messages; “F”,

add order with MPID attribution messages; “E” order executed (in part or full) with no MPID

attribution messages; “C” order executed with price messages; “X” order cancellation messages;

“D” order deletion messages; “U” order replacement messages.

Trade related messages include: “P”, trades occur because of non-displayable orders; “Q”,

trades due to crossing; “B” broken trades.

Reconstructing the limit orderbook

Once we decode all the messages, we can reconstruct the limit orderbook based on the

workflow in the Figure C.1.

For a stock at a trading day, we start from an empty limit orderbook. Suppose we receive

three add order messages (A/F messages)–MSG 1, MSG 2, and MSG 3. MSG 1 is a limit order

to buy 100 shares at the price of $20, MSG 2 is a limit order to buy 100 shares at the price of

$19, and MSG 3 is a limit order to buy 200 shares at the price of $18. Now we have depth at

three price levels, $20, $19 and $18. Then, suppose a trade executed message (E/C) arrives, it

says it will execute against MSG 1 with a trade size of 50 shares. After deducting 50 shares

60

https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf


Figure C.1: Workflow of reconstructing the limit orderbook from messages

against the order from MSG 1, now the best bid is $20 with 50 shares. Following the previous

trade comes another add order message, MSG 4 which is a limit order to buy 50 shares at $20.
Now we have two orders resting on the best bid with each order having 50 shares. Suppose a

deletion message (D) which deletes the previous order of MSG 2 comes, then we completely

remove the order at the second best bid ($19 with 100 shares). Now we only have two price

levels at the bid sides. Our next message in the workflow is a cancellation message (X) which

cancels 100 shares of the order of MSG 3. Now the second best bid only has 100 shares. Our

last message is a replacement message (U) which revises the order of MSG 3 with a new price

of $20 and 50 shares. Now we have three orders resting on the best bid with each of the order

having 50 shares totaling the market depth to 150 shares.
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Appendix D

Figure D.1: MEMX share by week. Source: MEMX exchange.
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