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Abstract

Macroeconomic forces that generate multiple equilibria often support locally-indeterminate dynamic equi-

libria in which a continuum of perfect foresight paths converge towards the same steady state. The set of

rational expectations equilibria (REE) in such environments can be very large, although the relevance of

many of them has been questioned on the basis that they may not be learnable. In this paper we document

the existence of a learnable REE in such situations. However, we show that the dynamics of this learnable

REE do not resemble perturbations around any of the convergent perfect foresight paths. Instead, the

learnable REE treats the locally-indeterminate steady state as unstable, in contrast to it resembling a

stable attractor under perfect foresight.
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1 Introduction

Macroeconomic forces often generate multiple equilibria and indeterminacy under rational expectations. Well-

known examples include increasing returns to scale in a production function (Benhabib and Farmer, 1994;

Cazzavillan et al., 1998); a passive monetary policy rule (Clarida et al., 2000; Lubik and Schorfheide, 2004);

an Effective Lower Bound on monetary policy (Benhabib et al., 2001; Christiano et al., 2018; Eggertsson et al.,

2019); externalities in a search and matching framework in the goods (Huo and Ŕıos-Rull, 2013; Kaplan and

Menzio, 2016), labour (Eeckhout and Lindenlaub, 2019) or inter-firm market (Fernandez-Villaverde et al.,

2020); endogenous markups generating non-convex marginal revenue product of capital (Gali, 1995); com-

plementarities in R&D investment (Greiner and Bondarev, 2017); correlated private information about asset

payoffs (Manzano and Vives, 2011); non-convex relationships between economic activity and ecological systems

(Mäler et al., 2003); positive externalities in production (Krugman, 1991); feedback between government debt

and interest rate through liquidity constraint (Angeletos et al., 2021).

Many of these papers recognise that the non-convexity or complementarity driving indeterminacy is likely

to be only locally powerful, in which case there will be multiple steady states with regions of local indeter-

minacy around some of the steady states. The steady states around which there is indeterminacy feature a

continuum of converging stable paths, all of which are consistent with rationality and so qualify as rational

expectations equilibria (REE). The set of these REE is typically very large, especially if the environment has

stochastic elements. To render the multiplicity manageable, a common approach in many of the papers above

is to focus on REE that are perturbations of perfect foresight solutions of the model, and then invoke sunspots

to select between the many candidate stationary paths in locally-indeterminate regions.

In this paper, we argue against the focus on REE that are perturbations of perfect foresight paths. Instead,

we propose that the multiplicity of REE should be resolved by appealing to learnability. There are strong

precedents for using a learnability criterion to discriminate between multiple candidate REE in indeterminate

systems (Evans and Honkapohja, 2001; Woodford, 2003), although the learning literature has found it difficult

to derive general conditions for learnability in non-linear models with multiple steady states.1 In particular,

in environments where there are a continuum of perfect foresight paths that converge to a steady state, the

literature has not yet established whether there is a learnable REE near that steady state and, if there is one,

what it resembles.

Given the tensions between perfect foresight paths, rational expectations, and learnability, we set up a proto-

typical environment and ask whether it possesses a REE that is learnable. The environment we build upon

involves monetary policy in a sticky price setting, but many other interpretations could be given. In our illus-

trative setup, the nominal interest rate is assumed to react less than one-for-one to inflation when it is close

to target, breaking the Taylor Principle and generating a region of local indeterminacy around a steady state

centred on the inflation target, as in Clarida et al. (2000). The reaction of the nominal interest rate is assumed

1See Section 12.6 in Evans and Honkapohja (2001) and Section 2.3 in Woodford (2003). Sunspot equilibria have been shown
to be learnable under restrictive conditions (Woodford, 1990; McCallum, 2007; Ellison and Pearlman, 2011), although Arifovic
et al. (2013) conclude that “In the recursive learning literature, it has generally been difficult to obtain expectational stability of
sunspot equilibria.”

2



to strengthen as inflation moves away from its target, eventually satisfying the Taylor Principle and supporting

two further steady states around which equilibrium dynamics are locally determinate. Since our exploration is

numerical, our notion of an REE corresponds to that proposed by Den Haan and Marcet (1994), whereby fore-

cast errors in rational expectations equilibrium should be unpredictable. In searching for a learnable REE, we

allow agents to to be quite sophisticated in that we allow them to exploit neural networks to form expectations.

We find a learnable REE exists in our prototypical environment. However, its properties do not resemble

simple perturbations around convergent perfect foresight paths. Instead of multiple perfect-foresight paths

converging to the steady state of the locally-indeterminate region, there is a unique REE path that leads away

from the locally-indeterminate region towards one of the two steady states that are surrounded by locally-

determinate dynamics. If one accepts learnability as a good equilibrium selection device, our results suggest

that a steady state with a continuum of convergent perfect foresight paths around it (a sink steady state)

should be treated as an unstable equilibrium. Where shocks may land one near this steady state, equilibrium

behaviour pushes away from it, causing the system to spend very little time near the steady state of interest.

The use of neural network learning to derive our results raises the question of whether there would be con-

vergence to the same equilibrium behaviour if agents were less sophisticated. Our answer is a qualified yes.

To be more precise, we show that if agents were less sophisticated and used adaptive learning then their equi-

librium behaviour converges toward the same type of REE configuration. Their forecast errors would exhibit

some slight predictability because they are less sophisticated, meaning that their behaviour would not exactly

converge to the REE we identify. It would nevertheless be very close, with equilibrium dynamics having the

same key properties. Given these results, we believe our approach identifies the most probable REE for the

environment considered.

Simulations of the learnable REE from the prototypical model resemble those from a simple Markov-switching

process, and standard econometric tests on simulated data identify two distinct regimes even though the learn-

able REE is unique. The danger of improper econometric inference extends to tests for indeterminacy based on

estimating log-linearised dynamics around a steady state (Lubik and Schorfheide, 2004). An econometrician

running these tests could incorrectly infer that economic dynamics are characterised by convergent behaviour

perturbed by sunspot shocks, when in truth they are governed by the learnable REE where behaviour is di-

vergent and there are no sunspot shocks.

The paper is structured as follows. In Section 2 we discuss the related literature to set the scene for the

prototypical setup we consider in Section 3. We focus on an environment that has three deterministic steady

states, the central one being a locally indeterminate sink under rational expectations and the outer two being

locally determinate saddles. Neural network learning and our concept of a learnable REE are introduced in

Section 4. Our main results are in Section 5, which describes how the locally-indeterminate sink steady state

becomes a source in the learnable REE identified by neural network learning. The robustness of this result

is demonstrated in Section 6, which confirms similar equilibrium dynamics if agents form expectations using

less sophisticated adaptive learning techniques. Section 7 addresses the question of whether an econometrician
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testing for local indeterminacy could mistakenly infer that data is generated by sunspot shocks. An application

of our findings to an environment with an effective lower bound on nominal interest rates is in Section 8, before

we conclude with Section 9.

2 Related literature

The literature on learning in macroeconomics goes back at least as far as Lucas (1986), who suggested that

stability under learning could be used as a criterion to select between REE in an overlapping generations

model of fiat money. The most influential contribution is Evans and Honkapohja (2001), which provides a rich

and powerful analytic framework for analysing learning. Their concept of E-stability is used by McCallum

(2007) and Ellison and Pearlman (2011) to verify that REE around locally-indeterminate steady states are

not generally learnable, except under restrictive conditions. For example, agents can only learn the location of

the steady state around which equilibria are locally-indeterminate if there are strong negative feedbacks from

expectations to outcomes, such as in the model of Evans and McGough (2005). Learnable sunspot equilibria

have been found to exist in specific circumstances (Woodford, 1990; Arifovic et al., 2013) but the general

expectation stability of sunspot equilibria has proved elusive (Evans and Honkapohja, 2001; Woodford, 2003).

If learnability is interpreted as satisfying the stricter criterion of iterative e-stability then locally-indeterminate

REE are never learnable (Woodford, 2003).2

A comparatively small literature tackles learning in non-linear models, where exact E-stability analysis in

the spirit of Evans and Honkapohja (2001) is not possible because REE in a non-linear model with continuous

endogenous state variables cannot be expressed in a finite number of parameters.3 Some papers deal with

non-linearity by modelling linear learning in a non-linear model (Hommes and Sorger, 1998; Bullard, 1994),

although expectations in these equilibria will never be consistent with rationality. Berardi and Duffy (2015)

use a PEA approach to approximate non-linear expected values around a steady state, showing reasonable

convergence results but not evidencing the accuracy of the learning equilibrium.

Although a well-developed empirical literature in economics and finance uses neural networks for forecast-

ing, their potential as a function approximator in rational expectations models has only been recognised more

recently.4 Maliar et al. (2019) discuss the general applicability of neural networks to computational economics

and argue that they can be used to solve many models. Others have shown that equilibrium conditions can be

included in the loss function of a neural network to efficiently find global solutions (Azinovic et al., 2022), that

neural networks help solve high dimensional models (Fernández-Villaverde et al., 2019), and that they can

deal with multicollinear state spaces (Villa and Valaitis, 2022). Our paper demonstrates that neural networks

provide an intuitive and plausible resolution to indeterminacy in non-linear models with multiple steady states,

adding to well-known results that indeterminacy in linear models leads to instability under learning.

2Iterative e-stability can be thought of as freezing the estimated coefficients for a long period of time, and only re-estimating
them at the beginning of the next period.

3Judd et al. (1998).
4Cho and Sargent (1996) is an early precursor, using neural nets to represent equilibrium in two repeated games and a dynamic

economic model. See Kaastra and Boyd (1996) for a guide to designing neural networks to forecast economic time series.
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3 Environment

We keep the analysis as transparent as possible by focussing on an illustrative New Keynesian setup with one

state variable (lagged output) and one control variable (inflation). The environment has two outer steady

states with a saddlepath structure, plus a central steady state of interest which acts as a “sink” under perfect

foresight. In the absence of shocks, the sink steady state is associated with a continuum of convergent paths.

We begin by presenting the properties of the system under perfect foresight, as this will prove useful for later

comparison with the dynamics of the learnable REE. We then discuss the system’s local determinacy properties

under rational expectations.

3.1 New Keynesian model

Inflation πt and output yt are determined by a standard New Keynesian Phillips curve, a backward-looking

IS curve5 and a Taylor Rule with ϕπ < 1 and α > 0:6

πt = βEtπt+1 + κyt + ϵπ,t (1)

yt = ηyt−1 − σ(rt − Etπt+1) + ϵy,t (2)

rt = ϕππt + απ3
t (3)

The disturbance terms ϵπ,t, ϵy,t are independent AR(1) processes with persistence parameters ρπ, ρπ and

normally-distributed innovations of standard deviation σπ, σy. The Taylor Rule generates multiple conver-

gent paths around the sink steady state, but satisfies the Taylor Principle for more extreme values of inflation

as the cubic term bounds the forces that generate multiplicity.

β κ η σ ϕπ α ρπ ρy σπ σy
0.95 0.05 0.95 0.25 0.5 0.075 0.5 0.5 0.3 0.3

Table 1: Baseline parameter values

The baseline parameterisation in Table 1 is chosen so there are three deterministic steady states in output and

inflation, at (−2,−2), (0, 0) and (2, 2). Under perfect foresight, the two outer steady states are local saddles

whereas the central steady state is a complex sink with a continuum of convergent paths.

3.2 Perfect foresight solution

The deterministic steady states of the model occur at the intersection of two loci derived from the steady-state

versions of the New Keynesian Phillips curve, IS curve and Taylor Rule:

π = βπ + κy (4)

y = ηy − σ(ϕππ + απ3 − π) (5)

5We choose a backward-looking formulation of the IS curve to have a simple system where agents only need to forecast one
variable. This gives a system with one state variable and one control variable that can be visualised in two dimensions.

6The key results of our paper are the same with a forward-looking IS curve, even though such a system has no state variable.
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Figure 1 shows the locus derived from the Phillips curve as the straight line in black; that derived from the IS

curve and Taylor Rule is the s-shape in green. The loci cross at the three deterministic steady states.
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t

Phillips Curve
IS Curve
Perfect foresight paths

Figure 1: New Keynesian model under perfect foresight

To describe the dynamics of the system under perfect foresight, we recognise that Etπt+1 = πt+1 and abstract

from the disturbance terms to express πt and yt in terms of πt−1 and yt−1:

πt =
1

β
(πt−1 − κyt−1) (6)

yt =
β

β + σκ

(
ηyt−1 − σ

(
ϕπβ − 1

β
πt + απ3

t

))
(7)

These dynamics are superimposed on Figure 1 to complete the phase diagram of the system under perfect

foresight.7 The blue arrows represent paths along which the system will evolve from a given starting point in

the yt−1, πt space of state and control variables. These paths show that the outer steady states are saddles

and the steady state of interest is a complex sink.

3.3 Local determinacy properties under rational expectations

It is not possible to characterise the global properties of rational expectations equilibrium in a finite number

of parameters, since the model is non-linear and has shocks and state variables (Judd et al., 1998). We can,

though, examine the model’s local determinacy properties by linearising in the neighbourhood of a steady

state. Denoting a steady state of the model by (π∗, y∗), linearisation around a steady state implies:

π̂t = βEtπ̂t+1 + κŷt + ϵπ,t (8)

ŷt = ηŷt−1 − σ
(
(ϕπ + 3απ∗2)π̂t − Etπ̂t+1

)
+ ϵy,t (9)

7The dynamics of the system under perfect foresight are derived from the continuous time analogue of the discrete time system,
see Appendix A for details.
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The determinacy properties depend on the eigenvalues of this linearised system of equations, following Blan-

chard and Kahn (1980). At the central steady state π∗ = 0 and the cubic term drops out, so the rational

expectations equilibrium is locally indeterminate when ϕπ < 1. It is straightforward to show that rational

expectations equilibrium is determinate in the neighbourhood of the outer steady states.

4 Learning

The learning literature sets rational expectations aside in favour of agents forming expectations without prior

knowledge of the nature of the equilibrium. In our case, the key object that agents need to learn is the mapping

from lagged variables and the disturbance terms to inflation in the next period, since it is the expectation of

next period’s inflation that enters the New Keynesian Phillips curve and the IS curve. Evans and Honkapohja

(2001) term the mapping a Perceived Law of Motion (PLM), and propose a linear specification which agents

update recursively through least squares learning. Learning is said to have converged when agents no longer

update their PLM. The non-linearity of our model calls for maximum flexibility in expectations formation,

which we respond to by allowing agents to learn using neural networks.8 In this section we also discuss our

notion of REE, which requires that agents only make unpredictable errors when forming expectations.

4.1 Neural network learning

Neural networks offer a parsimonious functional form which can be estimated efficiently to approximate arbi-

trarily complex non-linear functions, so are a promising candidate for learning in non-linear models.

πt−1

yt−1

ϵπ,t

ϵy,t

H1

Hn

πe
t+1|t

πe
t|t

yet|t

Input layer

bhid + whids = s′

Hidden layer

ψ(s′) = s′′ bout + wouts′′ = p̂

Output layer

Figure 2: Structure of neural network

The neural network our agents use is shown heuristically in Figure 2. It takes a vector of inputs s (lagged

variables and the disturbance terms) and transforms it into a vector of outputs p̂ (inflation expected next

period and current variables) through a hidden layer of nodes. The inputs are passed to the nodes as lin-

ear combinations s′ of the inputs, with weights whid and bias terms bhid. A non-linear activation function

ψ(s′) is then applied to the linear combination entering each node, allowing the input to pass through and

8The Parameterised Expectations Algorithm of Den Haan and Marcet (1990) offers a non-linear specification based on power
functions that agents update via non-linear least squares learning.
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activating the node only if its input is positive, i.e., ψ(s′) = max(0, s′). Finally, the output layer aggregates

linear combinations of the activated nodes for each output of interest, with weights wout and bias terms bout.

This is a single layer feedforward neural network, which can approximate any real-valued continuous function

arbitrarily well with any appropriate activation function and a sufficient number of nodes (Cybenko, 1989).

Agents learn the parameters in the neural network using the Levenberg-Marquardt (LM) algorithm.9 Starting

with initial values for the weights and biases stacked in an R× 1 parameter vector θi, the system is simulated

for T periods with agents forming their expectations using the neural network. If the neural network has Q

outputs of interest then the simulation generates QT × 1 vectors of outcomes pi, expected outcomes p̂i and

expectational errors ei = pi − p̂i. The Jacobian of the expectational errors with respect to the parameter

vector is a QT ×R matrix denoted Ji. For the next iteration, the parameter vector is updated to

θi+1 = θi + (J ′
iJi + µiIR)

−1J ′
i(pi − p̂i) (10)

and the system simulated again to obtain pi+1, p̂i+1, ei+1 and Ji+1. The process continues until the estimate

of θ has converged. µi is a scalar damping factor that ensures the matrix (J ′
iJi+µiIR) is positive semi-definite

and invertible in early iterations. It is reduced as i increases, meaning that the LM algorithm approaches the

Gauss-Newton method as iterations progress. The details are in Hagan and Menhaj (1994), which includes

a backpropagation technique that makes calculation of the Jacobian less computationally demanding. We

simulate for T=100,000 periods between updates, and consider learning as converged when the neural network

is able to make very accurate forecasts of current inflation and output.10

4.2 Verifying REE

The fixed point to which neural network learning converges is not necessarily an REE, unless it leads to agents

forming expectations that are rational. We test for this rationality using the accuracy test of Den Haan and

Marcet (1994), which checks that agents’ expectational errors are unpredictable on the basis of the information

available at the time expectations are formed. If they are we conclude that the equilibrium has the properties

of an REE; our notion of REE is hence numerically validated.

The Den Haan and Marcet (1994) test asks whether E[et+1|θ ⊗ h(st)] = 0, i.e., whether the vector of ex-

pectations errors et+1|θ generated under beliefs θ is orthogonal to a function h(st) of an information set st.

The test statistic is calculated from the properties of expectations errors in simulations of the model, and has

a theoretical distribution under the null hypothesis of unpredictability that has 5% of draws in its upper and

lower tails. We make 1,000 draws of 500 periods to obtain 1,000 test statistics, accepting the null hypothesis

that expectations are rational if close to 5% of the test statistics fall in each of the upper and lower tails. The

test is a demanding standard for any numerical solution yet the neural network passes it comfortably, giving

us confidence that our solution has the properties of an REE.

9Alternative training algorithms give virtually identical results, e.g. ADAM (Kingma and Ba, 2015).
10The accuracy of forecasts is measured by the R2 between predictions and realisations; a very accurate forecast has an R2 in

excess of 0.99999.
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5 Results

Neural network learning converges to an equilibrium that is fundamental, stationary and stable. The central

steady state that was locally indeterminate under rational expectations becomes a source under neural network

learning, with the system fluctuating in the neighbourhood of one of the locally-determinate steady states until

sufficiently large fundamental shocks move it to the neighbourhood of the other locally-determinate steady

state. These results are robust to initial conditions and different specifications of the neural network.

5.1 Equilibrium dynamics

The phase diagram of the system under neural network learning is in panel (a) of Figure 3. The two loci

in black and green are as before, so the system again has three deterministic steady states. However, the

dynamics under neural network learning are very different to those under perfect foresight. The central steady

state is now a source that repels the system along a unique path to one of the outer steady states. The path is

unlike any of the convergent perfect foresight solutions in Figure 1, nor does it resemble a perturbation around

any of the perfect foresight paths.
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(a) Dynamics
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Figure 3: Equilibrium with Neural Network Learning mean dynamics

The upper part of panel (b) in Figure 3 plots the distribution of output and inflation as a heatmap, with

darker shades of blue indicating combinations that occur more frequently in simulations of the model. The

heatmap shows that simulated outcomes are clustered around the dynamic path in panel (a). As expected

given the dynamics, the system spends most of its time in the neighbourhood of one of the outer steady states

and it is rare to see observations near the central steady state. Visits to the region near the central steady

state are also typically short-lived, since the source dynamics around that steady state rapidly push output

and inflation towards one of the stable steady states.

The lower part of panel (b) in Figure 3 shows the average error that agents make when using neural net-

work learning to form their expectation of next period’s inflation, as a function of lagged output as the state

variable. The errors are not systematically related to the state variable (yt−1), especially when lagged output

is close to one of the outer steady states where the system spends most of its time. The unpredictability of the
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expectational errors is confirmed by the Den Haan and Marcet (1994) accuracy test results in Table 2, which

accept the hypothesis that errors in expectations cannot be predicted even by an extensive set of information

available at the time expectations are formed.11 We conclude that dynamics under neural network learning

have the characteristics of an REE.

h(st) Lower-tail Upper-tail
Constant 0.0461 0.0520
Constant, yt and πt 0.0420 0.0635
Extensive 0.0384 0.0781
Table 2: Accuracy test for neural network learning

Our characterisation of REE has a single equilibrium with multiple steady states. It is fundamental in that its

dynamics are entirely driven by the disturbance terms, and stationary because the unconditional distribution

of output and inflation does not vary over time. The equilibrium is stable under learning, with small deviations

in beliefs disappearing over time as beliefs under neural network learning converge back to values consistent

with the REE. A simulation of the model is shown in Figure 4.
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Figure 4: Simulation under neural network learning

The behaviour of the system is akin to a regime-switching model, albeit one in which the transitions between

“regimes” are governed by the disturbance terms.12 The system fluctuates around one of the outer steady

states until a combination of shocks is sufficient to move it into the basin of attraction of the other steady

state. This behaviour suggests that regime-switching specifications could be motivated as reduced forms of

nonlinear models, with regions of local indeterminacy acting as sources rather than sinks in REE.

5.2 Learning in small samples

The REE we identify assumes that agents have a sufficiently large number of observations that their beliefs

have converged to the limit point of the neural network learning process. To investigate the behaviour of the

system in smaller samples, we initialise all outcomes and parameters of the neural network at zero until period

11The extensive information set includes a constant and linear, quadratic and cubic terms in contemporaneous, lagged and
twice lagged endogenous variables.

12A close analogue is the Filardo (1994) model of Markov-switching with time-varying transition probabilities (TVTP).
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100 and then allow agents to start neural network learning using a rolling window of only 400 observations.

An example simulation is in Figure 5.
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Figure 5: Neural network learning with a small sample

The system approaches the neighbourhood of the upper steady state after about 100 periods of learning,

fluctuating around that steady state for roughly 250 periods before moving over to the lower steady state.

It subsequently oscillates between periods near each of the outer steady states. We see in Figure 5 that

the behaviour of the system in small samples approaches that observed when neural network learning has

converged. A large number of observations are needed to pass the Den Haan and Marcet (1994) accuracy test

and accept the equilibrium as having the properties of an REE, but only a small number of observations are

needed to pin down the equilibrium dynamics and see that the central steady state acts as a source.

5.3 Greater linearity

The cubic term in the Taylor Rule (Eq 3) is a convenient didactic device to generate a region of local indetermi-

nacy in the model. It does though mean that the system is non-linear throughout, even in the neighbourhood

of the locally-indeterminate central steady state. We demonstrate that this is not a cause for concern by

replicating the analysis and results with a piecewise-linear Taylor Rule (Eq 11). The rule is parameterised

with ϕπ = 0.5 and α = 0.75, so the system is locally indeterminate when inflation is in the interval (−π∗, π∗).

When inflation is outside this interval the Taylor Principle is satisfied and the system is locally determinate.

rt =


ϕππt −π∗ ≥ πt ≥ π∗

ϕππt + α(πt − π∗) πt > π∗

ϕππt + α(πt + π∗) πt < −π∗

(11)

Dynamics of the model with π∗ = 1 are in Figure 6, where the light blue region indicates the values of inflation

for which the system is locally indeterminate. The black line for the steady state of the New Keynesian Phillips

curve is as before but the green locus for the combined steady state of the IS curve and the Taylor Rule is

now z-shaped. The perfect-foresight dynamics in panel (a) are close to those in Figure 1 for the model with

a cubic term in the Taylor Rule. Similarly, the dynamics under neural network learning in panel (b) mirror
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those in Figure 3, with the central steady state acting as a source not a sink. We conclude that neural network

learning leads to dynamics that are robust to greater linearity around the central steady state.
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Figure 6: Piecewise linear model with π∗ = 1

The simplicity of the piecewise-linear Taylor Rule prompts us to examine how the size of the region of local

indeterminacy affects the nature of the REE identified by neural network learning. Figure 7 for a smaller

region shows that neural network learning still uncovers an unstable central steady state and two stable outer

steady states, with the unique path under neural network learning in panel (b) closer to linearity. When the

region gets larger in Figure 8, neural network learning is unable to distinguish between the separate steady

states, instead converging on a unique path that converges to one of the outer steady states.13 Whilst in this

case learning fails to pick up the central steady state as a source, the system still spends very little time in the

neighbourhood of the central steady state.
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Figure 7: Piecewise linear model with π∗ = 0.25

13The unique path converges to the upper steady state in Figure 8, but given the symmetry of the model it is equally likely
that neural network learning settles on a path that converges to the lower steady state. A similar convergence to one of the outer
steady states also occurs if the variance of the shocks to the fundamental disturbances is very small.
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Figure 8: Piecewise linear model with π∗ = 2

5.4 Alternative models

The model analysed so far is tightly parameterised and only supports a limited range of perfect foresight

dynamics. A new, more general, model is therefore needed to investigate what happens when agents use

neural network learning in a more general setting. In the new model we retain as many features of the original

setup as possible, introducing additional degrees of freedom only where necessary to expand the range of

possible dynamics. The model continues to have only one state variable yt−1, one control variable pt, and

three deterministic steady states. As before, the outer steady states are locally determinate under rational

expectations, but now the properties of the central steady state depend on the parameterisation of the model.

In the relevant parameter space the perfect foresight dynamics never have a saddlepath structure, but they

can be either a sink or a source with either complex or real eigenvalues.14

pt = ϕp,pEtpt+1 + ϕp,yyt − αy3t + ϵp,t (12)

yt = ϕy,yyt−1 + ϕy,ppt + ϵy,t (13)

To cover all possible configurations, it is sufficient to fix (ϕp,p = 0.95, ϕp,y = 0.5) and vary (ϕy,p, ϕy,y) such that

the central steady state is a complex sink, a real sink, a complex source or a real source. The rows of Figure 9

show an illustrative example of each, with the perfect foresight solution to the left and the REE identified by

neural network learning to the right. In the first row the central steady state is a complex sink and dynamics

are similar to those in our original model. There are multiple convergent perfect-foresight paths in panel (a)

and a unique divergent learnable REE path in panel (b). Subsequent rows show similarly divergent learnable

REE paths around the central steady state when it is a real sink (d), complex source (f) or complex sink (h).

In none of the cases does the REE identified by neural network learning resemble perfect foresight dynamics.

14The central steady state can exhibit a saddle path structure for extreme parameterisations of the model, but in that case the
outer steady states no longer have saddle paths structures. Appendix B presents the conditions for the different cases to occur.
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Figure 9: Dynamics of alternative models
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6 Adaptive learning

This section reduces the sophistication that agents have when forming expectations of future inflation. Instead

of giving them access to neural network techniques, we require them to learn using adaptive methods of the type

popularised by Evans and Honkapohja (2001)). As we shall show, the dynamics of the resulting equilibrium

are qualitatively and quantitatively close to those in the REE identified by neural network learning, most

notably in the central steady state always acting as a source from which the system is repelled. This provides

further support to the idea that such steady states should be treated as unstable.

6.1 Least squares learning

We assume that agents learn adaptively using the least squares formulation of Evans and Honkapohja (2001),

where they update coefficients in Perceived Laws of Motion (PLMs) that describe the evolution of endogenous

variables. We consider PLMs that include linear, quadratic and cubic terms in lagged variables:

πt = βπ,1 + βπ,2yt−1 + βπ,3πt−1 + βπ,4y
2
t−1 + βπ,5y

3
t−1 + νπ,t (14)

yt = βy,1 + βy,2yt−1 + βy,3πt−1 + βy,4y
2
t−1 + βy,5y

3
t−1 + νy,t (15)

The agent derives an expectation of inflation in the next period using their PLMs to form expectations

Etπt,Etπt and then rolling the PLM for inflation forward again to obtain Etπt+1.
15 The Actual Laws of

Motion (ALMs) for inflation and output then depend on the PLMs and equations (1)-(3).

Agents update their parameter estimates by recursive least squares, with the dependent variable Yt = (πt yt)

and the independent variable Xt =
(
1 yt−1 πt−1 y

2
t−1 y

3
t−1

)
. The parameter estimates in the 5 × 2 matrix βt

are updated using the standard formulae:

βt = βt−1 +
1

t
R−1

t X ′
t(Yt −Xtβt) (16)

Rt = Rt−1 +
1

t
(X ′

tXt −Rt) (17)

The convergence and limit properties of recursive least squares learning can be characterised by techniques

from stochastic approximation theory. Evans and Honkapohja (2001) show that the first order difference

equations (16) and (17) are associated with an ordinary differential equation (ODE) of the form dθ
dτ = h(θ(τ)),

where θ = vec(β,R) is a stacked vector of beliefs and

h(θ(τ)) = lim
t→∞

E

[
1

t

(
R−1

t X ′
t(Yt −Xtβt)

X ′
tXt −Rt

)]
(18)

The ODE characterises the mean dynamics of beliefs in notional time τ . Our interest is in whether the ODE

has a fixed point h(θ̄) = 0, and if so whether the fixed point is stable for small perturbations. We find that it

does, and that the eigenvalues of the Jacobian confirm it as stable under learning. Beliefs therefore converge

15The results are similar if the agent has a single PLM that specifies inflation as a function of the second lag of inflation and
output, in which case inflation expectations can be read off the PLM directly. They are also much the same if agents observe the
disturbance terms and incorporate them in their PLMs.
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in the associated ODE, and parameter estimates converge under least squares learning.

6.2 Equilibrium dynamics

Recursive least squares learning converges, as did neural network learning, to an equilibrium that is funda-

mental, stationary and stable. The fixed point of the mean dynamics picks up the negative system feedback

via the cubic terms in the PLMs and puts no weight on constant and quadratic terms:

β̄ =

(
0.00 1.85 0.09 0.00 −0.21

0.00 1.07 0.01 0.00 −0.02

)
(19)

The equilibrium under adaptive learning in panel (a) of Figure 10 has a phase diagram that is qualitatively

and quantitatively close to that in Figure 3 for the REE identified by neural network learning. The central

steady state is again a source and the outer steady states are stable.
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Figure 10: New Keynesian model under recursive least squares learning

The heatmap in the upper part of panel (b) in Figure 1 confirms that the simulated system spends most of

its time near to one of the outer steady states, with only limited forays into the neighbourhood of the central

steady state. The lower part of panel (b) in Figure 1 demonstrates that agents make small yet systematic

errors in expectations even when adaptive learning has converged, which is not surprising given they are less

sophisticated than neural network learners. The errors in expectations fail the Den Haan and Marcet (1994)

accuracy test by a large margin, so are predictable and the equilibrium under adaptive learning lacks the

characteristics of an REE. Its key features do though mimic those of the REE, giving us further confidence

that we have identified the most plausible equilibrium dynamics.

7 Empirical tests for indeterminacy

Lubik and Schorfheide (2004) propose a test for indeterminacy and sunspots in likelihood-based estimation of

dynamic general equilibrium models. It compares the probability that data is generated by a locally determi-

nate system as opposed to being perturbations of perfect foresight paths in a locally indeterminate system. In
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this section, we apply the test to data simulated by our model. Since REE dynamics in the neighbourhood

of our model’s central steady state resemble neither a saddlepath stable system nor perturbations to perfect

foresight paths, we investigate whether the test may misleadingly favour sunspots as a driver of the data.

7.1 Introducing sunspots

The Lubik and Schorfheide (2004) test is based on estimating the log-linearised dynamics around a steady

state of a model. Without loss of generality, the log-linearised model can be expressed as

Etx̂t+1 = Ax̂t +Bϵt (20)

and the determinacy of the system depends on the eigenvalues of the matrix A.16 In our model with one

control and one state variable, the system is determinate if only one of the eigenvalues is inside the unit circle.

If both are inside then the system is indeterminate. The model is solved under rational expectations by adding

and subtracting AEt−1x̂t from the right side of Eq 20 and applying the Jordan decomposition A = P−1ΛP :

PEtx̂t+1 = ΛPEt−1x̂t + ΛP (x̂t − Et−1x̂t) + PBϵt (21)

The diagonality of Λ facilitates a decoupling of the system with x̃t = Px̂t and ϵ̃t = PBϵt:

Etx̃1,t+1 = Λ1Et−1x̃1,t + Λ1(x̃1,t − Et−1x̃1,t) + ϵ̃1,t (22)

Etx̃2,t+1 = Λ2Et−1x̃2,t + Λ2(x̃2,t − Et−1x̃2,t) + ϵ̃2,t (23)

If the system is determinate then one of Λ1 or Λ2 will be outside the unit circle and the decoupled equation

associated with it has a single stable solution x̃i,t = 0 ∀t. This condition identifies the saddlepath relationship

between the state and control variables, and guarantees that Eqs 22 and 23 have a unique solution that can

be estimated by standard techniques.

If Λ1 and Λ2 are both inside the unit circle then the system is indeterminate and Eqs 22 and 23 do not

have a unique solution. In this case, Farmer et al. (2015) suggests closing the model with a sunspot process

that selects between the multiple perfect foresight paths that converge to the steady state. The sunspot pro-

cess ζt has to respect rational expectations to the extent that ζt = πt − Et−1πt, but can be correlated with

innovations to the disturbance terms:17

Et−1


ϵπ,t

ϵy,t

ζt



ϵπ,t

ϵy,t

ζt


′

=


σπ 0 ωπ,ζ

0 σy ωy,ζ

ωπ,ζ ωy,ζ σζ

 (24)

The requirement that sunspots satisfy rational expectations implies there is a unique solution to Eqs 22 and

23, where the sunspot is consistent with variance-covariance matrix (Eq 24). Standard techniques can then be

employed to estimate ωπ,ζ , ωy,ζ , σζ and other parameters.

16Blanchard and Kahn (1980) or Sims (2002).
17Lubik and Schorfheide (2004) explicitly model a dependence of the sunspot on fundamental shocks.
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7.2 Estimation results

The Lubik and Schorfheide (2004) test involves estimating determinate and indeterminate models on the same

data, and comparing their relative fit through the posterior odds ratio. We perform the test on 10,000 periods

of simulated data from our learnable REE.

Posterior mean
Parameter Prior mean Determinate Indeterminate

β N (1, 1) −0.34
(−0.61,0.09)

1.06
(0.97,1.12)

κ N (0, 1) 1.02
(0.83,1.23)

−0.03
(−0.08,0.04)

η N (1, 1) 0.95
(0.89,1.03)

0.85
(0.82,0.88)

σ N (0, 1) −0.03
(−0.36,0.20)

0.41
(0.32,0.52)

ϕπ N (2, 1) 0.57
(−0.32,1.18)

0.55
(0.42,0.70)

ρπ N (0, 1) 0.59
(0.58,0.60)

0.45
(0.41,0.49)

ρy N (0, 1) 0.48
(0.46,0.50)

0.50
(0.48,0.51)

σπ IG(0.5, 2) 0.48
(0.42,0.55)

0.25
(0.21,0.28)

σy IG(0.5, 2) 0.21
(0.18,0.26)

0.17
(0.17,0.18)

σζ IG(0.5, 2) - 0.39
(0.37,0.42)

ωπ,ζ B(0, 0.3,−1, 1) - 0.70
(0.61,0.82)

ωy,ζ B(0, 0.3,−1, 1) - 0.51
(0.43,0.60)

Log data density −3927 −3889
Table 3: Bayesian estimation results

The Bayesian estimation results are in Table 3.18 They show a clear preference for the sunspot model. The log

posterior for the determinate model is -3927 whereas for indeterminate model it is -3889, so the posterior odds

ratio overwhelmingly favours indeterminacy and the simulated data strongly supports the sunspot model over

the determinate linear rational expectations model. The estimated sunspot process is positively correlated

with both innovations to the disturbance terms, although it is significantly more volatile than either of them.

The positive correlations between the sunspot shock and innovations to the disturbance terms are consistent

with the central steady state in our REE being a local source. Consider the model at the central steady state

and small positive innovations ϵπ,t, ϵy,t > 0 that send inflation and output to πt, yt > 0. At this point, the source

nature of REE dynamics propels inflation further away from the steady state and Etπt+1 > πt, Etyt+1 > yt.

This divergent behaviour is difficult for the linearised indeterminate model to explain, since the equilibrium

under rational expectations is a real sink.19 However, there are perfect-foresight paths that temporarily imply

rising inflation or output. The positive correlation of the sunspot shock picks out such paths, and helps the

indeterminate model explain why inflation and output continue to rise after the initial innovations.

18The models are estimated in Dynare using Metropolis Hastings MCMC, as described in Guerrón-Quintana and Nason (2013).
19It is even more difficult for the linearised determinate system to explain.

18



8 Application

This section applies neural network learning to study the characteristics of the learnable REE in a New

Keynesian model with an effective lower bound on the nominal interest rate. Such an environment has been

of renewed interest since Benhabib et al. (2001), who pointed out the existence of a second deflationary steady

state in such a model. The second steady state is indeterminate but not stable under learning,20 prompting

Evans et al. (2022) and Eggertsson et al. (2019) to argue for the introduction of additional bounds on the

region of indeterminacy. The resulting systems have three steady states, the outer ones determinate and the

central one indeterminate, so map directly into our setup.

8.1 A bounded New Keynesian model

We assume that inflation, output and the nominal interest rate are all subject to lower bounds, with those on

inflation and output capturing the downward price-setting rigidity and non-negativity of consumption in the

microfounded model of Evans et al. (2022). The system is otherwise as before, except for the IS curve (Eq

26) being both backward and forward looking and the Taylor Rule (Eq 27) being defined over inflation and

output. The New Keynesian Phillips Curve (Eq 25) is unchanged.

πt = max{βEtπt+1 + κyt, π
lim}+ ϵπ,t (25)

yt = max{(1− η)Etyt+1 + ηyt−1 − σ(rt − Etπt+1), y
lim}+ ϵy,t (26)

rt = max{ϕππt + ϕyyt, r
lim} (27)

The disturbance terms in Eq 25 and Eq 26 follow independent AR(1) processes, with innovations in normal

times that have a standard deviation of
√
0.001. On rare occasions the innovations are much larger, following

the “disaster shocks” of Gourio (2012). These large innovations occur on average every 100 periods, and have

a magnitude that in the metric of normal times would correspond to ±10 standard deviation shocks. The

model’s other parameters are calibrated in Table 4. The calibration of the lower bounds implies a lower steady

state in which the nominal interest rate is 2% below its upper steady state value, with inflation and output

3% and 5% below their upper steady state values.

β κ η σ ϕπ ϕy ρπ ρy rlim ylim πlim

0.95 0.1 0.5 0.25 1.5 0.5 0.5 0.5 -0.02 -0.05 -0.03
Table 4: Parameter values

8.2 Results

The steady state loci of the model are shown in both panels of Figure 11, where the blue shaded region shows

combinations of output and inflation for which the nominal interest rate is constrained by the effective lower

bound. The black locus for the New Keynesian Phillips Curve has a kink at the lower bound on inflation and

the green locus that combines the IS curve and Taylor Rule has two kinks, one at the lower bound for output

and one where inflation is so low that the lower bound on the nominal interest rate constrains the Taylor Rule.

20Christiano et al. (2018).
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The loci cross three times, giving lower, central and upper steady states as in Figures 1 and 6 for the original

and piecewise linear models.
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Figure 11: Bounded New Keynesian model with Zero Lower Bound

The perfect foresight dynamics in panel (a) of Figure 11 reflect the local indeterminacy of the central steady

state and the local determinacy of the outer steady states. The REE dynamics under neural network learning

in panel (b) show the now familiar pattern, where the central steady state acts as a source from which there is

a unique divergent path to the outer stable steady states. The system spends most of its time in simulations

close to the outer steady states, moving between them only when there is a suitable “disaster shock”. It is

rare to have observations in the neighbourhood of the locally-indeterminate central steady state.

9 Closing remarks

Multiple equilibria are common in environments where agents need to make forecasts. In particular, many

papers have identified economic forces that give rise to a locally-indeterminate steady state surrounded by

a continuum of convergent perfect foresight paths. We argue that such steady states should be treated as

unstable under rational expectations, a conclusion we reached by looking for REE that are learnable. Even

when agents are endowed with sophisticated learning capacities, we show that agents never learn equilibria

that resemble perturbations of convergent perfect foresight paths around a locally-indeterminate steady state.

Rather, the learnable REE is associated with a dynamic path which repels away from the steady state. We also

showed that an econometrician confronted with data reflecting this instability may nevertheless improperly

infer that behaviour around this steady state is convergent and affected by sunspots.

Our call to treat a locally-indeterminate steady state as unstable has parallels in the work on coordination

failures of Cooper and John (1988). They show that strategic complementarities are necessary to generate

multiple equilibria, and that static models with localised strategic complementarity often give rise to three

steady states. The two outer steady states are typically stable under tâtonnement and the central steady state

is unstable, just as in the learnable REE of our dynamic environment. In neither case would we expect the

system to spend significant amounts of time in the neighbourhood of the unstable central steady state.
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A Continuous time analogue of the discrete time model

The discrete time perfect foresight dynamics (Eq 6) and (Eq 7) can be interpreted as a discretisation of an

underlying continuous time process, where the time step of the discretisation is T = 1. To obtain the phase

diagram in Figure 1, we discretise the continuous time dynamics at smaller time steps. The general formula

for discretisation with any time step T implies:

πt+k = eATπt +A−1(eAT − 1)Byt (28)

yt+k = eCT yt + C−1(eCT − 1)D

(
ϕπβ − 1

β
πt + απ3

t

)
(29)

eA =
1

β
(30)

A−1(eA − 1)B = −κ
β

(31)

eC =
βη

β + σκ
(32)

C−1(eC − 1)D =
βσ

β + σκ
(33)

B Dynamics in alternative models

The perfect foresight dynamics are obtained from Eqs 12 and 13, with ϵp,t = 0, ϵy,t = 0, Etpt+1 = pt+1.

pt = ϕp,ppt+1 + ϕp,yyt − αy3t (34)

yt = ϕy,yyt−1 + ϕy,ppt (35)

The deterministic steady states satisfy the two black loci in each panel of Figure 9.

(1− ϕp,p)p
∗ = ϕp,yy

∗ − αy∗3 (36)

(1− ϕy,y)y
∗ = ϕy,pϕp,pp

∗ (37)

Linearising around a deterministic steady state implies

p̂t = ϕp,pEtp̂t+1 + (ϕp,y − 3y∗2α)ŷt + ϵp,t (38)

ŷt = ϕy,y ŷt−1 + ϕy,pp̂t + ϵy,t (39)
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and defining x̂t = (p̂t ŷt−1)
′ and ϵt = (ϵp,t ϵy,t) admits a state space representation of the model:

Etx̂t+1 = Φx̂t +Ψϵt (40)

Φ =

(
1−(ϕp,y−3y∗2α)ϕy,p

ϕp,p

−(ϕp,y−3y∗2α)ϕy,y

ϕp,p

ϕy,p ϕy,y

)
(41)

Ψ =

(
− 1

ϕp,p
−ϕp,y−3y∗2α

ϕp,p

0 1

)
(42)

The dynamics in the neighbourhood of a deterministic steady state are determined by the eigenvalues of the

coefficient matrix Φ, which can be expressed in terms of the parameters ϕp,p, ϕp,y, ϕy,p and ϕy,y using the

formula λ = tr(Φ) ±
√
tr(Φ)2/4− det(Φ). The cubic term with α > 0 in Eq 12 ensures that the two outer

steady states are always determinate. 21 Figure 12 shows the characteristics of the central steady state as a

function of ϕy,y and ϕy,p, for fixed ϕp,p = 0.95 and ϕp,y = 0.5.

Figure 12: Properties of the central steady state when ϕp,p = 0.95, ϕp,y = 0.5

21Proof on request.
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