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Abstract

We develop a novel methodology to measure the risk premium of higher-order cumulants (closely

related to the moments of a distribution) based on assets satisfying a single-factor setting. We

show that single-factor linear pricing works only if the difference between physical and risk-neutral

cumulants, which we call the cumulant risk premium (CRP), is zero. To illustrate our approach em-

pirically, we study leveraged ETFs, which are assets with constant betas and exposure to a single

factor only. We show that the CRP is different from zero across all assets studied: equities, bonds,

commodities, currencies, and volatility. We quantify the even-order CRP by developing a sim-

ple strategy of shorting ETFs with opposite betas. The strategy mimics liquidity provision, earns

Sharpe ratios above one, and can be used as a simple gauge of global market stress in real time.

Our results have implications not only for factor models but also for portfolio theory, momentum

strategies, option pricing, hedge funds, and leverage in general.
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1. Introduction

Many episodes of market turbulence, including the March 2020 COVID-19 crisis, show that

asset returns are not normally distributed and that higher-order moments play an important role

in financial markets. These facts raise two crucial questions: (1) What are the implications of

higher-order moments for standard finance models? (2) How can the risk premium of higher-

order moments across asset classes be measured in a tractable way? In this paper, we study these

questions by revisiting single-factor models, a basic finance setting in which asset returns are a

linear function of one factor. We develop a novel methodology to measure the risk premium of

higher-order moments based on assets satisfying the single-factor setting, and quantify this risk

premium empirically across asset classes. Our results have implications not only for factor models

but also for portfolio theory, momentum strategies, option pricing, and leverage in general.

To fix ideas, assume a world where asset returns load on one factor, which is perfectly observ-

able (addressing Roll (1997) critique). In addition, asset betas are known and constant over time

(addressing Hansen and Richard (1987) critique). What are the returns of such constant-beta as-

sets in this idealized single-factor setting, especially in a world with high leverage and higher-order

moments? We show that the standard single-factor logic, which says that an asset’s risk premium

is linear in the risk premium of the factor, applies only if the factor returns are lognormal as in

a Black and Scholes (1973) world. Single-factor linear pricing generally fails in any other setting

with non-zero higher-order moments. In addition, we show that leverage exposes assets to higher-

order moments and mimics momentum trading in the direction of factor movements.

To understand the failure of single-factor models in a setting with higher-order moment risk

and the exposure of assets to this risk, consider the definition of beta as leverage with respect

to the single factor. There are two methods to create a leveraged asset. The first one, a “static

strategy”, is to invest a fraction β of the portfolio in the factor with price Pt and a fraction 1−β in

the safe asset and then do nothing as Pt changes. An example of such strategy is futures trading,

which involves a leveraged exposure to a given asset by posting margin that is smaller than the

value of the asset. The drawback of the static strategy is that it becomes more risky when the

factor moves against the investor since leverage rises. The static strategy also exposes investors

to bankruptcy risk: if Pt drops by more than 1/β (for β > 0), the strategy is bankrupt. The second

method, “dynamic rebalancing”, is to trade dynamically in order to keep the leverage constant atβ.

This method reduces bankruptcy risk since it maintains a constant leverage irrespective of factor

changes. Thus, leverage does not increase when Pt moves against the investor. An example of

dynamic rebalancing in practice is the trading by leveraged ETFs, which we explain below.

The reduction in bankruptcy risk comes at a cost since dynamic rebalancing requires trading

continuously. This exposes the strategy to higher-order moments of the factor. For example, we

show that assets with β > 1 or β < 0 conduct “destabilising”, “momentum” trades which demand

liquidity. Such strategies mechanically buy after price increases and sell after price decreases.
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We show that higher (absolute) β exposes these assets disproportionately more to higher-order

moments. To the contrary, assets with 0 < β < 1 conduct “stabilizing”, “rebalancing” trades which

provide liquidity and are less exposed to higher-order moments. Standard single-factor models

(e.g., the CAPM) fail to account for these exposures and assume that dynamic rebalancing is cost-

free and that β is unaffected and constant over any period of time.

To quantify the exposure to higher-order moments and illustrate the failure of single-factor

pricing, we use the concept of cumulants, which allows us to deal with non-normality in a tractable

way. Cornish and Fisher (1938) describe cumulants in a general setting. Martin (2013) is one of the

first researchers to apply cumulants in finance. Cumulants are simple and convenient way to sum-

marise the main characteristics of a given distribution function. They are similar to the moments

of a distribution, but are more intuitive to work with compared to non-central moments. Cumu-

lants are also more convenient to use in the case of log-returns that appear over multiple periods

in our setting and to model linear combinations of random variables. The first cumulant is the

mean of the distribution; the second is variance σ2; the third and fourth cumulants are skewness

times σ3 and excess kurtosis times σ4. Higher-order cumulants are more complicated polyno-

mial functions of the moments. For a lognormal distribution, there are only two cumulants, mean

and variance, whereas for any other distribution, there are also higher-order cumulants beyond

variance.

We show that in a non-lognormal setting, the risk premium on an asset is the sum of a linear

term in asset’s β and a non-linear one, which depends on higher-order powers of β, weighted by

differences in physical and risk-neutral cumulants of the factor. We call the sum of these differ-

ences the cumulant risk premium (CRP). Intuitively, since assets are leveraged loadings on the

factor and need to rebalance when the factor moves, this exposes them to higher order cumulant

risk. For example, we show that momentum strategies are positively exposed to implied variance

(vega) and negatively exposed to realized variance (gamma). In a lognormal world, the net ex-

posure is zero since variance is the same in the physical and risk-neutral worlds. As a result, the

non-linear term in an asset’s risk premium is zero, and simple linear beta pricing works for log-

normal returns. In a non-lognormal setting however, assets are exposed not only to the variance

premium (difference between physical and risk-neutral variance) but also to higher-order cumu-

lant differences. This exposure makes the non-linear term different from zero and leads to the

failure of simple linear beta pricing. In addition, we show that for larger β, the non-linear term

dominates the linear one since the weight of higher-order terms generally increases polynomially

in β. Thus, highly-levered strategies are extremely exposed to high-order cumulant differences. In

contrast, even if higher-order cumulants are non-zero, strategies with small leverage (0 <β < 1) are

less exposed to them since their loadings converge to zero much faster. This makes these strategies

much less risky, even in a non-lognormal setting.

Our results explain why standard single-factor models like the Merton (1992) version of the
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CAPM work well over any period of time and are not affected by higher-order moments. The cru-

cial assumption of lognormality significantly simplifies such models and eliminates the need to

deal with the complex effects arising from higher-order moments. However, empirical evidence

shows that higher-order moments matter in practice and that financial assets have returns far dif-

ferent from lognormality, which makes the non-linear term in asset’s risk premium especially im-

portant for highly-levered strategies. The many blow-ups of levered strategies in practice (e.g., the

portfolio-insurance-induced stock market crash of 1987, the LTCM collapse, the financial crisis in

2008, and the Covid crash of March 2020) are a clear evidence of these effects.

We illustrate the failure of linear beta pricing and the effects of higher-order cumulants by re-

laxing the two crucial assumptions of lognormal models: constant volatility and no jumps. We

then analyse two non-lognormal settings: stochastic volatility (the Heston (1993) model), and

Poisson jumps. Intuitively, if state variables have their own risk premiums like variance in the

Heston (1993) model, the risk premium on the asset is non-linear in the premium of the factor.

An additional source of non-linearity which arises with jumps is due to the inability of investors

to hedge returns on leveraged assets in a continuous way. This creates unhedgeable bankruptcy

risks. When the factor has jumps, dynamic rebalancing cannot generally hedge jump payoffs be-

cause investors are unable to rebalance during the jump. Since the jump return can be worse than

−100% for some large ∣β∣, this creates bankruptcy risk which is reflected in the CRP.

In the last part of the theoretical section in the paper, we illustrate that the exposure of constant-

β assets to higher-order cumulants can be used to construct a payoff that measures the risk of

higher-order even cumulants (variance, scaled kurtosis, etc.). A simple “short-both” strategy of

short-selling equal amounts of two constant-β assets with opposite β-s (e.g., -1 and 1) measures

the even-order CRP (CRPE) (weighted by βn , n ≥ 2) since the exposure to odd-order cumulants

is cancelled out. The strategy approximates liquidity provision since it takes the perspective of a

market maker trading against assets with constant β-s. We show that this type of liquidity provi-

sion is then exposed to higher-order even cumulants. The short-both strategy can also be used

as a bet on the difference between all even-order physical and risk-neutral cumulants, similar to

variance-risk premium (VRP) trades which are bets on the second-order cumulant only.

Next, we turn to the empirical analysis. In practice, it is not trivial to find a setting that satisfies

the main assumptions of the idealized single-factor environment and allows us to test our theo-

retical results. Usually, single-factor models like the CAPM are tested using stock returns. There

are, however, several critiques of such an approach. First, it is unlikely that a firm’s beta is con-

stant over time and therefore, single-factor models would fail unconditionally (Jagannathan and

Wang (1996)). Second, it is nontrivial to define all factors to which a particular stock’s return is

exposed. Third, even if the stock is exposed to one factor only (the market), this factor itself is

non-observable and hence the single-factor model cannot be tested properly (Roll (1997)).

Instead of pursuing the usual factor-model approach, we take a different route. To test our
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analysis empirically, we make use of a setting which overcomes the three critiques outlined above:

we use assets that have constant β over time and by construction are exposed to only one factor,

which is perfectly observable. These assets are leveraged ETFs: securities that provide multiples

of the daily return on their benchmark index. For example, a double-leveraged ETF (β = 2) should

return 10% if the benchmark index goes up by 5%. Leveraged ETFs mechanically have constant β

equal to their leverage and track the returns of one factor only (their benchmark) by doing dynamic

rebalancing. An additional benefit of our empirical setting is that we go beyond the traditional

equities-based factor-model analysis and apply our methodology across several asset classes: eq-

uities, bonds, commodities, currencies, and volatility (VIX).

Our empirical results show that constant-β assets are exposed to higher-order cumulants of

the factor across all asset classes studied. The CRP is different from zero and linear beta pricing

fails across all assets. The average CRP is -7.4% annualized across assets and is significant share

(104%) of the factor risk premium (FRP) in each asset. In addition, we show non-parametrically

that higher-order cumulant risk premiums beyond that on variance are needed to explain the em-

pirical patterns in most assets.

For the short-both strategy, we find that the CRPE is negative across the majority of assets,

which shows that liquidity providers earn positive expected returns. The average CRPE is -4.4%

annualized, and spikes beyond 20% in many asset classes in times of market stress like the COVID-

19 period. The premium is also significant relative to the FRP across assets (in absolute terms):

e.g., it is 139% of the FRP for oil, 46% for the S&P 500 index, and 51% for long-term Treasuries.

The short-both strategy returns are highly positively correlated with VIX. The Sharpe ratios of the

strategy are above one in many asset classes, consistent with the idea that liquidity providers are

compensated for their risk exposure to even-order cumulants.

We show that the first principal component (PC) of the short-both strategy returns across

assets can be used as a simple index of global market stress. There are several advantages of

this metric relative to other commonly-used measures of market turbulence like VIX or various

spreads like the TED spread (the spread between 3-month LIBOR in USD and the interest rate

of Treasury bills). First, in contrast to VIX and other single-asset-based indexes, our measure is

based on several asset classes and takes the perspective of a liquidity provider who is exposed to

higher-order cumulants globally. Our measure increases when even-order risk-neutral cumulants

rise above physical ones in all markets studied. We show that our metric drives out VIX in explain-

ing returns of non-equity assets and is particularly important in assets with non-linear payoffs like

options and CDS. Second, our index is simple to calculate also in real-time from observed prices

of leveraged ETFs. It does not involve more complex and less liquid option portfolios like VIX or

option-based skewness and kurtosis indexes. Third, we do not make any assumptions about the

driving distribution of asset returns and “let the data speak”. Our index can be applied as measure

of global market stress in further research. The short-both strategy returns can also be used as an
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indicator of market stress in a particular asset class in real time.

Several factors can explain the existence of the CRP. Market frictions that prevent investors

from trading continuously and lead to jumps are likely to create a non-zero premium on higher-

order cumulants. Risk limits, de-leveraging (e.g., Adrian and Shin (2010)), or crowded trades could

create price spirals at times of large price movements and cause extreme values of the factor’s

return distribution, increasing the premium for exposure to higher-order cumulants. Limits to

arbitrage (e.g., Shleifer and Vishny (1997)) can also explain the existence of the CRP in convergence

trades (which are similar to trades involving assets with opposite β) since convergence traders’

wealth effect can amplify price changes and prove destabilizing (Kyle and Xiong (2001) and Xiong

(2001)). Cumulants can also arise due to trading patterns of momentum traders. For example, the

daily rebalancing of leveraged ETFs to keep constant β can amplify price movements and increase

cumulants if this rebalancing is large part of the market (Todorov (2019), Tuzun (2013)). Finally, the

“natural” distribution of the factor’s return could be one with non-zero higher-order cumulants:

for example, it is reasonable to assume that volatility (VIX) has a positively-skewed and highly

non-normal distribution with jumps.

Implications. Our main results have implications for factor models and portfolio theory. We show

that multi-factor models could fit asset returns better than single-factor models purely because the

additional factors capture the contribution of higher-order cumulants of the single factor. The fact

that some standard factors like momentum are positively correlated with even-order cumulant

differences, is consistent with this logic. This result has implications for a vast financial literature

studying factor models to explain asset returns. Instead of adding more linear factors, our theory

suggests that researchers need also to account for the higher-order cumulants of the single-factor

(e.g., the market portfolio). In addition, a proper test of single-factor models should first compare

the difference between cumulant-generating functions in the physical and risk-neutral distribu-

tions before testing linear beta pricing.

Our approach could also help explain the flatness of the securities market line (SML). Our

results show that high-beta assets, which conduct momentum trades, generally have negative CRP,

which makes their returns lower than what is predicted by the CAPM. In contrast, assets with small

betas should have higher returns if their CRP is positive, which would make the overall SML flatter.

The findings in this paper have implications also for momentum strategies and leverage in

general. Our findings show that trend-chasing “momentum” strategies are exposed to higher-

order cumulants, which could explain why the returns on these strategies have sudden crashes

and exhibit higher-order moments.

Our results have also implications about the risk of higher-order cumulants. A common

misperception is that this risk declines as the number of higher-order terms increases, and thus

higher-order moments beyond kurtosis are rarely researched in finance. This misperception is

driven by the discounting of higher-order cumulant differences with n!, which makes the contribu-
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tion of higher-order terms extremely small for large n. Our theory emphasizes that this argument

is true for unleveraged strategies but is significantly flawed for leveraged strategies, for which the

contribution of higher-order cumulants generally increases up to the β-th order cumulant. For ex-

ample, the loadings of a β = 10 strategy peak at the 10-th order cumulant difference with a loading

above 2700 on that difference. Thus, more leveraged strategies are more exposed to higher-order

cumulants, and even tiny changes in these cumulants are magnified.

These results have implications for agents like hedge funds who use leverage to exploit mis-

pricings between similar assets. These agents often use strategies that involve assets with oppo-

site sensitivities to a given factor: for example, convergence trades or relative value strategies (e.g.,

spot-futures basis, see Aramonte et al. (2021)). Our results show that such trades are risky because

they are exposed to the CRPE, even in the case of no limits to arbitrage or noise trader risk (e.g.,

Shleifer and Vishny (1997)).

Our findings have implications also for policy makers and practitioners. The first principal

component of the short-both strategy can be a useful gauge for policy intervention since the in-

dicator increases when the CRPE rises globally, which could be a proxy for times when capital

constraints are binding. Our empirical results illustrate also that models without compensation

for higher-order cumulant risk cannot explain the return dynamics across all asset classes stud-

ied. Our paper also draws attention to a relatively underexplored empirical setting for studying

factor models and higher-order cumulant risk: leveraged ETFs. We show that these assets can be

used to construct bets on higher-order cumulants in a cost-efficient way.

Related literature

Our paper contributes to the literature on CAPM and factor models. Many studies show that

the CAPM fail in practice (e.g., Stambaugh (1982), Fama and French (1992), Lakonishok et al.

(1994), Roll and Ross (1994), Fama and French (1995), Ang et al. (1997)). Roll (1997) argues that

the CAPM can never be tested properly since the market portfolio is hard to estimate. Hansen and

Richard (1987) and Jagannathan and Wang (1996) argue that the CAPM would not hold uncondi-

tionally if betas are time-varying. Several studies have extended the standard single-factor CAPM

equation to accommodate preference for skewness (Kraus and Litzenberger (1976), Harvey and

Siddique (2000)) and co-skewness (Schneider and Zechner (2020)) in the pricing kernel. While

CAPM is perhaps the most prominent example of a one-factor model used in equities, single-

factor models are also found to explain the returns in other asset classes, such as currencies (Lustig

et al. (2011)). The existing studies on factor models, and the CAPM in particular, focus on modify-

ing the pricing equation with more factors or question the exact empirical implementation of the

CAPM. There is, however, a lack of research on the return properties of assets that satisfy the ideal-

ized single-factor setting in the sense that they have constant betas and are exposed to one factor

only. This question is particularly interesting in a world with non-zero higher-order cumulants. In

this paper, we fill this gap in the existing literature.
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The research presented here is related to the macro-finance literature on rare disasters. Rietz

(1988), Barro (2006), Barro et al. (2013) and Longstaff and Piazzesi (2004) show that large declines

in aggregate consumption growth (macroeconomic disasters) can help explain the equity risk pre-

mium. From a macro-finance prospective, our results show the implications for asset returns in

a setting where consumption growth is non-normally distributed. We contribute to this literature

by showing in a model-free way that processes with non-zero higher-order cumulants like those

with jumps, are needed to explain the empirical findings across most asset classes studied.

Our study is also related to the literature on asset pricing with stochastic volatility and higher-

order moments. Martin (2013) applies cumulants to extend the Epstein-Zin lognormal consumption-

based asset-pricing model and allow for general independent and identically distributed (i.i.d.)

consumption growth. Backus et al. (2011) use cumulants to show that options imply smaller prob-

abilities of extreme outcomes than the estimates from macroeconomic data. Han and Kyle (2017)

develop a rational expectations equilibrium model to show that even modest differences in higher-

order beliefs may have large price effects. Bakshi et al. (2003) propose a framework to recover

higher-order risk-neutral moments from option prices and to connect them to physical moments.

Liu et al. (2003) show that jump risk significantly changes the optimal portfolio choice. Several pa-

pers analyse models that combine jumps with stochastic volatility (Pan (2002), Duffie et al. (2000),

Eraker (2004), Bakshi and Kapadia (2003)). Carr and Wu (2009) show that variance risk premium is

significant in US equities, whereas Dew-Becker and Giglio (2022) find that the premium is close to

zero after 2010. Bollerslev and Todorov (2011) and Bollerslev et al. (2015) show that the compen-

sation for jump risk accounts for a large fraction of the VRP. We show that a non-zero CRP makes

linear pricing inapplicable.

Our paper contributes also to the literature on leveraged ETFs. Cheng and Madhavan (2009)

show that the returns on leveraged ETFs are path-dependent, whereas Todorov (2019) illustrates

that leveraged ETFs transmit non-fundamental price pressure in VIX and commodities. Our paper

contributes to the field by showing that leveraged ETFs can be used to study factor models and to

measure the risk of higher-order cumulants.

The rest of the paper is organized as follows. Section 2 illustrates the basic concepts—including

constant beta assets, cumulants, linear pricing—and introduces the CRP. Section 3 studies constant-

β strategies and shows that they can be used to measure the CRP. Section 4 presents the empirical

results. Section 5 studies the economic implications of our main results and presents some exten-

sions. Section 6 concludes.

2. Constant Beta Assets, Linear Beta Pricing, and Cumulants

This section lays out the fundamental concepts used in our paper: constant beta assets, linear

beta pricing, and cumulants.
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2.1. Two methods to construct leveraged assets

There are two ways to define a leveraged asset. The first method, “static strategy”, is to invest

fraction β of a portfolio in the factor Pt and fraction 1−β in the safe asset, and then do nothing

as Pt changes. The drawback of the static strategy is that it becomes more risky when the fac-

tor moves against the investor since leverage rises. The static strategy also exposes investors to

bankruptcy risk: if Pt drops by more than 1/β (for β > 0), the strategy is bankrupt.1 The second

method, “dynamic rebalancing”, is to trade dynamically in order to keep the leverage constant at

β. This method reduces bankruptcy risk since it maintains a constant leverage irrespective of fac-

tor moves. We define assets implementing dynamic rebalancing as “constant-beta assets” since

they aim to keep constant β.

Let RT denote the gross return on the factor (with β = 1), and let R f ,T denote the gross return

on the risk-free asset (with β = 0). Since the constant beta assets rebalance continuously, they

achieve a payoff which is an exponential function of the gross unlevered return. Let PT (β) ∶=

Rβ
T R1−β

f ,T ∶= er f ,T+β(rT−r f ,T ) denote this payoff over any period T . Let P0(β) ∶=G∗
T (β) denote the cost

of buying an asset which pays off PT (β). 2 The returns on constant-beta assets can be written in

several equivalent ways:

RT (β) = erβ,T =
PT (β)

P0(β)
=

er f ,T+β(rT−r f ,T )

G∗
T (β)

, with rβ,T ∶= r f ,T +β(rT − r f ,T )− log G∗
T (β). (1)

The function G∗
T (β) defines the prices of the derivative securities as a function of their leverage β.

Since E∗[RT (β)/R f ,T ] = 1 for the risk-neutral distribution, we infer E∗[eβ(rT−r f ,T )] = G∗
T (β). This

means that the function G∗
T (β) is the moment-generating function (MGF) for the risk-neutral dis-

tribution of the random excess log-return rT − r f ,T . Since the moment-generating function of a

random variable defines the random variable uniquely, the function G∗
T (β) uniquely defines the

risk-neutral distribution for the random log-return rT and therefore the random return RT . For this

risk-neutral distribution to define arbitrage-free pricing, it is also necessary that it be an equiva-

lent martingale measure. It is a martingale measure since E∗[e−r f ,T RT (β)] = 1 by construction.

Intuitively, it is “equivalent” if the risk-neutral distribution implied by G∗
T (β) agrees with the zero-

probability events of the physical distribution, which has moment-generating function defined by

GT (β).

1For 0 ≤ β ≤ 1, the return on the portfolio never blows up as long as the risky and safe assets have limited liability

(Rt > 0 and R f ,t > 0).
2We use log-returns in line with most papers in the literature (e.g., Barro (2006), Martin (2013) among many oth-

ers). This allows writing the single-factor equation for an arbitrary horizon T . Note also that the standard extension

of the CAPM over multiple periods is typically the Merton (1992) version of the model that uses log-returns.
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2.2. Linear Beta Pricing

Define “linear beta pricing” as E[RT (β)] = er f ,T+βπT , where πT is the risk premium on the

factor RT . Linear beta pricing says that assets are priced by discounting the expected return at a

continuously compounded rate which is linear in the asset’s risk, as measured by its beta: P0(β) =

e−r f ,T−βπT E[PT (β)]. Using P0(β) =G∗
T (β), we can rewrite linear beta pricing in terms of MGFs as:

GT (β) = eβπT G∗
T (β). (2)

Our emphasis on log-returns and the above condition for linear beta pricing suggests that impor-

tant intuition is associated with the log of the MGF GT (β).

2.3. Cumulants

The cumulant-generating function (CGF) is defined as the logarithm of the MGF:

c(β) = logG(β) = logE[eβX ] . (3)

Recall that the n-th order moment of a random variable X is simply gn = E[X n]. Applying a Taylor

expansion of the moment-generating function (MGF), G(β) = E[eβX ] around zero, is a convenient

way to combine all of the moments of X into a single expression:

G(β) = E[eβX ] = 1+
∞
∑
n=1

gnβn

n!
.

Similarly to the MGF G(β), the CGF c(β) can also be expanded as a power series in terms of its

cumulants:

c(β) =
∞
∑
n=1

κnβn

n!
.

The n-th order cumulant κn is obtained by computing the n-th order derivative of the CGF c(β)

at zero: for example, we have κ1 = c ′(β)∣β=0 =
E[X e0X ]
E[e0X ] = E[X ].

Cumulants are convenient to use for three reasons. First, higher-order cumulants are easier to

work with compared to non-central moments. Second, since the log of the expected value appears

in the condition for linear beta pricing derived in Theorem 1 below, it is more convenient to use

the CGF than the MGF. Third, the CGF of the sum of independent and identically distributed (i.i.d.)

random variables is the sum of the individual CGFs. This feature of the CGF makes it convenient

to model combinations of random variables, e.g., Poisson jumps with a different distribution for

the size of jumps.3 To illustrate the CGF, we next derive it for some simple distributions.

3In fact, this feature can also be used to prove the central limit theorem with cumulants.
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Example 1: CGF for the normal distribution. For a normally distributed random variable X ∼

N (µ,σ2), it is straightforward to show that the cumulant-generating function is quadratic in β:

c(β) =βµ+ 1
2β

2σ2.

The expression shows that κ1 = c ′(β)∣β=0 is the mean µ, κ2 = c ′′(β)∣β=0 is the variance σ2, and

κn = 0 for all n > 2.4 The normal distribution is the only one with a finite number of non-zero

cumulants (e.g., Marcinkiewicz (1935)). The latter fact is yet another reason why the CGF is more

convenient to work with compared to the MGF, since a normal distribution with non-zero mean

has generally non-zero higher-order non-central moments of all orders, which show up in the

Taylor series expansion of the MGF.

Example 2: CGF for the Bernoulli distribution

Recall that a Bernoulli random variable takes the value of 1 with probability p and 0 with

probability 1−p. Then from Equation 3, we obtain:

c(β) = log(peβ+(1−p)) = log(1+p(eβ−1)) .

Then, κ1 = p, κ2 = p(1−p), and κn = p(1−p)
dκn−1

dp for all n > 2.

Example 3: CGF for the Poisson distribution

Poisson random variable has a probability distribution defined by Prob[X =n] = e−λλn

n! , where

λ is the arrival rate (and the mean and variance of the distribution). Then:

c(β) = log(e−λ
∞
∑
n=0

λneβn

n!
) = log(e−λeλeβ) =λ(eβ−1).

All cumulants are equal to λ: κn =λ for all n ≥ 1.

2.3.1. Example 4: Compound Poisson Distribution (CPP)

Suppose log X t follows a compound Poisson process which has jumps r J
n arriving randomly

at rate λ. Using the independence of the CGF of jumps and that of the Poisson process, it is easy

(see Section A.1 in the Appendix for an example) to derive the CGF of the CPP over T periods:

cT (β) =λT (ec J(β)−1),

4For the third-order cumulant, we have κ3 = g3σ
3
= 0, since g3 = 0 for the normal distribution. The forth-

order cumulant of the normal distribution is zero even though the corresponding central moment is not zero:

κ4 = (g4 −3)σ4
= 0, since g4 = 3 for the normal distribution. In comparison, the power series expansion of the MGF

gives more complicated non-central moments g0 = g1 = µ, g2 = σ
2
+µ2, and higher-order non-central moments are

more complicated functions of the central moments (see, e.g., Ouimet (2021)).
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where c J(β) is the CGF of the individual jump process.

Cumulants provide a tractable framework to quantify the properties of a distribution. The

examples in this section show how to obtain the CGF for some popular distributions but the CGF

is not always easy to derive. Some processes require more intensive computations to calculate

cumulants over multiple periods and might not have a CGF in a simple closed form.

2.4. Risk premium through the lens of the CGF

The CGF provides a convenient way to compute risk premiums and to define linear beta pric-

ing for a general distribution. The risk premium on an asset with leverage β can be expressed as

the difference between physical and risk neutral cumulants:

Risk Premium = cT (β)−c∗T (β) =
∞
∑
n=1

βn(κn,T −κ
∗
n,T )

n!
. (4)

This result is easy to obtain by taking logs in the definition of linear beta pricing in Equation 2.

Linear beta pricing in terms of CGF.. Linear beta pricing is valid if and only if this risk premium,

cT (β)− c∗T (β) =∑
∞
n=1

βn(κn,T−κ∗n,T )
n! is equal to βπT for all β. Since βπT = cT (1)− c∗T (1), linear beta

pricing holds if and only if

cT (β)−c∗T (β) =β(cT (1)−c∗T (1)). (5)

Let us illustrate linear beta pricing in a one-period (T = 1) example with lognormal returns.

The risk-neutral CGF c∗(.) and physical CGF c(.) are given by:

c(β) = logE[eβ(r−r f )] =β(π− 1
2σ

2)+ 1
2β

2σ2, c∗(β) = logE∗[eβ(r−r f )] =−1
2βσ

2+ 1
2β

2σ2.

Then, the risk premium on the asset is c(β)−c∗(β) =βπ and is linear in π for all β.

The theorem below shows that linear beta pricing is valid in a general setting with any dis-

tribution and over any period if and only if the difference between the physical and risk-neutral

cumulants of the leveraged asset is a linear function of leverage β. We define the Cumulant Risk

Premium (CRPT ), ∑∞n=2
κn,T−κ∗n,T

n! , as the sum of all the terms in the risk premium except for the

term which is linear in β. This definition allows us to split the factor risk premium πT into a first-

order log risk premium (LRP), and the higher-order CRP:

πT = cT (1)−c∗T (1) = E(logRT )−E∗(logRT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Log risk premium (LRP)

+
∞
∑
n=2

κn,T −κ
∗
n,T

n!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cumulant risk premium (CRP)

.
(6)

The LRP captures the first-order component of the risk premium (mean), whereas the CRP cap-

tures higher-order components. The first term of C RPT , given by 1
2(κ2,T−κ

∗
2,T ) = 1

2 (Var[logRT ]−Var∗ [logRT ]),

is related to the familiar variance risk premium, V RPT = E[RVT ]−E∗ [RVT ], where RVT is realized
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variance of the factor. All terms with n > 2 capture the gap between higher-order moments of the

distribution.5

If C RPT (β) = ∑
∞
n=2

(βn−β)(κn,T−κ∗n,T )
n! is non-zero for some asset, the asset’s risk premium is

non-linear in the factor risk premium since it depends on higher-order CRP terms, and hence

linear pricing does not hold. We formalize this statement in the theorem below.

Theorem 1. Linear beta pricing is valid with any distribution and over any period T if and only if

the CRP is identically zero for all β:

C RPT (β) =
∞
∑
n=2

(βn −β)(κn,T −κ
∗
n,T )

n!
= 0 for all β. (7)

Linear beta pricing therefore requires that all higher order cumulants in the physical and risk neu-

tral distributions be identical: κn,T =κ∗n,T for all n ≥ 2.

Proof. As we showed before, linear beta pricing can be stated in terms of CGFs as

cT (β)−c∗T (β) =β(cT (1)−c∗T (1)) .

Using the definition of the CGF, we can rewrite the equation in terms of cumulant differences:

∞
∑
n=1

βn(κn,T −κ
∗
n,T )

n!
=β

∞
∑
n=1

κn,T −κ
∗
n,T

n!

⇐⇒
∞
∑
n=2

(βn −β)(κn,T −κ
∗
n,T )

n!
= 0.

Equation 7 shows that we can rewrite the risk premium on the asset as a sum of a linear com-

ponent and a non-linear C RPT (β):

cT (β)−c∗T (β) =β(cT (1)−c∗T (1))+C RPT (β). (8)

Intuition for Theorem 1: The theorem proves that for linear beta pricing to be valid, the shape of

the physical and risk-neutral distributions (as characterized by higher-order cumulants) should be

the same for any leveraged asset. As we saw above, this condition is satisfied for the Black-Scholes

model since with a lognormal return, there is only one higher-order cumulant (variance), which

is the same under the physical and risk-neutral measures. Cumulants above the second are all

zero as we showed above, and hence the βn −β terms do not make the polynomial in Theorem 1

5The CRP is closely related to entropy: it is equal to the difference between physical and risk-neutral entropy

cT (1)−κ1,T −(c∗T (1)−κ∗1,T ).
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non-linear in β. This fact makes the assumption of lognormal distribution convenient for using

linear beta pricing models like the CAPM. In practice, this assumption is empirically unrealistic;

we show in section 4 that financial assets’ returns exhibit occasional jumps or other deviations

from lognormality, which makes the classic CAPM equation invalid.

Our theory shows that in order to test linear beta pricing models, researchers need to first ver-

ify that the shape of the physical and risk-neutral distributions is the same by computing the CGF.

This result has implications for a vast financial literature that tests the CAPM, but implicitly ig-

nores the impact of higher-order cumulants by using the classic CAPM equation, which assumes

that the underlying asset’s return process follows the lognormal distribution. The fact that the

CAPM fails in those tests does not necessarily mean that more factors are needed to explain as-

set returns. Even in our setting, where asset returns load on one factor only, the CAPM still fails

because of the impact of higher-order cumulant differences rather than additional linear factors.

Next, we briefly illustrate how to check the condition of Theorem 1 in several standard set-

tings: Black–Scholes, stochastic volatility, and jumps.

2.5. CRP in different settings

2.5.1. Black–Scholes

Under the standard Black–Scholes assumptions, the market return follows a geometric Brow-

nian motion (GBM) with physical mean µ and constant volatility σ. Then, by applying the diffu-

sion invariance property thatσmust be the same in the risk-neutral and the physical distributions

for there to be no arbitrage, we obtain

κ2,T =κ∗2,T =σ2T ; κn,T =κ∗n,T = 0 for all n > 2. (9)

Hence, C RPT (β) = 0 for all β and linear beta pricing holds as per Theorem 1. The same holds also

when σT is a deterministic function of time (not simply constant).

2.5.2. Stochastic volatility

To account for non-normality of asset returns, one strand of the literature relaxes the assump-

tion of constant volatility and models volatility as a stochastic process. We illustrate this using the

standard stochastic volatility model of Heston (1993). Under the physical measure, the log-market

price process logPt and its variance vt follow

dlogPt = (µ− 1
2 vt) dt +

√
vt dB 1

t ,

dvt =λ(v̄ − vt) dt +σ
√

vt dB 2
t ,

where λ is the mean-reversion speed, v̄ is the long-term mean of volatility, σ is now the volatility

of volatility, and B 1
t , B 2

t are correlated Brownian motions dB 1
t dB 2

t = ρ dt . Under the risk-neutral
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measure, the corresponding equations are

dlogPt = (r f −
1
2 vt) dt +

√
vt dB 1∗

t ,

dvt =λ
∗(v̄∗− vt) dt +σ

√
vt dB 2∗

t .

In the Heston model, the CGFs are

cT (β) =µβT +a(β,T )+b(β,T )vt ,

c∗T (β) = r f βT +a∗(β,T )+b∗(β,T )vt ,
(10)

where a(β,T ), b(β,T ), a∗(β,T ), and b∗(β,T ) are complicated functions of the model parame-

ters. Closed-form derivation are in subsection A.4.

For an unlevered asset (β = 1), we obtain a(1,T ) = a∗(1,T ) = b(1,T ) = b∗(1,T ) = 0 and thus

cT (1)− c∗T (1) = (µ− r f )T . In other words, even in this stochastic volatility setting, the factor risk

premium πT , given by (µ−r f )T , does not depend on variance (as in the continuous-time CAPM).

For an asset with arbitrary leverage (β ≠ 1), linear beta pricing breaks down. Since generally

λ ≠λ∗ and v̄ ≠ v̄∗, we have that a(β,T )−a∗(β,T )+(b(β,T )−b∗(β,T ))vt ≠ 0. This implies that the

risk premium cT (β)− c∗T (β) = β(µ− r f )T +a(β,T )−a∗(β,T )+(b(β,T )−b∗(β,T ))vt is different

from β(cT (1)− c∗T (1)). Fig. 1 shows that cT (β)− c∗T (β) is not linear in β for typical values of the

model parameters. Hence, the condition of Theorem 1 is not satisfied and linear beta pricing does

not work since CRPT (β) ≠ 0.6

Expanding the premium for a general leveraged asset shows that assets with 0 < β < 1 load

negatively on the VRP E[vT ]−E∗ [vT ], whereas those with β < 0 or β > 1 load positively on the

premium. In addition, the loadings on higher-order cumulant premiums explode for assets with

large β < 0 or β > 1, whereas the loadings for assets with 0 < β < 1 converge to zero for larger n.

The loadings are zero and hence there is no CRPT (β) for the unlevered risky asset (β = 1) and the

risk-free asset (β = 0). The premium on a leveraged asset is

cT (β)−c∗T (β) =β[µ− r f ]T + 1
2β(β−1)(E[vT ]−E∗ [vT ])+

∞
∑
n=3

(βn −β)(κn,T −κ
∗
n,T )

n!
.7 (11)

Empirically, the VRP is typically negative (see, e.g., Carr and Wu (2009)) since investors hedge

against variance risk and inflate E∗(vT ) relative to E[vT ]. In the context of the Heston (1993)

model, this typically means that variance has higher mean and a slower rate of mean reversion

under the risk-neutral measure (v̄ < v̄∗, λ∗ < λ). The fact that the VRP is negative means that if

6The higher-order cumulants of the leveraged asset can be found by evaluating the n-th order derivatives

a(n)(β,T )∣β=0 and b(n)(β,T )∣β=0, which shows that leveraged assets load on the variance risk premium and on

higher-order cumulants.
7Note that κ2,T = E[vT ] in this case since the logreturn on the factor follows a diffusion.
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higher-order cumulant risk premiums are small (i.e., the last term in Equation 11 is small), as-

sets with 0 < β < 1 have larger returns than in a world with no VRP (e.g., a Black-Scholes setting),

whereas those with β < 0 or β > 1 have smaller returns. We return to this point when discussing the

flatness of the securities market line later in Section 5.

It is not surprising that cT (β)−c∗T (β) ≠β(cT (1)−c∗T (1)) in the Heston model because the VRP

influences also higher-order cumulants. As we outlined in the introduction, κ3 = skewness ⋅ v3/2,

κ4 = kurtosis⋅v2, and similarly for higher-order cumulants. This means that the difference between

higher-order physical and risk-neutral cumulants loads on the difference between physical and

risk-neutral v , or, in other words, loads on the VRP.

2.5.3. Jumps

Another way of modelling non-normal returns is to assume that the factor follows a non-

smooth jump process. A typical example of such a setting with non-zero higher-order cumulants

assumes the log-return on the factor is the sum of a normally distributed component and Poisson

jumps with a normal distribution. Each period, J normally distributed jumps with mean −b and

variance s2 arrive, where J ∼ Poisson(λ). This setting is commonly used in option pricing (e.g.,

Merton (1976)) and macro-finance (e.g., Martin (2013), Backus et al. (2011)), and it is a particular

case of the rare disaster setup in Barro (2006). The CGF of the log-return on the asset over T periods

in this case is (see Section A.2 in the Appendix)

cT (β) = (µ− 1
2σ

2)βT + 1
2σ

2β2T +λT (e−bβ+1
2 s2β2

−1) (12)

and
cT (1)−c∗T (1) = (µ− r f )T +T (λ(e−b+s2/2−1)−λ∗(e−b∗+s2/2−1))

κ1,T −κ
∗
1,T = (µ− r f +λ

∗b∗−λb)T

κn,T −κ
∗
n,T = (−1)n (λbn −λ∗(b∗)n)T for all n ≥ 2,

(13)

where λ∗ and b∗ are the mean arrival rate and the size of the jump under the risk-neutral

measure, respectively. C RPT (1) is T (λ(e−b+s2/2−1+b)−λ∗(e−b∗+s2/2−1+b∗)). In the general

case when λ∗ ≠λ and b ≠ b∗, C RPT (1) is different from zero. In other words, if agents disagree on

the intensity and the size of jumps under the physical and risk-neutral worlds, the risk premium

on the factor C RPT (1) is different from zero. This distinguishes the jump model from the Heston

model since even the premium of the factor depends on higher-order cumulants, in contrast to

the Heston model. Equation 7 is not satisfied if λ∗ ≠λ and b ≠ b∗ for any β because

∞
∑
n=2

(β−βn)((−1)n (λbn −λ∗(b∗)n)T )

n!
≠ 0 (14)

and hence, linear beta pricing does not hold with jumps. Fig. 1 illustrates this point graphically by

showing that the premium of a leveraged asset is non-linear in the premium of the factor.
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To summarise, there are at least two reasons why linear beta pricing fails in a non-lognormal

world. First, if higher-order cumulant differences are different from zero, any leveraged asset

would load non-linearly on those differences as in the case of the Heston model. Simple lin-

ear model would then fail to capture these effects. In a Black-Scholes world, this non-linearity

does not arise since those differences are zero for cumulants above the first. Second, in a setting

with jumps, the discontinuity prevents investors from trading continuously and hedging perfectly

constant-β assets. Investors then require an additional premium to bear the discontinuity risk,

which is reflected in the CRP. In practice, the CRP might reflect also the inability of market makers

to hedge non-linear CRP terms similar to Garleanu et al. (2009).

3. Constant-β strategies

In this section, we study constant-β strategies and show that their exposures to higher-order

cumulants can be used to measure the C RPT (β). Securities with constant β-s are important to

analyse not only because these assets are a crucial element of factor models, but also because they

provide useful insights about other finance phenomena. For example, we show that assets with

β > 1 or β < 0 conduct momentum, “destabilising” trades which demand liquidity, in contrast to

assets with 0 <β < 1, which conduct “rebalancing”, “stabilizing” trades that provide liquidity.

To illustrate the latter point, note that to keep the sameβ in a multi-period setting, constant-β

strategies require rebalancing every time the market (factor) moves. This makes these strategies

different from static strategy that starts with a given leverage=β but does not rebalance to maintain

the exposure constant as the factor moves. Let us illustrate the difference with a simple example.

Suppose an investor with $100 starts with a β = 2, and therefore borrows $100 at the risk-free rate

to invest $200 in the market. Assume that the market return is -10% in the next period: in that

case, the portfolio of the investor consists of $180 in the market and -$100 at the risk free rate for a

β = 180
180−100 = 2.25 > 2. A static strategy then becomes more risky because the leverage increased: if

the market keeps dropping in future periods, the leverage increases further and the investor risks

being bankrupt. In contrast, a constant-β strategy maintains the same β by rebalancing as the

market moves. In this example, the strategy requires the investor to sell $20 of his market exposure

in the next period and to use the cash to repay part of the debt so that β is maintained constant:

β = 160
80 = 2.

This simple example illustrates the main logic of this section: constant-β strategies need to

rebalance every period, which exposes them to momentum/reversal effects. The rebalancing can

also amplify price movements and contribute to larger cumulants, increasing the CRP.

3.1. Constant-β assets in discrete time with two periods

Let us first study the exposures of constant-β strategies by analyzing their dynamics over two

discrete periods. The simple return on the market (factor) is (1+ r0→2) = (1+ r1)(1+ r2). The
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difference between the return on the constant-β strategy and the static strategy that does not keep

constant β, 1+βr0→2 is (assume zero risk-free rate for simplicity):

∆ = (1+βr1)(1+βr2)−(1+β((1+ r1)(1+ r2)−1)) =β(β−1)r1r2. (15)

Equation 15 shows that strategies with β > 1 and β < 0 outperform the static strategy over two

periods (∆ > 0) in case of momentum (r1r2 > 0) but underperform it in case of reversal (r2r2 < 0)

since β(β− 1) > 0 for all β > 1 or β < 0. These strategies need to buy when the market goes up

and sell when it goes down: they demand liquidity. If the market continues the trend from the

previous period, the strategies benefit. To the contrary, strategies with 0 <β < 1 underperform the

static strategy over two periods in case of momentum but outperform it in case of reversal. The

intuition is that these strategies buy when the market goes down and sell when the market goes

up: they provide liquidity and benefit from trend reversals.

The two-periods example shows that the rebalancing of constant-β assets exposes them to

momentum/reversal effects. This exposure differentiates them from static strategies, which have

higher bankruptcy risk over multiple periods. For example, if the market goes down by 25% each

period, a passive strategy with initial β = 2 would be bankrupt after the second period, whereas a

constant-β strategy would not be.8 With more than two periods, the momentum/reversal effect of

constant-β strategies translates to exposure to higher-order cumulants.

3.2. Constant-β assets with more than two periods: continuous time

The logic from the two-periods example extends to more periods, but the algebra is more

tedious in discrete time. To illustrate the effects over many periods parsimoniously, we derive the

results in continuous time. Constant-β strategies invest wealth fraction β in the market Pt , and

the rest (1−β) at the constant risk-free rate r f . For simplicity, suppose that the Black–Scholes

assumptions hold and the market follows GBM. Then, the value of a constant-β strategy is (see

Section A.3 in the Appendix):

PT (β) =P0(β)(
PT

P0
)
β

e((1−β)r f −1
2β(β−1)σ2)T . (16)

Equation 16 shows that strategies with β > 1 and β < 0 are negatively exposed to variance but

positively exposed to squared realized returns: ∂PT (β)
∂σ2 < 0 and ∂2PT (β)

∂r 2
T,simple

> 0, where rT,simple =
PT
P0
−1

is the simple realized return. The negative exposure to variance is reflected in the “slippage”

term −1
2β(β− 1)σ2T . In options terminology, the strategies are long-gamma, short-vega (long

8In our empirical tests, we find that a static strategy that does not rebalance daily but once in a quarter, for ex-

ample, goes bankrupt for many assets: Nasdaq, financials, VIX, Russell 2000, real estate, natural gas, oil and silver. In

contrast, the daily rebalancing strategy avoids bankruptcy for all assets studied.
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realized variance but short implied variance). This exposure illustrates that the strategies bene-

fit from higher physical compared to risk-neutral even-order cumulants (variance in this setting

since higher-order cumulants are zero in a Black–Scholes economy) over multiple periods. If the

realized path of the market return is one with higher variance than the one implied by σ2, these

strategies are profitable. This is illustrated by the difference between r 2
T,simple andσ2T even though

in expectation, the difference between realized and risk-neutral variance of the log-return is zero

in the Black–Scholes setting under diffusion invariance. However, if variance has non-zero risk

premium as in the Heston (1993) model, assets with β > 1 and β < 0 load positively on that pre-

mium as illustrated in Equation 11.

As explained in the discrete two-period case, strategies with β > 1 and β < 0 are “momentum”

strategies requiring buying when prices rise and selling when prices fall. With multiple periods

of infinitely small length, the negative exposure to “back-and-forth”, reversal moves translates to

negative vega, whereas the positive exposure to momentum translates to positive gamma. By sim-

ilar argument, rebalancing strategies with 0 < β < 1 have positive vega and negative gamma. In

practice, momentum strategies could incur additional transaction costs since they are destabiliz-

ing trades that demand liquidity.

Note that constant-β assets have the “right” expected return even though they appear to have

a slippage: taking expectations in Equation 16 yields E[RT (β)] = eβµT+(1−β)r f T and there is no

slippage term −1
2β(β−1)σ2T that drags returns lower. However, in practice, these assets have a

performance drag as we show in Section 4. Our theory shows that this under-performance is not

due to the slippage term in Equation 16, since this term cancels out when taking the expectation

in a lognormal world. Instead, the under-performance arises through cumulant differences since

σ2 is different from σ∗2 in a setting with a VRP as in the Heston model, for example.

3.3. Constant-β assets and the CRP

Linear beta pricing in Equation 5 shows that assets with larger absolute β-s are exposed to a

larger number of higher-order cumulants. For example, an asset withβ = 3 has a loading above one

on CRP terms up to the sixth order since 3n

n! > 1 for n ≤ 6. Thus, even a small difference in physical

and risk-neutral cumulants is magnified. Assets with 0 <β < 1 are less dependent on higher-order

cumulants since their loadings converge to zero much quicker.

Equation 5 also illustrates that the returns on constant-β assets are, effectively, bets on phys-

ical (realized) versus risk-neutral (implied) cumulants of the factor. Assets with β > 0 are long

physical and short risk-neutral cumulants: they are long the CRP. Assets with β < 0, which are typ-

ically considered a hedge against market downturns, are long even-order physical cumulants but

short even-order risk-neutral cumulants: they are long the even-order CRP (CRPE). In contrast

to assets with β > 0, securities with β < 0 are short the odd-order CRP (CRPO): short odd-order

physical cumulants but long odd-order risk-neutral cumulants.

18



These exposures can be used to construct some important payoffs, e.g, one that gives the

CRPE. Let us denote that payoff by:

CRPET (β) =
∞
∑

n ≥ 2, even
βn

κn,T −κ
∗
n,T

n!
. (17)

Studying the contribution of even cumulants by extracting the C RPET (β) is worth for at least two

reasons. First, the negative of this payoff proxies what market-makers earn by providing liquidity

and trading against constant-β assets over multiple periods. Second, one can construct a bet on

implied vs. realized even-order cumulants to harvest the CRPE. This bet is similar to the tradi-

tionally studied trade of implied vs. realized variance (e.g., Carr and Wu (2009)) to earn the VRP,

but the CRPE is a bet on all even-order cumulants as opposed to the second-order cumulant only

(variance). To illustrate these effects, we consider a simple trade: short-sell equal amounts of two

constant-β assets with opposite β ≥ 1 (e.g., -1 and 1). Such a “short-both” strategy approximates

liquidity provision or trading against assets with constant β-s.

Since the two assets have exactly the opposite β-s, then selling both of them cancels the ex-

posure to odd-order cumulants and the strategy returns are proportional to the negative of the

CRPE.9 Assume that the cash amount from the short position is invested at the risk-free rate for

simplicity. The returns on the short-both strategy are then:

rSB,T (β) =2r f ,T −(r f ,T +
∞
∑
n=1

βn(κn,T −κ
∗
n,T )

n!
)−(r f ,T +

∞
∑
n=1

(−β)n(κn,T −κ
∗
n,T )

n!
)

=−2
∞
∑

n ≥ 2, even
βn

κn,T −κ
∗
n,T

n!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C RPET

=−2C RPET (β)
(18)

The strategy earns twice the negative of the C RPET (β): it benefits from even-order risk-

neutral cumulants, but is negatively exposed to even-order physical cumulants. This is intu-

itive, since the strategy mimics market-making trade providing liquidity to momentum-like as-

sets, which are long physical and short risk-neutral cumulants. Fig. B.1 illustrates the intuition

using a simple binomial tree example. If the realized path of the benchmark has low even-order

physical cumulants (variance in this example), then the strategy earns positive return, which is

illustrated by the green cells. The fact that the returns of a liquidity provision are long even-order

risk-neutral cumulants and short physical ones echoes the result of Nagel (2012), who shows that

market-making profits in US stocks are proportional to VIX. This result is consistent with our the-

ory since VIX2 is a measure of risk-neutral entropy (sum of higher-order risk-neutral cumulants)

9With simple returns, the strategy also cancels the effect of dividends in case of equity ETFs that are used in the

empirical section.
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of the S&P 500 index as Martin (2015) shows.

In a Black–Scholes world, the short-both strategy earns zero returns in expectation since all

even cumulants of order four and above are zero, whereas the second-order physical and risk-

neutral cumulants are identical: the CRPE is zero. In a general setting, the strategy is a bet that

even-order risk-neutral cumulants are larger than physical ones. In a model with compensation

for liquidity provision, the strategy also earns the corresponding market-making costs. Next, we

apply our approach in practice and quantify the C RPT (β) and C RPET (β) by studying assets with

constant β-s.

4. Empirical evidence: leveraged ETFs

Empirically, it is not trivial to find a setting that satisfies the main assumptions of single-

factor models. The most prominent such model, the CAPM, is typically tested by using stock re-

turns. However, there are several critiques for such an approach. First, it is unlikely that a firm’s

beta is constant over time and therefore, the CAPM would fail unconditionally (Jagannathan and

Wang (1996)). Second, it is nontrivial to define all factors to which a particular stock’s return is

exposed. Third, even if the stock is exposed to one factor only (the market), this factor itself is

non-observable and hence the CAPM cannot be tested properly (Roll (1997)).

Instead of pursuing the usual single-factor models approach, we take a different route. To test

our analysis empirically, we make use of a setting which overcomes the three critiques outlined

above: we use assets that have constant β over time and by construction are exposed to only one

factor, which is perfectly observable. These assets are leveraged ETFs.

Leveraged ETFs are securities that provide multiples of the daily return on their benchmark

index. For example, a double-leveraged ETF (β = 2) should return 10% if the benchmark index goes

up by 5%, whereas a double inverse-leveraged ETF (β = −2) should return -10%. Leveraged ETFs

are a useful application of our methodology since these assets mechanically have constantβ equal

to their leverage, which is fixed in the prospectus of each ETF. Moreover, by construction they are

exposed to one factor only: their benchmark index. Leveraged ETFs are present in variety of asset

classes: not only equities but also bonds, commodities, currencies and volatility. This allows us to

test our approach in more asset classes compared to the traditional equities-based analysis.

4.1. Data

We use data on leveraged ETFs that track indexes in the main asset classes: US equity (S&P

500, Nasdaq, Russell 2000, basic materials, consumer services, financials, industrials, real estate

and utilities), emerging market equity, mid-term (7-10 years) and long-term (more than 20 years)

US Treasuries, US high yield corporate bonds, commodities (gold, silver, oil and natural gas), cur-

rencies (euro and Japanese yen), and volatility (VIX). Prices of these ETFs and their benchmarks
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are from Bloomberg at a daily frequency and span the period from the first leveraged ETF intro-

duction date in a given asset class (earliest is June 2006 for the S&P 500 Index-Table B.2) until April

2021 (or the latest available date).

4.2. The role of higher-order cumulants across assets

First, we identify potential episodes of higher-order cumulants by simply calculating the dif-

ference between simple returns and log-returns on the benchmark. This difference would give the

contribution of realised higher-order moments (and as a result, realised higher-order cumulants)

as can be seen from the Taylor approximation of rsimple around zero: log(1+ rsimple)− rsimple =

−∑
∞
n=2

r n
simple(−1)n

n . The red lines in Fig. 2 show the result for several assets. The plots illustrate that

the difference is volatile over time, and is particularly large in times of extreme price movements,

e.g., during the 2008 financial crisis, the COVID-19 crisis in March 2020 and in some idiosyncratic

crises like for oil in April 2020. A large part of the contribution of higher-order cumulants is due

to the second cumulant (variance), but the role of cumulants of order three and above is also sig-

nificant in times of market stress as illustrated by the red lines in Fig. 3. The role of higher-order

cumulants for leveraged assets is particularly evident from the difference between simple returns

and log-returns for ETFs with ∣β∣ > 1. The blue lines in Fig. 2 and Fig. 3 show that the contribution

of higher-order cumulants is magnified for those assets since the CRP terms are multiplied by βn .

We next study whether the Black–Scholes model or any other model with no higher-order

cumulants above variance can explain the empirical findings. To do so, we first plot the difference

between the return on the ETF and the return on the β-weighted factor (benchmark) less the risk-

free rate: rT −βrM,T − (1−β)r f ,T . This difference shows the correction to the linear-beta-pricing

return at the daily frequency and is closely related to the C RPT (β), which we estimate below. Fig. 4

illustrates that the difference jumps in the episodes of larger cumulants seen in Fig. 2. At times

when even-order physical cumulants are smaller than risk-neutral cumulants and the C RPET (β)

is negative, both long and inverse ETFs lose wealth.10 Prominent examples are the 2008 crisis and

the COVID-19 crisis in equities when both the red and the blue lines are below zero.

Visually, the plots in Fig. 4 show that the correction to the linear beta pricing formula in Equa-

tion 8 could be explained both by a model with no higher-order CRP terms beyond variance (“only-

VRP model”), and by a model with a compensation for higher-order cumulant risk like the Heston

(1993) model or a setting with jumps. We construct a simple test to see if any model without

higher-order cumulants above the second can explain the empirical patterns. This test covers any

10With simple returns, the difference is sometimes positive for long ETFs if the C RPT (β) is negative (Fig. B.2). In

contrast, the difference is often negative for inverse ETFs (β < 0) since they are negatively exposed to the CRPO. Part

of the differences in Fig. B.2 can also be due to fund management fees, other expenses, and the fact that leveraged

ETFs do not pay the multiple of the benchmark’s dividend in practice. For example, the quarterly “zig-zag” pattern in

equity ETFs is consistent with the effect of dividends.
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time-varying volatility model that has only VRP but no higher-order CRP terms. The test is to use

ETFs with opposite β-s to check a simple necessary condition that must be satisfied if an only-VRP

model fits the empirical patterns. If the model is a good fit, then for two ETFs with opposite β-s

(e.g., 2 and -2), the ratio of C RPT (β) = V RPT (β) to C RPT (−β) = V RPT (−β) should be β−1
β+1 (see

Equation 7 and Equation 11). Note that this condition does not depend on the form of the VRP as

the VRP cancels out.

We find that this condition is not satisfied for all assets except high yield bonds, the euro,

and the Japanese yen. This observation squares well with the fact that these assets have very low

realised higher-order moments beyond variance as seen from Fig. 3 (the pictures for high yield

bonds and the euro are not reported for brevity). These facts illustrate that only-VRP model is un-

able to describe the empirical results across most assets and that higher-order CRP terms beyond

the second (the VRP) have significant impact.

4.3. Quantifying C RPT (β)

Next, we estimate the C RPT (β) by running regressions of ETF returns on their benchmark

returns after controlling for the risk-free rate. The intercept in such a regression captures the

C RPT (β) as seen from Equation 8 and should be zero if linear beta pricing holds. Table 1 shows

that the C RPT (β) is different from zero across most assets and leverages.11 The average C RPT (β)

is -7.4% annualized across assets and β-s with significant C RPT (β) estimates. The size of the pre-

mium is generally larger in absolute value for assets with β < 0 and is of the order negative 10-13%

annualized for many equity indices like small-cap stocks, financials and utilities. The C RPT (β)

is the largest for oil ETFs, reaching a level of -54% annualized (significant at the 7% level). The

C RPT (β) is significant share of the FRP in each asset: it is 104% of the FRP, on average (in absolute

value among the significant estimates), and sometimes reaches levels above 200% of the FRP as

shown in Table B.1. The plots of the C RPT (β) in Fig. 5 illustrate that the premium is significantly

different from zero for most periods across equities, bonds, commodities, and volatility.

The empirical evidence shows that linear beta pricing fails in practice due to non-zero C RPT (β).

Neither the Black and Scholes (1973) model nor any other model with only VRP but no higher-

order CRP terms, can explain the patterns in most asset classes. These facts show that processes

with non-zero higher-order CRP terms beyond variance like those with stochastic volatility (e.g.,

the Heston (1993) model) or jumps, are needed to account for the data findings across asset classes.

11In practice, the fact that C RPT (β) ≠ 0 means that ETFs have tracking error. Our theory explains that this tracking

error is due to the risk of higher-order cumulants since ETFs are exposed to non-linearities. ETFs are incentivized to

keep their tracking error low since the compensation of ETF managers and the performance evaluation of the fund

are typically linked to that error. Therefore, it is unlikely that ETFs deliberately manipulate their tracking error.
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4.4. Quantifying C RPET (β)

In Section 3.3 we showed that selling two ETFs with opposite leverages earns twice the C RPET (β):

the strategy benefits from even-order risk-neutral cumulants, but is negatively exposed to even-

order physical cumulants. We now construct this shot-both strategy to measure the C RPET (β).

4.4.1. C RPET (β) across assets

Fig. 6 illustrates the performance of the short-both strategy for several assets. The figure

shows that the strategy returns jump up in times of market stress, when even-order risk-neutral

cumulants are larger than physical ones as illustrated by the COVID-19 shock, and some idiosyn-

cratic shocks as for oil in April 2020. The returns on the strategy are significant and positive for

each year in the sample for most equity indices, Treasuries, volatility, and commodities like oil

and natural gas. Table 2 shows that the average return on the strategy is 8.9% annualized across

assets and β-s, and the average C RPET (β) is -4.4%. Implementing the strategy with β > 1 deliv-

ers more negative C RPET (β) as shown in the table. Assets with β = 3 are a good illustration: for

example, financials have an annualized C RPET (β) of -6.9%, whereas some commodities like oil

and natural gas have C RPET (β) of -11.9% and -12.6%, respectively. The fact that the C RPET (β) is

negative means that market-makers earn a premium for trading against assets with opposite β-s.

To make use of the higher frequency of our data and identify episodes of higher even-order

cumulants on a daily basis, we also construct the short-both strategy using daily log-returns. The

plots in Fig. 7 illustrate such episodes and can be used as a simple tool to identify stress periods

in a given asset, even in real time. The daily returns will be useful also for the construction of our

global stress index based on cumulants in Section 4.4.2 below.

For practical implementation of the strategy, one can construct the strategy also with daily

simple returns. The last six columns in Table 2 show that the daily returns are positive on average,

but volatile and positively-skewed, since the mean is larger than the median. The strategy earns

Sharpe ratios above one in many markets: e.g., 2.42 for high yield bonds, 1.56 for Financials, 1.49

for Russell 2000, and 1.31 for natural gas.12

Since the short-both strategy returns are a bet on higher risk-neutral vs. physical cumulants,

the returns should increase when risk-neutral cumulants rise and decrease when physical cumu-

lants increase. Generally, measures of risk-neutral cumulants across asset classes are not easily

available and to proxy for risk-neutral cumulants, we use VIX2. As explained before, VIX2 is a

measure of risk-neutral cumulants above the second for the S&P 500 index. Since variance and

illiquidity in other markets than the S&P 500 generally increase at times when VIX spikes (Bao

12We use close-to-close returns as opposed to open-to-close (intra-day) returns. The Sharpe ratios with intra-day

returns are even larger. The intra-day strategy is also more profitable after accounting for transaction costs since the

trader does not have to pay ETF borrowing fees. Since leveraged ETFs are highly liquid, bid-ask spreads are usually

extremely low for most assets.
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et al. (2011)), the premium for liquidity provision and the C RPET (β) in other markets could also

increase (in absolute terms) when VIX is higher. Table 3 shows that the returns on the strategy

are positively-exposed to VIX2 across several assets, in line with this intuition. The returns on

the strategy are also generally negatively exposed to realised higher-order moments as proxied by

r simple− log(1+ r simple), where r simple is the simple return on the factor.13

4.4.2. C RPET (β) measures global market stress

The short-both strategy returns across assets can be used as a gauge of global market stress

since they increase when even-order risk-neutral cumulants are above physical ones, and when

the premium for providing liquidity rises across equities, bonds, commodities, currencies and

volatility. To illustrate this fact, we do a principal component (PC) analysis of the daily short-

both strategy returns across all assets to quantify the impact of higher cumulants across assets at

a high frequency. The variance-covariance matrix of returns does not have a particularly strong

factor structure: the first PC explains about 19% of the variation in returns, the first six PCs explain

about 52%, and 16 PCs are needed to explain 90% of that variation. This result shows that there are

common components to the C RPET (β) across assets, but the role of asset-specific factors is also

significant. The first PC captures mostly the variation in C RPET (β) of equities, commodities and

Treasuries, whereas higher-order PCs capture better the residual variation in high yield corporate

bonds, currencies and volatility.

Fig. 8 shows that the first PC spikes in periods of market stress and is highly correlated with

VIX with a correlation of 70%. The average return on the strategy across assets is also highly corre-

lated with VIX with a correlation of 66%. These facts show that times when risk-neutral cumulants

are above physical ones across assets, as captured by the returns on the short-both strategy, are

positively related to periods of market stress when VIX is higher.

The first PC (and higher-order PCs) and the average return on the short-both strategy across

assets can be used as a simple index of global market stress. There are several advantages of

these metrics relative to other commonly used measures of market turbulence like VIX or vari-

ous spreads like the TED spread. First, our measures are based on several asset classes and take

the prospective of a liquidity provider who is exposed to higher-order cumulants globally. As we

show in Section 4.4.3 below, our metric drives out VIX in explaining returns of non-equity assets

and is particularly important in assets with non-linear payoffs like options and CDS. Second, our

measures are simple to calculate also in real-time from observed prices of leveraged ETFs. The

measures are easy to compute also for individual markets and can be used to capture market stress

in particular asset class at a high frequency (Fig. 7). Third, we do not make any assumptions about

the driving distribution of asset returns and “let the data speak”.

13VIX2 and r, simple − log(1+ r, simple) capture all higher-order cumulants/moments of the factor as opposed to all

even cumulants/moments, which would be the relevant factors for the short-both strategy returns.
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4.4.3. Relation to standard risk factors and cross-sectional asset-pricing

Table 3 shows that some standard risk factors like size, value, and momentum are significantly

correlated with the short-both strategy returns for equities. This fact illustrates that these factors

might span some of the variation in higher-order cumulants as captured by the C RPET (β). In

turn, this fact could also help explain why the standard linear CAPM logic does not capture the full

variation in asset returns.

We next test if higher-order cumulants are priced factors across asset classes. Table 4 shows

the results from cross-sectional asset-pricing regressions using the average returns on the short-

both strategy across all assets, and the market, as the two factors.14 The table shows that the price

of risk associated with the short-both strategy returns is positive and statistically significant for

government bonds, and particularly for options and CDS. The inclusion of the short-both strategy

return makes insignificant the return on VIX (proxied by the largest long VIX ETF since VIX is not

directly tradable) in all asset classes except US stocks. This is perhaps not surprising since VIX

measures risk-neutral entropy of the S&P 500 equity index, whereas our strategy is based on more

asset classes beyond equities. The fact that the short-both strategy is particularly important in

assets with highly non-linear payoffs like options and CDS shows that these asset classes are more

exposed to higher-order cumulant risk.

4.4.4. Comparison to FRP and VRP

It is useful to compare the magnitude of the C RPE(β) to that of the F RP . Column 5 of Table 2

shows that the C RPE(β) is significant relative to the F RP (in absolute values): it is 46% of the F RP

for the S&P 500 index (withβ = 3), 47% for VIX, 51% for long-term Treasuries (withβ = 3), and 139%

for oil.

Another interesting benchmark for comparison is the VRP. Carr and Wu (2009), Bakshi and

Kapadia (2003), Heston and Li (2020) and Heston and Todorov (2022) show that the VRP is negative

whereas Bollerslev and Todorov (2011) show that compensation for jump risk accounts for a large

fraction of this premium. Our results show that the C RPE(β) is also negative across markets,

on average, and that higher-order terms have a non-negligible contribution, particularly during

crisis times. The magnitude of the C RPE(β) is generally smaller than the VRP, since our measure

is different as the C RPE(β) depends on cumulants above variance, some of which could have

positive risk premium. In addition, our empirical tests rely on assets with leverage between -3 and

3, whereas options involved in the calculation of the VRP have typically larger (absolute) leverages.

With a higher leverage, the C RPE(β) is also higher as seen from Table 2. The Sharpe ratios of the

short-both strategy to extract the C RPE(β) are above one in some asset classes, similar to Sharpe

ratios of VRP strategies.

14One limitation of the analysis is that the data is monthly instead of daily, and includes only a subsample from

June 2006 to December 2012.
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5. Economic implications and possible extensions

5.1. Implications

The main results in this paper have implications for the standard CAPM and portfolio theory

in general, and for factor models. In addition, our findings have implications for momentum,

leverage, hedge funds, and option pricing.

5.1.1. Implications for factor models and portfolio theory

Our main results have implications for factor models and portfolio theory. We show that

multi-factor models could fit asset returns better than single-factor models purely because the ad-

ditional factors capture the contribution of higher-order cumulants of the single factor. The fact

that some standard factors like momentum are positively correlated with even-order cumulant

differences (Table 3), is consistent with this logic. This result has implications for a vast finan-

cial literature studying factor models to explain asset returns. Our theory suggests that instead

of adding more linear factors, researchers also need to account for the higher-order cumulants

of the single-factor (e.g., the market portfolio). In addition, a proper test of single-factor models

should first compare the difference between cumulant-generating functions in the physical and

risk-neutral worlds before testing linear beta pricing.

The results in this paper have important consequences also for standard portfolio theory. We

show that many classic single-factor results hold only in a lognormal world. For example, the

standard CAPM logic that asset returns are linear in market returns, holds only in a lognormal

world. Another classic portfolio theory result states that by combining two assets with opposite

betas, one can construct a risk-free return. Our analysis shows that this is no longer true in a

general setting with non-zero higher-order cumulants: such a portfolio would be exposed to the

C RPE(β) and would not be risk-free.

5.1.2. The flatness of the securities market line (SML)

Our approach could help explain the flatness of the securities market line (SML). Equation 8

shows that an asset with C RP(β) < 0 has lower return than the one predicted by the CAPM, whereas

an asset with C RP(β) > 0 has a larger return. If C RP(β) > 0 for assets that have low CAPM betas,

whereas C RP(β) < 0 for assets with high CAPM betas, this fact could explain why the SML is flatter

than predicted by the standard CAPM formula. As shown before, assets with β > 1 conduct mo-

mentum trades and would have lower returns than predicted by the CAPM if market makers charge

a premium for providing liquidity. Equation 11 shows that such assets load positively on the VRP

and if market-makers charge a premium for being short the VRP, that would make estimated β̂ <β

for these assets.

There is some evidence in Table 1 that is consistent with this conjecture as several assets with

β = 3 have C RP(β) < 0 but these results are inconclusive since we do not observe ETFs with 0 <β <
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1, and since some ETFs with β = 2 have C RP(β) > 0. We leave the test of the SML’s flatness through

the lens of the CRP for future research.

5.1.3. Implications for momentum, leverage, hedge funds and policy makers

Our findings have implications also for momentum strategies. We show that trend-chasing

“momentum” strategies are exposed to the VRP and higher-order cumulants, which could explain

why the returns on these strategies have sudden crashes and exhibit higher-order moments.

Our results have also implications about the risk of higher-order cumulants. A common mis-

perception is that this risk declines as the number of higher-order terms grows and thus higher-

order moments (typically, beyond kurtosis) are rarely researched in finance. This misperception

is driven by the discounting of higher-order cumulant differences with n! (see Equation 5), which

makes the contribution of higher-order terms extremely small for larger n. Our theory emphasises

that this result is true for unleveraged strategies (and even more pronounced for strategies with

0 < β < 1), but is not true for leveraged strategies, for which the contribution of higher-order cu-

mulants generally increases up to the β-th order cumulant. For example, the loadings of strategy

with a leverage of β = 10 are increasing up to the 10th order term as illustrated in the left panel of

Fig. 9. In contrast, the loadings of an unleveraged strategy quickly die out as illustrated in the right

panel. Thus, more leveraged strategies are more exposed to higher-order cumulants.

These results have implications for agents like hedge funds who use leverage to exploit mis-

pricings between similar assets. These agents often use strategies that involve assets with oppo-

site sensitivities to a given factor: for example, convergence trades or relative value strategies (e.g.,

spot-futures basis, see Aramonte et al. (2021)). Our results show that such trades are risky because

they are exposed to the CRPE, even in the case of no limits to arbitrage or noise trader risk (e.g.,

Shleifer and Vishny (1997)). For example, Equation 18 shows that a leverage of two has loadings of

2(= 22/2!), 0.67 and 0.09 on the second, forth, and sixth order CRP terms, respectively. In contrast,

a leverage of ten, which is often used by hedge funds in such trades, has loadings of 50, 417, and

1389 on these CRP terms. The loadings on higher-order terms are even larger and are above one

up to the 24th CRP term, which illustrates that even tiny changes in cumulant differences are mag-

nified due to the explosive contribution of 10n-weighted CRP terms. This reflects the enormous

exposure of such levered trades to higher-order cumulants.

Our results have implications also for policy makers and practitioners. The first PC of the

short-both strategy can be a useful gauge for policy intervention since the indicator increases

when the C RPE(β) rises, which could be a proxy for times when capital constraints are binding as

we explain in Section 5.2. One benefit of the CRP-inspired approach is that it is based on several

asset classes and incorporates information on the difference of all higher-order even cumulants,

in contrast to indicators for policy intervention based on variance only. This benefit is evident if

an increase in volatility reflects other factors than capital constraints. For example, an increase in

uncertainty would raise variance but might not affect capital constraints or the risk of price spi-
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rals. Such an increase may not affect the C RPE(β), however, if variance rises by the same amount

under the physical and the risk-neutral measure and if higher-order cumulant differences are un-

changed. In that case, variance-based indicators for policy intervention would increase, whereas

the C RPE(β) would remain unchanged.

5.1.4. Implications for option pricing

Our results show that out-of-the-money (OTM) put options are more expensive than what

linear beta pricing would predict. Since these options have ∆ < 0 and thus, leverage β < 0, they are

similar to momentum assets, and would load positively on the VRP in a stochastic volatility setting,

for example. As the VRP is negative in practice, the returns on OTM put options would be more

negative (equivalently, the options will be more expensive) than predicted by linear beta pricing

as in a standard CAPM model, especially for OTM puts with more negative β-s. However, two

caveats are that the standard linear pricing logic is presumably not applicable for options given

that these assets do not load linearly on the underlying asset, and that higher-order cumulants

beyond variance can have a positive risk premium.

5.2. Sources of the C RP(β)

Equation 7 shows that the C RP(β) arises if cumulant differences, weighted by (βn −β), are

larger than zero. These differences could arise if liquidity providers charge a premium for trad-

ing in the opposite direction of constant beta assets. What factors can create such a premium?

Trading restrictions or other forms of market incompleteness are likely to give rise to higher-order

cumulants since market makers cannot perfectly hedge those and would require an additional

premium, which would be reflected in the C RP(β). For example, limited trading hours create

discontinuities in trading and could lead to higher-order cumulants being relevant since the re-

turn distribution is no longer continuous. In addition, risk limits like value-at-risk constraints,

de-leveraging (e.g., Adrian and Shin (2010)), or crowded trades could create price spirals at times

of large price movements and cause extreme values of the factor’s return distribution.

Limits to arbitrage and costly capital could also give rise to the C RP(β). Kyle and Xiong

(2001) and Xiong (2001) show that convergence traders’ wealth effect can amplify price changes

and volatility, and prove contagious. Convergence trades to extract the C RP(β) risk being liqui-

dated prematurely if limits to arbitrage make raising capital costly and force traders to close out

these trades before prices converge. Such liquidation amplifies further price drops and raises the

C RP(β) by increasing higher-order cumulants of the return distribution. The risk of future price

spirals could then prevent traders from arbitraging away the C RP(β). When limits to arbitrage are

binding, the C RP(β) should become larger. The fact that the C RP(β) increases in times of market

stress is consistent with this explanation.

The C RP(β) can also arise due to trading patterns of momentum traders. For example, the

daily rebalancing of ETFs to keep constant β can amplify price movements and increase cumu-
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lants if this rebalancing is large part of the market. An important point is that the rebalancing of

strategies with β > 1 and β < 0 is in the same direction, which means that ETFs can amplify price

changes even if the size of long ETFs is equal to that of inverse ETFs. Todorov (2019) shows that

this rebalancing is significant share of the market in VIX and commodity markets, and can lead to

sharp price changes and larger cumulants, as in February 2018 for VIX and April 2020 for oil.

Another explanation for the existence of the C RP(β) is that the “natural” distribution of the

factor’s return could be one with a complicated form of non-zero higher-order cumulants: for

example, it is reasonable to assume that volatility (VIX) has a positively-skewed and highly non-

normal distribution with jumps. Whatever the reason for cumulants, risk-averse market makers

would require a compensation for providing liquidity and bearing the cumulant risk. We leave the

derivation of the C RP(β) in the settings discussed here for future research.

5.3. Robustness: incorporating ETF fees

In the main empirical analysis, we used observed market prices of ETFs to construct the short-

both strategy as these prices would be used by a trader who implements the strategy in practice.

To address the concern that the C RPE(β) is purely driven by ETF fees, we also repeat the analysis

using before-fees returns in Table B.3. The table shows that the C RPE(β) is slightly smaller but the

Sharpe ratios of the strategy are still above one for some assets like high yield bonds and financials.

This analysis shows that the C RPE(β) is not mechanically driven by ETF fees. We also repeat

Table 1 with fees in Table B.4 in the Appendix. The results show that the C RP(β) is still significantly

different from zero.

6. Conclusion

Higher-order cumulants play an important role in practice. We show that single-factor models

work only when the difference of higher-order physical and risk-neutral cumulants is zero. In any

other setting, the standard linear factor pricing equation should be adjusted for this difference,

which we call the cumulant risk premium (CRP). To illustrate our approach, we study assets with

constant betas and exposure to a single factor: leveraged ETFs. We show that the CRP is different

from zero and that linear pricing fails across all assets studied. The CRP is a large part of the factor

risk premium. These empirical findings cannot be explained by the Black–Scholes model or by any

model without compensation for higher-order cumulant risk, but might be explained by a model

with jumps or stochastic volatility.

We develop a simple strategy of shorting ETFs with opposite betas to measure the even-order

CRP across asset classes. This strategy mimics liquidity provision and can be used to construct a

bet on risk-neutral vs. physical even-order cumulants (variance, scaled kurtosis, etc.). The strategy

earns Sharpe ratios above one.

Our findings have important implications not only for factor models but also for portfolio

theory, momentum strategies, option pricing, hedge funds, and leverage in general. We show that
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standard portfolio theory results do not hold in a general setting with non-zero higher-order cu-

mulants and that highly leveraged strategies employ momentum strategies. These findings have

implications for asset managers and hedge funds who use large leverage to exploit mispricings

between similar assets. Leveraged trades involving assets with opposite betas are exposed to

higher-order cumulants and even tiny changes in these cumulants can be magnified enormously.

Our cumulant-based index can be used as a simple, real-time gauge of market stress across asset

classes.
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Tables and Figures

Table 1
Estimating C RP(β). The table shows the annualized C RP(β) in %, estimated as α from regression rETF,t(β) = α+

βrbmk,t + (1−β)r f ,t + εt for several markets and leverages, where rETF,t(β) is the return on an ETF with leverage β,
rbmk,t is the return on the ETF benchmark, and β is the ETF leverage. We estimate rt = logE[Rt ] by first calculating
E[Rt ] as the average daily return, and then running monthly regressions of logE[RETF,t(β)] on logE[Rbmk,t ]. Here
and in the subsequent analysis r f ,t is the 1-month Treasury rate and standard errors (shown in brackets) are computed
using the Newey and West (1987) estimator with lag selection based on the Bartlett kernel (e.g., Andrews (1991)).
The bold coefficients are statistically different from zero at the 5% level. The sample is from the first leveraged ETF
inception date in a given market to April 2021.

Annualized C RPT (β) in %
Leverage=β -3 -2 -1 2 3

S&P 500 -9.10 -6.76 -3.94 1.37 1.41
(0.63) (1.02) (0.88) (0.40) (0.97)

Nasdaq -5.55 -0.03
(0.46) (0.57)

Russell 2000 -10.38 -0.54
(0.83) (1.29)

Financials -12.86 -2.06
(1.26) (1.47)

Consumer services -6.68 0.04
(2.28) (0.9)

Basic materials -8.86 -0.87
(2.67) (0.95)

Technology -2.34 -5.84
(1.71) (1.61)

Utilities -13.38 2.59
(2.96) (0.93)

Industrials -8.45 0.33
(3.11) (0.95)

Real Estate 1.09 -13.10 -5.12 2.76 -14.62
(2.04) (1.36) (0.40) (1.25) (3.85)

Emerging Markets -5.86 -8.43 -7.17 3.33 -3.43
(3.46) (2.3) (1.65) (2.21) (3.27)

VIX -37.14 -31.26
(12.97) (6.87)

Treasuries 7-10 yr -2.81 -1.32 -1.93 -1.89 -4.38
(0.66) (0.28) (0.3) (0.38) (2.08)

Treasuries more 20 yr -2.39 -2.17 -1.63 -1.82 -4.13
(0.96) (0.63) (0.32) (0.68) (1.08)

High Yield -2.54 -1.33
(0.65) (2.52)

Gold -3.99 -3.80 -0.96 -0.45
(1.58) (0.81) (0.84) (1.40)

Silver -8.90 -10.71 -3.91 -3.86
(2.04) (4.96) (4.83) (2.02)

Nat gas -12.79 -6.93 -3.76 -9.96
(3.25) (1.7) (1.63) (3.0)

Oil 30.03 6.43 -24.09 -54.09
(28.3) (6.85) (10.83) (29.22)

Euro/US Dollar -1.09 -0.89
(0.81) (0.69)

Yen/US Dollar -0.69 -0.99
(0.33) (0.81)
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Table 2
Returns on the short-both strategy and the FRP. The second column shows the average annualized return on the short-both strategy rSB,t(β) = −(logE[RETF,t(β)]+

logE[RETF,t(−β)]), where logE[RETF,t(β)] is the return on an ETF with leverage β. E[RETF,t(β)] is the average daily return in a given month as in Table 1. Column 3
shows the average annualized C RPET (β) (=− 1

2 rSB,t(β)). Column 4 shows the average annualized factor risk premium (F RPT = logE[RT (1)]− logE[R f ,T ]). Column
5 shows the ratio of the C RPET (β) to the F RPT . The last six columns show summary statistics of the short-both strategy with daily simple returns. Columns 2–5 are
in %, 6–11 in basis points. The sample is from the first inverse ETF inception date in a given market to April 2021 (February 2018 for VIX, June 2020 for gold and gas
since some long and inverse ETFs were delisted on those dates).

Asset β
Mean SB
annual

Mean C RPET (β)

annual
Mean FRP

annual
C RPET (β)/F RPT

Mean SB
daily

S.d. SB
daily

Median SB
daily

Min SB
daily

Max SB
daily

Sharpe
annual

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

S&P 500 1 2.20 -1.10 7.11 -0.15 0.88 27.98 0.00 -370.46 1384.66 0.29
S&P 500 3 6.55 -3.28 7.11 -0.46 2.55 32.47 0.60 -476.84 1157.92 1.16
Nasdaq 3 4.68 -2.34 10.23 -0.23 1.44 17.11 0.27 -227.33 242.19 1.13
Russell 2000 3 9.65 -4.83 10.60 -0.46 3.58 36.65 1.32 -436.64 1133.65 1.49
Financials 3 13.80 -6.90 9.70 -0.71 4.71 46.42 1.42 -339.22 1166.94 1.56
Consumer services 2 5.25 -2.63 9.10 -0.29 1.91 152.07 0.00 -2147.13 2724.9 0.17
Basic materials 2 8.53 -4.26 8.80 -0.48 3.04 88.27 0.26 -518.3 3918.69 0.49
Technology 3 7.55 -3.78 16.37 -0.23 3.06 41.24 0.74 -347.57 1435.52 1.11
Utilities 2 9.60 -4.80 3.83 -1.25 3.74 111.27 0.00 -587.54 3967.19 0.49
Industrials 2 6.80 -3.40 7.90 -0.43 2.51 129.74 0.00 -844.05 4541.52 0.27
Real Estate 3 9.40 -4.70 9.94 -0.47 3.68 71.05 1.49 -1441.85 2921.62 0.78
Emerging Markets 1 3.65 -1.83 7.08 -0.26 1.38 34.01 0.00 -649.28 1044.11 0.54
Emerging Markets 3 8.78 -4.39 7.08 -0.62 3.26 45.41 0.74 -481.70 1450.78 1.08
VIX 1 33.05 -16.53 -35.26 0.47 8.17 231.65 0.95 -1991.37 9582.18 0.55
Treasuries 7-10 yr 1 2.25 -1.13 3.75 -0.30 0.88 21.39 0.00 -177.77 191.40 0.49
Treasuries 7-10 yr 3 6.45 -3.23 3.75 -0.86 2.73 83.65 1.30 -1619.78 1358.75 0.49
Treasuries more 20 yr 1 3.50 -1.75 5.68 -0.31 1.35 17.10 0.23 -476.69 421.95 1.07
Treasuries more 20 yr 3 5.80 -2.90 5.68 -0.51 2.71 43.18 0.88 -224 2074.34 0.93
High Yield 1 7.15 -3.58 5.28 -0.68 2.86 17.28 0.80 -96.95 107.24 2.42
Gold 2 4.18 -2.09 4.83 -0.43 1.47 18.90 0.57 -132.3 207.44 1.08
Silver 3 12.05 -6.03 -4.45 1.35 5.85 215.61 0.79 -3016.03 4154.14 0.25
Nat gas 3 25.20 -12.60 -15.57 0.81 7.80 91.15 3.02 -1379.3 1251.68 1.31
Oil 3 23.88 -11.94 8.60 -1.39 7.48 361.02 0.00 -5995.73 6830.22 0.32
Euro/US Dollar 2 1.38 -0.69 -0.80 0.86 0.43 32.97 0.00 -280.27 286.97 0.11
Yen/US Dollar 2 0.83 -0.41 0.52 -0.79 0.49 43.12 0.00 -339.89 289.44 0.11
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Table 3
Regressions of the short-both strategy (simple returns) rSB on VIX2, rsimple − log(1+ rsimple) (a measure of physical higher-order moments of the factor), the Fama-
French 5 factors and momentum. Sample: daily, from the first date of an introduction of an inverse ETF until December 2018 (February 2018 for VIX). VIX2 is scaled
by 100 for comparison. *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Dependent variable: rSB

S&P 500 Nasdaq Russell 2000 Financials Consumer services Basic materials Technology Utilities Industrials Real estate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VIX2 1.13∗ 0.36∗∗∗ 0.12 0.09 1.97 2.54 −0.26 2.80∗∗∗ 4.41∗ −0.54∗

(0.64) (0.09) (0.41) (0.15) (1.33) (1.60) (0.31) (1.00) (2.57) (0.30)
rM − log(1+ rM) −2.82∗ −0.20 0.40 3.35∗∗∗ −4.72 −1.62 2.90 −5.34∗∗ −10.08 1.19∗

(1.70) (0.33) (1.32) (0.18) (4.25) (2.13) (1.88) (2.20) (7.55) (0.65)
RMkt −R f 0.02 0.02∗ 0.01 0.04∗∗∗ −0.03 0.07 0.05∗∗∗ 0.10 0.07 −0.05∗∗

(0.02) (0.01) (0.03) (0.01) (0.04) (0.05) (0.01) (0.07) (0.07) (0.02)
SMB 0.05 −0.01 0.03 −0.04 0.28∗∗∗ 0.13 0.01 0.22∗ 0.04 0.03

(0.04) (0.01) (0.03) (0.03) (0.10) (0.12) (0.01) (0.12) (0.11) (0.03)
HML 0.16 −0.02∗ 0.08 0.02 0.28 0.38 −0.06∗ 0.46 0.66 −0.02

(0.11) (0.01) (0.06) (0.02) (0.21) (0.27) (0.04) (0.28) (0.40) (0.05)
RMW −0.01 −0.01 −0.03 −0.07∗ 0.02 −0.01 −0.01 −0.08 0.01 0.02

(0.03) (0.01) (0.04) (0.04) (0.10) (0.06) (0.02) (0.15) (0.09) (0.04)
CMA −0.19 0.02 −0.19 −0.03 −0.37 −0.54 0.07∗ −0.74∗ −1.02∗ −0.01

(0.16) (0.02) (0.14) (0.03) (0.28) (0.39) (0.04) (0.43) (0.55) (0.06)
Momentum 0.05∗ −0.01∗∗ −0.04∗ 0.06∗∗ 0.01 0.11 0.002 0.15 0.17 −0.07∗∗∗

(0.03) (0.01) (0.02) (0.03) (0.09) (0.09) (0.01) (0.13) (0.10) (0.02)
Observations 150 106 121 121 142 142 120 142 142 27
R2 0.26 0.40 0.26 0.97 0.29 0.29 0.20 0.35 0.31 0.29

Emerging markets VIX Treasuries 7-10 yr High yield Gold Silver Nat gas Oil Euro/US Dollar Yen/US Dollar

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VIX2 0.39∗ 1.83 0.04 0.08 0.38∗∗∗ 0.96 −0.73 1.17 0.06 −0.35∗∗

(0.21) (3.74) (0.23) (0.08) (0.06) (0.60) (0.81) (1.50) (0.09) (0.18)
rM − log(1+ rM) −0.50 1.87 −1.92 3.69 −0.29 0.71 0.45 2.74∗ 2.87 4.16

(0.42) (1.17) (10.30) (3.54) (0.35) (1.20) (1.19) (1.54) (3.75) (3.42)
RMkt −R f −0.01 −1.06 −0.01 0.03∗∗ 0.005 0.05 −0.20∗∗ 0.24∗∗ −0.003 −0.02

(0.01) (1.02) (0.02) (0.01) (0.01) (0.05) (0.09) (0.11) (0.02) (0.02)
SMB 0.07 1.36 −0.01 0.01 0.01 0.03 0.15 0.08 −0.03∗ −0.03

(0.04) (1.19) (0.02) (0.01) (0.01) (0.06) (0.13) (0.08) (0.02) (0.03)
HML 0.10 1.39 −0.01 0.03∗ 0.05∗∗ 0.14∗ −0.18 0.06 −0.03 −0.01

(0.07) (1.18) (0.01) (0.02) (0.03) (0.07) (0.13) (0.09) (0.04) (0.03)
RMW −0.05 0.81 0.004 0.04 −0.01 0.12 0.05 0.20 −0.01 −0.09∗

(0.04) (0.75) (0.02) (0.03) (0.02) (0.09) (0.16) (0.18) (0.02) (0.05)
CMA −0.18 −3.95 0.01 0.01 −0.07∗∗ 0.05 0.06 0.17 0.10 −0.04

(0.15) (3.28) (0.03) (0.03) (0.03) (0.12) (0.14) (0.12) (0.06) (0.06)
Momentum 0.03 0.25 0.003 0.02∗ 0.003 0.06 0.04 0.02 0.004 −0.03∗

(0.02) (0.31) (0.02) (0.01) (0.01) (0.05) (0.09) (0.07) (0.01) (0.02)

Observations 133 86 92 93 120 86 82 23 121 121
R2 0.16 0.23 0.04 0.14 0.46 0.20 0.09 0.32 0.13 0.26
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Table 4
Cross-sectional asset pricing. The table reports risk price estimates for the equal-weighted average return on the
short-both strategy, the excess return on the market, and the return on VIX ETF. Risk prices are the mean slopes of
period-by-period cross-sectional regressions of portfolio excess returns on risk exposures (betas), reported in percent-
age terms. Betas are estimated in a first-stage time-series regression. The portfolios of assets are from Asaf Manela’s
website and are based on He et al. (2017). Stocks are 25 portfolios sorted by size and book-to-market, US gov. bonds
are 10 maturity-sorted US government bond portfolios with maturities from six months to five years. Sov. bonds
are the six portfolios from Borri and Verdelhan (2012). Options are S&P 500 index options sorted on moneyness and
maturity. CDS are 20 portfolios sorted by spreads. FX are 6 currency portfolios sorted on interest rate differential (Let-
tau et al. (2014)) and 6 currency portfolios sorted on momentum (Menkhoff et al. (2012)). Shanken (Shanken (1992))
standard errors are in parentheses. Monthly frequency, from June 2006 to December 2012.

Asset Stocks US gov. bonds Sov. bonds. Options CDS FX
(1) (2) (3) (4) (5) (6)

Short-both -0.44 1.29∗∗∗ 3.20∗∗ 1.40∗∗∗ 1.38∗∗∗ 0.51
(0.43) (0.24) (1.59) (0.27) (0.20) (0.81)

Market -0.33 1.33∗ 2.69 -0.64 0.46 1.93∗∗∗

(0.61) (0.81) (0.93) (0.73) (0.82) (0.52)
VIX -2.13∗ -0.94 0.50 -0.49 -3.16 0.33

(1.05) (1.14) (0.30) (0.90) (1.96) (0.20)
Intercept 0.94∗ 0.18∗∗∗ -1.38 -1.13∗∗∗ -0.07∗∗ -0.15

(0.50) (0.05) (0.50) (0.36) (0.03) (0.23)

Number of portfolios 25 20 6 18 20 12
R2 0.08 0.66 0.88 0.99 0.88 0.55
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Fig. 1. Cumulant risk premium in the Heston model and with jumps. The left panel shows the cumulant-generating
functions in the physical (c(β)) and risk-neutral (c∗(β)) worlds for the Heston model, the right for the compound
Poisson process (CPP). The parameters for the Heston model are: µ = 0.05, r f = 0.02, λ = 2, λ∗ = 1, v̄ = 0.01, v̄ =

0.04, ρ = −0.7, σ = 0.1, T − t = 1. The parameters for the CPP are: µ = 0.05, r f = 0.02, λ = 0.1, λ∗ = 0.2, b = −0.05, b∗ =
−0.2, T − t = 1.

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

CGF in Heston model

beta

c(
be

ta
)

−5 −4 −3 −2 −1 0 1 2 3 4 5

c(beta)
c*(beta)
c(beta)−c*(beta)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

CGF in jumps model

beta

c(
be

ta
)

−5 −4 −3 −2 −1 0 1 2 3 4 5

c(beta)
c*(beta)
c(beta)−c*(beta)

39



Fig. 2. Realised higher-order moments (second and above) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3),
Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil (β = 2)
and Gold (β = 3). The graphs show cumulative 1-month annualized differences between rsimple and log(1+rsimple) for
the benchmark index (in red) and the ETF with the particular β (in blue).
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Fig. 3. Realised higher-order moments (third and above) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3),
Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil
(β = 2) and Gold (β = 3). The graphs show cumulative 1-month annualized differences between log(1+ rsimple) and
rsimple−

1
2 r 2

simple for the benchmark index (in red) and the ETF with the particular β (in blue).
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Fig. 4. Difference between the ETF return and the return implied from linear beta pricing for S&P 500 (β = 3), Nasdaq
(β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar
(β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). The graphs show 1-month cumulative differences between the
return on the ETF and the sum of the return on the leveraged benchmark and the risk-free rate: rET F −(βr +(1−β)r f ).
Blue lines are long ETFs (β > 0), red lines are inverse ETFs (β < 0).
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Fig. 5. C RP(β) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries
20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). The figure shows the 12-
months rolling annualized C RP(β) in %, together with 95% confidence intervals. The C RP(β) is estimated as α from
regression rETF,t(β) = α+βrbmk,t + (1−β)r f ,t + εt for several markets and leverages, where rETF,t(β) is the return on
an ETF with leverage β and rbmk,t is the return on the ETF benchmark. We estimate rt = logE[Rt ] by first calculating
E[Rt ] as the average daily return, and then running monthly regressions of logE[RETF,t(β)] on logE[Rbmk,t ].
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Fig. 6. Returns on the short-both strategy with log-expected-returns (log of the average daily return in a given month)
for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3),
Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). Plots are 12-months rolling annualized
returns, together with 95% confidence intervals.
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Fig. 7. Returns on the short-both strategy with daily log-returns for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks
(β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3),
Oil (β = 2) and Gold (β = 3). Plots are 1-month cumulative returns.
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Fig. 8. First principal component and average return of the short-both strategy. The figure shows the first PC of
the variance-covariance matrix of short-both strategy returns, VIX (left y-axis), and the average return of the strategy
across assets (right y-axis). The plots of the PC1 and the average return are 1-month rolling sums and the maximum
values are 308 and 35, respectively (the plots are truncated for better visibility). The assets we use are: S&P 500, Nas-
daq, Russell 2000, Financial stocks, Consumer services, Basic materials, Technology, Utilities, Real estate, Emerging
market stocks, VIX, Treasuries 7-10 yr, Treasuries more than 20yr, High yield corporate bonds, Japanese Yen/US Dollar,
Euro/US Dollar, Natural gas, Oil, Silver and Gold.
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Fig. 9. Loadings of leveraged strategies on higher-order cumulant terms. The graphs show βn
/n!, which are the load-

ings on higher-order cumulant differences from Equation 5. The left panel shows these loadings for a leveraged strat-
egy with β = 10, the right for an unleveraged one with β = 1.
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7. Appendix A – derivations and additional robustness checks

A.1. CGF of compound Poisson process with normal-sized jumps

Let X =∑
J
j=1 Y j , where J ∼ Poisson(λ) and Y j are i.i.d. normal conditional on the number of

jumps j : Y j / j ∼N (µ,σ2). Using the independence of Y j given j , we can write the MGF GX (β) as

a function of GY j (β) =GY1(β) :

GX (β) =
∞
∑
n=0

e−λ
λn(GY1(β))

n

n!
= e−λeλGY1(β) = eλ(GY1(β)−1).

Then, the CGF is

cX (β) =λ(GY1(β)−1). (19)

Using the normality of Y1, we can then write

cX (β) =λ(ecY1(β)−1) =λ(eµβ+σ
2β2/2−1).

A.2. CGF in the setting with lognormal and Poisson component

Let X be a sum of a normal component and an independent Poisson jump: X = Z +∑
J
j=1 Y j ,

where Z ∼N (µ− 1
2σ

2,σ2), J ∼ Poisson(λ) and Y j are i.i.d. normal conditional on the number of

jumps j : Y j / j ∼N (−b, s2). Both J and Y j are independent from Z , and hence (subscript in the

CGF denotes the respective random variable):

cX (β) = cZ (β)+c∑J
j=1 Y j

(β) = (µβ− 1
2σ

2β)+ 1
2σ

2β2+c∑J
j=1 Y j

(β).

Equation 19 shows that the last term is λ(GY1(β)−1). Using the normality of Y1, we can then write

c∑J
j=1 Y j

(β) =λ(e−bβ+s2β2/2−1).

A.3. Derivations of constant-β strategies in a GBM setting

The value of a constant-β strategy that invests fractionβ in the factor M and the rest in the risk-free

rate evolves as:
dPt

Pt
=β

dPt ,M

Pt ,M
+(1−β)r f dt

dlogPt = (βµ− 1
2β

2σ2+(1−β)r f ) dt +βσ dBt

⇐⇒ PT =P0e(βµ−1
2β

2σ2+(1−β)r f )T+βσBT

⇐⇒ PT =P0(
PM,T

PM,0
)βe((1−β)r f −1

2β(β−1)σ2)T

(20)
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The last line is obtained from the previous one by adding and subtracting 1
2βσ

2T in the power of

e.

RT =Rβ
M,T e(1−β)r f ,T−1

2β(β−1)σ2
T

logRT =β logRM,T +(1−β) logR f ,T −
1
2β(β−1)σ2

T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

deterministic

. (21)

Note that the CAPM holds in this case with log-returns: taking expectations in the last line of Equa-

tion 20 yields E[RT ] = eβµT+(1−β)r f T , or logE[RT ] =β logE[RM,T ]+(1−β)r f T .

A.4. CRP in a setting with stochastic volatility: the Heston model

Let us derive the CRP in a setting with stochastic volatility (e.g., Heston (1993)). The log-factor

price process xt = logPt ,M follows:

dxt = (µ− 1
2 vt) dt +

√
vt dB 1

t

dvt =λ(v̄ − vt) dt +σ
√

vt dB 2
t

(22)

under the physical measure, where vt is the volatility of the log-factor price,λ is the mean-reversion

speed, v̄ is the long-term mean of volatility, σ is now the volatility of volatility, and B 1
t , B 2

t are cor-

related Brownian motions dB 1
t dB 2

t = ρ dt .

By applying the Feynman-Kac theorem to the characteristic function ψ(β) = E[eiβxT ], we get

a partial differential equation (PDE) for the MGF G(β, xt , vt , t ,T ) =ψ(−iβ) = E[eβxT ]:15

Gt +(µ− 1
2 vt)Gx +λ(v̄ − vt)Gv +

1
2 vtGxx +

1
2σ

2vtGv v +ρσvtGxv = 0 (23)

with a boundary condition GT = eβxT .

We guess the solution is exponentially affine of the form:

G = eβxt+µβ(T−t)+a(β,t ,T )+b(β,t ,T )vt . (24)

Substituting this form in Equation 23, simplifying and regrouping with respect to the state

variable vt , we obtain (we write b instead of b(β, t ,T ), bt for ∂b
∂t , and similarly for a for ease of

notation):

−µβ+at +bt vt +(µ− 1
2 vt)β+λ(v̄ − vt)b+ 1

2 vtβ
2+ 1

2σ
2vt b2+ρσvtβb = 0,

vt(bt −
1
2β−λb+ 1

2β
2+ 1

2σ
2b2+ρσβb)+at +λv̄b = 0

(25)

15It is easier to work with MGF than the CGF since MGF is a simpler function of the characteristic function, whereas

CGF involves the log, and the derivations are more algebraically complex. It is easier to solve using the MGF and then

apply the log to the solution to obtain the CGF.
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By matching the powers of vt on the LHS and the RHS, we obtain two ODEs:

at =−λv̄b,

bt =
1
2β−

1
2β

2+(λ−ρσβ)b− 1
2σ

2b2.
(26)

The second ODE is a general Ricccati equation, which can be solved in a standard way using the

boundary condition for the particular solution. By substituting the solution in the first ODE, one

then obtains a(β, t ,T ). The final solutions are:

a(β, t ,T ) =−
λv̄φ

σ2
(φ−(λ−ρσβ))(T − t)+2log

φ+(λ−ρσβ)+(φ−(λ−ρσβ))e−φ(T−t)

2φ

b(β, t ,T ) = (β2−β)
1−e−φ(T−t)

φ+(λ−ρσβ)+(φ−(λ−ρσβ))e−φ(T−t) ,

(27)

where

φ =
√

(λ−ρσβ)2+σ2(β−β2). (28)

They satisfy the boundary condition at t = T . Then, the CGF of the log-return (hence skipping xt

as a parameter and subtracting logextβ from the MGF of the log-factor price) is:

c(β, vt , t ,T ) = logG(β, xt , vt , t ,T )− logextβ

=µβ(T − t)+a(β, t ,T )+b(β, t ,T )vt .
(29)

Now let us we evaluate these expressions for β = 1 since we need the CGF at β = 1.

Since b(1, t ,T ) = 0,φ(β = 1) =λ−ρσ, and a(1, t ,T ) =−
λv̄φ
σ2 0+2log 2φ

2φ = 0, a(1) = b(1) = 0. Take

t = 0. Then:

cT (1)−c∗T (1) = (µ− r f )T (30)

This result suggests that the FRP in the Heston model does not depend on variance. In other

words, even if volatility is stochastic, the FRP captures just the difference between the physical

drift (µ) and the risk-neutral one r f . The difference in risk-neutral and physical parameters of the

Heston model is irrelevant for the FRP since for β = 1, b(1, t ,T ) = b∗(1, t ,T ) = 0 and the multiplier

of the stochastic volatility vt in c(1, vt , t ,T ) is zero. However, the FRP for a general leveraged asset

is different from zero since these assets load on the variance risk premium through their leveraged

exposure.

A.5. CRP with power utility

The compensation for higher-order cumulant risk measured by the CRP can be computed in

standard economic models, for example in a setting with power utility (over the log-factor return

instead of consumption growth). With a risk-aversion parameter γ, the risk-neutral cumulant gen-

erating function can be expressed as a function of the physical one: c∗(β) = c(β−γ)− c(−γ) (see,
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e.g., Backus et al. (2011) for the derivation). Then, we can write the CRP as:

C RPT = cT (1)+cT (−γ)−cT (1−γ)−(E[logRT ]− r f ,T ) . (31)

In the particular case when γ = 1 (log-utility), CRP is:

C RPT = cT (1)+cT (−1)−(E[logRT ]− r f ,T ) = 2
∞
∑

n=2,even

κn,T

n!
−(E[logRT ]− r f ,T ) , (32)

which is closely related to the returns on the short-both strategy forβ = 1 that give 2∑∞n=2,even
κ∗n,T−κn,T

n! .

A.6. Measuring the CRPO

We can also construct a bet on implied vs. realized odd-order cumulants by buying an ETF

and selling its opposite ETF. This strategy extracts theβn-weighted CRPO plus the log risk premium

LRP (E[logRT ]−E∗ [logRT ] =κ1,T −κ
∗
1,T ), since the exposure to even-order cumulants cancels out.

The returns on this “short-one” strategy are:

rSO,T = 2
∞
∑

n ≥ 1, odd

βn(κn,T −κ
∗
n,T )

n!
. (33)

Let us denote C RPOT (β) = 1
2 rSO,T . Table B.5 shows the summary stats for the returns on

the short-one strategy and the estimate of the C RPOT (β). The results show that C RPOT (β) is

negative for natural gas, oil, currencies and high yield bonds, just like the C RPET (β). However, in

contrast to the C RPET (β), C RPOT (β) is positive for the S&P 500, most equity sectors, VIX, and

emerging market equities. These facts show that the βn-weighted mixture of cumulants can be

positive or negative for assets with different loadings on the same factor: higher-order cumulants

matter not only through the CRP of the factor but also through the sign of β.
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8. Appendix B – Additional tables and figures

Table B.1
C RP(β) as a share of the factor risk premium (F RP ). C RP(β) is estimated as α from the regression rETF,t(β) = α+

βrbmk,t + (1−β)r f ,t + εt for several markets and leverages, where rETF,t(β) is the return on an ETF with leverage β,
rbmk,t is the return on the ETF benchmark, and β is the ETF leverage. We estimate rt = logE[Rt ] by first calculating
E[Rt ] as the average daily return, and then running monthly regressions of logE[RETF,t(β)] on logE[Rbmk,t ]. The
numbers in the table are the ratios of the C RP(β) to the F RP .

C RP(β)
F RP

Leverage=β -3 -2 -1 2 3

S&P 500 -1.28 -0.95 -0.55 0.19 0.20
Nasdaq -0.54 -0.00
Russell 2000 -0.98 -0.05
Financials -1.33 -0.21
Consumer services -0.73 -0.00
Basic materials -1.01 -0.10
Technology -0.14 -0.36
Utilities -3.49 0.68
Industrials -1.07 0.04
Real Estate 0.11 -1.32 0.28 -1.47
Emerging Markets -0.83 -1.19 1-.01 0.47 -0.48
VIX 1.05 0.89
Treasuries 7-10 yr -0.75 -0.51 -0.35 -0.50 -1.17
Treasuries more 20 yr -0.42 -0.38 -0.29 -0.32 -0.73
High Yield -0.48 -0.25
Gold -0.83 -0.79 -0.20 -0.09
Silver 2.00 2.41 0.88 0.87
Nat gas 0.82 0.45 0.24 0.64
Oil 3.49 0.75 -2.80 -6.29
Euro/US Dollar 1.36 1.11
Yen/US Dollar -1.33 -1.90
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Table B.2
Starting dates of the ETFs used in the short-both strategy. The table shows the first date when a long and inverse ETF
with leverage of β and −β, respectively become available in a given asset.

Asset β Starting date

S&P 500 1 22/06/2006
S&P 500 3 06/11/2008
Nasdaq 3 12/02/2010
Russell 2000 3 06/11/2008
Financials 3 07/11/2008
Consumer services 2 02/02/2007
Basic materials 2 02/02/2007
Technology 3 18/12/2008
Utilities 2 02/02/2007
Industrials 2 02/02/2007
Real estate 3 17/07/2009
Emerging markets 1 02/11/2007
Emerging markets 3 18/12/2008
VIX 1 05/01/2011
Treasuries 7-10 yr 1 05/04/2011
Treasuries 7-10 yr 3 17/04/2009
Treasuries 20 yr+ 1 21/08/2009
Treasuries 20 yr+ 3 17/04/2009
High yield 1 23/03/2011
Gold 2 04/12/2008
Silver 3 01/01/2009
Nat gas 3 08/02/2012
Oil 3 06/01/2017
Euro/US Dollar 2 26/11/2008
Yen/US Dollar 2 26/11/2008
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Table B.3
Short-both strategy with fees. The table shows the short-both strategy using before-fees returns. Columns 2–4 use
log-returns, 5–7 simple returns. Columns 2 and 5 are in basis points, whereas columns 3, 4, and 6 in %.

β Mean log daily Mean log, annual Mean CRPE, annual Mean simple, daily Mean simple, annual Sharpe ratio
(1) (2) (3) (4) (5) (6) (7)

S&P 500 1 2.09 5.23 -2.61 0.49 1.23 0.06
S&P 500 3 14.03 35.08 -17.54 1.35 3.43 0.73
Nasdaq 3 13.92 34.80 -17.40 0.66 1.66 0.41
Russell 2000 3 23.17 57.93 -28.96 2.35 6.05 1.12
Financials 3 30.46 76.15 -38.08 3.88 10.18 1.27
Consumer services 2 7.33 18.33 -9.16 1.15 2.92 0.09
Basic materials 2 14.5 36.25 -18.13 2.28 5.86 0.36
Technology 3 17.05 42.63 -21.31 1.77 4.52 0.77
Utilities 2 9.14 22.85 -11.43 2.99 7.76 0.38
Industrials 2 10.03 25.08 -12.54 1.75 4.47 0.18
Real Estate 3 19.07 47.68 -23.84 2.63 6.80 0.55
Emerging Markets 1 4.4 11.00 -5.50 0.74 1.87 0.24
Emerging Markets 3 21.9 54.75 -27.38 1.85 4.73 0.71
VIX 1 32.08 80.20 -40.10 7.2 19.71 0.49
Treasuries 7-10 yr 1 0.59 1.48 -0.74 0.44 1.11 0.16
Treasuries 7-10 yr 3 3.16 7.90 -3.95 1.58 4.03 0.27
Treasuries more 20 yr 1 1.71 4.28 -2.14 0.91 2.30 0.66
Treasuries more 20 yr 3 8.8 22.00 -11.00 1.2 3.05 0.71
High Yield 1 2.59 6.48 -3.24 2.29 5.89 1.87
Gold 2 4.76 11.90 -5.95 0.55 1.38 0.31
Silver 3 31.13 77.83 -38.91 4.53 11.99 0.25
Nat gas 3 60.85 152.13 -76.06 6.42 17.40 1.07
Oil 3 45.3 113.25 -56.63 6.16 16.64 0.26
Euro/US Dollar 2 1.01 2.53 -1.26 -0.35 -0.87 -0.27
Yen 2 1.14 2.85 -1.43 -0.3 -0.75 -0.18
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Table B.4
C RP(β) with fees. The table shows the annualized C RP(β) in %, estimated as α from the regression rETF,t(β) =

α+βrbmk,t + (1−β)r f ,t + εt for several markets and leverages, where rETF,t(β) is the return on an ETF with leverage
β, rbmk,t is the return on the ETF benchmark, and β is the ETF leverage. We estimate rt = logE[Rt ] by first calcu-
lating E[Rt ] as the average daily return (before fees), and then running monthly regressions of logE[RETF,t(β)] on
logE[Rbmk,t ]. All estimates are significantly different from zero at the 5% level except those in italics. Here and in the
subsequent analysis r f ,t is the 1-month Treasury rate and standard errors are computed using the Newey and West
(1987) estimator with lag selection based on the Bartlett kernel (e.g., Andrews (1991)). Daily frequency, from the first
leveraged ETF inception date in a given market to April 2021 (February 2018 for VIX, June 2020 for gold and gas since
some long and inverse ETFs were delisted).

Annualized C RPT (β) in %
Leverage=β -3 -2 -1 2 3

S&P 500 -8.05 -5.88 -3.08 2.24 2.38
Nasdaq -4.59 0.88
Russell 2000 -9.32 0.53
Financials -11.82 -1.11
Consumer services -5.77 0.96
Basic materials -7.95 0.04
Technology -1.28 -4.87
Utilities -12.47 3.50
Industrials -7.53 1.25
Real Estate 2.08 -12.18 -4.20 3.67 -13.67
Emerging Markets -4.80 -7.51 -6.26 4.24 -2.20
VIX -35.84 -29.67
Treasuries 7-10 yr -1.78 -1.02 -0.41 -1.75 -3.33
Treasuries more 20 yr -1.42 -1.93 -0.72 -0.91 -3.11
High Yield -1.63 -0.41
Gold -2.69 -2.53 -0.05 0.85
Silver -7.32 -9.38 -3.00 -2.28
Nat gas -11.21 -5.64 -2.51 -8.38
Oil 31.81 7.34 -23.18 -52.70
Euro/US Dollar -0.18 0.05
Yen/US Dollar 0.27 -0.08
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Table B.5
Returns of the short-one strategy with log-returns. The table shows summary statistics for the short-one strategy rSO,T .
The last column is the average rSO,T /2 = C RPOT (β) minus column 7 LRPT (= κ1,T −κ

∗

1,T calculated as E[logRT ]−

E[logR f ,T ]). The numbers in the table are in basis points. Daily frequency, from the first leveraged ETF inception
date in a given market to April 2021 (February 2018 for VIX, June 2020 for gold and gas since some long and inverse
ETFs were delisted).

Asset β Mean S.d. Median Min Max LRPT Mean C RPOT (β)−LRPT

(1) (2) (3) (4) (5) (6) (7) (8)

S&P 500 1 8.52 251.13 9.08 -2248.35 2500.37 2.56 1.70
S&P 500 3 33.95 712.51 32.22 -7049.16 5613.44 4.19 12.79
Nasdaq 3 47.11 727.52 54.87 -7058.27 5723.65 6.82 16.74
Russell 2000 3 36.89 913.52 41.10 -8109.58 5337.28 4.23 14.22
Financials 3 37.54 1033.85 27.55 -9078.44 9461.06 3.55 15.22
Consumer services 2 20.86 472.89 18.57 -3915.47 3973.73 3.64 6.79
Basic materials 2 16.4 693.48 22.31 -5101.35 5223.2 1.54 6.66
Technology 3 48.27 781.52 49.79 -7308.02 6901.42 7.26 16.88
Utilities 2 14.90 482.89 18.78 -3972.98 5569.37 1.18 6.27
Industrials 2 19.44 559.89 20.47 -4653.39 5461.23 2.68 7.04
Real estate 3 34.28 809.29 40.53 -9316.34 5945.92 1.10 16.04
Emerging markets 1 5.08 381.36 6.26 -3625.65 4638.08 -0.17 2.71
Emerging markets 3 23.62 896.3 27.74 -7249.14 5545.77 3.38 8.43
VIX 1 -24.08 992.36 -85.77 -2645.25 25674.21 -28.36 16.32
Treasuries 7-10 yr 1 2.53 73.45 1.39 -441.35 424.8 1.47 -0.21
Treasuries 7-10 yr 3 7.68 237.88 2.46 -1573.4 1554.27 1.38 2.46
Treasuries more 20 yr 1 4.53 177.89 4.77 -1300.79 1510.68 2.46 -0.20
Treasuries more 20 yr 3 13.27 550.82 21.77 -3812.67 4162.12 2.20 4.44
High yield 1 2.76 108.9 2.33 -1191.9 1382.29 1.95 -0.57
Gold 2 10.65 409.87 4.60 -3536.27 2404.64 2.04 3.29
Silver 3 -0.41 1010.5 0.00 -7891.06 4843.32 -2.11 1.91
Nat gas 3 -38.83 1475.96 -13.93 -13273.22 12788.54 -10.09 -9.33
Oil 3 -40.14 1206.98 0.00 -16344.26 8073.39 -8.17 -11.90
Euro/US Dollar 2 -1.64 231.11 0.00 -1283.22 1532.62 -0.40 -0.42
Yen/US Dollar 2 -2.34 235.53 0.00 -1362.25 1589.58 -0.47 -0.70
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Fig. B.1. Trading against assets with opposite β-s: extracting the C RPE(β). The figure shows the profit dynamics of
liquidity provision to assets with opposite β-s using a binomial tree example. The figure illustrates the dynamics of
the factor and the corresponding profits for a market-maker who sells short a pair of assets with opposite β-s (β = 2
and β = −2). For each period, the parameters of the tree are u = 1.05 (gross return in the up-state) and ud = 1, where
d is gross return in the down-state. Red areas indicate nodes where the market-maker loses money, and green ones
show where she makes profit. More color-intense nodes indicate larger losses or profits.
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Fig. B.2. Under-performance of the ETF with simple returns for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks
(β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3),
Oil (β = 2) and Gold (β = 3). The graphs show 30-day cumulative differences between the return on the ETF and the
sum of the return on the leveraged benchmark and the risk-free rate: rET F −(βr +(1−β)r f ). Blue lines are long ETFs
(β > 0), red lines are inverse ETFs (β < 0).
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Fig. B.3. The returns on the short-both strategy with daily simple returns for S&P 500 (β = 3), Nasdaq (β = 3), Small
cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural
gas (β = 3), Oil (β = 2) and Gold (β = 3). Plots are 30-day cumulative returns (not annualized).
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