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Abstract

Using property transaction and financing data, we document large cross-sectional dif-
ferences in how effective houses are as collateral for mortgages. Older and less stan-
dardized houses tend to have higher price dispersion, and their appraisal values tend
to deviate more from transaction prices. Mortgages collateralized by these houses have
lower loan-to-price ratios, higher interest rates, and are more likely to be rejected due
to collateral reasons. Using a structural model, we show that appraisal uncertainty
explains most of the effects on LTP and mortgage failure, while the collateral recovery
channel is the main driver of the interest rate effect. We discuss the implications of
our findings for the shift from human to automated appraisals, the FHA mortgage
program, and urban policy.
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1 Introduction

The residential mortgage market has been central to policies for improving homeownership

and stabilizing the economy. Despite the significant amount of subsidies devoted to this

market, various frictions inhibit the passthrough of these subsidies to households (Glaeser

and Shapiro, 2003; Hurst et al., 2016; Agarwal et al., 2017; Adelino et al., 2020; DeFusco,

2018; DeFusco and Mondragon, 2020). Factors that prevent home buyers from borrowing

against the house can significantly affect their homeownership decisions, especially for low-

income families. Understanding such credit market frictions is important for improving

homeownership rates, a topic which has been central in housing policy debates.1

In this paper, we document large cross-sectional differences in how effective houses are

as collateral for mortgages. Older and less standardized houses have higher price disper-

sion, whose appraisal values tend to deviate more from transaction prices. Price dispersion

affects financing: mortgages backed by high-dispersion houses have lower loan-to-price ra-

tios, higher interest rates, and are more likely to be rejected. Using a structural model, we

show that house price dispersion matters for two reasons: because dispersion affects lenders’

expected recovery on mortgage debt, and because dispersion leads to appraisal uncertainty,

which interacts with regulatory constraints that require mortgage LTVs to be tied to house

appraisals. The estimated model allows us to disentangle how the collateral recovery and

appraisal channels affect different mortgage outcomes, which has implications for several

ongoing policy debates in the housing market.

Policymakers aiming to encourage homeownership for low-income households have con-

sidered interventions in credit markets as well as in housing markets. This paper highlights a

link between these two markets: the amount of credit that mortgage lenders provide depends

on the value uncertainty of the house used as collateral. Our findings have implications for

the impending shift from human to automated appraisals. We also provide a rationale for

interventions in the mortgage market, such as the FHA program, which allows low-income

households to borrow at higher LTV ratios. More broadly, our results suggest that the ease

of financing of the housing stock is quantitatively important for housing affordability.

The paper unfolds in two steps. First, we establish that collateral value uncertainty

1See policy reports, e.g., Herbert et al. (2005) and Boehm and Schlottmann (2008). As of 2021, homeownership rate
of below-median income households is about 52 percent, compared to 79 percent of above-median income households.
Source: The US Census quarterly report, Quarterly Residential Vacancies and Homeownership.

1

https://www.census.gov/housing/hvs/files/currenthvspress.pdf


limits mortgage credit. We use rich residential property transaction data from 2000 to 2020

to document substantial cross-sectional variation in the predictability of house prices. Older

and less standardized houses in terms of the number of bedrooms or square footage have more

value uncertainty, as measured by the predicted errors from a hedonic model of house price.

Aggregating price dispersion to the zip code level, we show that zip code price dispersion is

persistent over time, suggesting that cross-sectional differences in price dispersion is mainly

driven by differences in characteristics of local housing stocks.

We show that collateral value uncertainty affects three measures of mortgage lending:

loan-to-price ratios, interest rates, and mortgage rejections. Comparing two houses which

are transacted in the same county-year at the same transaction price, we find that houses with

higher estimated price dispersion tends to have lower loan-to-price ratios (LTPs). The result

holds when we further restrict to comparing houses financed by the same lender. On average,

LTPs are about 50 bps lower for houses with one standard deviation higher estimated price

dispersion. Moreover, we estimate the mortgage price menu (rate-LTP pairs) using loans

received by homebuyers in zip-codes with different level of house price dispersion. The

estimated menu shows that, conditional on borrower and loan characteristics, mortgages

collateralized by high price dispersion houses tend to have higher interest rates. The risk-

adjusted rate increases by about 2bps in zip codes with one standard deviation higher house

price dispersion. Lastly, mortgage applications are more likely to be rejected due to collateral

reasons if the underlying houses have higher price dispersion. The effect is economically

significantly: given the sample average rejection rate, the effect amounts to about 25%

increase in rejection likelihood.

Our baseline identification strategy exploits within county-year variation by comparing

two properties that are bought in the same county-year, at the same price, and by buyers

with the same credit profile and income. To address concerns that house price dispersion is

associated with other unobserved characteristics that also affect mortgage credit provision,

we construct instruments for price dispersion, based on the heterogeneity of a house relative

to its local housing stock. The instruments help alleviate the endogeneity concerns: zip codes

with more heterogenous housing stock within a county do not systematically attract less

creditworthy or low-income households; nor is the instrumented price dispersion correlated

with ex-post default. Our results continue to hold using the instrumental variable approach,

and the ex-post default analysis suggests that our IV results are not driven by unobserved
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differences in borrowers’ creditworthiness.

We perform two robustness tests of our results. First, our results hold even with lender-

zip-year fixed effects, suggesting that the results are not driven by lender market power,

or other features of lenders’ behavior which affect all houses within a zip code uniformly.

Second, our findings hold even restricting to a subsample of houses with sale prices below

conforming loan limits, suggesting that our findings are not driven by home buyers reducing

borrowing amounts to be eligible for GSE or FHA loans.

We then construct a structural model to decompose the underlying mechanisms, which

helps understand the implications of our findings. The model shows two main forces through

which high price dispersion limits credit provision. The first is the collateral recovery chan-

nel: lenders face higher losses in high-dispersion areas, so offer worse mortgage menus to

homebuyers, with higher interest rates for any given LTV. The second is the appraisal risk

channel: in high-dispersion areas, under-appraisals are more likely and larger when they

occur, so buyers limit their mortgage loan size in order to lower the risk of under-appraisals.

In the model, a borrower chooses a targeted mortgage loan size to purchase a house.

Competitive lenders offer menus of interest rate-LTP pairs to borrowers, such that lenders

break even, given the exogenous risk of default and expected recovery rates. After borrowers

choose a target mortgage loan size from the offered menu, the house undergoes an appraisal,

to satisfy a regulatory constraints on mortgage LTVs. We model appraisals as upwards-

biased signals of house prices, consistent with the distribution of house appraisals in practice.

If the house over-appraises, the borrower proceeds with the mortgage. If the house under-

appraises sufficiently much that the targeted mortgage violates the LTV constraint, the buyer

must choose to either make a costly increase in her down payment, or pay a fixed cost to

renege on the transaction and find a new house. Homebuyers thus face a tradeoff in choosing

mortgage size: larger mortgages improve consumption smoothing, but increase the risk of

under-appraisals.

We then calibrate the model to data, matching moments on how lenders’ rate menus, the

distribution of appraisals, and the rate of mortgage rejections depend on price dispersion.

The calibrated model allows us to do two exercises. First, we do not target the dispersion-

LTP relationship as a moment in our model, so we use this relationship as an out-of-sample

test of model fit. The model produces a dispersion-LTP relationship of similar magnitude

to what we observe empirically, indicating that the model can quantitatively rationalize the
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magnitude of the dispersion-LTP relationship in the data.

It is intuitive that price dispersion should lower mortgage credit provision; however, the

precise manner in which this occurs in our model is subtle, combining the effects of the

collateral recovery channel – the fair pricing of debt in free markets – and the appraisal risk

channel, where mortgage size choice interacts with a regulatory constraint. Thus, the second

exercise we perform with our model is to evaluate how each channel contributes to driving

each of the three outcome measures we analyze: LTPs, interest rates, and mortgage rejec-

tions. We find that the collateral recovery channel is the primary driver of the relationship of

dispersion with interest rates, whereas the appraisal risk channel is primarily responsible for

the relationship of dispersion with loan size and mortgage rejections. That is, if we assume

lenders offer worse rate menus, but buyers respond to this by picking similarly sized mort-

gages and receiving similar amounts of mortgage rejections, but bearing higher interest rates

as a result. On the other hand, if we assume that appraisals become riskier while holding

lenders’ rate menus fixed, buyers receive more mortgage rejections, scale down borrowing in

response to higher appraisal risk, but mortgage interest rates are essentially unaffected.

Our model thus has implications for how shifts in regulatory treatment of appraisals,

and how lenders treat collateral recovery risk in their mortgage pricing decisions, would

influence various measures of mortgage credit provision. To illustrate this point, using our

model, we evaluate how much the shift to automated appraisals would influence mortgage

credit provision. We estimate outcomes in the model, assuming computers generate fully

fair appraisals of home values, removing the tendency of human appraisers to bias appraisals

upwards. We find that automated appraisals would decrease mortgage LTPs around 2pp,

and increase mortgage rejection rates by around 10pp in low-dispersion areas, and around

15pp in high-dispersion areas. Hence, shifting to automated appraisals, without somehow

compensating for human appraisers’ built-in upwards biases, has the potential to significantly

lower mortgage credit provision.

Together, our results imply that the value uncertainty of the housing stock is a previ-

ously overlooked variable which has quantitatively large effects on mortgage credit provision

in the US housing market. The effect of value uncertainty on mortgage credit does not rep-

resent a form of discrimination by lenders, or an externality which can be addressed through

Pigouvian taxation. Rather, it is a structural phenomenon caused by intrinsic features of

the housing stock: lenders in competitive credit markets have higher costs of lending against
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poor collateral, and houses tend to under-appraise by larger amounts, leading to lower credit

provision for these houses.

Our results provide a rationale for interventions, such as the FHA loan insurance program,

which extend credit to low-income households and first-time homebuyers at loan-to-value

ratios much higher than private lenders. We have shown that low-income households face

particularly high barriers to homeownership because they tend to live in high-dispersion

areas, so lack access to housing with high collateral values. Thus, mortgage credit access is

limited precisely for those households who are most down-payment constrained, for whom

credit is most valuable. Government interventions such as the FHA loan program, can

potentially alleviate this effect. Besides these programs, we also discuss implications our

results have for the impending shift from human to automated housing appraisals, and for

urban and zoning policies which affects the collateral value of the aggregate housing stock.

This paper relates to a number of strands of literature. Broadly, our paper fits into

a literature on frictions that affect mortgage credit (Lustig and Van Nieuwerburgh, 2005;

Mian and Sufi, 2011; Greenwald, 2016; Agarwal et al., 2017; Piskorski and Seru, 2018; Beraja

et al., 2019; DeFusco et al., 2020; Adelino et al., 2020; Buchak et al., 2018; Jiang, 2020) and

the corresponding real effects (Glaeser and Shapiro, 2003; Di Maggio and Kermani, 2017;

Agarwal et al., 2022; Di Maggio et al., 2017; Gupta et al., 2021; Dokko et al., 2019; Kermani

and Wong, 2021). DeFusco and Mondragon (2020) studies two counter-cyclical refinancing

frictions – the need to document employment and the need to pay upfront closing costs –

and show these frictions prevent borrowers who experience income shocks to refinance. De-

Fusco (2018) studies how changes in access to housing collateral affect homeowner borrowing

behavior and estimate the marginal propensity to borrow out of housing collateral. Collier

et al. (2021) shows that borrowers lower loan size to avoid collateral requirements and the

impact of collateral requirements on ex-post loan performance. Lang and Nakamura (1993)

theoretically argues that the precision of appraisals influences home sales through down

payment requirements, leading to sub-optimal lending outcomes. Blackburn and Vermilyea

(2007) empirically tests the theories of rational redlining and shows that a low volume of

home sales lead to uncertainty in house appraisals, reducing mortgage lending.

Our paper also relates to the housing literature. We build on a literature on idiosyncratic

price dispersion in the housing market and its consequences. Case and Shiller (1989) and

Giacoletti (2021) analyze idiosyncratic risk in residential real estate markets. Sagi (2021) an-
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alyzes idiosyncratic risk in commercial real estate. Hartman-Glaser and Mann (2017) docu-

ments that lower-income zip codes have more volatile returns to housing than higher-income

zip codes. They rationalize the finding with a model where shocks to the representative

household’s marginal rate of substitution lead to volatility in the return to housing via the

collateral constraint, and lower-incomes have a more volatile marginal rate of substitution,

and thus more volatile returns to housing. Sklarz and Miller (2016) propose a method to

adjust loan-to-value ratios to reflect house value uncertainty.

More broadly, our paper fits into a classic literature analyzing how collateral values affect

the properties of debt contracts collateralized by these assets (Titman and Wessels, 1988;

Shleifer and Vishny, 1992). Literature has studied how collateral affects the cost of debt

(Benmelech and Bergman, 2009; Liu, 2022) and firms’ willingness to borrow (Pan et al.,

2021; LaPoint, 2021), and the effect of collateral liquidation values on contract renegotiation

(Benmelech and Bergman, 2008) and on ex-ante firm investments (Bian, 2021).

We contribute to the above three strands of literature by showing quantitatively that

collateral value uncertainty matters in the US residential real estate market: there is sub-

stantial cross-sectional heterogeneity in housing collateral values, which has economically

significant effects on mortgage credit availability. Our model also elucidates the mechanisms

through which the collateral channel influences outcomes within the unique structure of the

US residential mortgage market: in particular, how house price dispersion interacts with

lender incentives and the housing appraisal system to influence mortgage credit access.

The paper proceeds as follows. Section 2 describes our data, measurement strategy, and

stylized facts on our price dispersion measure. Section 3 studies the effect of price dispersion

on mortgage provision. Section 4 constructs our model, and Section 5 calibrates the model

to the data. We discuss implications of our results in section 6, and conclude in section 7.

2 Measurement and Data

2.1 Measuring Value Uncertainty

The housing market is far from a perfectly competitive, frictionless market. Houses are

differentiated, buyers may have heterogeneous preferences, and sellers often only list houses
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for sale when they face idiosyncratic shocks forcing them to move. These forces imply that

individual houses trade in thin markets: there is a relatively small set of potential buyers

for each house at any given point in time. Thus, there is nontrivial randomness in house

sale prices: the same house may sell for higher or lower prices, depending on whether there

happens to be a high-valued buyer in the market when the owner lists the house for sale.

House price dispersion induced by market thickness tends to be larger for non-standardized

houses, since there are fewer interested buyers overall, and since there is likely to be larger

dispersion in buyers’ values for the house.

We proceed to empirically estimate house price dispersion, at the level of individual house

sales, essentially by measuring what kinds of houses tend to have smaller errors when priced

with a hedonic regression.2 Our estimation has two steps. First, we regress transaction

prices on house characteristics:

pit = ηkt + fk (xi, t) + εit, (1)

We then regress the squared residuals, ε̂2it, from (1), on a flexible function of characteristics

and time, to predict which house characteristics make them difficult to price:

ε̂2it = gk (xi, t) + ξit (2)

In (1) and (2), i indexes properties, k indexes counties, and t indexes months. pit is the

log transaction price of house i at time t. fk (xi, t) and gk (xi, t) are generalized additive

models in observable house characteristics xi and time t, which we describe in Appendix

A.2. fk (xi, t) allows houses with different observable characteristics to appreciate at different

rates. gk (xi, t) allows the variance of price dispersion to vary over time. ηkt is county-month

fixed effect. Specification (1) essentially estimates a hedonic specification for house prices,

and specification (2) projects the squared residuals ε2it from the hedonic regression on house

features and time, to predict which characteristics make houses difficult to value. We then

use the square roots of the predicted values from specification (2) as our house-level measure

2A similar methodology is used in Buchak et al. (2020).
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of idiosyncratic price dispersion:3

σ̂2
it ≡ ĝk (xi, t) (3)

This measure directly captures the forces that tend to generate appraisal variance and

thus the value uncertainty in the appraisal channel. Appraisers simply compare the price of

a house to recent sale prices of houses with similar characteristics, which is fairly close to

our procedure of taking the squared residuals from a hedonic regression. In contrast, under

the fair-pricing channel, lenders should in principle care about the total price volatility of a

house, which consists of the idiosyncratic volatility of a house as well as the volatility of local

house price index. Our measurement strategy focuses on the idiosyncratic component, which

is a large component of total volatility.4 This methodology is justified because our empirical

analyses will compare individual houses within a given region-year. To the extent that houses

within a geographical region have similar exposure to local index volatility, differences in total

volatility among these houses are likely to be mainly driven by differences in the idiosyncratic

component.

We next discuss why our measurement strategy is robust to two potential concerns. First,

we measure value uncertainty as independent shocks at each house sale rather than fluctu-

ations over time that scale with the holding period of a house. This modeling assumption

is justified by evidence in Giacoletti (2021) and Sagi (2021), which shows that idiosyncratic

component of house price risk has a very flat term structure, scaling very little with the

holding period of a house. Also, idiosyncratic price dispersion mainly varies in the cross-

section and has relatively small time-series variation (Kotova and Zhang, 2021). Intuitively,

search frictions, market thickness, and heterogeneous preference are among the main drivers

of the idiosyncratic volatility; these forces tend to generate price shocks that are realized

upon sales, rather than a drift term which increases in variance substantially depending on

house holding periods.

Another concern is measurement errors of the hedonic approach. If we observed all

characteristics of houses that market participants observed, and our functional forms for

3Note that it is important to use the predicted values of σ̂2
it in stage 2 rather than the residuals ε̂2it in stage 1

directly. This is because the expected value of idiosyncratic dispersion, σ2
it, is the analog of σ in our model, which

is relevant for loan-to-values. Each realization of ε̂2it is a noisy measure of σ2
it. If we regressed outcomes such as

house-level LTP on the regression residuals ε̂2it directly, the coefficients would be biased towards 0, relative to the
first-best of regressing LTPs on σit, due to measurement error bias.

4According to Piazzesi and Schneider (2016), roughly half of the total volatility in a house price transaction is
idiosyncratic.
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house prices were fully flexible, the hedonic approach would fully filter out the effects of

house characteristics, capturing only price dispersion generated by housing market frictions.

In practice, our estimates are likely to be confounded by two main factors. First, our

estimation cannot account for the effects of house characteristics unobserved in our data,

but observed by market participants and lenders. Second, our functional forms may not be

flexible enough to capture the true conditional expectation function.

To further address the concern about unobservables, we construct an alternative measure

of value dispersion using a repeat-sale model in Appendix D.1. This specification absorbs

all time-invariant house quality variation into house fixed effects, so the squared residuals

essentially measure the extent to which a house’s price fails to track local house price indices.

We also purge the repeat-sales residuals of variation driven by average time-between-sales of

houses, and the number of times a house is sold, to address concerns that the squared resid-

uals are mechanically associated with house sale frequency. While the size of the residuals

from the repeat-sales specification are substantially lower than in the baseline specification,

the squared residuals from the two specifications are very correlated: houses that have high

predicted value uncertainty under one measure also tend to have high predicted uncertainty

from the other specification. Our empirical results also continue to hold using the repeat-

sales residuals as a measure of value uncertainty, suggesting that our results are not purely

driven by variation in unobserved house quality.

2.2 Data and Stylized Facts

2.2.1 Data Sources

Corelogic Deed & Tax Data. We obtain house transaction records in the entire

US from 2000 to 2020 from the Corelogic Deed dataset, and restrict the sample to arms-

length, non-foreclosure transactions in single family residences. The date set reports each

house transaction attached to a specific property, and provides information on sale amount,

mortgage amount, transaction date, and property location. We exclude transactions with

missing sale price, date, property ID, or location information. We merge the transaction

records with the Corelogic Tax records to get property characteristics, such as year built

and square footage, and estimate price dispersion for each house in this merged data set.

Appendix A.1 provides detailed description about data cleaning steps.
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Corelogic Loan-Level Market Analytics (LLMA) Data. We obtain mortgage

information from the Corelogic LLMA data, which provides detailed information on mortgage

and borrower characteristics at origination – interest rates, down payments, sale prices,

credit score, and debt-to-income ratio – and monthly loan performance of the loan, including

delinquency status and investor type. Importantly for our analysis, the LLMA provides both

appraised house value and transaction price. We use this data set to estimate the menu of

LTP-interest pairs in any given market and to examine loan performance. The LLMA terms

of use do not allow us to merge the data with the Deeds records; thus, we aggregate estimated

idiosyncratic price dispersion to the 5-digit zip code level.

Home Mortgage Disclosure Act (HMDA). The HMDA covers the near universe of

U.S. mortgage applications, including both originated and rejected applications. For rejected

loans, we observe the rejection reasons. We use the HMDA for extensive margin analysis

on mortgage application rejections, while we aggregate the estimated idiosyncratic price

dispersion to the finest geographic regions in the HMDA (census tract).

Other Sources. We use the Booth TransUnion Consumer Credit Panel to calculate the

average VantageScore credit score by county to measure the creditworthiness of the entire

borrower population. We obtain zip level demographic data from the American Community

Survey (ACS) 1-year and 5-year samples.

Table 1 provides summary statistics.

2.2.2 Estimated Value Uncertainty and Housing Market Frictions

We next present some stylized facts about the estimated value uncertainty of the US housing

stock and discuss how the estimates reflect the housing market frictions discussed in the

previous section.

We first confirm that the estimated price dispersion is very persistent over time. Figure

1 Panel A plots zip-code idiosyncratic price dispersion in 2020 against zip code dispersion

in 2010. Over both time periods, zip code dispersion in the later year is lined up with the

dispersion in the earlier year. This suggests that the differences in price dispersion are driven

by persistent characteristics of the local housing stock, rather than time-varying local market

conditions.
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To explore this further, Table 2 presents the association between estimated value uncer-

tainty and house characteristics. Panel A analyzes house features. Throughout, we control

for linear and squared terms in log house prices, comparing houses with similar prices and

different characteristics. Older houses have higher price dispersion (column 1). Controlling

for building age, recently renovated houses within 5 years of the transaction date (column

2) have lower price dispersion.5 Columns 3-4 present the association between property size,

measured by square-footage and number of bedrooms, and price dispersion. There is a

U-shaped relationship: price dispersion is low for moderately large houses, and higher for

houses which are very large or very small. In terms of local housing market conditions, Panel

B of Table 2 shows that houses in zip codes with larger income inequality, less population

density, and more vacancies tend to have higher price dispersion. Together, Table 2 suggests

that house price dispersion is essentially driven by house standardization and market thick-

ness.6 Lastly, Figure 1 Panel B shows the relationship between price dispersion and average

zip-code incomes. Price dispersion tends to be higher in low-income zip codes.

3 Price Dispersion and Mortgage Credit

In this section, we empirically show that collateral value uncertainty affects mortgage credit

at three margins: loan size, interest rate, and approval likelihood. We present baseline OLS

results before discussing our instrumental variable strategies and a set of robustness tests.

3.1 Effects on Mortgage Credit

3.1.1 Loan-to-Price Ratio

We start with the effect of price dispersion on loan size as measured by loan-to-price ratio

(LTP). We first visualize the relationship by plotting county average LTP against average

house price dispersion in Figure 2(a).7 Counties with higher price dispersion have lower

5We can partially measure house renovations, as the Corelogic tax data contains an “effective year built” variable,
which tracks the last date at which a property was renovated.

6This finding is consistent with evidence from other papers: see, for example, Kotova and Zhang (2021) and
Andersen et al. (2021).

7To make this plot, we first remove the average LTP differences across levels of individual house prices and then
plot their county average against county average price dispersion.
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average LTP. The pattern holds for all types of loans: GSE loans, FHA loans, and jumbo

loans (Figure A1).

We then exploit within county-year variation by comparing two properties that are bought

in the same county-year, at the same price, and by buyers with similar credit profile and

income. To implement this strategy, we estimate the following property-level specification:

LTPikt = α + βDispersionikt +XiktΓ + µkt + νm + εikt (4)

LTPikt is loan-to-price ratio of the mortgage that is collateralized by property i in county k

in year t. Dispersionikt is the estimated price dispersion of the underlying property. Xikt is

a set of controls, including property transaction price, mortgage type, mortgage term, and

resale indicator. µkt and νm are county-year and transaction month fixed effects, respectively.

Table 3 presents the results. Column 2 corresponds to Specification 4, while columns

1 and 3 are less saturated specification with only transaction date fixed effects and more

saturated specification further add lender-year fixed effects, respectively. For two houses

in the same county that are transacted on the same date at the same price, the one with

higher estimated price dispersion tends to receive a smaller sized loan. In the most saturated

specification, the loan-to-price ratio is more than 20bps lower for houses with one standard

deviation higher estimated price dispersion across these specifications. The estimates effects

are economically significant: in Appendix C, we calibrate a lifecycle model of homeownership

choice and show that price dispersion-induced changes in LTV can substantially decrease

aggregate homeownership rates.

3.1.2 Interest Rates

We next turn to the effect of price dispersion on the cost of mortgage credit. Figure 2(b)

visualizes residualized mortgage rates against the average house price dispersion. We residu-

alize rates for individual mortgages on borrower and loan characteristics such as FICO, LTP,

DTI, the squared terms, and their interactions with origination year. Properties in counties

with higher price dispersion tend to be financed by more expensive mortgage. The positive

relationship between price dispersion and interest rate suggests that the negative effect of

price dispersion on LTP is not explained by borrowers substituting to smaller loans to obtain

lower interest rates.
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We further corroborate this result by estimating the entire menu of LTP-interest rate

pairs that are available in a market using loan-level data. Figure 3 plots the mortgage price

menu, separately for groups of zip codes with high and low price dispersion. We residualize

interest rates by purging out the effects of borrowers’ credit scores, loan type, and time fixed

effects and plot a menu of average interest rates for different LTPs. As shown in Figure 3,

the entire menu of interest rate-LTP pairs shifts upwards in high-dispersion zip codes: for

any given LTP, borrowers in high-dispersion zip codes can expect to pay higher prices. The

difference is about 3bps for loans with LTP below 80, and enlarges to 7bps for loans with

LTP above 80.

Table 4 presents the above results in regression settings by estimating Specification 4

with interest rate being the outcome variable while including LTP as one of the explanatory

variables.8 Column 1 uses the full sample. We first confirm that higher loan-to-price ratios

are associated with higher interest rates. The coefficient on LTP is positive and statistically

significant. A one percentage point increase in LTP is associated with an 80bps increase in

interest rate. Controlling for LTP, houses in zip codes with higher house price dispersion

are financed with more expensive mortgages. The mortgage rate increases by 1.1bps in zip

codes with one standard deviation higher average house price dispersion. Columns 2 to

3 show the results for securitized loans and portfolio loans, respectively. The results hold

in all samples. For every one standard deviation increase in zip-code average house price

dispersion, the mortgage rate of securitized loans increases by 1.38bps, and the mortgage

rate of the portfolio loans increases by 1.98bps.

3.1.3 Mortgage Rejection Rates

Besides less favorable loan terms conditional on approval, mortgage applications are more

likely to be rejected in counties with higher price dispersion, according to Figure 2(c). In

particular, as shown in Figure 2(d), the fraction of mortgages rejected for collateral-related

reasons is higher in high-dispersion counties.

We show this negative relationship between price dispersion and loan approval likelihood

in regression settings by estimating Specification 4 with mortgage rejection indicator being

8We use zip-code dispersion instead of property-level dispersion because our price dispersion measure is estimated
using Corelogic Deeds, and the data vendor prohibited us from merging loan-level records in LLMA with property-
level records in Corelogic Deeds and Tax. We therefore aggregate property-level price dispersion measures to the
most granular geographic region in LLMA.
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the outcome variable.9 Panel A of Table 5 reports the results. We first confirm the effect

of local house price dispersion on mortgage rejection using full sample (column 1). Zip-code

house price dispersion is positively and significantly associated with mortgage rejections.

This result holds for both securitized loans (column 2) and portfolio loans (column 3). The

rejection rate increases by about 1.4 percentage points as house price dispersion increases

by one standard deviation. The effect is economically significant: given the sample aver-

age rejection rate of about 16%, the estimate amounts to about 10% increase in rejection

likelihood.

We provide more direct evidence for the collateral channel by focusing on rejections due

to collateral reasons in Panel B of Table 5. A mortgage application is about 50bps more

likely to be rejected due to collateral reasons in a zip code with one standard deviation higher

house price dispersion, which is about 25% increase in rejection likelihood. Again, the result

holds in the full sample (column 1) as well as sub-samples of securitized loans (column 2)

and portfolio loans (column 3).

Mortgage Rejection Reasons. As robustness, Table 6 reports the relationship between

house price dispersion and the likelihood of being rejected due to different reasons conditional

on being rejected. As the sample means indicate, the most common rejection reasons in

the entire sample are creditworthiness related reasons (i.e., credit score and debt-to-income

ratios). However, as the house price dispersion increases, the results clearly show that the

mortgage rejection is significantly more likely to due to collateral reasons and less likely to

be due to creditworthiness reasons, supporting our baseline findings.

3.2 Identification

3.2.1 Identification Assumptions of Baseline Results

Our baseline specification in Section 3.1 exploits within county-year variation by comparing

two properties that are bought in the same county-year, at the same price, and by buyers

with similar credit profile and income. In the second stage of Dispersionikt estimation (Eqn.

9Again, We use zip-code dispersion instead of property-level dispersion because our price dispersion measure is
estimated using Corelogic Deeds. We aggregate property-level price dispersion measures to zip-code level and assign
it to every loan application in HMDA based on borrowers’ location recorded by lenders of the mortgage.
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2), we project the squared residuals from the first stage hedonic model onto the entire set

of house characteristics. In a sense, house characteristics are used as instruments for price

dispersion. The identifying assumption of the baseline specification 4 is that conditional

on house price and borrower and loan characteristics, characteristics of a house only affect

mortgage outcomes, insofar as they affect price dispersion.

This assumption can be violated if unobservable borrower characteristics are correlated

with certain house features. For example, if borrowers who are more likely to purchase

smaller, and thus high price dispersion, houses are also less creditworthy after conditioning on

hard information like credit score and debt-to-income ratio, then the baseline specifications

are subject to omitted variable bias.

We address this concern by instrumenting price dispersion using measures of house hetero-

geneity relative to the local housing stock. Our baseline results are robust to the instrumental

variable approach, which will be discussed in the rest of this section.

3.2.2 Instrumental Variables

We construct a set of house-level instruments, for the price dispersion of each individual

house i in county c, by measuring its heterogeneity relative to the local housing stock.10 For

all houses transacted in each county c, we first calculate the average value of each key house

features (X
m

c ), where

m ∈ {building age(age), size(sqft), bedrooms(bed), bathrooms(bath), geo-coordinates(geo)}.

For each house, there are 5 instruments, one for each characteristic m. The instrument Zm
i

is equal to the squared difference between the house’s feature m, and the average value of

m in county c, that is:

Zm
i = (Xm

i −X
m

c )2, ∀m ∈ {age, sqft, bed, bath, geo}, (5)

10The approach of using measures of house nonstandardization as instruments is not new to the literature: similar
ideas are used in Andersen et al. (2021), and the approach can be micro-founded in a search and matching framework
as done in Guren (2018).
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Then, we estimate the following 2SLS specification:

Stage 1: Dispersionit = α + β1Z
age
it + β2Z

sqft
it + β3Z

bed
it + β3Z

bath
it + β4Z

geo
it

+XiktΓ + µkt + νm + εikt

Stage 2: Yikt = α + β ̂Dispersionikt +XiktΓ + µkt + νm + εikt,

(6)

where ̂Dispersionikt is the predicted value from stage 1.

The intuition behind the instruments is that they measure how locally thin the market

is for a given house i by benchmarking it to other houses within the same county. Small

houses, for example, will have large Zsqft in a county with mostly large houses but will have

small Zsqft in a county with mostly small houses. Since markets for small houses are thinner

in the former than in the latter, there are likely fewer buyers at any given point in time in

the former.

For our analyses that use zip-code, we take geographical averages of Zm
i , which is a

measure of how heterogeneous the housing stock in the zip-code is, along characteristic m.

Zip-codes with more heterogeneous housing stocks will tend to have higher price dispersion,

since they have thinner local markets for any individual house, so there are likely to be less

interested buyers for any given house.

Relevance and Exclusion Restriction. Consistent with the literature, Table A1 shows

that our instruments are correlated with the raw price dispersion measure in a statistically

significant manner. In terms of exclusion restriction, our instruments alleviate the endogene-

ity concern to the extent that lenders’ willingness to lend against certain house feature —

e.g., driven by the clustering of unobserved borrower creditworthiness and house features —

is monotone.

We believe this is a reasonable assumption because it is implausible that borrowers pur-

chasing atypical houses in a given county could be systematically less creditworthy than other

borrowers. To support this argument, we conduct a balance test in Table A2. In Panel A, we

regress price dispersion on a set of credit-related borrower characteristics. column 1 reports

the results using the raw price dispersion measure, while columns 2-4 use the instrumented

price dispersion measures with different fixed effects that correspond to the three first-stage

columns in Table A1. Unsurprisingly, households with lower credit score and lower income
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are more likely to live in high-dispersion zip-codes defined using our raw price dispersion

(column 1). Yet, the instruments alleviate the concern about such sorting: zip-codes with

more heterogeneous housing stock within a county do not systematically attract less credit-

worthy or low-income households. In Panel B, we examine whether home buyers in higher

price dispersion zip codes have different credit-related characteristics. We reach similar con-

clusions: the raw price dispersion measure is correlated with FICO, income, and household

age, but the instrumented price dispersion is not statistically significantly correlated with

these characteristics.

Moreover, we will show in Section 3.2.4 that, while the raw price dispersion measure

is correlated with borrower default rates, our instrumented price dispersion is not, lending

support to the idea that the instrument alleviates endogeneity due to borrower sorting.

3.2.3 IV Results

We estimate specification 6 for every credit outcomes in our baseline analyses in Section 3.1.

We confirm our baseline results qualitatively and get reasonably stronger estimated effects.

LTP. Table 3 columns 4-6 present the LTP results, where column 5 corresponds to Speci-

fication 6, and column 4 and 6 are less and more saturated specifications, respectively. LTP

decreases by 45bps for every one standard deviation increase in the estimated price dispersion

in the most saturated IV specification.

Interest Rates. Table 4 columns 4-6 present the interest rate results. For every one

standard deviation increase in zip-code average house price dispersion, the mortgage rate

increases by 2.2bps in the full sample (column 4), increases by 2.2bps in the sample of

securtized loans (column 5), and increases by 5.32bps for portfolio loans (column 6).

Approvals. Lastly, Table 5 reports the loan approval likelihood results. Zip-code house

price dispersion is positively and significantly associated with mortgage rejections: the re-

jection rate increases by more than 2 percentage points as house price dispersion increases

by one standard deviation (Panel A columns 4-6). As shown in Panel B, a mortgage appli-

cation is about 80bps more likely to be rejected due to collateral reasons in a zip code with
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one standard deviation higher house price dispersion (Panel B column 4-6). Both results —

overall rejection or rejection due to collateral reasons — hold in the full sample as well as

sub-samples of securitized loans and portfolio loans.

3.2.4 Unobservable Buyer Creditworthiness

An important identification assumption of our empirical design is that home buyers of houses

with high price dispersion are not more likely to default on their mortgage, after conditioning

on observable borrower and loan characteristics. To address this, we assess the ex-post

performance of mortgage loans, to test whether ex-post default rates are associated with

house price dispersion. Table 7 Panel A estimates the specifications 4 (columns 1-3) and 6

(columns 4-6) but sets the outcome variable equal to 100 for loans that become 60 or more

day-delinquent within 2 years after origination and zero otherwise. Columns 1 and 4 include

the full sample. Columns 2 and 5 restricts the sample to securitized loans. Columns 3 and

6 restricts the sample to portfolio loans. All regressions include the full set of borrower and

loan characteristics as in our main regression specifications.

The 2SLS results suggest that home buyers of houses with higher instrumented price

dispersion are not more likely to default on their loans than home buyers of houses with

lower instrumented price dispersion. This alleviates the concern that our IV results are

driven by unobserved differences in buyer creditworthiness, that are associated with our

house nonstandardization IV.

Note that, in our OLS specifications, the coefficient estimate on price dispersion is positive

and statistically significant. This could be because certain house characteristics, which are

associated with higher house price dispersion, also tend to attract homeowners who have

higher default rates. If this were the case, it would upwards bias our OLS estimates of

the effect of price dispersion on LTPs. This further validates the importance of using our

instrument, which is associated with price dispersion, but is not associated with homeowners’

default rates.
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3.3 Robustness

Lender Market Power. The results are not likely to be driven by lender market power.

Firstly, our empirical analysis exploits within county-year variation. Existing literature on

local lender market power find local competition at county level. Therefore, it is reasonable

to believe that buyers from the same county-year with similar creditworthiness are facing

the same credit supply. To address further concerns about the effect of lender market power,

we re-estimate specification 4 and 6 with lender-zip-year fixed effects using a sub-sample of

house transactions in Corelogic Deeds records that we also observe the mortgage interest

rates. Note that we cannot do this robustness check using Corelogic LLMA data as we did

in Section 3.1 because we do not observe lender ID in the LLMA dataset. The inclusion of

lender-zip-year fixed effects allows us to compare houses financed by the same lender-zip-year.

Panel A of Table 8 reports the results. The key variable of interest is price dispersion,

which is property-level idiosyncratic price dispersion. We first confirm Table 4 results using

this sub-sample in column 1. In columns 2-3, we add in more saturated lender fixed effects:

lender-county-year and lender-zip-year fixed effects, respectively. The results hold in all

specifications, confirming that the effect of house price dispersion on mortgage credit is not

driven by lender market power.

Bunching Below Conforming Loan Limits. Lastly, we test whether the effect of price

dispersion on mortgage LTP and cost menu is driven by home buyers lowering the loan-to-

price ratio to be eligible for securitization with the participation of government-sponsored

enterprises (GSEs). Specifically, conforming mortgages must be below the conforming loan

limits, which vary across regions and time. Conforming loans are much easier to sell than

non-conforming loans, also known as jumbo loans, because of the participation of GSEs.

GSEs insure default risks of loans they purchase and securitize, providing subsidized credit

to GSE mortgage borrowers.

We test if our main findings are robust to the sub-sample of house transactions with sale

prices below local conforming loan limits. These house transactions are not subject to the

concern about bunching below conforming loan limit as the transaction prices are already

below the conforming loan limit.

Panel B of Table 8 reports the results. The results show that our main finding is not
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driven by home buyers’ incentive to keep their loan amount below the conforming loan

limit. Among houses with prices below the conforming loan limit, houses with higher price

dispersion are financed with smaller loans given the same interest rates than houses with

lower price dispersion. The result holds in both OLS and IV settings.

4 Model

4.1 Model Overview

We construct a structural model showing how price dispersion affects mortgage loan-to-value

ratios (LTVs), interest rates, and application failures. We will then calibrate the model to

show that the model can quantitatively rationalize the empirical results and to decompose

various channels.

In the model, given a menu of pairs of interest rates and targeted LTVs, a prospective

homebuyer chooses a targeted mortgage size to finance a house at an exogenous transaction

price. Higher loan-to-values are riskier to lenders, so lenders require higher interest rates for

higher loan-to-values. Moreover, since lenders’ payoff in case of borrower default is a concave

function of the foreclosure house price, the menu is uniformly worse when houses have high

price dispersion.

Mortgages are also subject to a regulatory constraint on LTVs, which depends on house

appraisal values. After the buyer chooses a targeted loan size, a third party generates a

random appraisal value for the house. If the house over-appraises, the transaction proceeds

according to its original terms. If the house under-appraises, the buyer must make an

increased down payment in order for the transaction to proceed. Buyers can also choose

to renege on the transaction altogether, paying a fixed cost to restart the house purchase

process; we consider this to be a mortgage rejection. When idiosyncratic price dispersion

is higher, appraisals are noisier, and under-appraisals are more likely and larger when they

occur, increasing the probability that transactions fail.

The buyer thus faces a tradeoff. Increasing the target loan size smooths consumption

more effectively if the house over-appraises. However, there are two costs of targeting larger

loans: lower expected collateral recovery implies that lenders charge higher interest rates for
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larger loans; and larger loans increase appraisal risk, making under-appraisals more likely and

more costly when they occur. When idiosyncratic price dispersion is higher, lenders offer

worse interest rate menus, and under-appraisals are more likely; both forces push buyers

towards choosing smaller mortgages.

4.2 Setup

4.2.1 The Buyer’s Problem

A homebuyer attempts to finance a house that is sold at price P . The buyer’s decision

determines her consumption in two time periods: the first period is when the buyer purchases

the house, and the second is when the mortgage loan is paid back. The buyer has CRRA

utility, discounting consumption at rate βT between periods

U (c1, c2) =
c1−η

1 − 1

1− η
+ βTu′2c2 (7)

where u′2 is an exogeneous constant.11 Hence, the buyer is attempting to solve a consumption

smoothing problem, where utility is concave in the first period, and linear in the second. The

buyer receives exogenous labor income W1 in period 1, and W2 in period 2.

The buyer faces a two-stage problem:

1. Lenders offer an interest rate menu r (L, σ), determining the mortgage interest rate if

the buyer targets loan size L and idiosyncratic price dispersion is σ. The buyer chooses

a target loan size L, receiving interest rate r (L, σ). We introduce how rate menu is

determined in the next section.

2. The house appraisal value A is determined. The collateral value used to calculate the

LTV of the mortgage takes the smaller of the appraisal value A and the transaction

11This functional form is a simplified version that makes a linear approximation to utility in period 2 of the following
standard CRRA utility:

U (c1, c2) =
c1−η1 − 1

1 − η
+ βT

c1−η2 − 1

1 − η
(8)

A similar linear approximation to utility in future periods is used in Jansen et al. (2022). In our setting, this modelling
simplification is needed in order to make the appraisal problem recursive, allowing us to use tools from the search
literature to model the buyer’s response to under-appraisals.
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price P :12

Lfinal ≤ φmin (P,A) . (9)

If A < P , the final loan amount Lfinal will be below the target size L, so the buyer will

need to make an additional down payment. Conditional on A, the buyer can choose

to continue the transaction, or to renege, pay a fixed penalty cost, and searching for a

new house, returning to period 1.

In the following, we normalize final loan size, target loan size, and appraisal values:

lfinal =
Lfinal
P

, l ≡ L

P
, a ≡ A

P
(10)

Hence, the target LTV is l, the final LTV is lfinal, and the ratio of appraisals to transaction

prices is a. We will write r (l) to mean the interest rate if the target LTV is l. We proceed to

describe the buyer’s payoffs if she chooses to continue with a transaction, then if she decides

to renege.

Continuation. From (9), if a < 1, the final loan size is capped at:

φmin (P,A) = φP min (1, a) = φaP (11)

Since we have restricted the target loan size to l < φP , the buyer’s final loan size is

P min (l, φa). If the buyer originally planned to borrow l, making down payment P (1− l),
the appraisal further constrains loan size relative to l whenever a < l

φ
. With appraisal a,

the down payment is P (1− φa), which is P max [0, l − φa] larger than the targeted down

payment. We assume that, if the buyer faces such a down payment gap, this decreases her

period-1 consumption c1 by ψP max [0, l − φa], where ψ > 1. That is, for every dollar in

additional downpayments she must make, the buyer’s period-1 consumption decreases by

ψ > 1 dollars. This is a reduced-form modelling device, capturing the idea that an unantic-

ipated increase in down payments, induced by an under-appraisals, is more costly than an

anticipated increase. This is because the buyer can smooth consumption more effectively if

she anticipates and plans to make a large down payment; if the buyer suddenly learns that

12This is imposed by both bank regulators and mortgage securitizers in reality.
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she must make a large down payment, consumption smoothing is more difficult.13

Given an appraisal a, the buyer’s consumption in period 1 is:

c1 = W1︸︷︷︸
labor income

− P (1− l)︸ ︷︷ ︸
target down payment

− ψP max [0, l − φa]︸ ︷︷ ︸
penalty term from under-appraisal

(12)

That is labor income less the target down payment for the house, less the penalty term from

under-appraisal. Consumption in period 2 is:

c2 = W2︸︷︷︸
labor income

−
(
1 + r (l)

)T
P
(
l −max [0, l − φa]

)︸ ︷︷ ︸
mortgage principal and interest

(13)

This is labor income, minus the principal and interest on the mortgage, which we assume is

paid in a single lump sum in period 2. Since utility in period 2 is linear, the term W2 simply

increases the level of utility and does not affect any outcomes, so for notational simplicity

we will set W2 = 0 going forwards.

Reneging. If the appraisal is too low, the buyer can renege on the transaction, paying a

cost ζ (as a fraction of house price), and then searching for a new house. For tractability,

to make the problem recursive, we think of ζ as being paid in period 2 dollars. We think of

this as capturing, for example, foregone deposits if there is no appraisal contingency in the

sales contract, or hassle costs of searching for another house. They then revert to stage 1,

to purchase another house, and have continuation value:

−βTu′2ζP + Ea
[
V (a, l)

]
(14)

where V (a, l) is the value of choosing loan size l, when the appraisal is a.

13Formally, consider a multi-period consumption-savings model, in which a buyer saves to purchase a house. If
a buyer learns at the start of her lifecycle whether there is an increase in the required down payment for a house,
this has relatively low cost, since the homebuyer can increase savings in the many years before she purchases the
house. On the other hand, if the buyer only learns whether the down payment will increase in the period before
she buys a house, this has higher cost, since the buyer cannot condition her savings decision on whether the down
payment increases: she is left either over-saving for a low down payment, or under-saving for a high down payment.
We demonstrate this quantitatively in Appendix B.5. The parameter ψ can be thought of as a reduced-form model
capturing the increased utility cost of down payment shocks which cannot be anticipated.
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4.2.2 Interest Rate Menu

We assume that the interest rate lenders offer depends on price dispersion and the size

of the mortgage. Mortgages which are larger, and which are in higher-dispersion areas, are

riskier, and lenders will thus charge higher interest rates as a result. In the main text, we

assume a simple reduced-form model of the rate menu:

r (l, σ) = r̄ + θll + θσσ (15)

where θl and θσ capture the dependence of the interest rate on loan size and price dispersion

respectively. In Appendix B.3, we construct a more detailed microfoundation of the inter-

est rate menu, based on competitive profit-maximizing lenders making loans with default

rate and imperfect collateral recovery, and we show that the model can qualitatively and

quantitatively rationalize the rate menu observed in the data.

4.2.3 The Distribution of Appraisal Values

It is known in the literature that house appraisals are systematically biased upwards, and

there is substantial bunching at house transaction prices. Empirically, we observe that the

distribution of appraisal prices bunches at the sale price (Figure 4a): large over-appraisals

are also rare, suggesting that appraisers largely only bias appraisals upwards to the point

where they are equal to sale prices.

We construct a model of the distribution of appraisals which matches these stylized facts.

We assume there is an unbiased appraisal value, which is normally distributed around the

house transaction price, Araw ∼ N (P, σ). The appraisal value A given to the borrower is

then determined by:

A =


Araw + Pb Araw < P (1− b)

P P (1− b) ≤ Araw < P

Araw P ≤ Araw

(16)

In words, (16) states that, when Araw is above P , it is not necessary to further increase A,

so appraisers simply report the raw appraisal price A = Araw. When Araw is below P but
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above P (1− b), the appraisers biases A just enough so that it is equal to the transaction

price P , generating bunching at P . When Araw is below P (1− b), appraisers still attempt

to bias A upwards, but are only able to push it to Araw + Pb. This is still useful to the

buyer, since any upwards bias allows the buyer to receive a larger loan than if the appraisal

were simply Araw.14 We will estimate b based on the distribution of appraisal-to-sale ratios

in our data, as we describe in Subsection 5.1 below.

4.3 Model Outcomes

Optimal behavior in the model is described by buyers’ optimal target loan size choice l and

buyers’ optimal decision about whether to continue or renege on the transaction for each

possible value of a. The following theorem characterizes optimal buyer behavior.

Theorem 1. For any parameter settings, and for any target loan size l, there is an optimal

appraisal cutoff ā (l), which is the unique value that satisfies:

ω (ā, l) = −βTu′2ζP +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (17)

where ω (a, l) is defined as:

ω (a, l) ≡ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
+ u′2β

T
(
1 + r (l)

)T
P max [0, l − φa]

(18)

The buyer optimally continues with the purchase for any a > ā (l), and reneges on the

transaction for any a < ā (l). The buyer chooses target loan size l to solve:

l∗ = arg max
l

(
−βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω

(
ā (l) , l

))
dFa (a)

)
(19)

The proof of Theorem 1, and further properties of the buyer’s choice problem, are de-

scribed in Appendix B.1. In words, Theorem 1 states the following. Conditional on any

target loan size l, buyers will continue the transaction if the house appraises to at least

14In Appendix B.4, we show that (16) can be microfounded in a simple model based on Calem et al. (2021). In
the model, appraisers have a convex cost of biasing appraisals upwards, and receive some linear side benefit – for
example, from increased future business – to the extent that they are able to increase the amount that buyers can
borrow on the loan. In this model, appraisals bunch at sale prices, because appraisers face positive costs, but no
benefit, of biasing appraisals upwards past the transaction price, since the transaction price then binds in (9), and
further increases in A do not affect the amount that can be borrowed.
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ā (l), and will renege otherwise. The cutoff ā (l) is the value of the appraisal such that the

consumer is just indifferent between her two options: continuing with the transaction and

making a higher down payment, thus receiving the LHS of (17); and reneging, thus receiv-

ing the RHS of (17), which is negative the cost ζ multiplied by house prices and period-2

marginal utility, plus the expected value from buying a new house.

To find the optimal loan size target, (19) states that buyers simply maximize expected

utility from the second-stage problem over l. In Appendix B.2, we derive a first-order

condition for optimal loan choice. The buyer faces a tradeoff: larger loan sizes smooth

consumption more effectively if the house over-appraises, but lead to higher interest rates,

and also larger under-appraisals and thus larger consumption penalties in period 1 upon

under-appraisal. At the optimal loan choice, buyers target a loan size slightly smaller than

they would if the house never under-appraised: that is, buyers decrease borrowing, limiting

consumption smoothing, in order to decrease interest rates, and the likelihood and size of

under-appraisals.

5 Why Does Price Dispersion Affect Credit?

We next calibrate the model to show that the model can quantitatively rationalize the

observed relationship between price dispersion and mortgage outcomes, and to decompose

the channels through which outcomes are affected by price dispersion. While it is intuitive

that higher price dispersion should lead to lower mortgage credit provision, the mechanism

through which this occurs in our model is subtle, involving two distinct channels. The first

one is the collateral recovery channel : lenders offer a more expensive rate menu to buyers of

houses with larger price dispersion, which gives buyers incentives to scale down loan size to

get an affordable mortgage rate. The second is the appraisal risk channel : houses with larger

price dispersion face higher under-appraisal risk, hence buyers scale down their targeted loan

sizes to minimize the cost of under-appraisal. The two channels have differential effects on

the three primary measures of credit provision in the model – LTPs, interest rates, and

mortgage rejections – and the calibration allows us to shed light on the mapping between

channels and outcomes.
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5.1 Calibration

We calibrate several parameters externally in relation to existing literature. We then estimate

the remaining parameters by matching model-implied moments to the moments in the data.

Table 9 summarizes the estimates.

Externally Calibrated Parameters. We set the intertemporal elasticity of substitution

(η) to 2, as chosen in standard lifecycle models. We set period 1 wealth to $60,000 and

the house price to $200,000. We set β = 0.96. We set T = 7, approximately equal to the

duration of a 30-year mortgage.15 The maximum LTV parameter φ is set to 0.8, which is

the most common regulatory threshold.

Parameters Calibrated to the Data or through Moment Matching. A core pa-

rameter is the standard deviation of raw appraisal values, σa,i. We calibrate the standard

deviation of appraisal prices in each of 10 quantile buckets of σ values. Under our model

of appraisal in (16), the raw appraisal values araw are distorted only when they are below

the transaction price, araw < 1. Thus, the distribution of realized appraisals, conditional

on over-appraisal should be identical to the distribution of araw. Since we also assume raw

appraisals have mean equal to the house price, we can thus estimate σAi as:

σ̂a,i =

√
E
[
(ai − 1)2 | ai > 1

]
(20)

That is, σ̂a,i is simply the conditional mean squared error of appraisals around 1. Using (20),

we calculate σ̂a,i for each quantile bucket of σ values.

To calibrate the interest rate menu, r (l, σ) from expression (15), we assume:

r (l, σ) = r̄ + θl (l − 0.8) + θσ (σ − σ̄) (21)

That is, the interest rate r (l) is equal to a constant r̄, plus θl times the target LTV, plus θσ

times idiosyncratic price dispersion. We set r̄, the interest rate for a mortgage with l = 0.8,

and σ = σ̄, to 1
β
− 1, which is approximately 4.17%. We set θr and θσ to their values in

15Mortgages amortize and are prepayable, so their average duration is much lower than 30 years; see for example
Krishnamurthy and Vissing-Jorgensen (2011).
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Column 6 in Panel A of Table 4.

We choose the remaining parameters, ζ, b, ψ, u′2, through moment matching. For each

σ-bucket of counties, we compute two moments. The first is the average probability of

transaction failures due to under-appraisals. In the data, we calculate this as the rate of

collateral-related mortgage failures.16 In the model, we calculate mortgage failure rates as

Fa (ā), the probability that the appraisal a falls below the boundary ā below which the buyer

reneges on the transaction.

The second set of moments is the “appraisal deviation” within each σ-bucket, that is:

ApprDevi = punderi E

[
a

p
− 1 | under-appraisal

]
(22)

That is the product of the under-appraisal probability, and the expectation of the the per-

centage deviation of appraisal prices to sale prices conditional on under-appraisal. Theoreti-

cally, this corresponds to the product of the expectation of the probability of under-appraisal,

conditional on not reneging, and the conditional expectation of the gap conditional on under-

appraisal without reneging.17

We visualize this moment in the data in Figure 4 and provide regression analysis in Ap-

pendix D.2. The figure shows that the under-appraisal probability is only weakly related

to σ, but the size of under-appraisal conditional on under-appraisal increases from roughly

3% to 6% when moving from the lowest to highest buckets. The result, however, is that,

ApprDevi, which is the product of these two quantities, is strongly related to price dispersion

in the data. In the model, we calculate (22), conditioning first on appraisal values that do

not result in transaction failure, since failures are not included when we calculate ApprDevi

empirically. The intuition behind the model is that the magnitude of under-appraisal pres-

sure depends on the shape of the appraisal distribution; this is controlled largely by the

appraisal bias parameter b. Buyers’ preferences then determine whether under-appraisals

16To be precise, we calculate the mortgage failure rate as collFailurec
collFailurec+mortgagec

, where collFailurec is the total

number of collateral-related mortgage failures in county c, from the HMDA data, and mortgagec is the total number
of mortgages in county c.

17In principle, we could target either ApprDevi, or the probability of under-appraisal, in each quantile bucket. We
cannot target both, as the model has difficulty simultaneously matching both moments. This is because, as we show
in panel (c) of Figure 5, the distribution of appraisal values, conditional on under-appraisal, is fairly long-tailed in the
data. However, in the model, the consumer tends to renege on the transaction when appraisal values are too low, so
the conditional appraisal distribution in the model is truncated from below. Thus, if we match appraisal probabilities
in the model and the data, ApprDevi would tend to be much higher in the data than in the model. We choose to
target the conditional appraisal deviation, because this appears to be a better measure of the downwards pressure
that under-appraisals generate for sale prices, compared to the simple under-appraisal probability.
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mostly result in transaction failure, or under-appraisals with larger down payments; the

level of the failure-underappraisal tradeoff, and its relationship with σ, is affected by the

consumption penalty parameter ψ, the fixed cost of transaction failure ζ, and consumers’

utility from period-2 consumption u′2.

5.2 Results and Model Fit

The estimated penalty for reneging (ζ) on a transaction is 17.5% of house prices, paid in

period-2 dollars. Appraisers bias house prices upwards approximately 7.9% (b). The penalty

for under-appraisal-induced consumption decreases (ψ−1) is approximately 61.4%. We view

these as roughly reasonable parameter values. While ζ is somewhat high, this may be due

to our assumption that period-2 utility is linear, which increases the amount consumption

must decrease to decrease utility a given amount. We show in Appendix B.5 that values of

ψ in roughly this range can be attained, if consumers receive large shocks that hit suddenly

in one period and cannot be saved for in advance.

Targeted Moments. The fit of the model is shown in Figure 5. The estimated appraisal

standard deviations σ̂a,i are shown in panel (a). In the data, the conditional standard

deviation of appraisals is monotonically higher for higher σ buckets, and we feed this directly

into the model.18 Panel (b) shows the CDF of appraisals, conditional on transactions not

failing, in the model and the data, for the fifth σ-percentile bucket. We are able to match

the main stylized facts about the appraisal distribution: the bunching of appraisals at 1, the

relatively low probabilities of under-appraisal, and the relatively large probabilities of over-

appraisal. There are two main differences between the model and the data. First, the right

tail of the appraisal distribution in the data deviates slightly from the normal distribution:

the empirical distribution of appraisals is more likely than the model distribution to be either

18We note two features of the appraisal distribution. First, the implied number of houses entering appraisals is
somewhat high. In the fifth percentile bucket, we estimate σ to be 22.9%, whereas we estimate σa to be 6.03%; this

implies a number of transactions of
(
σ
σa

)2

= 14.4. This is somewhat high; anecdotally most houses use approximately

3-4 appraisals in practice. Second, the relation between σ and σa is somewhat weak. If σa were simply determined
by drawing a number of independent price draws, we should have σa = σ√

N
, so the implied N should be the same

for each percentile bucket. Instead, σa scales less than proportionally with σ: in the highest percentile bucket,
we get an implied N of 30.8, and in the lowest we get an implied N of 6.44. One possible explanation of these
discrepancies is that, first, our estimate of σ is somewhat higher than the effective value used by appraisers, due to
model misspecification, or the fact that appraisers observe somewhat more features of houses than we do; this would
explain why our implied N is too high. Second, our measure of σ may contain some measurement error, leading to a
weaker than proportional relationship between our measured σ and σa.
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quite close to 1 or quite far from 1. Second, the left tail of the appraisal distribution is longer

in the data than in the model. This is because, in the model, appraisal values that are too

low result in transaction failure, so the distribution of a conditional on under-appraisal is

truncated below.

Panels (c) and (d) show, respectively, the values of the two sets of targeted moments,

mortgage failure probabilities and appraisal deviations, in the model and the data. Em-

pirically, both moments are monotone with respect to changes in σ: counties with higher

idiosyncratic price dispersion have monotonically higher collateral-related mortgage failures,

and higher appraisal deviations. The fitted model matches the average level of both moments

fairly well; the main difference is is that the relationship between both outcomes and σ is

slightly stronger in the model and in the data.

Untargeted Moments. The main result is the optimal loan choice plot, shown in panel

(e) of Figure 5, where we show the final realized loan size lfinal, against idiosyncratic price

dispersion σ. Loan-to-value ratios are systematically lower when idiosyncratic price disper-

sion is higher. Moreover, the magnitude of the implied relationship is quite close to the

estimated empirical relationship between σ and LTP. In the model, shifting σ by one stan-

dard deviation changes the average value of lfinal by roughly 0.2. The estimated magnitude is

close to the OLS estimates in columns 2 and 3 of Table 3 but smaller than the IV estimates.

5.3 Decomposition of Channels: Collateral Recovery and Appraisal

Risk

We have shown that the model can quantitatively rationalize the relationship between price

dispersion and mortgage outcomes. Next, we evaluate how the two channels in the model

each contribute to driving variation in LTPs, interest rates, and loan rejections. We evaluate

the relative contributions of each component by solving counterfactual models in which we

remove the effect of price dispersion on recovery rate and the appraisal noise, respectively.

Figure 6 presents the magnitude of each channel. In short, the figure shows that the collateral

recovery channel has a large effect on rates, and a smaller effect on loan size and mortgage

rejections, while the appraisal risk channel is has a large effect on loan size and rejection

likelihood, and a smaller effect on interest rates.
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We evaluate the magnitude of the collateral recovery channel in isolation by shutting down

the appraisal risk channel. To do this, we set appraisal noise constant – Araw ∼ N(P, σ̄) for

all percentile buckets – and calculate mortgage outcomes for each price dispersion bucket in

the new equilibrium. This shows how mortgage outcomes would vary if lenders shifted the

interest rate menu depending on price dispersion, but appraisals were distributed identically

for each price dispersion bucket. Analogously, to evaluate the magnitude of the appraisal

risk channel, we shut down the collateral recovery channel, setting the rate menu constant

across sigma buckets:

r(L, σ) = r(L, σ̄) = r (l) = r̄ + θr (l − 0.8) (23)

and then solving for mortgage outcomes in the new equilibrium. This shows how mortgage

outcomes would vary, if the distribution of appraisals varied across price dispersion buckets,

but lenders offered the same menu in each bucket.

Panels (a) decomposes the effect of price dispersion on interest rate. The collateral

recovery channel explains most of the effect of price dispersion on mortgage rates; the ap-

praisal risk channel plays a more minor role. Intuitively, when lenders shift the interest rate

menu upwards in response to higher house price dispersion, consumers can respond either by

holding interest rates fixed and decreasing loan size, or holding loan size fixed and bearing

increased interest rates. In our calibrated model, loan size is relatively inelastic to changes

in interest rates, so consumers mostly respond by borrowing similar amounts and bearing

higher interest rates. For every unit increase in house price dispersion, lenders charge 60bps

higher interest rate for any given LTV.

On the other hand, the appraisal risk channel attenuates the observed price dispersion-

interest rate relationship: when appraisal noise is higher, holding the rate menu fixed, equilib-

rium interest rates are actually lower. Intuitively, when appraisal noise is higher, consumers

choose lower target loan sizes to risk the risk of under-appraisal. Through the interest rate

menu in (23), a side benefit of lowering target loan size is that consumers get lower interest

rates. However, note that the magnitude of this effect is very small: for every unit increase

in price dispersion, the observed interest rate is about 4bps lower due to the appraisal risk

channel. Given that the standard deviation of price dispersion is about 0.1, the collateral

recovery channel maps to a 6bps increase in interest rate for every one standard deviation

of house price dispersion, while the appraisal risk channel maps to a 0.4bps decreases in
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interest rate. The net effect is close to the estimates in Table 4 column 6.

Panel (b) decomposes the effect of price dispersion on mortgage failures. Here, we find

that appraisal risk is the main driver, with the collateral recovery channel playing a smaller

role. Intuitively, when appraisals are noisier, holding fixed target loan size, under-appraisals

and mortgage rejections become more likely. Consumers respond by choosing smaller tar-

geted mortgage sizes; this allows appraisals to be lower before they bind and force the

consumer to increase down payments, incurring penalty costs to consumption. However,

consumers do not scale down loan size enough to counteract the direct effect of higher ap-

praisal noise; thus, loan size is smaller and mortgage rejections are higher when appraisals

are noisier. For every unit increase in price dispersion, the mortgage is 11pp more likely to

fail because appraisal noise increases with house price dispersion. On the other hand, the

collateral recovery channel lowers the failure likelihood because home buyers of high price

dispersion houses receive higher interest rates for any given LTV, which pushes down their

targeted loan size. The net effect is about 1pp increase in failure likelihood for a one stan-

dard deviation increase in house price dispersion, which is close to the estimates in Table 5

Panel B column 6.

Lastly, Panel (c) decomposes the effect of price dispersion on loan-to-price ratio. As

with mortgage failures, appraisal risk is the main driver of the dispersion-LTP relationship,

with the collateral recovery channel playing a smaller role. The collateral recovery channel

contributes 0.1pp to the price dispersion effect on loan-to-price ratio. Intuitively, banks offer

higher prices for any given loan-to-price ratio when the price dispersion is higher, which

makes home buyers of high-price dispersion houses optimally borrow less. The appraisal

risk channel contributes about 1.5pp to the price dispersion effect on LTP. While both the

ex-ante and ex-post effects are present, Panel (c) shows that the ex-ante appraisal risk effect

is dominant in the calibrated model (1.25pp for every unit increase in price dispersion).

We note that there is a third ex-post appraisal risk channel through which price dispersion

affects LTP ratios: when appraisals are noisier, the gap between lfinal and l will tend to be

larger, putting downward pressure on lfinal. We measure the magnitude of this effect by

comparing the difference between lfinal and l, for different price dispersion bucket. We find

that ex-post appraisal risk plays a relatively small role compared to the primary ex-ante

appraisal risk channel.19

19The fact that the ex-post appraisal effect must be small is not only driven by our modelling assumptions, but
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To summarize, the major reason why LTVs are lower when price dispersion is higher is

that buyers scale down l due to under-appraisal risk. The main reason why interest rates

are higher is due to lenders offering a worse menu of interest rates. While it is qualitatively

intuitive that price dispersion should lead to lower levels of mortgage credit provision, our

decomposition allows us to make more fine-grained predictions about how changes to policy

or institutional settings, which influence how each channel in the model functions, would

affect each of the three measures of mortgage credit provision. As an example of this, in

the following section, we use the model to analyze how the impending shift to automated

appraisals would affect each of our measures of credit provision.

6 Discussion and Policy Implications

6.1 Implications for Desktop Appraisals

Our findings have implications for the shift from human appraisals to automated appraisals.

In 2021, the FHFA announced that banks and mortgage lenders could use automated ap-

praisal software in place of human appraisals.20 It is known in the literature that human

appraisals tend to be distorted, so that they are generally equal to or higher than transaction

prices (Calem et al., 2015; Eriksen et al., 2019; Bogin and Shui, 2020; Conklin et al., 2020;

Calem et al., 2021; Kruger and Maturana, 2021). Automated appraisals are likely to be less

distorted, but as a result, under-appraisals will be more frequent, especially in areas with

high house price dispersion. Automated appraisal thus have the potential to hurt low-income

households who tend to live in areas with less predictable house prices.21

To evaluate the extent to which the shift from human appraisals to automated appraisals

affects mortgage outcomes, we use our calibrated model to conduct counterfactual analyses.

We focus on one particular aspect of such shift: the removal of biases in human appraisals.

Specifically, using our calibrated model, we remove appraiser bias, setting b = 0, and re-

follows simply from back-of-envelope calculation using the data. From Figure 4, roughly 3.5% of mortgages under-
appraise, and the magnitude of under-appraisal is approximately 4.5%. This implies that average LTVs should be
roughly 0.035 ∗ 0.045 = 0.0016 , or roughly 16 basis points higher, when moving from the lowest to highest percentile
buckets. This is of a similar order of magnitude to the size of the effect in our model.

20https://www.americanbanker.com/news/fhfa-will-make-desktop-home-appraisals-a-permanent-option
21Blattner and Nelson (2021) and Fuster et al. (2020) have made similar arguments that low-income households

tend to have nosier hard information, and the development of FinTech is going to increase statistical discrimination
in mortgage lending.
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evaluate the model, estimating loan-to-price ratios, interest rates, and mortgage rejections.

Figure 7 compares the benchmark and the counterfactual mortgage outcomes. The re-

moval of human biases in the appraisal process will have significantly impact at the extensive

margin in terms of mortgage failure and loan size, while the impact on interest rate is rel-

atively small. The results are not surprising, given our decomposition in Section 5.3 that

the appraisal risk is the main driver of the price dispersion effect on loan size and mortgage

failure. The shift will lower the loan size by about 2pp of the house price (Panel a), lower

the interest rate by about 5bps (Panel b), and increase the mortgage failure rate by more

than 10pp (Panel c). In high-dispersion areas, the mortgage failure rate increases by more

than 15pp.

Technically, this exercise demonstrates how our calibrated model can be used to predict

how changes in mortgage policy would affect various measures of credit provision. From a

policy perspective, our results illustrate how the biases of human appraisers in fact act to

alleviate the effects of price dispersion on mortgage credit availability. Shifting to automated

appraisals, without compensating for the upwards bias in appraisal prices induced by human

appraisers, has the potential to significantly decrease credit provision, especially for areas

where price dispersion is high.

6.2 Effects on the Homeownership Gap

A large literature has analyzed how limited access to mortgage credit influences the gap

in homeownership between high- and low-income households.22 Policymakers aiming to

improve homeownership rates for low-income households have considered interventions in

credit markets as well as in housing markets. Our analysis highlights a link between these

two markets: the amount of credit that mortgage lenders provide depends on the value

uncertainty of the house used as collateral, even in a fully competitive mortgage market.

As we show in Figure 1b, low-income households tend to live in areas with higher house

price dispersion on average, and thus likely receive lower mortgage LTVs as a result. This is

not a market inefficiency, or a form of credit market discrimination: it is a rational response

of lenders to the fact that more volatile assets are worse as collateral for debt.

22See, for example, the discussion in Herbert et al. (2005).
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To quantify the effect of the borrowing constraints induced by collateral value uncer-

tainty on homeownership gap, we calibrate a standard lifecycle model of housing choices

in Appendix C. Through counterfactual analyses, we show in Table A7 that the aggregate

homeownership rate would increase by 1.5pp if we lower the price dispersion in the high-

dispersion counties, defined as top decile counties ranked by price dispersion, to the price

dispersion level in the low-dispersion counties, defined as bottom decile counties ranked by

price dispersion. We then divide households into two groups, according to their initial in-

come at age 25. The effect of price dispersion on homeownership is concentrated among

low-income households: at all ages, low-income households have lower homeownership rates

in the high-dispersion counterfactual than the low-dispersion counterfactual, with an average

homeownership rate difference of 2.6pp. The homeownership gap is large for young house-

holds below age 30, somewhat smaller for middle-aged households from 30-40, and rises

again for households above 40. In contrast, high-income households initially have higher

homeownership rates, but the gap declines essentially to 0 from age 30 onwards.

The difference in collateral constraints induced by collateral value uncertainty contributes

to about 6.6% of the homeownership gap between the rich and the poor in 2016, ranging from

5% to 10% across the age distribution.23 Therefore, our results suggest that, in a standard

calibrated lifecycle model of housing choice, LTV differences induced by price dispersion can

have sizable effects on aggregate homeownership rates, and the homeownership gap between

high- and low-income households.

Our results thus provide a rationale for interventions in the mortgage market, such as the

FHA program, which promote mortgage credit access for low-income households. The FHA

program allows low-income households to borrow at loan-to-value ratios up to 96%, far higher

than the LTVs that private lenders and GSEs offer. This distorts mortgage credit provision.

However, as our findings suggest, since low incomes tend to live in areas with older and less

standardized houses, they have restricted access to mortgage credit due to their lack of access

to better housing collateral. By allowing low-income households to borrow at higher LTV

ratios, the FHA program effectively alleviates this structural issue in the current housing

stock.

23The homeownership gap between above-median income households and below-median income households is about
32% in 2016 (SCF Statistics). According to the report by the U.S. Department of Housing and Urban Develop-
ment, the homeownership gap between the very low-income households and high-income households is 37% in 2004.
https://www.huduser.gov/Publications/pdf/HomeownershipGapsAmongLow-IncomeAndMinority.pdf
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6.3 Housing Affordability

Our results highlight that the collateral value of the housing stock is an important, and

previously underappreciated, determinant of housing affordability. Newer, more standardized

housing is better collateral, alleviates lenders’ concerns about collateral recovery risk, and

presents lower under-appraisal risks to borrowers. As a result, it is easier to obtain larger

mortgages at lower rates against these houses, improving the affordability of the housing

stock.

This suggests that urban policymakers, who regulate the construction and renovation of

residential housing, should consider the effects of policies on the collateral value of the hous-

ing stock. By encouraging rebuilding and renovation, and by zoning in a way which promotes

the development of standardized housing urban policy can potentially improve affordability

by increasing average collateral values. Lenders would lend more against these houses, con-

tributing to increasing homeownership rates for low-income households, even if these policies

do not decrease house prices. Interestingly, this is a channel through which housing stock

renewal disproportionately benefits low-income households and first-time homebuyers, since

down payment constraints tend to be most binding for these households.

7 Conclusion

In this paper, we have shown that house value uncertainty affects mortgage credit provision

in the US residential real estate market. Houses differ substantially in their degree of id-

iosyncratic price dispersion, which affects their value as collateral and thus the availability

of mortgage credit. This effect is partially due to fair pricing of collateral recovery risk,

and partly through the effect of idiosyncratic price dispersion on appraisal noise. Our re-

sults have implications for policy interventions in mortgage and housing markets aimed at

improving credit access and homeownership, especially among low-income individuals and

first-time homebuyers.
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Figures

Figure 1. Stylized Facts about Price Dispersion Estimates

(a) Zip-Code Dispersion: 2010 vs 2020 (b) Dispersion and Income

Note: Panel (a) plots zip-code dispersion measures in 2020 against zip-code dispersion measures in 2010. Panel (b)
shows the association between house price dispersion and zip-code household income prices. We divide all zip codes
into five buckets based on local median household income and plot the average values in each bucket. The sample
includes annual zip level observations from 2000 to 2020.Source: Corelogic Deeds and American Community Survey
2008-2012.
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Figure 2. County Level House Price Dispersion and Credit Access

(a) Loan-to-Price (b) Rate

(c) Total Rejection (d) Rejection due to Collateral

Note: This figure shows the correlation between county level house price dispersion and various credit access outcomes.
Panel a plots county average LTP after taking out the effect of underlying house prices. The y-axis values are
in percentage points. Panel b plots county average residualized mortgage interest rate (basis points). Individual
mortgage interest rates are residualized using borrower and loan characteristics, such as FICO, LTP, DTI, the squared
terms, and their interactions with origination year. We then take the county-average of residualized mortgage rates.
Panels c and d plot mortgage rejection rate (percentage points). Panel c plots the total rejection rate. Panel d plots
the rejection rate due to collateral. We residualize mortgage rejection rate by taking the residuals of regressions of
mortgage rate on county average log house price, credit score, and year fixed effects. The sample includes annual
county observations from 2000 to 2020 for panels (a) and (b) and from 2000 to 2017 for panels (c) and (d). Source:
County house price dispersion is estimated using Corelogic Deeds records. Mortgage data are from Corelogic LLMA
and HMDA.
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Figure 3. Property Level Mortgage Menu by House Price Dispersion

Note: This figure shows mortgage price menu (rate-LTP pair) by zip-level house price disper-
sion. The y values are interest rate residuals from a regression of mortgage rates on borrower
fico, fico-squared, DTI, DTI-squared conforming or jumbo indicator, and origination month
fixed effects. The dots represent the average mortgage rate in each LTP bucket. The shaded
area indicates 95% confidence interval. The sample includes loan level observations of con-
ventional loans from 2000 to 2020. Source: Corelogic LLMA and Deeds.
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Figure 4. Price Dispersion and Appraisals

(a) Appraisal to Price Ratio (b) Appraisal to Price Distance

(c) Appraisal below Sale (d) Conditional Appraisal to Price Distance

Note: Panel (a) of this figure shows the histogram of appraisal-to-transaction price ratios,
winsorized at 1% to remove outliers. Panel (b) shows a binned scatter plot, where the y-
variable is ApprDevi, the product of the percentage deviation of appraisal prices to sale prices
with a dummy for a house under-appraising, defined in (A47). In panel (c), the y-variable
is the probability that appraisals are below transaction prices. In panel (d), the y-variable
is the average under-appraisal percentage conditional on under-appraisal, defined in (A48).
In all panels, the x-variable is zip code price dispersion. We divide all loans into 50 buckets
based on zip code house price dispersion. The sample includes loan level observations from
2000 to 2020. Source: Corelogic LLMA, Deed and Tax datasets.
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Figure 5. Model Fit

(a) Appraisal Noise (b) Appraisal-to-Price (c) Probabilities of Mortgage Failure

(d) Appraisal Deviation (e) Model Predicted LTP

Note: Panel (a) shows shows estimated appraisal standard deviations σa on the y-axis, and estimated idiosyncratic
price dispersion σ on the x-axis. Panel (b) shows the distribution of appraisal-over-price ratios a, in the data and the
fitted model, for the 5th percentile bucket (that is, counties with values of σ between the 40th and 50th percentiles).
Panel (c) shows transaction failure probabilities in the data and in the fitted model. Panel (d) shows ApprDevi,

which is defined as punderi E
[
a
p
− 1 | under

]
, in the data and in the fitted model. Panel (e) shows lfinal, which is the

model predicted loan-to-price ratio.
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Figure 6. Decomposition of Channels

(a) Interest Rate (b) Mortgage Failure

(c) Loan-to-Price

Note: Panel (a) decomposes the effect of sigma on interest rate. Panel (b) decomposes the
effect of sigma on mortgage rejection. Panel (c) decomposes the effect of sigma on loan-to-
price ratio. In all panels, the y-axis is the effect of sigma on the outcome variables. The
rate menu channel assumes that appraisal noise does not change with sigma. The appraisal
risk effect assumes that the rate menu does not change with sigma. In Panel (c), we further
decompose the appraisal risk channel into ex-ante and ex-post, where ex-ante is based on
the effect of sigma on targeted loan-to-price ratio, and ex-post is based on the effect of sigma
on the difference between targeted and realized loan-to-price ratio.
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Figure 7. Counterfactual

(a) Loan-to-Price (b) Interest Rate

(c) Mortgage Failure Rate

Note: This figure plots the counterfactual mortgage outcomes when there is no appraisal
bias, that is, setting the parameter b = 0. Panel (a) compares the benchmark and the
counterfactual loan-to-price ratio. the effect decomposes the effect of sigma on interest rate.
Panel (b) compares the benchmark and the counterfactual interest rate. Panel (c) compares
the benchmark and the counterfactual mortgage failures. In all panels, the y-axis is the
outcome variable, and the x-axis is the house price dispersion.
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Table

Table 1: Summary Statistics

This table reports summary statistics for the three main datasets: the property sample from the Corelogic Deed
and Tax datasets, the loan sample from the Corelogic LLMA dataset, and the mortgage application sample from the
HMDA. The Corelogic samples span the time period 2000 to 2020. The HMDA sample spans 2000 to 2017.

N Mean Stdev P25 Median P75

Property Level Sample

Loan to Price 29M 85.42 15.65 80.00 89.68 98.19
Price Dispersion 29M 0.24 0.11 0.17 0.23 0.30
Sale Price (Thousand) 29M 273.02 224.93 140.30 215.00 332.50
Mortgage Amount (Thousand) 29M 222.40 163.53 121.80 182.16 275.79
Building Age 29M 27.12 25.95 6.00 20.00 42.00
Square Footage 29M 1,961.57 2,982.11 1,363.00 1,774.00 2,365.00

Loan Level Sample

Loan to Price 4.8M 85.48 14.98 80.00 90.00 98.19
Zip Price Dispersion 4.8M 0.25 0.08 0.19 0.24 0.29
Sale Price (Thousand) 4.8M 280.83 242.84 143.50 218.00 340.00
Appraised to Price Ratio 4.8M 1.03 0.19 1.00 1.00 1.02
Mortgage Amount (Thousand) 4.8M 227.66 170.25 124.00 185.18 283.00
FICO 4.8M 725.35 61.39 681.00 735.00 778.00
Debt-to-Income 4,8M 37.23 11.28 29.85 38.00 44.69

Mortgage Application Sample

Rejection Rate 49M 15.86 36.53 0.00 0.00 0.00
Rejection due to Collateral Reasons 49M 1.95 13.83 0.00 0.00 0.00
Zip Price Dispersion 49M 0.26 0.08 0.20 0.25 0.31
Applicant Income (Thousand) 49M 102.35 193.47 47.00 72.00 114.00
Loan-to-Income 49M 242.18 6,896.19 135.83 227.78 316.51
County Credit Score 49M 667.19 22.16 650.30 666.18 684.14
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Table 2: Determinants of House Price Dispersion

This table presents the association between house price dispersion and house features (Panel A) and zip code market
condition (Panel B). All continuous variables are scaled by standard deviation. Recent renovation is defined as
renovation in the last 5 years from the transaction year. The sample includes house transactions from 2000 to 2020.
Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

Panel A: House Features

Estimated Price Dispersion
(1) (2) (3) (4) (5)

Building Age 0.04*** 0.04*** 0.04*** 0.04***
(0.002) (0.002) (0.002) (0.002)

Recent Renovation -0.01*** -0.01***
(0.003) (0.003)

Benchmark: Square-Footage < 1281
[1282,1601] -0.03*** -0.03*** -0.02***

(0.002) (0.002) (0.002)
[1602,1970] -0.03*** -0.03*** -0.02***

(0.003) (0.003) (0.003)
[1971,2544] -0.02*** -0.02*** -0.00

(0.004) (0.004) (0.003)
> 2544 0.01** 0.01** 0.03***

(0.005) (0.004) (0.004)
Benchmark: Bedrooms < 4

=4 -0.01*** -0.01***
(0.001) (0.001)

>4 0.01*** 0.01***
(0.002) (0.001)

Log House Price -0.48*** -0.48*** -0.51*** -0.51*** -0.37***
(0.028) (0.028) (0.025) (0.025) (0.021)

Log House Price Squared 0.50*** 0.50*** 0.51*** 0.51*** 0.38***
(0.029) (0.029) (0.025) (0.025) (0.022)

County-Year FE X X X X X
R2 0.33 0.33 0.26 0.27 0.35
Observations 29M 29M 29M 29M 29M

Panel B: Zip Code Market Condition
Zip Code Price Dispersion

(1) (2) (3) (4)

Gini Index 0.01*** 0.01***
(0.001) (0.001)

Population Density -0.01*** -0.01***
(0.003) (0.002)

Vacancy Share 0.03*** 0.03***
(0.002) (0.002)

Year FE X X X X
R2 0.02 0.02 0.08 0.09
Observations 276,079 276,079 276,079 276,079
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Table 3: Property-Level House Price Dispersion and LTP

This table presents property-level regression results. Columns 1-3 present OLS results. Columns 4-6 present IV
results. In all columns, the outcome variable is the loan level loan-to-sale price ratio. The explanatory variable of
interest in columns 1-3 is property-level house price dispersion, scaled by its standard deviation, and is the predicted
price dispersion in columns 4-6. Controls include the transaction price of the property, mortgage type, mortgage
term, and resale indicator. The sample includes property transaction level observations from 2000 to 2020. Standard
errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Price Dispersion -0.43*** -0.21*** -0.23*** -0.33*** -0.40*** -0.45***
(0.042) (0.036) (0.033) (0.087) (0.067) (0.063)

Log House Price -4.30*** -4.59*** -4.31*** -4.29*** -4.59*** -4.30***
(0.144) (0.184) (0.167) (0.144) (0.184) (0.166)

Loan Controls X X X X X X
Transaction Date FE X X X X X X
County-Year FE X X X X
Lender-Year FE X X
R2 0.34 0.36 0.40 0.32 0.29 0.26
Observations 28M 28M 28M 28M 28M 28M
Underidentification test statistic 166.75 160.45 164.44
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 242.71 226.63 224.43
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Table 4: Price Dispersion and Cost Menu

This table presents loan level regression results the of cost menu. The outcome variables are loan-level interest
rate (bps). Columns 1-3 present OLS results, and columns 4-6 present 2SLS results. Column 1 (4) uses the full
sample. Columns 2-3 (5-6) use securitized conventional loans (i.e., non-FHA loans that are securitized) and portfolio
conventional loans (i.e., non-FHA loans that are held on lenders’ balance sheets), respectively. The explanatory
variable of interest is zip-code house price dispersion, scaled by its standard deviation. Borrower and loan controls
include log house price, FICO score, FICO squared, LTP, LTP squared, DTI, DTI-squared, and loan type. The
sample includes loan level observations from 2000 to 2020. Standard errors are clustered at county level. ***, **, *
represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Zip Price Dispersion 1.10*** 1.38*** 1.98*** 2.20*** 2.20*** 5.32***
(0.139) (0.111) (0.464) (0.356) (0.261) (1.052)

LTP 0.80*** 0.59*** 2.32*** 0.80*** 0.58*** 2.31***
(0.113) (0.039) (0.247) (0.113) (0.039) (0.244)

Borrower and Loan Controls X X X X X X
Origination Month FE X X X X X X
County-Year FE X X X X X X
R2 0.85 0.87 0.81 0.08 0.12 0.05
Observations 4.8M 2.3M 1.1M 4.8M 2.3M 1.1M
Underidentification t-stat 85.28 88.95 70.61
Underidentification p-value 0.00 0.00 0.00
Weak identification t-stat 43.06 39.71 33.57
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Table 5: Mortgage Rejections and Zip House Price Dispersion

This table presents loan level regression results of mortgage rejections. The outcome variable in Panel A is an
indicator that equals 100 if a loan is rejected and 0 otherwise. The outcome variable in Panel B is an indicator that
equals 100 if a loan is rejected due to collateral reasons and 0 otherwise. In both panels, columns 1-3 report OLS
results, and columns 4-6 report 2SLS results. The explanatory variable of interest is zip code house price dispersion,
scaled by its standard deviation. Borrower/Loan controls include zip code house price, log income, loan type, county
average credit score and its square term, and loan to income ratio and its square term. The sample includes loan
level observations from 2001 to 2017. Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and
10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Panel A: Rejection

Zip Price Dispersion 1.38*** 1.37*** 0.82*** 2.47*** 2.50*** 2.60***
(0.093) (0.102) (0.114) (0.189) (0.196) (0.683)

Rejection Mean 15.9% 16.5% 16.0% 15.9% 16.5% 16.0%
R2 0.16 0.18 0.17 0.01 0.01 <0.005

Panel B: Rejection Due to Collateral

Zip Price Dispersion 0.50*** 0.53*** 0.38*** 0.78*** 0.85*** 0.81***
(0.035) (0.037) (0.051) (0.060) (0.065) (0.144)

Local Controls X X X X X X
County-Year FE X X X X X X
Lender-Year FE X X X X X X
Rejection due to Collateral Mean 1.9% 2.0% 2.2% 1.9% 2.0% 2.2%
R2 0.05 0.05 0.09 <0.005 <0.005 <0.005
Observations 49M 35M 3.7M 49M 35M 3.7M
Underidentification t-stat 87.07 81.51 25.92
Underidentification p-value 0.00 0.00 0.00
Weak identification t-stat 64.34 61.93 18.44
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Table 6: Mortgage Rejection Reasons

This table presents loan level regression results of mortgage rejection reasons. The explanatory variable of interest
is zip code house price dispersion, scaled by its standard deviation. Borrower/Loan controls include zip code house
price, log income, loan type, county average credit score and its square term, and loan to income ratio and its square
term. The sample includes loan level observations from 2001 to 2017. Standard errors are clustered at county level.
***, **, * represent 1%, 5%, and 10% significance, respectively.

(1) (2) (3) (4) (5)
Collateral Down Payment Debt-to-Income Employment Credit Score

Panel A: OLS

Price Dispersion 1.70*** -0.10*** -0.48*** -0.13*** -0.65***
(0.139) (0.020) (0.068) (0.016) (0.058)

R2 0.16 0.10 0.18 0.05 0.25

Panel B: IV

Price Dispersion 2.65*** -0.10** -0.66*** -0.14*** -1.28***
(0.163) (0.039) (0.107) (0.027) (0.106)

Underidentification t-stat 67.86 67.86 67.86 67.86 67.86
Underidentification p-value 0.00 0.00 0.00 0.00 0.00
Weak identification t-stat 71.51 71.51 71.51 71.51 71.51

Sample mean 12.23 4.90 17.08 2.76 21.12
Observations 8M 8M 8M 8M 8M
Local Controls X X X X X
County-Year FE X X X X X
Lender-Year FE X X X X X
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Table 7: Ex-Post Performance

This table analyzes ex-post performance of mortgage loans. Columns 1 and 4 use full sample. Columns 2 and 4 use
securitized conventional loans (i.e., non-FHA loans that are securitized). Columns 3 and 6 use portfolio conventional
loans (i.e., non-FHA loans that are held on lenders’ balance sheets). Outcome variable is 100 if the loan defaults in two
years since origination and 0 otherwise. The explanatory variable of interest is zip-code house price dispersion, scaled
by its standard deviation. Other controls include house price and loan type. The sample includes all loans originated
from 2000 to 2018. Since we need at least two-year performance to define default, we remove loans originated after
2018 from the full sample for this analysis. Standard errors are clustered at county level. ***, **, * represent 1%,
5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Zip Price Dispersion 0.16*** 0.10*** 0.17*** -0.10 -0.10 -0.01
(0.056) (0.038) (0.064) (0.096) (0.099) (0.118)

Interest Rate 2.25*** 2.61*** 1.55*** 2.25*** 2.61*** 1.55***
(0.123) (0.185) (0.127) (0.125) (0.188) (0.128)

FICO -20.89*** -19.68*** -18.23*** -20.89*** -19.68*** -18.23***
(0.238) (0.345) (0.532) (0.237) (0.344) (0.534)

DTI 0.06*** 0.03*** 0.05*** 0.06*** 0.02*** 0.05***
(0.005) (0.006) (0.005) (0.005) (0.006) (0.005)

Origination Month FE X X X X X X
County-Year FE X X X X X X
Property & Loan Controls X X X X X X
R2 0.15 0.13 0.19 0.09 0.06 0.09
Observations 4.3M 2.1M 0.9M 4.3M 2.1M 0.9M
Underidentification test statistic 82.86 86.90 68.21
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 41.98 38.03 34.89
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Table 8: Robustness Tests

This table presents robustness tests. Panel A is for lender market power. We use a subsample of loans from Corelogic
Deeds that we observe mortgage interest rate to estimate the effect of property-level price dispersion on LTP for any
given interest rate. Panel B presents robustness test for bunching below conforming limit. We use the sample to
house transactions with non-missing mortgage interest rates from Corelogic Deeds and further restrict the sample
to houses whose transaction price is smaller than the local conforming loan limit. Standard errors are clustered at
county level.

Panel A: Not about Lender Market Power

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Price Dispersion -0.34*** -0.31*** -0.25*** -1.01*** -0.97*** -1.05***
(0.031) (0.029) (0.028) (0.070) (0.062) (0.094)

Interest Rate 1.01*** 0.87*** 0.92*** 1.02*** 0.88*** 0.92***
(0.067) (0.044) (0.055) (0.068) (0.044) (0.055)

Loan Controls X X X X X X
Origination Month FE X X X X X X
County-Year FE X X
Lender-County-Year FE X X
Lender-Zip-Year FE X X
R2 0.47 0.59 0.67 0.27 0.21 0.18
Observations 5M 5M 4M 5M 5M 4M
Underidentification test statistic 119.15 104.27 131.69
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 182.03 171.90 169.75

Panel B: Not about Bunching ( SalePrice
ConformingLimit

< 1)

OLS 2SLS
(1) (2) (3) (4)

Price Dispersion -0.21*** -0.18*** -0.52*** -0.43***
(0.025) (0.022) (0.046) (0.039)

Interest Rate 1.01*** 0.84*** 1.02*** 0.84***
(0.080) (0.059) (0.081) (0.059)

Loan Controls X X X X
Origination Month FE X X X X
County-Year FE X X
Lender-Year FE X X
R2 0.43 0.50 0.27 0.23
Observations 4M 4M 4M 4M
Underidentification test statistic 123.24 121.76
Underidentification test p-value 0.00 0.00
Weak identification test statistic 181.03 171.42

57



Table 9: Model Estimates

This table presents the model estimates. Panel A reports the externally calibrated parameters. Panel B reports the
estimated parameters.

Panel A: Externally Calibrated Parameters

Description Parameter Value

Intertemporal elasticity of substitution η 2
Wealth at time of home purchase W1 $60,000
House price P $200,000
Discount factor β 0.96

T 7
Maximum LTV parameter φ 0.8

Panel B: Parameters Calibrated to the Data or through Moment Matching

Description Parameter Value

Appraisal Standard Deviation σ1, ..., σ10 See Figure A10
Search cost ζ 0.175
Appraisal Bias b 0.0792
Penalty rate on consumption ψ 1.614
Marginal utility of next period consumption u′2 0.0021
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A Data Cleaning and Measure Estimation

A.1 Data Cleaning

Corelogic tax & deed data. We clean the datasets using a number of steps. First,

we use only arms-length new construction sales or resales of single-family residences, which

are not foreclosures, which have non-missing sale price, date, APN, and county FIPS code

in the Corelogic deed data, and which have non-missing year built and square footage in the

Corelogic tax data. We use only data from 2000 onwards, as we find that Corelogic’s data

quality is low prior to this date. Even after throwing out pre-2000 data, we find that some

counties have very low total sales for early years, suggesting that some data is missing. To

address this, we manually filter out some early county-years for which the total number of

sales is low.

We also filter out “house flips”, as well as instances where reported sale price seems

anomalous. If a house is ever sold twice within a year, we drop all observations of the

house. Most of these kinds of transactions appear to be either flips, which are known to be

a peculiar segment of the real estate market (Bayer et al., 2011; Giacoletti and Westrupp,

2017), or duplication bugs in the data, where a single transaction is recorded twice or more.

To filter for potentially anomalous prices, if we ever observe a property whose annualized

appreciation or depreciation is above 50% for any given pair of sales, we drop all observations

of the property. Finally, if a house is ever sold at a price which is more than 5 times higher

or lower than the median house price in the same county-year, we drop all observations of

the house from our dataset.

Our model of prices involves a fairly large number of parameters, so we filter to counties

with a fairly large number of house sales in order to precisely estimate the model. Thus, we

filter to counties with at least 1,000 house sales remaining, and with at least 10 sales per

month on average, after applying the filtering steps described above.

Corelogic LLMA data. We filter to only purchase loans, excluding refinancing loans.

As in the Corelogic Deed data, we calculate the loan-to-price ratio as the mortgage loan

amount, divided by the house transaction price. We dropped observations with empty prop-

erty zipcode, FICO score, initial interest rate, mortgage amount, origination date, sale price,

and back-end ratio. We divide the market into conforming and non-conforming loans, using
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a flag provided by corelogic. We dropped all observations with balloon loans, and with loan

to price ratio > 100. We kept observations with full documentation and fixed interest rates.

We dropped observations with outliers. Specifically, we dropped all observations lower than

1 percentile and higher than 99 percentile with respect to loan to price and initial interest

rate.

HMDA data. We filter to approved purchase or refinancing loans, omit FHA loans,

filtering to one-to-four family homes, and filtering to loan amounts greater than 0. We drop

observations with missing state or county codes, and with LTV higher than 130, and we

Winsorize loan amounts, rate spreads, and LTVs.

A.2 Measurement: fc and gc Functions

In order to estimate price dispersion, we need to model prices as a flexible function of

characteristics. We do this using generalized additive models, which are a class of flexible

nonparametric models; Wood (2017) describes the theory of GAMs. We use the mgcv

package in R to implement the GAMs. We use this class of functions because, in our

simulations, they provide a better fit to house prices than standard high-order polynomials.

We implement a two-stage regression using general additive model (GAM) on a county

level. Instead of a high order polynomial, GAM implements cubic spline basis (or tensor

product for multivariates) to fit the regressors. Therefore, to avoid overfitting, we first throw

out counties with less than 400 observations. In order to estimate the GAM, there needs

to be sufficient variation in characteristics; thus, we only keep counties with at least 10

unique values of each of the following characteristics: geographic information (latitude and

longitude), year built, square footage, and transaction date. We also normalize the months,

latitude, and longitude, building square feet, and year built. Furthermore, we winsorize

geographic information, year built and building square feet.

We then estimate the following generalized additive model:

fc (xi, t) = hf,latlongc (t, lati, longi) + hf,sqftc (t, sqfti) +

hf,yrbuiltc (t, yrbuilti) + hf,bedroomsc (t, bedroomsi) + hf,bathroomsc (t, bathroomsi)
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The functions hf,latlongc , hf,sqftc , and hf,yrbuiltc are tensor products of 5-dimensional cubic

splines in their constituent components: hence, for example, the hf,latlongc (t, lati, longi) is a

three-dimensional spline tensor product, with a total of 53 = 125 degrees of freedom. To

combat overfitting, the spline terms also includes a shrinkage penalty term on the second

derivative of the spline functions, with the smoothing penalty determined through generalized

cross-validation. The functions hf,bedroomsc and hf,bathroomsc interact dummies for a given house

having 1, 2, 3 or more bedrooms and 1, 2, 3 or more bathrooms respectively with cubic spline

basis in time.

The functional form for gc (xi, t) in (2) is exactly analogous to fc (xi, t):

gc (xi, t) = hg,latlongc (t, lati, longi) + hg,sqftc (t, sqfti) + hg,yrbuiltc (t, yrbuilti) +

hg,bedroomsc (t, bedroomsi) + hg,bathroomsc (t, bathroomsi)
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B Proofs and Supplementary Material for Section 4

B.1 Proof of Theorem 1

Conditional on the appraisal value a, the buyer can choose to proceed with the loan and

purchase the property (continue), or renege on the offer and search for a new house and

loan (renege). Let the value of each option, with loan size l and appraisal a, be respectively

V (a, l, continue) and V (a, l, renege). The maximized value at any a and l is:

V (a, l) ≡ max
[
V (a, l, continue) , V (a, l, renege)

]
(A1)

We proceed to characterize V (a, l, continue) and V (a, l, renege).

B.1.1 Characterizing V (a, l, continue)

If the buyer proceeds with appraisal a, her utility is:

V (a, l, continue) =
c1−η

1 − 1

1− η
+ βTu′2c2 (A2)

Where, from (12) and (13) in the main text, we have:

c1 = W1 − P (1− l)︸ ︷︷ ︸
Targeted consumption

−ψP max (0, l − φa)︸ ︷︷ ︸
Appraisal shortfall

(A3)

c2 = −
(
1 + r (l)

)T
P
(
l −max [0, l − φa]

)
(A4)

where, as we discussed in the main text, we have set W2 = 0, since second-period wealth only

linearly shifts buyers’ utility and does not interact with any of the buyer’s decisions. In words,

(A3) states that the buyer’s consumption in period 1 is equal to her targeted consumption

W1 − P (1− l), minus an “appraisal shortfall” term max (0, l − φa). If a < l
φ
, then the

buyer must decrease her borrowing from l to φa; this decreases her period-1 consumption

by l − φa, multiplied by the price, and the penalty term ψ > 1. Since the final loan size

lfinal is smaller, this also decreases the amount that the buyer must pay back in period 2 by
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(
1 + r (l)

)T
P max [0, l − φa]. Substituting (A3) and (A4) into (A2), we have:

V (a, l, continue) =u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
− u′2βT

(
1 + r (l)

)T
Pl

+ u′2β
T
(
1 + r (l)

)T
P max [0, l − φa]

(A5)

where, u1 (c) ≡ c1−η−1
1−η . Recall that, in (18), we defined:

ω (a, l) ≡ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
+ u′2β

T
(
1 + r (l)

)T
P max [0, l − φa]

Using this definition, we have:

V (a, l, continue) = −u′2βT
(
1 + r (l)

)T
Pl + ω (a, l) (A6)

B.1.2 Characterizing V (a, l, renege)

If the buyer reneges, she receives:

V (a, l, renege) = −βTu′2ζP + Ea
(
V (a, l)

)
(A7)

In words, she pays a cost ζP in period 2 consumption, which costs −βTu′2ζP in utility terms.

She then returns to the beginning of the game, and thus receives the expectation of V (a, l)

over uncertainty in a. Expanding Ea
(
V (a, l)

)
, we have:

Ea
(
V (a, l)

)
=

∫ ∞
0

max
(
V (a, l, continue) , V (a, l, renege)

)
dFa (a) (A8)

Now, note that V (a, l, renege), is independent of a, whereas from (A5), V (a, l, continue) is

increasing in a. Thus, there is some cutoff value ā (l), such that continuing is optimal for all

a > ā (l). At the boundary ā (l), continuing and reneging have equal value:

V (ā, l, renege) = V (ā, l, continue) (A9)
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Substituting for V (ā, l, continue) using (A6), we have:

V (ā, l, renege) = −βT
(
1 + r (l)

)T
u′2Pl + ω (ā, l)

Substituting into (A8), we have:

Ea
(
V (a, l)

)
=∫ ∞

0

max
(
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l) ,−βT

(
1 + r (l)

)T
u′2Pl + ω (ā, l)

)
dFa (a)

Ea
(
V (a, l)

)
= −βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A10)

Substituting into (A7), we have:

V (a, l, renege) =

− βTu′2ζP − βT
(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A11)

B.1.3 Solving For ā

Having characterized V (a, l, renege) and V (a, l, continue), we now solve for ā. Plugging

in expressions for V (ā, l, renege) and V (ā, l, continue) into (A9), we have:

− βT
(
1 + r (l)

)T
u′2Pl + ω (ā, l) =

− βTu′2ζP − βT
(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a)

Rearranging, and deleting the shared term βT
(
1 + r (l)

)T
u′2Pl, we have:

ω (ā, l) = −βTu′2ζP +

∫ ∞
0

max
(
ω (a, l) , ω (ā, l)

)
dFa (a) (A12)

This is (17) of Theorem 1. Equation (A12) characterizes ā (l). In words, the LHS of (A12)

is the period-1 utility from continuing with the appraisal ā, suffering the cost from under-
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appraising. The RHS is the expected value from reneging, which is the utility cost −βTu′2ζP ,

plus the expected period-1 utility from drawing a new appraisal. At ā, these must be equal.

We can rearrange (A12) to:∫
a>ā

(
ω (a, l)− ω (ā, l)

)
dFa (a) = βTu′2ζP (A13)

Since ω is increasing in a, the LHS of (A13) is strictly decreasing in ā, hence for any param-

eters, there is at most one value of ā which solves (A13). Note also that (A13) shows that

the optimal ā must satisfy:

ā <
l

φ

that is, the optimal cutoff ā must be low enough that it constrains the amount that can be

borrowed. To see this, note that from (18), we have:

ω (a, l) = u1

(
W1 − P (1− l)

)
∀a > l

φ

That is, when a > l
φ
, so the appraisal is high enough that it does not constrain borrowing,

then ω (a, l) is constant in a. As a result,∫
a>ā

(
ω (a, l)− ω (ā, l)

)
dFa (a) = 0 ∀ā ≥ l

φ

Hence, the LHS of (A13) is 0 for all ā > l
φ
; the RHS is positive, so it can never be optimal

to set ā > l
φ
.

B.1.4 Optimal Loan Choice

Repeating (A10), we have that, given the optimal appraisal cutoff ā (l), the expected

value attained by the buyer, in expectation over uncertainty in a, is:

E
(
V
(
ā (l) , l

))
= −βT

(
1 + r (l)

)T
u′2Pl +

∫ ∞
0

max
(
ω (a, l) , ω

(
ā (l) , l

))
dFa (a) (A14)

The buyer picks l to maximize (A14); this is (19).

8



B.2 Comparative Statics: Optimal Loan Choice

To do comparative statics, we will apply the envelope theorem to the optimization framing

of the buyer’s choice problem. Define:

Γ (l) ≡ E
(
V
(
ā (l) , l

))
We can write Γ as:

Γ (l) =

max
ā

[∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l)

]
dFa (a) + Fa (ā)

[
Γ (l)− PβTu′2ζ

]]
(A15)

In words, the buyer receives −βT
(
1 + r (l)

)T
u′2Pl + ω (a, l) in the range [ā,∞] where the

buyer continues, and Γ (l) − PβTu′2ζ in the range [0, ā] where she reneges. In this framing,

since ā is chosen optimally given any l, we have:

∂

∂ā
max
ā

[∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2Pl + ω (a, l) dFa (a) + Fa (ā)

[
Γ (l)− PβTu′2ζ

]]
= 0

Hence, the envelope theorem applies; we have:

dΓ

dl
=

∂

∂l

∫ ∞
ā∗
−βT

(
1 + r (l)

)T
u′2Pl + ω (a, l) dFa (a) + Fa (ā∗)

[
Γ (l)− PβTu′2ζ

]
Now, we can write Γ (l) substituting for ω (a, l) using (18), to get:

Γ (l) = max
ā

∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2Pl

+ βT
(
1 + r (l)

)T
u′2P max [0, l − φa]

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)]
dFa (a)

+ Fa (ā)
[
Γ (l)− PβTu′2ζ

]
(A16)
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Now, note that:

l −max [0, l − φa] = min [l, φa]

Hence, we can write (A16) as:

Γ (l) = max
ā

∫ ∞
ā

[
−βT

(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)]
dFa (a)

+ Fa (ā)
[
Γ (l)− PβTu′2ζ

] (A17)

Differentiating with respect to l, we have:

dΓ

dl
=
∂

∂l

[ ∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a)

]
+ Fa (ā∗)

dΓ

dl

(A18)

dΓ

dl

(
1− Fa (ā∗)

)
=
∂

∂l

[ ∫ ∞
ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)

+ u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a)

] (A19)

Now, we can separately analyze the RHS, in the under-appraisal region a ∈
[
ā, l

φ

]
and the

over-appraisal region a ∈
[
l
φ
,∞
]
. In the over-appraisal region, we have min (l, φa) = l and

max (0, l − φa) = 0, hence:
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∂

∂l

∫ ∞
l
φ

−βT
(
1 + r (l)

)T
u′2P min (l, φa)+u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =

∂

∂l

∫ ∞
l
φ

−βT
(
1 + r (l)

)T
u′2Pl + u1

(
W1 − P (1− l)

)
dFa (a) =

(
1− Fa

(
l

φ

))−TβT (1 + r (l)
)T−1

r′ (l)u′2Pl︸ ︷︷ ︸
Rate Change

+Pu′1
(
W1 − P (1− l)

)
− PβT

(
1 + r (l)

)T
u′2︸ ︷︷ ︸

Consumption Smoothing


−
[
−βT

(
1 + r (l)

)T
u′2Pl + u1

(
W1 − P (1− l)

)]
f

(
l

φ

)
︸ ︷︷ ︸

Nuisance Term

(A20)

The “rate change” term in (A20) represents the increase in interest payments in period 2 from

increasing r (l). The “consumption smoothing” term represents gains from more effectively

smoothing consumption over the two periods. The intuition is that, if the house over-

appraises, targeting a larger loan allows the buyer to borrow more, smoothing consumption,

and gaining on the margin the gap between period-1 and period-2 marginal utilities. The

“nuisance term” will cancel once we consider the under-appraisal region.

In the underappraisal region, we have min (l, φa) = φa and max (0, l − φa) = l − φa,

hence:

∂

∂l

∫ l
φ

ā

−βT
(
1 + r (l)

)T
u′2P min (l, φa)+u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =

∂

∂l

∫ l
φ

ā

−βT
(
1 + r (l)

)T
u′2Pφa+ u1

(
W1 − P (1− l)− ψP (l − φa)

)
dFa (a) =∫ l

φ

ā

−TβT
(
1 + r (l)

)T−1
r′ (l)u′2Pφa︸ ︷︷ ︸

Rate Change

+ (1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
︸ ︷︷ ︸

Under−Appraisal Penalty

dFa (a)

+

−βT (1 + r (l)
)T
u′2Pφ

(
l

φ

)
+ u1

W1 − P (1− l)− ψP

(
l − φ

(
l

φ

))
 f ( l

φ

)
︸ ︷︷ ︸

Nuisance Term

(A21)
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The “rate increase” term is analogous to (A20). The intuition behind the “under-appraisal

penalty” term is that, if the house eventually under-appraises, targeting a larger loan does

not increase the eventual borrowing amount, but increases the size of any under-appraisal,

causing the buyer to have to pay a penalty ψ − 1 > 0 of the incremental loan amount. The

“nuisance term” simply cancels with the corresponding term from (A20) once we add the

two components.

Combining (A20) and (A21), we have:

∂

∂l

∫ ∞
ā

u1

(
W1 − P (1− l)− ψP max (0, l − φa)

)
dFa (a) =(

1− Fa (ā)
) (
−TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
+(

1− Fa
(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
−

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a) (A22)

Finally, combining (A22) with (A19), we have:

dΓ

dl
=
(
−TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
+

1(
1− Fa (ā∗)

)[(1− Fa
(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
−

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a)

]
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Setting dΓ
dl

to 0 and rearranging, we can write the FOC for optimal loan choice as:

(
1− Fa

(
l

φ

))
P
(
u′1
(
W1 − P (1− l)

)
− βT

(
1 + r (l)

)T
u′2

)
︸ ︷︷ ︸

Consumption Smoothing

=

(
1− Fa (ā∗)

) (
TβT

(
1 + r (l)

)T−1
r′ (l)u′2Pl

)
︸ ︷︷ ︸

Rate Change

+

∫ l
φ

ā

(1− ψ)Pu′1

(
W1 − P

(
1− l + ψ (l − φa)

))
dFa (a)︸ ︷︷ ︸

Under−Appraisal Penalty

(A23)

The LHS of (A23) captures the effect of increasing loan size on consumption smoothing. If

the house eventually appraises successfully, increasing targeted loan size by a dollar moves

consumption from period 2, where marginal utility is lower, to period 1, where it is higher.

The RHS captures the two costs of increasing l: first, the interest rate paid increases; second,

conditional on under-appraisal, increasing l does not change the final loan size, but increases

the consumption penalty from under-appraisal, since under-appraisals are larger. Hence, at

the optimal choice of l, the LHS is positive: the buyer would prefer to increase loan size

slightly, to shift consumption from period 2 to period 1, but is deterred from doing so by

the rate change and under-appraisal penalty effects.

B.3 Microfounding the Mortgage Rate Menu

In this appendix, we construct a microfounded model showing how mortgage interest

rates depend on targeted loan size and price dispersion. We assume mortgage rates arise

from competition between profit-maximizing lenders. Suppose that, once a homebuyer has

purchased the house with a mortgage, the buyer will default on the mortgage at rate δ. If

the buyer defaults, the lender incurs a proportional cost Pc to foreclose the house, reflecting

foreclosure discounts and other hassle costs of foreclosing. The foreclosure price is a function

of the initial transaction price and a random component, εF , which has standard deviation

σF that depends on idiosyncratic price dispersion. Thus, the final recovery value is as follows:

F = P (1− c+ εF ) (A24)

13



Thus, for a non-recourse mortgage, lender’s expected loss conditional on default is:24

Loss = E
[
P
(
l −max [l, 1− c+ εF ]

)]
= PE

[
max

[
0, l − (1− c+ εF )

]]
(A25)

Lender’s expected loss is increasing in σF because the lender can recover at most l and bears

the cost when the foreclosure price is less than l.25 Thus, when the variance of the foreclosure

price is larger, the lender’s expected losses on loans is higher.

Now, suppose lenders have cost of funds ρ, and let r represent the mortgage interest

rate. Lenders’ profit if buyers do not default is Pl (r − ρ). In a competitive equilibrium, the

menu of interest rates and loan size must be set such that the lender will break even on any

mortgage-rate pair:

Pl (1− δ) (r − ρ) = δPE
[
max

[
0, l − (1− c+ εF )

]]
(A26)

The LHS of (A26) is lenders’ expected profit, which is the product of mortgage size l,

the repayment probability (1− δ), and the mortgage spread (r − ρ). The RHS is lenders’

expected losses conditional on default, multiplied by the default probability δ.

Expression (A26) defines a menu of (l, r) pairs available to buyers. As we increase id-

iosyncratic price variance, thus increasing the variance of prices upon foreclosure σF , the

menu of (l, r) pairs shifts to be worse for the borrower. Formally, when εF is normally dis-

tributed, the RHS of (A26) is always increasing in σF .26 Thus, holding l fixed, increasing

σF must cause r to increase. This rationalizes our observations in Figure 3 and Table 4.

Expression (15) in the main text can be thought of as a linear approximation to this menu.

B.3.1 Mortgage Rate Menu Calibration

We next do a simple calibration, to show that this microfoundation can also quantitatively

rationalize the relationships between interest rates, loan size, and price dispersion observed

24Mortgages are recourse in some states, but wage garnishment and other methods for collecting debt from buyers
after the house has been sold are expensive, and buyers cannot be collected from if they file Chapter 7 bankruptcy.

25We assume that if the borrower defaults, it happens before Period 2. This assumption is reasonable because buyers
are more likely to default in early stage when they have less equity in the house. If we relax this assumption, the loss

function will be as follows, which will result in similar results: Loss = E

[
P
(
l(1 + ρ) − max

[
l(1 + r), 1 − c+ εF

])]
26Note that the RHS of (A26) is equal to δ times the value of a European call option on l− (1 − c+ εF ) with strike

0; the value of such a call option is always increasing in volatility.
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in the data. Essentially, in the calibration, we will group the data into buckets with different

default rates δ. We will estimate σF based on price dispersion in the data, and we will choose

a foreclosure discount c to minimize the distance between the model and data interest rate

menus. We will then show that the fitted model, optimizing over a single parameter, can

fit the empirical relationships between loan size l, price dispersion σF , and interest rates r,

simultaneously for many levels of default rates.

We restricting the sample to all portfolio loans. We first group the data into four FICO

score bins, Excellent (800-850), Very Good (740-799), Good (670-739), and Fair (580-669),

indexed by f . We split each FICO score bin into high- and low-dispersion counties, indexed

by d, and also split loans into LTP bins, from 60-65, 65-70, up to 80. For each FICO score

bucket f , dispersion case d, and LTP bin l, we estimate average residualized interest rates

rfld in our sample of loans. Since the level of rfld is meaningless after residualization, we

normalize by subtracting the mean rate r̄f within each FICO bucket f :

r̃fld = rfld − r̄f (A27)

Since we normalize within FICO buckets, we preserve the relationships between r̃fld, loan

size l, and price dispersion d within each FICO bucket. The residuals r̃fld are essentially the

points in the interest rate menu of Figure 3, separate for each of the four FICO buckets.

Next, we describe how we simulate value of model-predicted interest rate menu points

r̃modelfld (c), given the foreclosure discount c. We assume that εF is normally distributed, with

mean 0 and variance σF . In each FICO score bin, we calculate a homogeneous value of δ

as the average delinquency rate across all loans. To determine σF in the high- and low-

dispersion areas, we calculate the average repeat-sales residual, as described in Appendix

D.1, separately for high-dispersion and low-dispersion counties.27 We find σF = 0.0941 for

low-dispersion areas, and σF = 0.131 for high-dispersion counties. Given δ, σF , and loan

size l, for any value of the foreclosure discount c, we can calculate the interest rate spread

27We use repeat-sales residuals to estimate σF , rather than the hedonic model residuals in the main text, because
repeat-sales are closer to the thought experiment in the collateral recovery model. We are interested in, when a house
forecloses, how variable its price is relative to its purchase price, which is captured in a repeat-sales specification. If
a house has large errors in the hedonic model, but not the repeat-sales model – that is, a house has persistently high
values relative to its characteristics – this does not affect the variability of the house price relative to loan value upon
foreclosure, so this should not be included in εF .
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rmodelfld − ρ using (A26):

rmodelfld − ρ =
δE
[
max

[
0, l − (1− c+ εF )

]]
l (1− δ)

(A28)

where the expectation on the RHS of (A28) can be analytically calculated, since we assumed

εF is normally distributed. We can then calculate the model counterpart of the interest rate

residuals (A27), by subtracting the mean interest rate in each FICO bucket f :

r̃modelfld (c) = r (l, δ, c, σF )−
∑

l

∑
f r (l, δ, c, σF )∑
l

∑
f 1

=

(
r (l, δ, c, σF )− ρ

)
−
∑

l

∑
f r (l, δ, c, σF )− ρ∑

l

∑
f 1

(A29)

Note that (A29) implies that r̃modelfld does not depend on the choice of ρ, so we set an arbitrary

value of ρ in calculating r̃modelfld (c). We then choose a value of the foreclosure discount c

through generalized method of moments, to minimizes the squared distance between the

data residuals r̃fld, and the model residuals r̃modelfld :

c∗ = arg min
c

∑
l

∑
f

∑
d

wfd

(
r̃fld − r̃modelfld

)2

where, we set the weights wfld equal to the inverse of the standard deviation of residuals r̃fld

within each FICO and dispersion bucket; this is useful since, without weights, the errors in

the low-FICO buckets would dominate the GMM objective function, since rates are higher

and more variable when FICO scores are lower.

Our GMM estimate of the foreclosure discount c∗ is 0.2018. This is within the range

of foreclosure discounts estimate in the literature; for example, Pennington-Cross (2006)

estimate a foreclosure discount of 22%, and Zhou et al. (2015) estimate discounts ranging

from 11% to 26%.

Figure A9 illustrates the fit of the model. In the top two panels, we show the data and

model rate residuals, r̃fld and r̃modelfld , on the y-axis, against the LTP on the x-axis, separately

for low-dispersion (top left) and high-dispersion (top right) areas. Different colors represent

different credit score bins. In the data, the interest rate menu is steeper when FICO scores
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are lower; the model is able to quantitatively match this feature of the data, with some errors

from the model-predicted interest rate menus being slightly too flat for low FICO bins. This

shows that the collateral recovery model is able to quantitatively explain the relationship

between interest rates and loan size.

To focus on the effect of price dispersion of credit, in the bottom panel of Figure A9, we

show the difference in interest rates between high- and low-dispersion cases, for each FICO

bucket and LTP; that is, each point is in the bottom panel shows:

rlf,d=H − rlf,d=L (A30)

This is the difference between interest rates in high-dispersion and low-dispersion areas. In

other words, the solid green line in the bottom panel is equal to the difference between the

solid green line in the top right panel (rates for high-dispersion areas in FICO bin 4) and the

solid green line in the top left panel (rates for low-dispersion areas in FICO bin 4). In the

data, (A30) is larger when FICO scores are lower: dispersion affects mortgage credit more

when default rates are higher. We showed a related pattern, using LTP as the dependent

variable, in Figure A4. The model lines are very close to the data lines in Figure A9, implying

that the model produces a surprisingly good fit of the relationship between default rates,

and the relationship of price dispersion with mortgage interest rates: we are able to match

the average level of each of the lines, as well as the slope for the green line, representing the

lowest FICO scores.

Thus, we have shown that the interrelationships between interest rate residuals, LTP,

default rates, and price dispersion in the portfolio segment of our data are quantitatively

consistent with a simple collateral recovery model, under realistic parameter settings. The

simple model fits the data surprisingly well, given that we only optimize a single parameter,

the foreclosure discount c, in the model fitting.

B.4 Appraiser Incentives

This appendix constructs a microfounded model of appraiser behavior, which rationalizes our

assumptions on how appraisers bias appraisal prices in (16) of Subsection 4.2. Our model

is essentially a special case of Calem et al. (2021). The model also shares some similarities
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with Conklin et al. (2020), but does not model competition between appraisers. Our model

is simplified and disregards some stylized facts shown in the literature: for example, we rule

out the possibility that house prices are renegotiated downwards when appraisals fall below

sale prices, a phenomenon which is analyzed in Fout et al. (2021).

From (9), the max loan the borrower can take out is:

Lmax = φmax (P,A)

Suppose that the house appraiser receives utility χLmax if the loan size is Lmax; that is, the

appraiser receives some side benefit χ, for every unit they can increase the borrower’s max

loan size by. This could capture, for example, possible repeat business incentives to produce

high appraisals, relationships with lenders (Eriksen et al., 2019), and other such forces.

We also assume that appraisers have some convex cost of biasing appraisals. If the “true”

raw appraisal price is Araw, and the appraiser generates appraisal A, then the appraiser incurs

a cost:

c (A,Araw) = γ (A− Araw)2 (A31)

This cost is a reduced-form way to capture the fact that it is more costly for appraisers to

generate larger distortions in appraisal prices. The literature has documented that appraisers

have a number of methods to shift appraisal prices, such as misreporting certain house

attributes (Eriksen et al., 2020) and changing the weights on comparable sales used to

calculate appraisals (Eriksen et al., 2019). Appraisers would have to misreport attributes or

shift weights more to bias appraisals by larger amounts, which may be more costly to the

appraiser in terms of legal and reputational risk, or psychological costs.

Appraisers thus solve:

max
A

Uappr (A) = χLmax (A)− γ (A− Araw)2 (A32)

The optimization problem in (A32) has three distinct regions. First, if Araw > P , then the

appraiser cannot increase Lmax; it is thus optimal to set A = Araw.

Second, suppose Araw is very low. Conjecture that the optimal A is below P , so that the
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first-order condition for optimality holds:

χ
∂Lmax
∂A

= 2γ (A− Araw)

This gives A− Araw = χφ
2γ

. Define b ≡ χφ
2γP

. We then have:

A− Araw = bP

Third, suppose that:

P (1− b) ≤ Araw ≤ P

In this range, we have that:
∂Uappr
∂A

> 0 ∀A < P

Hence, it is optimal for the appraiser to set A=P.

We have thus shown that the appraiser’s optimal appraisal A∗ satisfies:

A∗ =


Araw + bP Araw ≤ (1− b)P

P (1− b)P < Araw ≤ P

Araw P < Araw

which is exactly (16) in the main text.

B.5 Microfounding the Penalty Cost Parameter ψ

This appendix constructs a microfoundation for the “penalty cost” parameter ψ, which

implies that increases in down payments caused by under-appraisals decrease consumption

more than one-for-one. We do a simple calculation to illustrate that the penalty cost can

be fairly large in reasonable models. Suppose an agent lives for T periods, and maximizes

discounted CRRA utility over consumption:

T∑
t=1

βt
c1−η
t − 1

1− η
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s.t. at+1 + ct = yt + at (1 + r)

Income yt is exogeneous and nonrandom. As is standard in the lifecycle literature, we set

η = 2. We set β = 0.95, r = 1
β
− 1, so that the optimal solution without uncertainty involves

consuming equal amounts in every time period. We set T = 10, so a time period can be

thought of as representing a year, and consumers can be thought of as have 10 years to save

for a home purchase at time T . We set yt = 10 for each period.

We compare two cases. The first is an anticipated shock to income in period T , whose

realization is known in period 1. The anticipated shock can be thought of as the homebuyer

choosing a lower target loan size: since she plans to make a larger down payment, she

can consumption-smooth for this in advance. The second is an unanticipated shock, whose

realization is only known in period T . This can be thought of as the homebuyer targeting a

large loan size and anticipating that under-appraisals may force her to borrow less than the

target loan size. This kind of shock is more costly because the consumer can consumption-

smooth the first kind of shock in expectation, but cannot condition her consumption on the

under-appraisal. We will show that the second kind of shock decreases total utility more

than the former.

For both cases, we suppose that yT = 10 and yT = 0 with equal probability, and yt = 10

for all periods t 6= T . In the anticipated case, we assume yT is known when the buyer

makes consumption decisions in earlier periods. Thus, to solve this problem, we simply solve

a zero-uncertainty finite-horizon dynamic program for the consumer for each value of yT ,

and then take the average lifetime value at t = 0 from each case. In the unanticipated

case, the consumer’s value function in period T − 1 is the average of her value if yt = 10

and if yt = 0. The rest of the consumer’s problem can be solved with standard backwards

induction. We solve both cases using the standard endogeneous gridpoint method for solving

lifecycle problems.

We compare the consumer’s lifetime value in both the anticipated and unanticipated

income decrease cases to the baseline case where yt = 10 for all time periods. In the

anticipated case, lifetime value drops by 0.0361, whereas in the unanticipated case lifetime

value drops by 0.050. Hence, under these parameter settings, an unanticipated shock is

roughly 40% more costly, in utility terms, than an anticipated shock of the same magnitude,

due to the inability to condition early-period consumption on the realization of the shock.

Thus, unanticipated shocks to consumption can have much larger effects on utility than

20



equally sized anticipated shocks. Our consumption penalty parameter ψ is a reduced-form

way to capture this effect.
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C Implications for Homeownership: A Quantitative

Model

In the main text, we showed that house price dispersion is substantially correlated with loan-

to-price ratios. To measure how large these effects are economically, in this section, we build

a life-cycle model of housing choices. We show that the LTP changes associated with price

dispersion are economically significant: if LTPs are decreased to their levels in high-dispersion

areas, aggregate homeownership rates drop by 1.5pp, and low-income homeownership rates

drop by 2.6pp.

C.1 Model

We consider a partial-equilibrium model of housing choice, in which households live for a

finite number of periods, receive stochastic income, and purchase housing using mortgages.

Our main departure from the standard model is that we will allow the loan-to-value constraint

to vary according to house quality, in a way that is informed by our empirical results; we

will then vary this relationship in the counterfactuals.

Income. A household lives for T = 65 periods, from age 25 to age 80. The household

works for the first Tret − 1 periods, then retires at age 60. At age t, the household receives

exogeneous after-tax labor income (1− τ)yt, where τ is the income tax rate, and:

log (yt) = χt + ζt (A33)

χt is an age-specific constant which matches the lifecycle pattern of income. ζt is a transitory

shock, which follows an AR(1) process:

ζt = ρζζt−1 + εt

Households retire at 60, and receive social security benefits thereafter. ζt is the only source

of uncertainty in the model. We also allow households to begin life with different initial

incomes, a0. Agents can save using riskless bonds, and also buy houses and borrow using

mortgages against the house.
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Housing. There is a discrete grid of house qualities hi ∈ S = {s1, s2 . . . sH}, ordered

in increasing order. There is a cutoff sR, for R < H. All house qualities below s1 . . . sR

are available for rent only, and all house qualities sR+1 . . . sH are available to purchase only.

Thus, the household can only rent low-quality houses, and must purchase a house to receive

housing services above sR. Rental housing has a flow cost of prhi, that is, pr per unit of

housing services rented. The price of an owned house of quality hi is phhi. Homeowners pay

a depreciation cost of δh times the value of the house, or δhphht, each period they own the

house. This can be thought of as a maintainence cost. Buying a new house also costs some

fixed cost of F pur of the value of the house, or F purphht; this can be thought as representing

realtor fees and other costs of buying a house.

Households can borrow up to a fraction φ (ht) of the house’s value, that is, at mortgage

rate rh > rb. φ (ht) can depend on ht, so lower quality houses can have different LTV

requirements, in a way disciplined by data; we describe in detail how we calibrate φ (ht) in

Subsection C.2 below, and Appendix C.4.2. Let at represent cash-on-hand; homeowners’

borrowing constraint is thus:

at ≥ −φ (ht) p
hht (A34)

The household faces a mortgage rate rm > rb. Thus, the household will never want to hold

cash and mortgages together.

Utility. Households have CRRA preferences, and maximize expected utility:

V0 = E

 T∑
t=1

βjU (ct, ht) + βTUB (wT+1)


discounting at rate β. Per-period utility is:

U (c, h) =

(
cαh1−α)1−σ − 1

1− σ

Households also receive utility from bequests, UB:

UB (wT+1) = KB

w1−σ
T+1 − 1

1− σ
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where wT+1 is final-period wealth from housing and cash-on-hand:

wT+1 = aT+1 + phhT+1

and KB is parameter which determines the importance of bequests to the household.

Value functions. There are three state variables for the household’s problem: house

quality ht, start-of-period cash-on-hand at, and the persistent income shock ζt. The house-

hold’s value function is:

Vt (ht, at, ζt) = max
{
V renter
t (ht, at, ζt) , V

purchase (ht, at, ζt)
}

If the household decides to rent in period t, it solves:

V renter (ht, at, ζt) = max
ct,at+1,ht+1

u (ct, ht+1) + βE
[
Vt+1 (ht+1, at+1, ζt+1) | ζt

]
(A35)

s.t. ct +
at+1

1 + rt
= at + yt + phht1 (ht > sR)︸ ︷︷ ︸

Selling old house

−prht+1 (A36)

rt =

rm at+1 < 0

rb at+1 ≥ 0

at+1 ≥ 0, ht+1 < sR

That is, consumption plus cash-on-hand at the end of the period is equal to cash-on-hand

at, plus labor income yt, minus rent. If the household decides to own in period t, it solves:

V purchase = max
ct,at+1,ht+1

u (ct, ht+1) + βE
[
V (ht+1, at+1, ζt+1) | ζt

]
(A37)

s.t. ct +
at+1

1 + rt
= at + yt + phht1 (ht > sR)︸ ︷︷ ︸

Selling old house

−
(

1 + δh + F pur1 (ht+1 6= ht)
)
phht+1︸ ︷︷ ︸

Buying new house

(A38)

rt =

rm at+1 < 0

rb at+1 ≥ 0
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at+1 ≥ −φ (ht+1) phht+1, ht+1 ≥ sR

C.2 Calibration

The model period is annual. Most of our choices for parameter calibrations are standard, and

we discuss them in Appendix C.4.1. The core way in which we deviates from the standard

lifecycle model calibration is in the φ(h) function, which determines the relationship between

house qualities and average LTV. We calibrate three different versions of φ(h), to represent

the loan-to-price ratios available to households in counties with high (top decile), medium

(median decile), and low (bottom decile) average price dispersion. We plot these functions in

Appendix Figure A8, and describe details of how we construct these functions in Appendix

C.4.2. We essentially estimate the relationship between prices and average price dispersion σ

in each group of counties, and then calculate LTVs by multiplying the differences in σ by the

coefficient from specification 1 in Table A3, which is the reduced-form relationship between

price dispersion and LTVs, controlling for other observable features that may affect LTV.

The average difference in σ between high- and low-dispersion counties is roughly 2.7SD. From

Table A3 column 1, a 1SD change in σ is associated with around a -0.8% change in LTV for

households with fair credit score, so we set the average difference in LTVs to roughly 2.2%.

Additional details on how we numerically solve the model are in Appendix C.4.3. Table

A6 shows values of parameters we use. To simulate model outcomes, we simulate the lives of

1,000,000 households, and calculate averages of model quantities for households at any given

age. Appendix Figure A10 evaluates the fit of the model, comparing homeownership rates

and debt-to-assets in the model to data from the 2016 SCF. We are able to match the path

of homeownership rates very well, and the path of debt-to-assets over the lifecycle fairly well.

C.3 Results

Our core counterfactual is to compare homeownership rates between the high-dispersion

and the low-dispersion versions of our calibration. The baseline medium-dispersion case is

calibrated to match aggregate homeownership rates, so the high-dispersion calibration rep-

resents how homeownership rates would shift in counties where mortgage LTVs available to

homebuyers were lower because house price dispersion is high. The change in homeown-
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ership rates, moving from the high-dispersion to low-dispersion cases, can be thought of

as modelling how much homeownership rates would increase if the housing stock in high-

dispersion areas were renewed and rebuilt sufficiently that dispersion dropped to the level of

low-dispersion areas, while holding the level of house prices fixed. Average LTVs would then

increase, making housing more affordable and causing homeownership rates to increase.28

Table A7 shows homeownership rate differences between the high-dispersion and low-

dispersion cases. The aggregate homeownership rate difference is roughly 1.5pp. We then

divide households into two groups, according to their initial income at age 25.29

The effect of price dispersion on homeownership is concentrated among low-income house-

holds: at all ages, low-income households have lower homeownership rates in the high-

dispersion counterfactual than the low-dispersion counterfactual, with an average homeown-

ership rate difference of 2.6pp. The homeownership gap is large for young households below

age 30, somewhat smaller for middle-aged households from 30-40, and rises again for house-

holds above 40. In contrast, high-income households initially have higher homeownership

rates, but the gap declines essentially to 0 from age 30 onwards.

The difference in collateral constraints induced by collateral value uncertainty contributes

to about 6.6% of the homeownership gap between the rich and the poor in 2016, ranging from

5% to 10% across the age distribution.30 Therefore, our results suggest that, in a standard

calibrated lifecycle model of housing choice, LTV differences induced by price dispersion can

have sizable effects on aggregate homeownership rates, and the homeownership gap between

high- and low-income households.

28Note that we showed in Subsection 2.2.2 that price dispersion is lower for houses that are newer. It is important
also that house prices are held fixed: in practice, rebuilding houses would likely change the level of average house
prices, and this would also affect homeownership rates. We disregard this effect in the calibration, though it may be
important in practice.

29Since incomes are fairly persistent in lifecycle models, initial incomes have persistent effects on wealth and income
at later ages.

30The homeownership gap between above-median income households and below-median income households is about
32% in 2016 (SCF Statistics). According to the report by the U.S. Department of Housing and Urban Develop-
ment, the homeownership gap between the very low-income households and high-income households is 37% in 2004.
https://www.huduser.gov/Publications/pdf/HomeownershipGapsAmongLow-IncomeAndMinority.pdf
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C.4 Additional Calibration Details

C.4.1 Parameter choices for calibration

Average log earnings over the lifecycle, χt, are from the 2016 SCF. The income tax rate τ is

set to 0.25. For retired households, χt is set to $15,000 annually, which is approximately the

average social security payout in the US.31 We use standard values of β, σ, α in the literature.

Housing transaction costs F pur are set to 0.05, which is the typical fee charged by real estate

brokers in the US. This value is also used in Berger et al. (2018) and Wong (2019), among

other papers. We set the depreciation rate to 0.01, approximately matching the depreciation

rate in BEA data. We set house prices ph to:

ph = KH pr

1− β + δh

that is, ph is rent adjusted for discount rates β and depreciation rates δh, multiplied by an

adjustment parameter KH which influences how attractive homeownership is compared to

rental. We set the initial distribution of ζt, the idiosyncratic income shock, for 25-year-olds

such that probabilities are log-linear in the level of ζt, that is:

P25 (ζ) ∝ exp
(
Kζζ

)
where kζ controls whether probability weights are higher for high or low values of ζ.32 We

calibrate the persistence of idiosyncratic income shocks ρζ to 0.91, and the standard deviation

of shocks σε to 0.21, following Floden and Lindé (2001).

We choose the set of house qualities, the bequest parameter KB, the housing attrac-

tiveness parameter KH , and the initial income shock distribution slope parameter KB to

match the level and path of homeownership and debt-to-assets from the 2016 SCF, as well

as the ratio of of median net worth at age 75 to net worth at age 50 of 1.51, as in Kaplan

et al. (2017). While all parameters affect both moments, intuitively, the homeownership rate

helps to pin down the level of house prices, and the net worth ratio pins down the bequest

31See Table A in the Social Security Program Fact Sheet.
32Without adjusting the initial distribution of ζ, we found that homeownership rates rose too quickly in the model

relative to the data
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parameter. The set of house qualities we use is:

{0.1, 0.3, 0.7, 0.9, 1.1, 1.3, 1.7}

Where all qualities from 0.7 upwards correspond to owned housing.

C.4.2 Calibrating the φ(h) Functions

We calibrate φ(h) based on the average price dispersion for each level of house prices and

the relationship between price dispersion and LTV that we empirically identified. Our goal

for calibrating φ(h) is to match the relationship between house prices and σ within three

segments of the housing market, with high, medium, and low price dispersion. Since we will

calibrate φ(h) based on house prices, with slight abuse of notation, we will write φ(p) to

refer to φ as a function of house prices rather than qualities.

We first select a set of counties with comparable house price: average house prices must

lie between $140,000 and $160,000. We do this filtering because our goal in the model

counterfactual is to vary price dispersion holding average prices fixed. We then split these

counties into five quintile buckets, by average price dispersion in the county. Within the top,

middle, and bottom quintiles, we then calculate conditional expectations of price dispersion

as a function of house prices. For the middle quintile, call this conditional expectation:

σmed (p) ≡ E
[
σict | pict = p, c ∈ Cmid

]
(A39)

where we used c to index counties, and c ∈ Cmid means that county c is in the middle quantile

of counties by price dispersion. We define σhigh (p) and σlow (p) analogously to (A39), for

the high- and low-dispersion set of counties. The three curves σ (p) curves are shown in the

left panel of Figure A8. We normalized σ by its standard deviation across houses, so the

units are identical to those of Table A3. High-dispersion counties have roughly a standard

deviation higher values of σ than low-dispersion counties.

To calculate LTVs, let:

pmin σ ≡ arg minσmed (p)

represent the house price level with the lowest value of σ, within the medium-dispersion

group of counties. We then set φmed(pmin σ) to 80%: that is, the maximal LTV in the
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medium version of the calibration is set to 80%. To calculate φmed(p) for other price levels,

we set:

φmed (p) = 0.8 + βLTV σ

(
σmed (p)− σmed (pmin σ)

)
(A40)

Where βLTV σ is the coefficient from regressing LTV on price dispersion, from column 1 of

Table A3. In words, (A40) states that we adjust LTVs depending on the difference in σ(p)

values. Formally, the LTV at price p is equal to 0.8, the LTV at pmin σ, plus an adjustment

which is the difference between price dispersion at p, and price dispersion at pmin σ, multiplied

by βLTV σ, the effect of price dispersion on LTVs identified in our reduced-form results. Note

that we adjust using βLTV σ, instead of simply taking the empirical relationship between

house prices and LTVs, because the price-LTV relationship can be contaminated by many

other factors, such as credit demand, which we account for in the specifications we use to

identify βLTV σ.

Similarly, to calculate φhigh(p) for high-dispersion counties, we set:

φhigh (p) = 0.8 + βLTV σ

(
σhigh (p)− σmed (pmin σ)

)
(A41)

That is, analogous to (A40), φhigh (p) is set so that, for any price p, the difference φhigh (p)−
φmedpmin σ is equal to the dispersion difference, σhigh (p)−σmed (pmin σ), multiplied by βLTV σ.

Analogously, for φlow(h), we set:

φlow (p) = 0.8 + βLTV σ

(
σlow (p)− σmed (pmin σ)

)
(A42)

Figure A8 shows the resultant φlow(p), φmed, φhigh functions. The left panel shows that high

and low-dispersion groups differ by around 1SD of σ; multiplying by the βLTV σ coefficient,

we get an average difference in LTVs of approximately 1.1% between φlow(p) and φhigh(p)

in the right panel. Moreover, the U-shape of the σ(p) function, relating house prices to

price dispersion, implies that the φ(p) function has an inverse U-shape: LTVs are highest

for moderately-priced houses, and lower for cheap or expensive houses. Thus, a simple way

to think of our exercise is that we vary LTVs by around 1.1% around a calibrated model,

and measure the effect on resultant homeownership rates.
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C.4.3 Numerically Solving the Model

To rectangularize the household problem, we change variables to keep track of agents’ total

wealth, instead of cash-on-hand:

wt = at + 1 (ht > sR) phht

From (A34), the leverage constraint then becomes:

wt ≥
(
1− φ (ht)

)
phht

That is, the household must always have total wealth at least
(
1− φ (ht)

)
times the price of

the house phht.

Combining the owner and renter budget constraints, (A36) and (A38), and rewriting

expressions in terms of wealth, we can write the budget constraint equation as:

wt+1 =

(1 + rt)

wt + yt − ct − 1 (ht+1 > sR)
(

1 + δh + F pur1 (ht+1 6= ht)
)
phht︸ ︷︷ ︸

Buying new house

− 1 (ht < sR) pr︸ ︷︷ ︸
Rent

+

1 (ht+1 > sR) phht (A43)

Using (A43), we eliminate consumption ct from the household’s optimization problem, (A35)

and (A35). The household thus chooses end-of-period wealth wt+1 and house quality ht+1

each period, where the state variables are wt, ht, ζt.

To solve the problem, we discretize ζt into 8 states using the Tauchen (1986) method. We

use a 150-point approximately exponential grid for wt, and a 7-point grid for house qualities.

We solve the model using backwards induction, using the generalized endogeneous grid-

point method of Druedahl and Jørgensen (2017), which allows for the consumer’s problem

to be nonconvex. In short, the method involves solving for candidate optimal consumption

choices on an endogeneous grid by using inverting the consumer’s consumption FOC on the

final-period wealth grid, interpolating the results onto an exogeneous grid, and then taking
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the maximum value attained across candidate optima on the exogeneous grid. This method is

thus robust to nonconvexities in the household’s problem induced by discrete home purchase

decisions and leverage constraints.

To simulate the model, we initialize households with wealth uniformly distributed on

from 0 to 20 thousand USD. We initialize ζt at its stationary distribution. We then simulate

1,000,000 households over their lifespan, and take average quantities over all households.
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D Additional Empirical Results

D.1 Repeat-Sales Estimation and Results

One possible concern regarding our analysis is that our measure of value uncertainty relies

heavily on our hedonic model (1) for house prices. To alleviate this concern, in this appendix,

we construct an alternative measure of value dispersion using a repeat-sales model. We

estimate the following regression specification:

pit = ηkt + µi + εit (A44)

where i indexes properties, k indexes counties, and t indexes months. Equation (A44) is

a repeat-sales model for house prices: log prices pit are determined by county-month fixed

effects ηkt, time-invariant house fixed effects µi, and a mean-zero error term εit. Specification

(A44) thus models log house prices as following parallel trends, plus error terms: if house A

sells for twice the price of house B in June of 2011, house A should sell for twice as much as

house B in June of 2017, and any deviation from this is attributed to the error term εit.

There are two additional concerns with measuring idiosyncratic dispersion using a repeat-

sales specification. First, the number of data points used to estimate each house fixed effect is

very low; thus, the estimated residuals ε̂2it will tend to be larger for houses which are sold more

times, because the house fixed effect γi is estimated more precisely. Second, (A44) implicitly

assumes that idiosyncratic price dispersion does not depend on the house holding period; a

concern is that there is a idiosyncratic price dispersion behaves partially like a random walk,

so the error terms may be systematically larger for houses that are sold less frequently.33

To alleviate the concern that our estimates of ε̂2it are mechanically driven by sale frequency

and time-between-sales, we purge ε̂2it of any variation which can be explained by tbsi and

salesi. First, we filter to houses sold at most four times over the whole sample period, with

estimated values of ε̂2it below 0.25. We then run the following regression, separately for each

county:

ε̂2it = hk (salesi, tbsi) + ζit (A45)

Where, hk (salesi, tbsi) interacts a vector of salesi dummies with a fifth-order polynomial in

33Note that Giacoletti (2021) and Sagi (2021) show that a large component of idiosyncratic dispersion does not
scale with holding period, for both residential and commercial real estate transactions.
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tbsi. The residual ζ̂it from this regression can be interpreted as the component of the house’s

price variance which is not explainable by salesi and tbsi. We then add back the mean of ε̂2it

within county k:

ε̂2TBSadj,it = ζ̂it + Ek
[
ε̂2it
]

(A46)

ε̂2TBSadj,it can be interpreted as the baseline estimates, ε̂2it, nonparametrically purged of all

variation which is explainable by a smooth function of salesi and tbsi. We then project

ε̂2TBSadj,it onto house characteristics and time, as in (2) in the main text, and take the pre-

dicted values as our house-level measure of idiosyncratic price dispersion, which we will call

σ̂2
RS,it.

In comparison to the hedonic model, the repeat-sales model in (A44) is able to capture

observable and unobservable features of houses that have time-invariant effects on house

prices. Moreover, house fixed effects allow us to capture time-invariant house quality com-

ponents in a fully nonparametric way, alleviating concerns that the specific functional form

we use in (1) is driving our results. A weakness of specification (A44) are that it is unable

to capture any features of houses which have time-varying effects on house prices.

Figure A7 shows a binscatter of σ̂2
RS,it against our baseline estimates σ̂2

it. There is a

very strong positive relationship. The repeat-sales and hedonic methodologies for measur-

ing house value uncertainty are econometrically quite different; the fact that they produce

very correlated results at the house level suggests that both measurement strategies are

picking up fundamental value uncertainty among properties, rather than simply reflecting

misspecification in the model we use for house prices.

Next, we repeat our regression specifications utilizing σ̂2
RS,it as our measure of house price

dispersion. Table A5 shows the results; all of our baseline results continue to hold, using

σ̂2
RS,it as our measure of house price dispersion.

D.2 Price Dispersion and Appraisals

Figure 4 shows binned scatter plots illustrating how under-appraisal is associated with price

dispersion across zip codes. For mortgage i, let ai be the appraisal price, and pi be the

transaction price of the house. The dependent variable in panel (a) of Figure 4, which we

33



call the appraisal deviation from sales price, is defined as:

ApprDevi ≡
ai − pi
pi

1 (ai < pi) (A47)

That is, the percent deviation of appraisal prices from transaction prices, multiplied by an

indicator for the house under-appraising (that is, the appraisal price ai being below the

sales price pi). This variable captures the downwards pressure that appraisals produce on

mortgage limits, combining the probability of under-appraisal with the average magnitude

of under-appraisals. Panel (a) of Figure 4 shows that the appraisal deviation from sales

prices is much higher in high-dispersion zip codes, suggesting that the extent to which

under-appraisals put downwards pressure on LTVs is larger in high-dispersion zip codes.

We then decompose the appraisal deviation into two components. Panel (b) shows the

probability that the house under-appraises, P (ai < pi). Panel (c) shows the average devi-

ation of the appraisal price from the sales price from the sales price conditional on under-

appraisal, that is,

E

[
ai − pi
pi

| ai < pi

]
(A48)

Panel (b) shows that the probability that a house under-appraises is similar in high- and

low-dispersion zip codes; in fact, underappraisals are slightly less likely in high-dispersion

zip codes, though this difference is not statistically significant in regression form. However,

conditional on under-appraisal, the difference between appraisal and sale prices is much

larger in high-dispersion areas. The average magnitude of under-appraisal is around 3% in

low-dispersion zip codes, compared to around 5% in high-dispersion zip codes.

Table A4 confirms Figure 4 findings in regression settings with origination month fixed

effects, county-year fixed effects, and borrower and loan controls. In high-dispersion zip

codes, appraisal deviations tend to be larger: a 1SD increase in dispersion is associated with

a 2bp change in the appraisal deviation (column 1). This is mostly because, conditional

on under-appraisal, houses under-appraise by larger amounts: a 1SD increase in dispersion

is associated with a 53bp increase in the conditional appraisal deviation (column 3). The

probability of under-appraisal is statistically insignificant (column 2). The results are robust

in the IV setting as in columns 4-6.
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E Appendix Figures and Tables

Figure A1. County Level House Price Dispersion and LTP

(a) GSE (b) FHA

(c) Jumbo

Note: This figure shows the correlation between county level house price dispersion and
residualized county average LTP. Panels a-c plot GSE loans, FHA loans, and jumbo loans,
respectively. The sample includes annual county observations from 2000 to 2020. Source:
County house price dispersion is estimated using Corelogic Deeds records. Mortgage data
are from Corelogic LLMA.
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Figure A2. County Level House Price Dispersion and Mortgage Rate

(a) GSE (b) FHA

(c) Jumbo

Note: This figure shows the correlation between county level house price dispersion and
residualized county average mortgage interest rate. Panels a-c c plot GSE loans, FHA loans,
and jumbo loans, respectively. Individual mortgage interest rates are residualized using
borrower and loan characteristics, such as FICO, LTP, DTI, the squared terms, and their
interactions with origination year. We then take the county-average of residualized mortgage
rates. The sample includes annual county observations from 2000 to 2020. Source: County
house price dispersion is estimated using Corelogic Deeds records. Mortgage data are from
Corelogic LLMA.
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Figure A3. County Level House Price Dispersion and LTP Residuals

(a) All (b) GSE

(c) FHA (d) Jumbo

Note: This figure shows the correlation between county level house price dispersion and
residualized county average LTP. Panel a plots the full sample. Panels b-d plot GSE loans,
FHA loans, and jumbo loans, respectively. We residualize LTP values by taking the residuals
of regressions of LTP on mortgage interest rate, debt-to-income ratio (DTI), DTI-square,
FICO, FICO-square, log house price, and their interactions with origination years, and
origination year fixed effects. We then take the county-average of residualized LTP. The
sample includes annual county observations from 2000 to 2020. Source: County house price
dispersion is estimated using Corelogic Deeds records. Mortgage data are from Corelogic
LLMA.

37



Figure A4. Heterogeneous Effect of Price Dispersion by FICO

Note: This figure shows heterogeneous effect of price dispersion by FICO score. We estimate
the following specification:
LTPikt = α + βrateikt + γZipDispersionikt × CreditScoreikt +XiktΓ + µkt + νm + εikt
where ZipDispersionikt × CreditScoreikt is zip code price dispersion interacted with home
buyer’s credit score, which is divided into five groups based on lenders’ common practice:
Excellent (800-850), Very Good (740-799), Good (670-739), Fair (580-669), and Poor (300-
579). Xikt includes zip code price dispersion, credit score, and other controls in Table
4. We plot γ estimated using the securitized loan sample and the portfolio loan sample,
respectively. Blue nodes represent securitized loans. Red nodes represent portfolio loans.
The bars indicates 95% confidence intervals. The sample includes loan level observations of
conventional loans from 2000 to 2020. Source: Corelogic LLMA and Deeds.
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Figure A5. Behavior of L̄appr and L̄fair

Note: In the above figure, the left panel shows the behavior of the average value of L̄appr
for successful loans (which does not depend on δ), and the right panel shows the average
value of L̄fair, as σε varies, for different values of δ. Throughout, we set φ = 0.85, c = 0.2,
r − ρ = 0.005.

Figure A6. LTP and fail probabilities

Note: In the above figure, the left panel shows the mean loan-to-price ratio. The right
panel shows the probability of loans failing. Colored lines represent different values of δ.
Throughout, we set φ = 0.85, c = 0.2, r − ρ = 0.005.
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Figure A7. Repeat-Sales Estimates and Hedonic Estimates

Note: This figure compares the repeat-sale estimates and the hedonic estimates by making
the binned scatterplot. The x-axis is the repeat-sale estimates, and the y-axis is the hedonic
estimates used in the main analysis. The sample includes property-level observations from
2000 to 2020. Source: Corelogic Deeds.
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Figure A8. σ(p) and φ(p) functions

Note: The left panel shows σ(p), the average of price dispersion σ conditional on house prices,
for the low, medium, and high dispersion versions of our calibration. We normalize σ(p) by its
standard deviation across houses, the same units used in Table A3. The right panel shows the
resultant φ(p) functions which we use for the three versions of our calibration. The y-axis shows
LTVs available at each house price.
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Figure A9. Model Fit - Rate Menu

Note: This figure shows our model fit of the rate menu. The top two panel shows empirical
interest rate residuals r̃fld (solid lines), from (A27), and model-predicted rate residuals r̃modelfld (c)
(dashed lines), from (A29), in the fitted model. LTP ratios are shown on the x-axis, and different
FICO buckets are shown as different colors. The top left plot shows results for low-dispersion
areas, and the top right plot shows results for high-dispersion areas. The bottom plot shows the
differences rlf,d=H − rlf,d=L in the data (solid) and in the model (dashed). In other words, each
line in the bottom panel is the difference between the corresponding line in the top right panel (the
high-dispersion menu) and the line in the top left panel (the low dispersion menu).
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Figure A10. Model Fit

Note: The left plot shows homeownership rates in the model and in the data. The right plot shows
debt-to-assets in the model and in the data. The data is from the 2016 SCF. For both SCF data
series, we smooth the input series by projecting values on a fourth-degree polynomial in age and
taking the predicted values.
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Table A1: IV Relevance Condition

This table presents the relevance condition of our instruments. The outcome variable is
house price dispersion, scaled by its standard deviation. The explanatory variables are the
five instruments, introduced in Section 3.2. The sample includes property transaction level
observations from 2000 to 2020. Standard errors are clustered at county level. ***, **, *
represent 1%, 5%, and 10% significance, respectively.

Price Dispersion
(1) (2) (3)

IV: Geo-coordinates 0.0419*** 0.0579*** 0.0553***
(0.011) (0.010) (0.010)

IV: Square Footage 0.1809*** 0.1799*** 0.1758***
(0.007) (0.007) (0.007)

IV: Number of Bedrooms 0.0341*** 0.0554*** 0.0557***
(0.005) (0.004) (0.004)

IV: Number of Bathrooms 0.0485*** 0.0495*** 0.0480***
(0.007) (0.005) (0.004)

IV: Building Age 0.2043*** 0.1959*** 0.1935***
(0.014) (0.013) (0.013)

Transaction Date FE X X X
County-Year FE X X
Lender-Year FE X
R2 0.1175 0.3068 0.3199
Observations 28M 28M 28M
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Table A2: IV Balance Test

This table presents the balance test results. In Panel A, the outcome variable in columns 1
is price dispersion. The outcome variables in columns 2-4 are the predicted price dispersion
in the first stage as reported in Table A1. The outcome variable in column 2 corresponds
to column 1 in Table A1, in column 3 corresponds to column 2 in Table A1, and in column
4 corresponds to column 3 in Table A1. The explanatory variables are borrower and prop-
erty characteristics. In Panel B, the outcome variables in columns 1-4 are FICO score, in
columns 5-8 are median income, in columns 9-12 are household age, and in columns 13-16
are minority population share. In both panels, the underlying sample contains zip-code level
observations. Standard errors are clustered at county level. ***, **, * represent 1%, 5%,
and 10% significance, respectively.

Panel A

Price Dispersion Predicted Price Dispersion

(1) (2) (3) (4)

FICO -0.01** 0.00 0.00 0.00
(0.006) (0.001) (0.001) (0.001)

Population Median Age 0.15*** 0.00 0.00 0.00
(0.012) (0.003) (0.003) (0.003)

Median Income -0.19*** -0.01 -0.01 -0.01
(0.018) (0.004) (0.005) (0.005)

Minority Population Share 0.05 -0.00 -0.00 -0.00
(0.029) (0.006) (0.007) (0.007)

House Characteristics Controls Ln(Square Footage), Building Age, House Price per Square Footage
County-Year FE X X X X
R2 0.51 0.46 0.43 0.43
Observation 186,164 186,164 186,164 186,164

Panel B

FICO Income

(1) (2) (3) (4) (5) (6) (7) (8)

Price Dispersion -0.02*** -0.17***
(0.009) (0.013)

Predicted Dispersion 0.04 0.04 0.04 -0.05 -0.05 -0.05
(0.023) (0.022) (0.022) (0.047) (0.044) (0.045)

House Characteristics Controls Ln(Square Footage), Building Age, House Price per Square Footage
County-Year FE X X X X X X X X
R2 0.43 0.43 0.43 0.43 0.66 0.65 0.65 0.65
Observation 186343 186343 186343 186343 186167 186167 186167 186167

Median Age Minority Population Share

(5) (6) (7) (8) (9) (10) (11) (12)

Price Dispersion 0.16*** 0.04
(0.027) (0.028)

Predicted Dispersion 0.03 0.10 0.09 -0.02 -0.05 -0.05
(0.064) (0.067) (0.068) (0.064) (0.066) (0.067)

House Characteristics Controls Ln(Square Footage), Building Age, House Price per Square Footage
County-Year FE X X X X X X X X
R2 0.43 0.42 0.42 0.42 0.67 0.67 0.67 0.67
Observation 186250 186250 186250 186250 186277 186277 186277 186277
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Table A3: Heterogeneous Effect by FICO

This table presents heterogeneous effects of price dispersion on LTPs by FICO scores. Columns 1-3 present OLS
results. Columns 4-6 present 2SLS results. In all columns, the outcome variable is the loan to price ratio. The
explanatory variable of interest is the interaction between zip-code house price dispersion, scaled by its standard
deviation, and FICO score buckets. The omitted benchmark credit score bucket is Excellent, including FICO score
of 800 or above. Borrower/Loan controls include zip price dispersion, FICO score, FICO-squared, mortgage interest
rate, and loan type. Columns 1 and 4 use the full sample. Columns 2 and 5 use securitized conventional loans.
Columns 3 and 6 use portfolio conventional loans. The sample includes loan level observations from 2000 to 2020.
Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)
Full Securitized Portfolio Full Securitized Portfolio

Zip Price Dispersion 0.06 0.02 0.18* 0.45** 0.34 0.84***
(0.081) (0.083) (0.107) (0.189) (0.219) (0.269)

Baseline: Excellent FICO

Zip Price Dispersion × Very Good -0.41*** -0.42*** -0.33*** -0.61*** -0.46** -1.02***
(0.040) (0.045) (0.063) (0.167) (0.193) (0.244)

Zip Price Dispersion × Good -0.70*** -0.63*** -0.65*** -1.02*** -0.85*** -1.97***
(0.054) (0.063) (0.080) (0.202) (0.260) (0.299)

Zip Price Dispersion × Fair -0.86*** -0.51*** -0.89*** -1.54*** -1.25*** -1.99***
(0.069) (0.082) (0.107) (0.237) (0.307) (0.321)

Zip Price Dispersion × Poor -1.05*** -0.63*** -1.67*** -2.23*** -1.44*** -2.83***
(0.108) (0.171) (0.171) (0.403) (0.554) (0.496)

Origination Month FE X X X X X X
County-Year FE X X X X X X
Borrower/Loan Controls X X X X X X
R2 0.40 0.27 0.30 0.32 0.19 0.18
Observations 6M 28M 1.3M 5M 2.3M 1.1M
Underidentification test statistic 140.04 145.01 82.24
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 91.78 59.46 81.15
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Table A4: Price Dispersion and Appraisals

This table presents evidence showing that price dispersion is associated with the magnitude of under-appraisals.
Columns 1-3 report OLS results. Columns 4-6 report 2SLS results. The outcome variable in columns 1 and 4 is the
appraisal deviation ApprDevi, which is the product of the percentage deviation of appraisal prices to sale prices with
an under-appraisal dummy, defined in (A47). The outcome variable in columns 2 and 5 is a dummy for appraisals
being below transaction prices. The outcome variable in columns 3 and 6 is the percentage difference between
appraisal prices and sale prices, conditional on under-appraisal. The explanatory variable is zip code price dispersion
scaled by its sample standard deviation. Borrowers and loan controls include mortgage rate, log house price, FICO,
FICO-squared, DTI, DTI-squared, LTV, LTV-squared, GSE indicator, and loan type. The sample includes all loans
originated from 2000 to 2020. Standard errors are clustered at county level. ***, **, * represent 1%, 5%, and 10%
significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Appraisal
Deviation

I(Appraisal
<Price)

Conditional
Appraisal
Deviation

Appraisal
Deviation

I(Appraisal
<Price)

Conditional
Appraisal
Deviation

Zip Price Dispersion 0.02*** 0.00 0.53*** 0.01** -0.00*** 0.53***
(0.002) (0.000) (0.033) (0.005) (0.001) (0.068)

Origination Month FE X X X X X X
County-Year FE X X X
Property & Loan Controls X X X X X X
R2 0.02 0.03 0.16 0.00 0.00 0.02
Observations 5M 5M 0.2M 5M 5M 0.2M
Underidentification test statistic 92.24 92.26 60.65
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 15971.93 15974.44 1350.66
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Table A5: Property-Level House Price Dispersion and LTP - Repeat Sale

This table presents the results of property-level regressions with repeat sale sigma estimates.
The outcome variable is loan-to-sale price ratio. The explanatory variable of interest is
property-level house price dispersion estimated using repeat sales, scaled by its standard
deviation. Controls include the mortgage rate, transaction price of the property, mortgage
type, mortgage term, and resale indicator. The sample includes property transaction level
observations from 2000 to 2020. Standard errors are clustered at county level. ***, **, *
represent 1%, 5%, and 10% significance, respectively.

OLS 2SLS
(1) (2) (3) (4) (5) (6)

Price Dispersion -0.77*** -0.36*** -0.36*** -1.01*** -1.06*** -0.97***
(0.090) (0.038) (0.036) (0.106) (0.055) (0.052)

Interest Rate 0.83*** 0.91*** 0.69*** 0.84*** 0.93*** 0.70***
(0.073) (0.058) (0.042) (0.076) (0.058) (0.042)

Log House Price -3.29*** -3.41*** -3.07*** -3.32*** -3.48*** -3.14***
(0.112) (0.119) (0.119) (0.116) (0.113) (0.111)

Loan Controls X X X X X X
Transaction Date FE X X X X X X
County-Year FE X X X X
Lender-Year FE X X
R2 0.44 0.47 0.54 0.35 0.28 0.24
Observations 3M 3M 3M 3M 3M
Underidentification test statistic 77.81 84.67 83.45
Underidentification test p-value 0.00 0.00 0.00
Weak identification test statistic 47.31 73.13 72.76
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Table A6: Calibration parameters

This table shows parameter values used in our calibration. All price units, such as pr and ph, are in USD thousands.

Parameter Symbol Value
Discount factor β 0.96
Intertemporal elasticity of substitution parameter σ 2
Housing budget share α 0.4
Bequest parameter KB 300
Earning persistence ρζ 0.91
Standard deviation of earnings shocks σε 0.21
Income tax rate τ 0.25
Saving rate rB 0.02
Mortgage rate rM 0.04
House transaction cost F pur 0.05
House depreciation rate δh 0.01
Rent price pr 12
House price ph 192
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Table A7: Counterfactual Homeownership Rate

This table presents the counterfactual change of homeownership rate if we reduce the dispersion of the current housing
stock. Each row shows the difference in homeownership rates between the high-dispersion and low-dispersion versions
of our calibration, for a certain income and age group. High- and low-income households are defined using households’
initial income at age 25. High income is defined as above median income households, and low income is defined as
below-median-income households.

Age Total Low Income High Income
<30 3.5 2.4 4.6
30-40 0.8 1.6 0
40-50 1.1 2.3 0
50-60 1.4 2.8 0
60-70 1.6 3.2 0
Overall 1.5 2.6 0.5
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