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Abstract

Missing data is a prevalent, yet often ignored, feature of company fundamentals. In this paper, we doc-

ument the structure of missing financial data and show how to systematically deal with it. In a comprehen-

sive empirical study we establish four key stylized facts. First, the issue of missing financial data is pro-

found: it affects over 70% of firms that represent about half of the total market cap. Second, the problem

becomes particularly severe when requiring multiple characteristics to be present. Third, firm fundamentals

are not missing-at-random, invalidating traditional ad-hoc approaches to data imputation and sample selec-

tion. Fourth, stock returns themselves depend on missingness. We propose a novel imputation method to

obtain a fully observed panel of firm fundamentals. It exploits both time-series and cross-sectional depen-

dency of firm characteristics to impute their missing values, while allowing for general systematic patterns of

missing data. Our approach provides a substantial improvement over the standard leading empirical proce-

dures such as using cross-sectional averages or past observations. Our results have crucial implications for

many areas of asset pricing.
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1. Introduction

This paper studies a widespread yet little-researched phenomenon in finance: missing data in

firm fundamentals. Firm characteristics are the cornerstone of academic research in asset pricing,

investment, and corporate finance. Yet, the issue ofmissing data is usually ignored, andmost studies

simply exclude firms with missing observations. The standard source of fundamental firm-level data

is the Compustat database, which includes over 1,000 individual variables. Most firm characteristics

used in asset pricing combine Compustat variables with information in the Center for Research in

Security Prices (CRSP) database. Many Compustat variables are sparsely populated; for example, Koh

and Reeb (2015) report that R&D information of 42% of all firms is missing between 1980 and 2006.1

The coverage of other important variables, such as current assets and liabilities, physical assets,

investment, profits, taxes, among others, is also limited, while other variables are present for almost

all firms.2 As a result, the patterns of “missingness” vary substantially across characteristics.

Missing characteristic data has several potential effects for asset pricing. First, it reduces the

number of stocks in portfolios that are constructed by sorts on characteristics. Second, the set of

stocks in portfolios may vary by characteristic, which could make comparisons across factors diffi-

cult. Third, the performance of factor premia might be affected if firm fundamentals are not missing

at random. For example, consider two characteristics, A and B. For characteristic A missing observa-

tions are distributed randomly and independently of other characteristics. However, observations

of characteristic B are more likely to be missing for small stocks than for large stocks. If stock size

is a priced factor, returns of portfolios based on univariate sorts on A versus B will yield biased re-

sults. In this simple example, double-sorting on size could partially rectify the bias, however, such

solutions are infeasible if the distribution of missing observations is more complex in cross-section

and time series.

This paper has three objectives: (i) provide a comprehensive analysis of missing data in 45 as-

set pricing characteristics, (ii) estimate an econometric model for imputing missing values, and, (iii)

analyze how missingness affects returns conditional on characteristics. First, we find that the issue

of missing data is profound in several dimensions. While the frequency of missing data is particu-

larly severe until the early 1980s, missing data is still prevalent in more recent data. For example,

through the 2000s, over 75% of all stocks, accounting for over half the market cap, have missing ob-

1We confirm their finding and find similar results in our updated sample.
2Compustat codes ACT, LCT, PPEGT, CAPX, GP, and variables starting with TX.
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servations. Moreover, while the frequency of missing observations decreases with firm size, even the

largest firms are affected. Second, the problem becomes particularly severe when requiring multiple

present characteristics. Third, firm fundamentals are not missing-at-random, and have complicated

dependency in both time series and cross-section; as a result, imputation based on simple cross-

sectional averages or focusing on a fully balanced panel of observations, may lead to a significant

bias in empirical findings. Fourth, stock returns depend on missingness and are different for the

subset stock with fully observed characteristics.

Based on the documented structure of missing data, we propose a novel imputation method to

obtain a fully observed panel of firm fundamentals. Our approach efficiently leverages the infor-

mation available in the data, from both time-series and cross-section. Importantly, our imputation

remains valid if the missingness depend on the dependency structure in characteristics. As a result,

we show that it performs significantly better than the current standards in extensive empirical test-

ing. Our approach to data imputation is easy to use in real-time, it is data-driven yet transparent,

and could be naturally extended to other settings.

A comprehensive analysis of the issue of missing firm fundamentals should first and foremost

answer the following questions: How widespread is the problem? What kind of firms are affected?

What are the key empirical regularities? We establish the following stylized facts:

Fact #1: Missing financial data is very prevalent, being a feature of almost any characteristic. The

number of missing fundamentals is large, both statistically and economically. Our dataset includes

of the 45 the most popular and widely used characteristics in asset pricing. From the start of our

sample period in 1967 until 1981, over 25% of observations across all stocks are missing, while 10%

of observations are missing between 1990 and 2020. Until 1975, all stocks have at least one missing

characteristic in any given year and only 25% of all stocks have no missing characteristics in any year

since 2000. There is, of course, substantial heterogeneity in the cross-section and over time, with

particular characteristics and time periods, for which over 90% of the data is missing. Missingness

is a feature of firms, which are small and large, young and mature, those, which are profitable and

financial distress.

Fact #2: The problem of missing data becomes substantially worse whenever one requires ob-

servations of multiple characteristics at the same time. A study of return predictability relying on

a fully observed panel of 45 firm characteristics would have to omit over 70% of firms, represent-

ing about one half of the total market capitalization. The issue remains in subsets of characteristics.
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Consider five of the most widely-studied characteristics: book-to-market (BM), earnings-to-price (EP),

momentum (MOM), operating profitability (OP), and investment (INV). Between 1967 and 1980, only

50% of all stocks have a complete record of all five characteristics. The number increases to 80%

towards the end of our sample, so that one-fifth of all stocks miss at least one of the five character-

istic in a year. Hence, considering only firms with a fully observed set of fundamentals neglects a

substantial amount of data and, as we show, leads to severe sample selection.

Fact #3: Data is not missing at random. There is strong heterogeneity and dependency in the

distribution of missing observations, creating clusters both cross-sectionally and over time. Nat-

urally, some of the missingness patterns arise mechanically, for example different fundamentals

might require similar accounting variables, or young firms lack a prior history for constructing cer-

tain characteristics (e.g., momentum or long-term reversal). At the same time, there is a substantial

number of characteristics missing during any stage of the life cycle of the firm. Other clusters arise

because firms withmissing data have a similar underlying latent structure. In particular, we note that

small-cap companies generally have a higher propensity for missing data, and that more extreme

realization of characteristics are often more likely to be unobserved.

Fact #4: Returns on their own depend on whether a firm has missing fundamentals. We show

that returns of stocks with observed and unobserved characteristics are different, which drives a

substantial selection bias, should one focus only on the data with observed characteristic values. On

average, we find that stocks with a missing characteristic value have lower overall returns than their

counterparts when the same variable is observed. Requiring the presence of multiple characteristics

has a pronounced and complex effect on mean returns of characteristic sorted portfolios.

Our paper also provides a novel approach to the imputation of missing firm fundamentals. Any

imputation method has two components. First, it requires a model for characteristics. Second, this

model needs to be estimated from partially observed data. We provide a conceptual contribution

to both components. First, we jointly model characteristics values in the three-dimensional space,

reflecting time periods, individual firms, and the type of characteristics. This allows our character-

istic model to leverage both the time-series and contemporaneous cross-sectional dependency in

characteristics. Second, we can consistently estimate our model from sparsely observed data, while

allowing for the complex patterns in missing data.

Imputing missing firm fundamentals is challenging for two reasons. First, characteristics are

dependent, both in the cross-section and over time. For example, small stocks are more likely to be

3



also growth stocks, or given the strong persistence of book-to-market ratios, prior observed values

contain information for future realizations. Hence, ad-hoc imputation methods like a simple cross-

sectional median would incur an omitted variable bias. Omitting relevant information leads to an

omitted variable bias even if observations would be missing at random. Second, characteristics

are not missing completely randomly. For example, small stocks are more likely to have missing

observations. Even if characteristics would not be predictable by cross-sectional information or their

time-series, non-random missingness leads to a selection bias. This is a second reason why ad-hoc

approaches like the median are invalid. The most challenging problem is that the latent information

which can predict characteristics can also affect the missingess itself. This makes it very hard to

learn a latent model for characteristics from the observed data. Flexible methods, that are estimated

on the observed data, and do not account for this interplay, are also subject to a selection bias. Our

approach provides a solution to all of these challenges.

First, we use a latent factor model to capture contemporaneous cross-sectional dependency in

characteristics. The key benefit of our procedure is that it remains valid even in the presence of

complex missing patterns. We can reliably recover the latent characteristic factor model when the

probability of missing data varies over time, for different characteristics and for different stocks.

In particular, we allow the missing data to depend on the factor model itself. For example, con-

sistent with the data, our approach allows, that missing characteristic observations happen with

a higher probability among smaller stocks, or stocks, whose underlying characteristic values are

more extreme relative to other stocks. Our approach also allows for complex time-series patterns,

including less observed values at the beginning of the sample, mixed-frequency observations and

dependence on prior missing values. Second, we use a time-series model to capture the persistence

in characteristics. Our model combines the cross-sectional factors and time-series observation, and

hence can extract slow persistent movements from the time-series, while capturing fast changes

from contemporaneous factor realizations.

We show that our imputation method strongly dominates leading conventional approaches. The

most widely used imputation approach for firm characteristics is a simple cross-sectional median

(of the whole market or the industry the firm belongs to). We show that our model allows to achieve

a 50% reduction in the out-of-sample imputation error compared to using both types of medians.

Another popular approach, especially for persistent characteristics, lies in simply using their last

observed, stale values. This also leads to a subpar empirical performance, in particular, when there

4



are blocks of consecutively missing observations. Overall, we conclude that even though our impu-

tation method is very simple, transparent, and easy-to-use, it uniformly dominates leading empirical

approaches.

Modeling the joint dependence in characteristics also allows us to uncover new facts about the

underlying structure of firm-specific characteristics. In particular, we show that they have a very

pronounced cross-sectional dependence, which can be efficiently and parsimoniously captured by

a six-factor model. Interestingly, this factor structure is stable over time, and the factors driving

the underlying characteristic space are approximately the same for all the time periods, with a clear

economic interpretation. Furthermore, our setting also provides new insights on the relative im-

portance of time-series and cross-sectional dependency in the characteristic space. Our approach

allows the data to speak, and endogenously provides predictions based on their relative information

content. In particular, it shows that to effectively impute more volatile characteristics, one should

put more weight on the contemporaneous cross-sectional information, while imputing observations

for persistent characteristics should rely more on their prior history, whenever it is available.

Missing financial data can have a profound impact on asset pricing, depending on the application

and extent of the problem. Missing firm characteristics can have two fundamental effects on asset

pricing. The first effect is the selection bias. Asset pricing and investment results depends on

which stock are included. Firms with missing characteristics are different from those with observed

entries. Hence, using only the subsample of stocks with fully observed characteristics leads to a

selection bias in asset pricing metrics. This is reflected in the substantially higher out-of-sample

Sharpe ratio of the stochastic discount factor based on conditional latent factors that are extracted

from all stocks instead of the non-representative subsample with fully observed data. In order to

dissect and provide intuition for the selection bias we study the simplest possible object: univariate

portfolio sorts. In our analysis the portfolios sorts either use a subset of stocks, which require certain

characteristics to be observed, or the full set with imputed values. In many cases, requiring more

characteristic observations lowers expected returns, while at the same time the lower diversification

with less stocks increases the volatility, resulting in overall lower Sharpe ratios. However, as data is

not missing at random, the effect can be complex.

The second effect is the imputation bias. Asset pricing pricing results depend on the imputa-

tion method. We study the fundamental problem of estimating the risk premium of characteristics

from cross-sectional characteristic regressions. Biased imputation methods like the median impu-
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tation lead to uniformly and substantially larger errors in asset pricing metrics compared to our

more precise imputation approach. The imputation bias of the median values leads to wrong risk

premia, correlations and variances of the characteristic mimicking factor portfolios. In contrast, our

imputation method provides precise estimates of the risk premium and time-series of mimicking

portfolios.

Closely Related Literature

There is vast literature on the topic of missing data in statistics and data science. Our review fo-

cuses only on the most closely related literature in economics and finance. The most widely recently

used approaches to deal with missing data in firm fundamentals are a) cross-sectional median impu-

tation (e.g., Kozak et al. (2020) and Gu et al. (2020)), and b) using only the subset of fully observed

data (e.g., Freyberger et al. (2020) and Kelly et al. (2019)).

Naturally, our work is related to the econometrics literature on missing data in panels, with the

most widespread solutions relying on the estimation of a low rank model, which is then used to

impute missing values. The cross-sectional factor model, proposed in this paper, builds on the work

of Xiong and Pelger (2019), who provide an all-purpose estimator for latent factors that allows for

very general missing patterns. Importantly, their approach allows the missing pattern to depend on

the latent factor model, which is crucial for our application. Bai and Ng (2021), Cahan et al. (2021),

and Jin et al. (2021) develop alternative latent factor estimators with different assumptions on the

missing pattern. The imputation of missing values in a panel is closely related to conducting causal

inference in a panel, as discussed, among others, by Athey et al. (2021) and Xiong and Pelger (2019).

The unobserved counterfactual outcomes can be modeled as missing values. Hence, the common

challenge consists in uncovering a low-rank model that could be used to impute the missing data,

when the missingness or treatment depends on unobserved confounders. In particular, a naive

machine-learning prediction method is not appropriate for causal inference, if the treatment is not

completely at random. Conversely, the same problem arises with imputation of the data, which

needs to allow for various patterns of missingness in the estimation of the latent model.

Our empirical results and methods have direct implications for the multidimensional challenge

raised by Cochrane (2011). A fast growing literature has studied asset pricing with a large number

of predictors. Some representative work include Bryzgalova et al. (2019), Chen et al. (2019), Gu et al.

(2020), Freyberger et al. (2020) and Kelly et al. (2019). The methods used in those papers require
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the presence of multiple characteristics, and as such lead either to some form of data selection or

data imputation. Our systematic study of missing firm fundamentals and the imputation tools that

we provide help to further improve the work in this research direction. A noteworthy study is the

work of Kaniel et al. (2021), which uses a version of our model to impute missing fundamentals in

the holdings of mutual funds.

Our paper is also related to latent factor models in financial data. Usually, factor models are

directly applied to a panel of returns. Representative works of estimating unconditional latent fac-

tors with some version of principal component analysis (PCA) include Connor and Korajczyk (1988),

Pelger (2019) and Lettau and Pelger (2020a,b). Conditional latent factors can be estimated from re-

turns that are either projected on characteristics in the case of Kelly et al. (2019) or on economic

states in Pelger and Xiong (2021b). Our paper does not extract a factor structure in returns, but in

fundamentals. Importantly, the factors are extracted from only partially observed data. Another

distinguishing element is that we deal with a three-dimensional data set, instead of the conven-

tional two-dimensional panel. This is related to Lettau (2022), who considers a fully observed three-

dimensional mutual fund data set, from which he extracts a tensor factor model.

Unfortunately, there is very little work that directly addresses the problem of missing financial

data. In a contemporaneous paper, Freyberger et al. (2021) also consider missing firm characteristics

in asset pricing, and show how to adjust the general GMM estimation in the presence of missing

data. Their work is focused on the estimation of conditional moments, with missingness modeled

as a function of pre-specified cross-sectional covariates. Xiong and Pelger (2022) use methods for

missing data imputation in the context of causal inference in finance. Their imputed values represent

the counterfactual outcome for studying the publication effect in a panel of anomalies. Blanchet

et al. (2022) analyze the trade-off between look-ahead-bias and variance in an imputation used for

out-of-sample investment. The few contemporaneous papers that are closely related to our work,

therefore, have very different goals and are complementary. Fundamentally, we provide a systematic

study of missing data in finance, establish the magnitude of this phenomenon, its stylized features,

and provides a “general purpose” solution to it, with a complete data set of firm fundamentals, which

can then be used in any of the follow-up applications.
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Table 1: Firm Characteristics by Category

Past Returns Value
(1) r2_1 Short-term momentum Monthly (25) A2ME Assets to market cap Quarterly
(2) r12_2 Momentum Monthly (26) BEME Book to Market Ratio Quarterly
(3) r12_7 Intermediate momentum Monthly (27) C Ratio of cash and short-term Quarterly

investments to total assets
(4) r36_13 Long-term momentum Monthly (28) CF Free Cash Flow to Book Value Quarterly
(5) LT_Rev Long-term reversal Monthly (29) CF2P Cashflow to price Quarterly

(30) D2P Dividend Yield Monthly
(31) E2P Earnings to price Mixed Quart. & Monthly

Investment (32) Q Tobin’s Q Mixed Quart. & Monthly
(6) Investment Investment Quarterly (33) S2P Sales to price Mixed Quart. & Monthly
(7) NOA Net operating assets Quarterly (34) Lev Leverage Quarterly
(8) DPI2A Change in property, plants, equipment Quarterly

and inventory over assets
(9) NI Net Share Issues Quarterly Trading Frictions

(35) AT Total Assets Quarterly
Profitability (36) Beta CAPM Beta Monthly

(10) PROF Profitability Mixed Quart. & Yearly (37) IdioVol Idiosyncratic volatility Monthly
(11) ATO Net sales over lagged net operating assets Quarterly (38) LME Size Monthly
(12) CTO Capital turnover Quarterly (39) LTurnover Turnover Monthly
(13) FC2Y Fixed costs to sales Mixed Quart. & Yearly (40) MktBeta Market Beta Monthly
(14) OP Operating profitability Quarterly (41) Rel2High Closeness to past year high
(15) PM Profit margin Quarterly (42) Resid_Var Residual Variance Monthly
(16) RNA Return on net operating assets Quarterly (43) Spread Bid-ask spread Monthly
(17) ROA Return on assets Quarterly (44) SUV Standard unexplained volume Monthly
(18) ROE Return on equity Quarterly (45) Variance Variance Montly
(19) SGA2S Selling, general and administrative Quarterly

expenses to sales
(20) D2A Capital intensity Quarterly

Intangibles
(21) AC Accrual Quarterly
(22) OA Operating accruals Quarterly
(23) OL Operating leverage Quarterly
(24) PCM Price to cost margin Quarterly

This table shows the 45 firm-specific characteristics sorted into six categories. More details on the con-
struction are in Table B.11.

2. Missing values

2.1. Data

We obtain the data from the CRSP/Compustat universe with the usual filters for outliers and

exchanges.3 Our sample consists of 648 months from January 1967 to December 2020 and includes

22,630 individual stocks. We consider 45 characteristics related to value, investment, profitability,

intangibles, past returns, and trading frictions, see Table 1. The raw characteristics are converted

into centered rank quantiles and scaled to be in the [−0.5, 0.5] interval.

We construct characteristics if the required variables are available in CRSP and COMPUSTAT.

Otherwise, we consider a characteristic missing. Characteristics are either updated monthly or at

3The sample only includes stocks listed on the NYSE, NASDAQ, and AMEX exchanges (exchange codes 10, 11, 12) with
share codes 1, 2, or 3 (common stock, foreign incorporated, ADR) and at least one entry in the Compustat accounting
tables. We do not filter out stocks based on share price, nor do we filter out financial firms. However, we show in an
extensive robustness study that our results are not affected by these choices, that is, the results are robust to including
or excluding either of those subsets.
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a lower frequency which is typically quarterly. For quarterly updated characteristics, we do not

observe themonthly observations in-between the quarters, which are thereforemechanicallymissing.

To avoid these mechanical effects, all our evaluation metrics for characteristics that are updated

quarterly are based on quarterly data points. We are not “imputing” themonths between the quarters

with stale values, nor do we count those as missing values in our summary statistics.4 However, our

procedure will provide imputed values in-between the quarters and hence also provides a solution

to mixed-frequency observations.

We use the most-up-to-date last observed values as current characteristics. For characteristics

based on the ratio of variables with different updating frequencies, we use the most up-to-date in-

formation of each variable, and the variable with the slowest updating frequency determines the

updating frequency of the characteristic. For example, the quarterly updated book-to-market ratio

divides the book value from the most recent quarter by the last observed monthly market capital-

ization. Asset pricing applications, which condition on characteristics, usually lag characteristics by

several months to ensure that the information is available to investors. Our data imputation uses

the most recent information; however, we lag characteristics in asset pricing applications.

2.2. How much data is missing?

Missing financial data is prevalent, and almost all characteristics have missing observations. The

number of missing fundamentals is large, both statistically and economically. Figures 1 and 2 sum-

marize some patterns in missing values over time. The black line in Panel (a) of Figure 1 shows the

number of firms in our sample over time. As is well-known, the number of listed stocks has declined

over the last 25 years. At its peak in November 1997, our sample includes 7,784 stocks but only

4,241 in December 2020. The spike in January 1973 is due to the inclusion of the NASDAQ. The

plot also shows the number of firms with observed values of five important characteristics: book-to-

market (B2M), operating profitability (OP), investment (INV), and leverage (LEV). We also include the

ratio of real investment to book value of assets (DPI2A, Lyandres et al. (2008)) since it has the most

missing values among all 45 characteristics. Panel (b) shows the percentage of stocks with missing

values for each of the five characteristics.

4Using stale values in-between observations of characteristics with low updating frequency is a form of data im-
putation itself. Using stale values as the actual monthly characteristics values would also lead to mechanical trivial
predictability.
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Figure 1: Missing Values over Time
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Figure 1: Missing Values over Time

(a) Number of Stocks (b) Missing Percentage

(c) Quarterly & Monthly (d) Size Quintiles

(e) Multiple Chars.

Note: This figure summarizes missing values over time. Subfigure (a) shows the total number of stocks
and those that have observed values for our five example characteristics book-to-market (B2M), operating
profitability (OP), investment (INV, growth in total assets), leverage (LEV) and real investment (defined as
the change in property, plants, equipment and inventory) over lagged total assets (DPI2A). Subfigure (b)
shows the percentage of missing observations for the five example characteristics. Subfigure (c) plots
the percentage of missing observations for quarterly and monthly updated characteristics based on equal
and market capitalization-weighted averages. Subfigure (d) shows the percentage of missing observations
by market capitalization quintiles. Subfigure (e) displays the proportion of missing stocks that have no
missing observations or at most 3, 15 or 35 missing characteristics at a given point in time.
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Note: This figure summarizes missing values over time. Subfigure (a) shows the total number of stocks
and those that have observed values for our five example characteristics book-to-market (B2M), operating
profitability (OP), investment (INV, growth in total assets), leverage (LEV) and real investment (defined as
the change in property, plants, equipment and inventory) over lagged total assets (DPI2A). Subfigure (b)
shows the percentage of missing observations for the five example characteristics. Subfigure (c) plots
the percentage of missing observations for quarterly and monthly updated characteristics based on equal
and market capitalization-weighted averages. Subfigure (d) shows the percentage of missing observations
by market capitalization quintiles. Subfigure (e) displays the proportion of missing stocks that have no
missing observations or at most 3, 15 or 35 missing characteristics at a given point in time.
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Panels (a) and (b) of Figure 1 show substantial cross-sectional and time variation in missingness.

First, the proportion of missing values has, on average, decreased over time, which is not surprising

since the coverage of COMPUSTAT has improved throughout the sample, and changes in regulations

led to more comprehensive and more frequent disclosures of accounting information. Consider

first the four accounting variables B2M, OP, INV, and LEV. Missing data is particularly prevalent

throughout the early 1980s for all four characteristics. Between 30% and 95% of observations are

missing between 1967 and 1981.5 About 15% to 20% of observations are missing between 1982

and 1992 followed by a further decline throughout the 2000s. At the end of the sample in 2020,

14%/10%/8%/3% of OP, INV, LEV, and B2M data is missing, respectively. Fewer book-to-market obser-

vations are missing than of the other variables because its definition includes several alternatives

and fall-back options if individual component variables are not in COMPUSTAT.6

The pattern of missing values of DPI2A (real investment-to-total assets) differs substantially from

those of the other four variables. Until 1975, very few firms have real investment observations

in COMPUSTAT, so DPI2A is virtually completely missing. In contrast to the other variables, the

share of missing observations remains above 35% over the rest of the sample. In 2004, 67% firm

observations were missing and more than half are missing in 2020. While DPI2A has the most

missing observations, there are several other variables with more than 20% missing data in 2020:

accruals (AC), fixed-costs-to-sales (FC2Y), operating accruals (OA), and SGAto-sales (SGA2S).

Figure 1(c) shows the time series of the share of missing values averaged across all character-

istics. We form two groups of characteristics that are updated either monthly or quarterly. Price

or return-based characteristics are available at a high frequency, while accounting variables are (at

most) available quarterly. Consider first the equal-weighted averages in Panel (c). The time series

of missingness of quarterly characteristics (black line) is similar to those found for B2M, OP, INV,

and LEV in Panel (b). Before 1982, over 40% of observations are missing; between 1982 and 1992,

about 20%, and between 8% and 14% afterward. Since the CRSP database has an (almost) complete

record of prices and returns, there are, on average, fewer missing values for characteristics that are

5During this period, most stocks many report accounting variables only once per year, which accounts for the spikes
in the plots. As the reporting frequency increases over the sample, this pattern largely vanishes.

6Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITC), minus preferred
stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the sum of common equity (CEQ) and preferred stock
(PS). If missing, SH is the difference between total assets (AT) and total liabilities (LT). Depending on availability, PS is
redemption value (item PSTKRV), liquidating value (item PSTKL), or par value (item PSTK). The market value of equity
(PRC*SHROUT) is as of the current month.
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updated monthly. However, many monthly characteristics require lags of prices or returns, and thus

some observations are missing mechanically. For example, reversals require a return history of 60

months so that newly listed firms do not have any observations for the first five years. As a result,

between 10% and 20% of monthly characteristics are missing throughout the sample. The exception

is the period from 1973 to 1975 when the inclusion of the NASDAQ added many firms without a

history of prices and returns.

Figure 2 shows the share ofmissing values of all characteristics over time in the form of heatmaps.

Lighter (darker) shades correspond to lower (higher) shares of missing observations. The heatmaps

reveal time-series variation as well as heterogeneity across characteristics. The frequency of miss-

ing data of most quarterly characteristics, shown in the top panel, decreases substantially in the

early 1980s and again in the mid-1990s. There are several characteristics with many missing values

throughout the sample: AC, DPI2A, FC2Y, OA, OP, and SGA2S. The frequency of missing values in

monthly variables is directly linked to the number of lagged values that are required. The exceptions

are SUV and TURN, which are based on trading volume, however, volume for many NASDAQ stocks

is missing from CRSP between 1973 and 1983. Thus, the share of stock with missing values of SUV

and TURN is particularly during this period, which is visible in the heatmap in Panel (b).

The evidence so far was based on firm counts without taking firm size into account. Figure 1(c)

also shows the value-weighted percentage of missing observations for monthly (light blue) and quar-

terly (orange) characteristics. While the value-weighted percentage is lower than its equal-weighted

counterpart, it is still substantial. In particular, quarterly updated characteristics are missing for

over 10% of the market capitalization after 1977.

Figure 1(d) reports the percentage of missing observations for quintiles of market capitalization

of companies. We observe that historically smaller companies used to have worse data coverage.

However, in the last 20 years, small and large companies have shown similar degrees of missingness.

Importantly, at no point in time is missing only due to small-cap companies.

Missing data is a paramount problem whenever multiple characteristics are required. The miss-

ingness in individual characteristics largely underrepresents the severity of the problem. Figure 1(e)

shows the percentage of stocks that have no characteristics, less than 3, less than 15 or less than

35 of the 45 characteristics missing. The results are striking. Over 70% of firms are missing at least

some popular characteristic at any point in time. The total market cap corresponds to 48%. In other

words, an application that requires all 45 characteristics to be observed neglects half of the market

12



Figure 2: Missing Observations over Time By Characteristics

(a) Quarterly Characteristics
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(b) Monthly Characteristics
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Note: This figure is a heatmap of percentage ofmissing values for all 45 characteristics over time. Quarterly
characteristics collect all characteristics that are updated at a frequency lower than monthly.

capitalization and 70% of the companies at any point in time. As we will show, using a fully observed

panel of data may lead to severe sample selection. This can affect all applications that require a full

panel of characteristics, which includes characteristic panel models, conditional latent factor models

or machine learning applications.
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Figure 3: Missing Observations by Characteristic
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Note: This figure shows the average percentage of missing observations for each characteristic. We de-
compose the missing values in those missing at the start (no previous observations), the middle (some
previous and future observations), the end (no further observations) and completely missing.

2.3. What is the structure of missingness?

In order to understand the structure of missingness, we study when, which, and for what values

firm fundamentals are missing. Figure 3 displays the percentage of missing observations for each

characteristic. We report if characteristics are missing at the start, at the end, or in the middle. Recall

that we only include a stock in the sample when we observe its returns and at least one entry in

Compustat in a given month. Missingness in the middle implies that we observe some previous and

future values. Missingness at the start mechanically appears for younger firms, while missingness

at the end can occur at the end of a company’s life. We see that many accounting-based variables are

missing after having been previously observed, which often occurs in missing time blocks. Overall

we confirm that missingness is a problem for all characteristics.

Some of the missingess patterns are purely mechanical and expected. For example, long-term

reversal and momentum have by construction missing observations for a new firm without prior

history. At the other extreme, market capitalization is always observed when there is a return in the

prior month. Figure C.1 in the Appendix provides missing observations by characteristic pooled by

stocks, which can be different than the overall averages if there is heterogeneity in the patterns for

individual stocks. While the overall percentage and relative ranking seems to be quite similar, there

are notable differences. Missing in the middle is less pronounced in the pooled averages, which

implies that there is a smaller subset of stocks for which observations are primarily missing in the

middle. Those characteristics that are based on past return observations, also constitute a larger

percentage for the pooled averages. The lower panel in Figure C.1 shows the value-weighted pooled
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Figure 4: Missing Observations by Characteristic Quintiles

(a) Mean ME Quintiles
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(b) Mean Char. Quintiles
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Note: This figure shows the percentage of missing observations for different characteristic quintiles. The
left subfigure displays the missing observations for all characteristics and the example characteristics
book-to-market, operating profitability, investment, leverage and change in property, plants, equipment
and inventory over lagged total assets for the five size quintiles of stocks. The right subfigure presents
the proportion of missing values for the five example characteristics for their corresponding character-
istic quintile. The characteristic quintiles are based on the average observed characteristic value of the
corresponding stock.

averages with similar findings.

Next, we investigate how values of characteristics interact with the frequency of missing values.

We sort stocks into quintiles of a characteristic and compute the share of missing values among

stocks in each quintile. Figure 4(a) shows the percentage of missing observations by size quintiles.

The black line shows the average share of missing values across all 45 characteristics and shows that

smaller stocks have more missing values than large stocks, however, the difference is modest. Even

in the largest size quintile 15% of the characteristics are missing. The downward slope is present in

most characteristics, but the dependency on size is heterogeneous. The size effect on leverage and

DPI2A is almost flat, while it is more pronounced for investment.

Next, we compute how the frequency of missing values of a characteristic depends on charac-

teristic values themselves. Obviously, we do not observe the actual characteristic realizations when

they are missing. Hence, we study the patterns of missingness for firms that are on average in a

certain characteristic quintile. In more detail, for each characteristic, we sort stocks into quintiles

based on their observed values and compute the proportion of missing values of the characteris-

tic of the stocks in each quintile. The results are shown in Panel (b) of Figure 4. The black line

shows the mean across all characteristics. Its convex shape implies that stocks with low and high

characteristics have more missing values than stocks with average characteristics. The difference
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Table 2: Logistic regressions explaining missingess

D2P IdioVol ME R2_1 SPREAD TURN VAR FE Last Val Missing Gap train AUC test AUC

Missing at the beginning

1.85*** 2.29*** -1.25*** 0.06*** 0.6*** 0.68*** -1.74*** F F F 0.49 0.50
[239.78] [33.52] [-143.73] [9.99] [62.78] [113.83] [-25.76]
1.96*** 0.66*** -0.58*** -0.08*** 0.61*** 0.86*** -0.38*** F F 0.06 0.61 0.63
[181.16] [8.59] [-56.17] [-11.63] [53.7] [122.41] [-5.05] [ 450.24]

T F F 0.69 0.73

T F 0.01 0.69 0.72
[ 153.85]

0.47*** -1.30*** -0.64*** 0.11*** -0.02*** -0.10*** 0.91*** T F 0.01 0.71 0.74
[37.55] [-13.75] [-51.01] [13.78] [-1.69] [-11.08] [9.79] [ 146.23]

Missing in the middle

0.59*** 0.63*** -0.44*** 0.04*** 0.52*** 0.27*** -0.82*** F F F 0.55 0.52
[268.86] [28.28] [-141.07] [18.04] [151.52] [118.95] [-37.19]

T F F 0.78 0.82

T 5.37 F 0.92 0.96
[ 961.19]

T 0.06 -4.74 0.93 0.96
[ 137.87] [ -279.65]

0.3*** -0.4*** -0.65*** 0.07*** 0.39*** -0.26*** 0.49*** T 0.06 -4.9 0.94 0.97
[26.89] [-3.3] [-42.21] [7.09] [24.39] [-24.38] [4.06] [ 139.69] [ -270.68]

Missing at the end

0.63*** 0.48*** -0.58*** 0.03*** 0.44*** 0.06*** -0.63*** F F F 0.61 0.55
[395.91] [29.86] [-258.87] [18.63] [178.27] [38.04] [-39.56]

T F F 0.80 0.83

1.52*** 0.98*** -0.89*** 0.06*** 0.43*** -0.17*** -1.07*** T F F 0.82 0.83
[461.06] [27.55] [-196.39] [19.65] [88.27] [-49.96] [-30.44]

This table shows the results of logistic regressions to predict the missingness of individual stock char-
acteristics. We report the results for different sets of explanatory variables for characteristics missing
at the beginning, in the middle or at the end. The values of the seven characteristics D2P, IdioVol, ME,
R2_1, SPREAD, TURN and VAR are always observed and hence can be included in the regressions. We also
include characteristic fixed effects (FE), an indictor variable if the last characteristic value was observed,
and the length of a missingness if the last value is not observed. The area under the curve (AUC) measures
the accuracy of the logistic regression. The regression is pooled over time, stocks and characteristics. The
model is estimated on the training data (1988-1998) and evaluated out-of-sample on the test data (1999-
2020). We also include the z-scores of the regression coefficients. Stars indicate the statistical significance,
where *** corresponds to 1% significance.

is economically large; missing values of stocks at the extreme of the characteristic distributions are

twice as frequent as for stocks at the center (29% vs. 14%). This pattern is true for the majority

of individual characteristics, see DPI2A, INV, and to a lesser extent, B2M in Panel (b). These results

suggest that missing values are not distributed randomly and depend on characteristics themselves.

In this sense, missingness is endogenous.

In order to better understand the structure of missingness, we predict missigness of individual

firm characteristics with logistic regressions. Table 2 shows the results for different sets of explana-
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tory variables. We report separate regressions for characteristics missing at the beginning, in the

middle or at the end, as, for example, missingness at the end of a company’s life can be more related

to firm fundamentals than mechanical missingness for new firms.7 We explain missingness with

the seven characteristics that are always observed, an indicator if the last observation was missing,

and the length of the missingness if the last observation was missing. We also allow for character-

istics fixed effect. The category missing in the middle is the most important for our analysis and

represents the largest part of this sample. It contains all observed and missing characteristic values

that have at least one prior observation and a last observation. The area under the curve (AUC) mea-

sures the accuracy of the prediction. Our best models achieve an out-of-sample AUC of 0.97, which

means that we explain a large part of the missing pattern and that the logistic regression captures

important features.

First, characteristic fixed effects are crucial in the prediction, confirming our previous finding

that missingness is heterogeneous. Second, the realization of contemporaneous characteristics is

highly significant in predicting missingness. As we will show, characteristics are cross-sectionally

correlated, which confirms the endogeneity in missingess. Last but not least, missingness is corre-

lated over time. The negative sign on the length of a missing gap indicates that missing data is likely

to appear in blocks. Table B.2 reports the number of missing blocks and their mean and median

length. Indeed, most missing values cluster together and have an average length of around one to

two years.

The structure of missingness has also important implications for how to impute missing values.

First, imputation methods need to allow for different information sets. If no prior values are ob-

served, it is obviously not possible to condition on prior observations in the imputation method.

Second, stocks with different fundamentals can be more likely to have missing values. Hence, an im-

putation methods needs to allow the probability of missingness to be heterogenous and depend on

fundamentals. If wemodel characteristics with a factor model, this implies that the joint distribution

7For missing at the beginning, we consider the set of all characteristic observations that are missing at the beginning
of the sample and include the first time a characteristic is observed. Hence, the results for missing at the beginning
essentially predict the change from missing at the beginning to being observed for the first time. For missing at the end,
we include only the set of characteristic observations that end in terminal missingness. In more detail, we include the
set of only observed values (after potentially missing values) and the first terminal missing value. Thus, the results for
missing at the end predict the change from being observed to be missing completely. Missing in the middle excludes
the subset of characteristic observations that are missing at the beginning (no prior observations) and at the end (no
further observations after missingness). Note that this means that the same stock for the same characteristic can have
part of its time-series included in missing at the beginning (first set of observtions), missing in the middle (all observed
and missing values in the middle) and missing at the end (last block of observations).
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of missingness can depend on the factor model itself.

2.4. Characteristics Dependency

Characteristics are dependent over time and cross-sectionally on other characteristics. This de-

pendency establishes the foundation of any method that tries to model or predict characteristics. It

implies that observing the realizations of other characteristics or prior values allows us to predict

the realizations of unobserved characteristics.

Figure 5: Time-series Variation and Dependency of Characteristic Ranks

(a) Standard Deviation
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Note: This figures presents the time-series variation and dependency of characteristic ranks. The top figure
shows the sorted standard deviation over time for each characteristic. The bottom figures summarizes
the 1-month and 12-months autocorrelation coefficients for each characteristic.

18



Figure 6: Heatmap of Pairwise Correlation
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Note: This figure shows the pairwise correlations across time and stocks for each characteristic. The time
period is the sample from 1977-2020.

Many characteristics are very persistent. Figure 11 shows the 45 characteristics sorted by their

standard deviation and autocorrelation. As expected, many characteristics, for example market capi-

talization and total assets, are very slowlymoving and highly serially correlated. This implies that the

previous values of these persistent characteristics have information for their future realizations. In

fact, the autocorrelation of several characteristics is close to one, implying that their previous value

would be a good predictor. This predictability persists over longer horizons. Indeed, the 12-months

autocorrelation is still over 0.4 for around half of the characteristics. However, we also find that a

number of characteristics, primarily based on prior returns like short-term momentum or idiosyn-

cratic volatility, are highly volatile and seem to show negligible time-series predictability. Hence, the

persistence is quite heterogenous. Overall, we conjecture that disregarding time dependency when

imputing missing values might lead to an omitted variable bias.

Characteristics are cross-sectionally correlated. Figure 6 shows pairwise correlations in charac-
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teristics averaged over time and stocks. We observe obvious clusters of correlations. These could

be interpreted as exposure to common characteristic factors. Hence, disregarding observed values

of other characteristics when imputing missing values could lead to an additional omitted variable

bias. For example, small stocks are more likely to be growth stocks. Therefore, imputing a missing

book-to-market value of a small company with a market median, would inherently lead to a bias.

The clusters of cross-sectional dependence seem to form around different groups of characteristics.

Not surprisingly, characteristics based on past returns exhibit correlations. Similarly, we observe

a dependency cluster among trading friction or value characteristics. However, the dependency is

complex and requires a sophisticated tool to capture it from the data.

The general dependency patterns between characteristics seem to be stable over time. We have

observed in Figure 1 that the frequency ofmissing characteristics changes drastically around the year

1977. Figure C.2 shows the pairwise correlations in characteristics averaged over time and stocks

from 1967 to 1976, while Figure 6 is based on 1977-2020. While the strength of the dependency

seems to vary, the location of correlation clusters stays the same. This would be consistent with

a factor model in the characteristic space, where the factors stay the same, but the scale of the

exposure to those factors can vary.

3. Model

The estimation of amodel for the imputation ofmissing values faces two fundamental challenges.

First, it should take advantage of all available information. An ad-hoc imputationmethod, such as the

cross-sectional median, would incur an omitted variable bias. Omitting relevant latent information

also leads to an omitted variable bias, even if observations were missing at random. Our solution to

the problem is to extract all latent cross-sectional information from the data instead of pre-specifying

a set of covariates. In other words, we let the data speak about which contemporaneous information

can best predict a given characteristic. Second, the model for characteristics, that is estimated on the

observed data, needs to be valid on the unobserved data as well. This is the crucial aspect where our

approach stands out from the related literature. Even when the missingness depends in a complex

way on latent information extracted with our model, our predictions provide correct imputed values

for the unobserved entries. Flexible methods that are estimated on the observed data and do not

account for the dependency between missingness and the information that predict characteristics

are subject to a selection bias. In particular, as data is not missing randomly, ad-hoc approaches
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suffer from a selection bias in addition to the omitted variable bias.

Our data set of month/stock/characteristic observations forms a three-dimensional vector space:

𝐶𝑖,𝑡,𝑙 with 𝑖 = 1, ..., 𝑁𝑡, 𝑡 = 1, ..., 𝑇 and 𝑙 = 1, ..., 𝐿.

The data have a cross-sectional dimension of 𝑁𝑡 stocks, a time-series dimension 𝑇, and the number

of different characteristics 𝐿. The typical dimensions are around 𝑁𝑡 = 6, 000, 𝑇 = 600 and 𝐿 = 45.

The notation of an upper index selects a matrix of this three dimensional array. For example, we

denote by

𝐶𝑡
𝑖,𝑙 with 𝑖 = 1, ..., 𝑁𝑡 and 𝑙 = 1, ..., 𝐿

the 𝑁𝑡 × 𝐿 matrix of characteristics at time 𝑡.

Based on our empirical findings above, we use the time-series dependency and cross-sectional

dependencies in characteristics to predict missing values. The fundamental problem is to estimate

a low dimensional model to predict a characteristic value with past, (possibly) future, and other

contemporaneous cross-sectional information. The prediction model is used to impute missing

values. We use an estimation approach that allows us to estimate the parameters of the prediction

model in the presence of missing values.

3.1. Cross-Sectional Information

An essential building block for our model is based on a cross-sectional factor model. We start

by estimating a low-dimensional cross-sectional factor model by PCA for each month 𝑡:

𝐶𝑡
𝑖,𝑙 = 𝐹𝑡

𝑖Λ𝑡
𝑙
⊤ + 𝑒𝑡𝑖,𝑙 with 𝑖 = 1, ..., 𝑁𝑡 and 𝑙 = 1, ..., 𝐿.

The upper index 𝑡 indicates that we can have separate factor models for each time 𝑡. We assume a

𝐾 factor model, i.e. 𝐹𝑡 ∈ R
𝑁𝑡×𝐾 and Λ𝑡 ∈ R

𝐿×𝐾. Without missing values, we can estimate 𝐹𝑡 and

Λ𝑡 as the singular values of 𝐶𝑡, i.e. we apply a simple PCA to 𝐶𝑡𝐶𝑡⊤. More specifically, we obtain

𝐹𝑡 ∈ R𝑁𝑡×𝐾 as the eigenvectors of the 𝐾 largest eigenvalues of the 𝑁𝑡 × 𝑁𝑡 matrix

1
𝐿

𝐿

∑
𝑙=1

𝐶𝑡
𝑙𝐶𝑡

𝑙
⊤.
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The different entries in this “characteristic covariance”matrix indicate how close two different stocks

are. Two stocks with very similar characteristics have a high “characteristic covariance”. In the

presence of missing values, we use the approach of Xiong and Pelger (2019) and estimate 𝐹𝑡 as the

eigenvectors of the 𝐾 largest eigenvalues of

Σ̃XS,𝑡
𝑖,𝑗 =

1
|𝑄𝑡

𝑖,𝑗|
∑

𝑙∈𝑄𝑡
𝑖,𝑗

𝐶𝑡
𝑖,𝑙𝐶𝑡

𝑗,𝑙,

where 𝑄𝑡
𝑙,𝑝 is the set of all characteristics which are observed for the two stocks 𝑖 and 𝑗 at time 𝑡. By

construction |𝑄𝑡
𝑖,𝑗| ≤ 𝐿. The characteristic loadings follow from a regression on the estimated ̂𝐹𝑡,

Λ̂𝑡
𝑙 = ⎛

⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖
̂𝐹𝑡
𝑖
⊤⎞
⎠

−1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖𝐶𝑡
𝑖,𝑙
⎞
⎠
,

where 𝑊𝑡
𝑖,𝑙 = 1 if characteristic 𝑙 is observed for stock 𝑖 at time 𝑡 and 𝑊𝑡

𝑖,𝑙 = 0 otherwise. Hence, this

is simply a linear regression using only observed values. Xiong and Pelger (2019) provide the formal

theory and show that this estimator is consistent under general assumptions on the approximate

factor model and the missing pattern. The setup is a large dimensional panel, that is, both 𝑁𝑡 and

𝐿 go to infinity, but at general and possibly different rates. An approximate factor model assumes

that asymptotically most of the dependency is captured by the factors, while the “idiosyncratic”

characteristic errors 𝑒𝑡𝑖,𝑙 are only weakly dependent. This setup allows for a different factor model

at each time 𝑡 and hence is a local model.

Based on our empirical findings, the “loadings” Λ are close to constant over time, which results

in the model

𝐶𝑡
𝑖,𝑙 = 𝐹𝑡

𝑖Λ𝑙
⊤ + 𝑒𝑡𝑖,𝑙 with 𝑖 = 1, ..., 𝑁𝑡 and 𝑙 = 1, ..., 𝐿.

Under the assumption of constant “loadings”, we can estimate Λ from a pooled regression

Λ̂𝑙 = ⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝐹𝑡

𝑖𝐹𝑡
𝑖
⊤⎞
⎠
⎞
⎠

−1

⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝐹𝑡

𝑖𝐶𝑡
𝑖,𝑙
⎞
⎠
⎞
⎠
.

While, in principle, the factors can be estimated as in the local model, they need to be appropriately

rotated to represent the same factors over time. Appendix A discusses the implementation. The

global Λ̂ can be interpreted as characteristic “portfolio weights” to construct the latent factors ̂𝐹𝑡
𝑖 .
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As this estimation uses the full data, it represents a global model. If the loadings are constant over

time, the global model is more precise as it uses substantially more data.

3.2. Time-Series Information

We combine the XS (cross-sectional) information with TS (time-series) information. Given an es-

timate of the contemporaneous XS factors ̂𝐹𝑡 ∈ R
𝑁𝑡×𝐾, we combine those with past and (possibly)

future time-series information to predict contemporaneous characteristics. We consider a backward-

cross-sectional model (B-XS) with only the past observed information and a backward-forward-cross-

sectional model (BF-XS), which combines past and future information. Both models are based on

regressions to estimate either 𝛽𝑙,B-XS ∈ R𝐾+1 or 𝛽𝑙,BF-XS ∈ R𝐾+2:

B-XS Model:

̂𝐶𝑙,B-XS
𝑖,𝑡 = 𝛽𝑙,B-XS⊤ (𝐶𝑙

𝑖,𝑡−1 ̂𝐹𝑡
𝑖,1 ⋯ ̂𝐹𝑡

𝑖,𝐾)

BF-XS Model:

̂𝐶𝑙,BF-XS
𝑖,𝑡 = 𝛽𝑙,BF-XS⊤ (𝐶𝑙

𝑖,𝑡−1 𝐶𝑙
𝑖,𝑡+1 ̂𝐹𝑡

𝑖,1 ⋯ ̂𝐹𝑡
𝑖,𝐾) .

The framework includes several important special cases:

(a) Time-series AR(1) model (B): 𝛽𝑙,B-XS = (𝛽B 0 ⋯ 0).

(b) Last observed value (PV): 𝛽𝑙,B-XS = (1 0 ⋯ 0).

(c) Cross-sectional median: 𝛽𝑙,B-XS = (0 0 ⋯ 0) (as we have centered the rank quantiles at 0).

We estimate the 𝛽 vectors in a regression using the stacked observed values. This means that we use

all 𝐶𝑙
𝑖,𝑡 with observed 𝐶𝑙

𝑖,𝑡−1 (respectively 𝐶𝑙
𝑖,𝑡−1 and 𝐶𝑙

𝑖,𝑡+1) and stack them together in a large vector.

Without missing values, this vector would have the dimension ∑𝑇
𝑡=1 𝑁𝑡. For each characteristics 𝑙,

we obtain the vector 𝛽𝑙,B-XS ∈ R𝐾+1 and 𝛽𝑙,BF-XS ∈ R𝐾+2. In the local model, we use the local factors

and the observed characteristics for the time 𝑡 to obtain the local ̂𝛽𝑡, while the global model uses

globally estimated factors in a regression that stacks all characteristics over time. For a given set

of cross-sectional and time-series information in the vector 𝑋𝑙,𝑡
𝑖 we obtain the local model from the
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Table 3: Different Imputation Methods

Method Estimation

Backward-Forward-XS (BF-XS) ̂𝐶BF-XS
𝑖,𝑡 = ( ̂𝛽BF-XS)⊤ (𝐶𝑙

𝑖,𝑡−1 𝐶𝑙
𝑖,𝑡+1 ̂𝐹𝑙

𝑖,1 ⋯ ̂𝐹𝑙
𝑖,𝐾)

Backward-XS (B-XS) ̂𝐶B-XS
𝑖,𝑡 = ( ̂𝛽B-XS)⊤ (𝐶𝑙

𝑖,𝑡−1 ̂𝐹𝑙
𝑖,1 ⋯ ̂𝐹𝑙

𝑖,𝐾)
Forward-XS (F-XS) ̂𝐶F-XS

𝑖,𝑡 = ( ̂𝛽F-XS)⊤ (𝐶𝑙
𝑖,𝑡+1 ̂𝐹𝑙

𝑖,1 ⋯ ̂𝐹𝑙
𝑖,𝐾)

Cross-sectional (XS) ̂𝐶XS
𝑖,𝑡 = ( ̂𝛽XS)⊤ ( ̂𝐹𝑙

𝑖,1 ⋯ ̂𝐹𝑙
𝑖,𝐾)

Time-series (B) ̂𝐶B
𝑖,𝑡 = ( ̂𝛽B)⊤ (𝐶𝑙

𝑖,𝑡−1)
Previous value (PV) ̂𝐶PV

𝑖,𝑡 = 𝐶𝑙
𝑖,𝑡−1

Cross-sectional median ̂𝐶median
𝑖,𝑡 = 0

Note: This table summarizes the different estimation approaches. Each estimation approach has a local
and global version.

local regression

̂𝛽𝑙,𝑡 = ⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝑋𝑙,𝑡

𝑖 𝑋𝑙,𝑡
𝑖

⊤⎞
⎠

−1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝑋𝑙,𝑡

𝑖 𝐶𝑙
𝑖,𝑡⎞
⎠
,

and the global model from a global regression

̂𝛽𝑙 = ⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝑋𝑙,𝑡

𝑖 𝑋𝑙,𝑡
𝑖

⊤⎞
⎠
⎞
⎠

−1

⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙𝑋𝑙,𝑡

𝑖 𝐶𝑙
𝑖,𝑡⎞
⎠
⎞
⎠
.

Table 3 summarizes the different estimation approaches. For each estimator we have a local

version that only uses information at time 𝑡 and a global version that uses the full time-series.

3.3. Distribution of Missingness

The fact that characteristics are not missing at random has implications for how to correctly

impute missing values. A straightforward attempt would be to use a parametric or non-parametric

model to predict characteristics either based on their own past and/or given the contemporaneous

realizations of other characteristics. If such a model is estimated by masking characteristics at

random, then it would only be appropriate to impute characteristics, which are missing completely

at random. However, as we have already documented in the previous sections, characteristics are

not missing at random. Therefore, a machine learning application with random masking on the

training data, could lead to a bias in imputed values.

The missingess in characteristics is complex, as illustrated in Figure 7. We show the joint distri-

bution of missing patterns on three representative example months. These plots show the missing
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Figure 7: Joint Distribution of Missing Patterns
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(b) 1998-10
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(c) 2017-07
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(d) Simulated MAR

0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

Note: This figure shows the heatmaps of missing data for each stock for three representative example days.
Both axis are sorted by the missing percentage, where we first order by firms and then characteristics.
Missing data is indicated in yellow. The three representative example months are 1986-04, 1998-10 and
2017-07. For illustration we also include simulated missing-at-random (MAR) data, which we sort in the
same way.

entries for each firm, where the characteristics are sorted by their missing percentage. Obviously,

the missingness is heterogenous and dependent between characteristics. The dependency is also

expected as many characteristics depend on similar CRSP or Compustat variables in their construc-

tion, as summarized in Table B.12. For illustration, we also include a plot that shows the simulated

pattern for missing at random (MAR). The missing-at-random assumption is clearly violated in the

data.

Our imputationmethod is particularly well suited for this problem as it allows for generalmissing

patterns. We allow missigness to be heterogenous, time-varying, stock-specific and to depend on the

latent factormodel. These general results follow from the theory provided in Xiong and Pelger (2019),

which correspond to our local cross-sectional model (XS). As the generality of the missing pattern in

the Xiong and Pelger (2019) approach is of particular importance for our application, we discuss it

in more detail.

In our local cross-sectional model (XS), the probability of missingness, P (𝑊𝑡
𝑖,𝑙 = 0) =∶ 𝑝𝑡

𝑖,𝑙 can

depend on the specific stock 𝑖, the characteristic 𝑙 and the time 𝑡. First, note that our setup allows
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for a different factor model at each time 𝑡, and hence imposes no assumptions on the temporal

structure of 𝑝𝑡
𝑖,𝑙. This means that the missingness can vary in a completely general way over time,

which includes periods of more unobserved data like at the beginning of our sample, block-missing

patterns, mixed-frequency observations or missingness because prior values are unobserved. The

probability of missingness is also very general in the characteristic dimension and can be different

for each characteristic. This allows for characteristic-specific heterogeneity, for example DPI2A has

a higher probability to be unobserved than book-to-market ratios. Another case is group-specific

heterogeneity, where for example there are less observations when characteristics are updated quar-

terly or when a group of characteristics relies on the same accounting variable as an input. Last, and

most importantly, the probability of missingness can in an extremely general way depend on the fea-

tures of each stock. More precisely, the probability can be a general, time-varying and characteristic-

specific function of any vector of stock specific information 𝑆𝑡
𝑖 ∈ R𝑟 and the stock-specific factors

𝐹𝑡
𝑖 , that is, 𝑝𝑡

𝑖,𝑙 = 𝑓𝑖,𝑡(𝐹𝑡
𝑖 , 𝑆𝑡

𝑖 ). For example, the characteristics of small stocks or more extreme char-

acteristic realizations are more likely to be unobserved, which we can account for. In this sense, we

allow for an endogenous missing pattern.

However, for the purpose of identification, we need to impose some assumptions on the miss-

ingness, which cannot be further relaxed. The random variable 𝑊𝑡
𝑖,𝑙 has to be independent of Λ𝑡

𝑙 and

𝑒𝑡𝑖,𝑙. Essentially, the “characteristic covariance” Σ̃XS,𝑡
𝑖,𝑗 should be asymptotically the same if estimated

from the partially observed data or the infeasible complete data. In other words, we can learn from

the partially observed data which stocks are similar to each other. This is a reasonable assumption.

Overall, our model is extremely general and accounts for all empirical features of missing character-

istics.

The results extend to the global models and the B-XS, F-XS and BF-XS models. The estimation

step of the loadings in the global models can be formulated as a “local” model with a larger number

of stocks by stacking together the different time periods of individual stocks. The factors are the

same for the local and global models. Hence, once we show that Λ𝑡 is close to a global Λ, all the

results of the local model carry over. The models that combine cross-sectional and time-series

observations use the same type of cross-sectional regression weighted by observed values in the

second step. These regressions are key for the generality of our results as they do not impose any

further assumptions on the missing pattern besides that (∑𝑁𝑡
𝑖=1 𝑊𝑡

𝑖,𝑙𝑋𝑙,𝑡
𝑖 𝑋𝑙,𝑡

𝑖
⊤) is asymptotically of

full rank and that the error in the combined regression is independent of the missing pattern.
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We want to emphasize that the complex missing patterns are one of the reasons why it is so

challenging to correctly impute missing values. The imputation of missing values is closely related

to problems in causal inference as discussed among others in Athey et al. (2021) and Xiong and

Pelger (2019). A naive machine learning prediction method is not appropriate for causal inference if

treatments are not completely random. The same problem arises with imputation, which needs to

account for patterns in the missingness. This is done with our approach.

3.4. Discussion

3.4.1. Look-ahead bias

The choice of imputationmethod has implications for the follow-up application. Usingmore data,

either in the form of a global model or by incorporating future information, generally improves the

quality of the imputation. However, some of the most important use cases of the characteristics

data, including out-of-sample asset pricing and investment, need to avoid a look-ahead-bias. This

means future information cannot be used in the imputation, as it could make the performance of

an investment strategy appear to be better than what it is actually achievable. Blanchet et al. (2022)

discuss the tradeoff between look-ahead-bias and the precision of the imputation.

In our empirical study, the model that uses the most information while avoiding any look-ahead-

bias is the local Backward (B-XS) model. The model that uses the most information overall, but

also “peaks” into the future, is the global Backward-Forward (BF-XS) model. These two benchmark

models allow us to study the tradeoff between using more data and using future information. There

are other modifications of our models that could avoid a look-ahead-bias, while using more data.

Instead of using only the current month for the local B-XS model, we could use a rolling window for

a “locally” global version of the B-XS model. However, as we will show in our analysis below, the

factor structure of the cross-sectional factor model is very stable over time. Hence, the global XS

and B-XS model are very close to a rolling window look-ahead-bias-free version. The more serious

look-ahead bias can arise from directly using future information as an input for imputation, that is,

in the Forward models.

3.5. Rank normalization vs. raw characteristics

We model rank normalized data, which can easily be mapped back into raw characteristics. In

order to obtain a statistical model for characteristics, we need to appropriately normalize them.

Fundamentally, this relates to the conceptual question about how we model dependency. Centered
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rank normalized characteristics are the natural choice. By using ranks, we deal with the outliers in

the raw characteristics, and also achieve stationarity in the cross-section and over time.

There is a simple mapping between the rank quantiles and raw values through the empirical

density function of each characteristics. Therefore, after estimating the density functions, the im-

puted rank quantiles also provide imputed values for the raw characteristics. We will include these

results in our empirical study. We will estimate the density function non-parametrically and also

parametrically assuming a normal distribution. In both cases, we do not assume that there is a

linear dependency between raw characteristics, but only between their relative ranks. As a further

robustness result, we also include the results for a factor model which is directly applied to the char-

acteristic space. This requires us to normalize the raw characteristic values by their cross-sectional

median and cross-sectional standard deviation after winsorizing the extreme outliers.

We center our ranks at zero, i.e., we report characteristic quantiles between [−0.5, 0.5], which is

without loss of generality. Hence, the cross-sectional median corresponds to the value zero. Using

uncentered rank quantiles between [0, 1] simply adds an additional latent cross-sectional factor,

that captures the median and is similar to a “market” or “level” factor.

3.6. Evaluation metrics

We evaluate the different models based on their RMSE (root mean squared errors). The aggre-

gated RMSE for the model implied characteristic ̂𝐶𝑖,𝑡,𝑙 is averaged over all stocks, time-periods and

characteristics:

RMSE =
√√√√
⎷

1
𝑇

𝑇

∑
𝑡=1

1
𝐿

𝐿

∑
𝑙=1

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

(𝐶𝑖,𝑡,𝑙 − ̂𝐶𝑖,𝑡,𝑙)
2
.

We also consider the RMSE for each characteristic separately

RMSE𝑙 =
√√√√
⎷

1
𝑇

𝑇

∑
𝑡=1

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

(𝐶𝑖,𝑡,𝑙 − ̂𝐶𝑖,𝑡,𝑙)
2
,

as well as over time

RMSE𝑡 =
√√√√
⎷

1
𝐿

𝐿

∑
𝑙=1

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

(𝐶𝑖,𝑡,𝑙 − ̂𝐶𝑖,𝑡,𝑙)
2
.

All our results are reported in-sample and out-of-sample. The in-sample results evaluate how

well a low dimensional model can approximate the characteristics. As these results can be biased
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upwards due to overfitting, we also need to conduct an out-of-sample analysis (OOS). The OOS anal-

ysis masks observed entries before we estimate the model on the remaining data. The OOS RMSE

compares the masked observed entries with the model implied values. We consider three different

missing patterns for the out-of-sample analysis. The first case is OOS missing-at-random, where

we mask 10% of the observed characteristics completely randomly. The second case is OOS block-

missing, where we mask 10% of characteristics in blocks of 1 year. The second case accounts for the

empirically observed temporal dependency in missing patterns. It is important to include this case,

as for very persistent characteristics the last observed value can provide a very good prediction, but

empirically it is often not available. Third case uses the logistic regression model from Table 2 with

all covariates and fixed effects to mask entries. The propensity of the logistic regression captures im-

portant features of missing patterns. In particular, the probability of missingness is heterogeneous,

appears in blocks over time and in the cross-section and depends on the realization of observed

characteristics.

As we work with rank-quantiles, the characteristics are normalized and the RMSE provides an in-

terpretable measure of the deviation from the true value. In addition, we report the 𝑅2 that measures

the explained variation relative to the cross-sectional median imputation.

4. Factor Structure in Characteristics

Empirically, firm characteristics are well described by a parsimonious factor model. Before con-

ducting an extensive comparison between different imputation methods, we study the properties of

a cross-sectional latent factor model. We discuss the choice of the number of factors, their economic

interpretation and variation over time. Estimating a cross-sectional latent factor model requires that

at least some characteristics are observed for each stock. Moving forward, our analysis focusses on

the data set of all stocks that have at least ten characteristics observed at each point in time. As

shown in Figure 4(e) this requirement imposes almost no restrictions, and on average 97% of all

stocks have ≤ 35 of the 45 characteristics missing after 1977. The second restriction is that we

focus on the data after 1977, which is more homogenous and more widely used in empirical appli-

cations. We have confirmed that our general results are robust to these two choices.
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Figure 8: Number of Latent Factors

(a) Eigenvalues of ΣXS,𝑡
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Note: In this figure we determine the number of latent factors. The left subplot shows the magnitude of
eigenvalues of the characteristic covariancematrix relative to the sum of all eigenvalues averaged over time.
The right subplot displays the out-of-sample imputation RMSE as function of the number of cross-sectional
factors using the block-missing masking.

4.1. Number of factors

The number of systematic cross-sectional characteristic factors is directly linked to the eigenval-

ues of the characteristic “covariance” matrix Σ̃XS,𝑡
𝑙,𝑝 . Figure 8(a) plots the magnitude of eigenvalues

of Σ̃XS,𝑡
𝑙,𝑝 relative to the sum of all eigenvalues averaged over time. These eigenvalues can be inter-

preted as the amount of variation explained by a small number of global factors. The first four

factors explain the most variation in the data. It seems that the factors five to nine also contribute

a non-negligible amount. Overall, we find strong evidence for a factor structure.

We select the number of factors by minimizing the out-of-sample RMSE. Figure 8(b) shows the

OOS RMSE for the block-missingmasking as a function of the number of factors. We consider a global

cross-sectional model (XS) and report the RMSE formonthly, quarterly and the all characteristics. The

OOS RMSE of quarterly updated characteristics is minimized for six latent factors, while monthly

updated characteristics are well described by a five-factor model. The aggregated RMSE reflects

these two findings and six latent factors are very close to the optimum. We select six factors as our

parsimonious baseline model.

The results of the cross-sectional model (XS) carry over to the models that also include time-

series information. Table B.3 in the Appendix shows the OOS RMSE for block-missing patterns for

different number of factors for the local B-XS, global B-XS and local XS. The optimal number depends

on the type of characteristic and method, but seems to be between six and eight factors. The benefit
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Figure 9: Generalized Correlation of Global and Local Factor Weights
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Note: This figure shows the time series of the generalized correlation of the constant global Λ with the
time-varying local Λ𝑡 estimated each month. We consider a six-factor model.

of including more than six factors seems to be only marginal and hence we opt for the parsimonious

six-factor model.

4.2. Local vs. global factors

The loading structure of the cross-sectional factor model is relatively stable over time. A global

factor model assumes a constant loading matrixΛ, while a local factor model allows for time-varying

loadings Λ𝑡. We show that the loading structure is relatively stable over time and hence justifies the

use of constant loadings. Figure 9 plots the generalized correlations between the global loadings

Λ and local loadings Λ𝑡 for the first six factors over time. A generalized correlation equal to six

would imply that the two loading matrices span the same space. While there is some variation, the

generalized correlation is close to the maximum. We conclude that it is meaningful to analyze the

composition of the global factors.

4.3. Structure of factors

The characteristic factors have a meaningful economic interpretation. The loadings Λ can be

interpreted as weights to construct the characteristic factors. We focus on the global model as it

is described by only one set of weights, which are closely related to the local weights. Figure C.3

in the Appendix plots the composition of the six latent factors, which are described by Λ. The

characteristics are grouped together by categories.

Some of the latent factors can be linked to characteristic categories. The second factor seems to

load heavily on value characteristics. The third factor has large weights for profitability characteris-
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tics. The fourth factor seems to be a trading friction factor. The sixth factor has positive positions

in past returns and investment and negative positions in the other categories. Some of the structure

seems also to be related to the updating frequency of characteristics and their volatility. Figure C.4

shows the composition based on the updating frequency. Factor one has large weights on monthly

updated characteristics, and in particular on those that have a high volatility. In this sense we can

label it a high volatility characteristic factor. On the other hand, factor five loads more on slowly

moving characteristics.

4.4. Rank normalization vs. raw characteristics

Our main analysis reports the results for rank quantiles, but the results carry over to raw charac-

teristics. Table B.4 in the Appendix shows the out-of-sample imputation RMSE in the original char-

acteristic space without transforming characteristics into ranks. We consider OOS block-missing for

different number of cross-sectional factors. The raw characteristics are normalized by their cross-

sectional mean and variance.8 The RMSE are further normalized by the RMSE of a simple median

imputation. The first model is our baseline factor model estimated on ranks and transformed back

into the characteristic space with the empirically estimated density function of each characteristic.

We estimate the density function with the machine learning method k-nearest neighbor. The second

and third model estimates the factor model directly on the characteristics. In the fourth and fifth

case, we estimate the factor model in the kernel transformed space with a Gaussian kernel and revert

it back to the raw characteristics.

We observe that a factor model estimated on rank quantiles and inverted back to raw charac-

teristics outperforms a factor model directly applied to raw characteristics. If we use a normal

distribution instead of a non-parametric density function to invert the model into the raw character-

istic space, we perform slightly worse, but still substantially better than directly estimating a factor

model in the raw characteristic space. A local model with locally estimated normal density function

can perform better than the empirical non-parametric density. We conclude that the rank quantile

space is appropriate for the latent factor model and provides better results than a factor model in

the raw characteristic space.

8Because of the outliers we need to winsorize the data. In more detail, we first estimate the cross-sectional mean and
standard deviation of each raw characteristics for each day. Then, we winsorize the values that deviate more than five
standard deviations from the cross-sectional mean. After winsorizing, we reestimate the mean and standard deviation,
which we use to finalize the normalization of the raw characteristics.
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5. Imputation

5.1. Aggregate comparison between methods

In an extensive comparison study we compare the quality of different imputation approaches.

We include the different variations of our model framework and the most widely used conventional

ways to deal with missing data. The baseline model without look-ahead bias (that is, without using

future information) is the local B-XS. The baseline model using as much information as possible

is the global BF-XS. All cross-sectional models use six latent factors based on the analysis in the

previous section. We consider the global and local versions of ourmodels and different combinations

of time-series information, that is backward, forward or none. Another special case would be to

drop the cross-sectional model and only run an AR(1) model. The popular conventional approaches

encompasses using only the previous value, a cross-sectional median or the industry-specific median

for imputation. In total, have the following 11 models: global BF-XS, global B-XS, global F-XS, global

XS, global B, local B-XS, local XS, local B, previous value (PV), XS median and industry median.

The main results are summarized in Table 4, which shows the imputation errors for these dif-

ferent imputation methods. We report the in-sample, OOS missing-at-random, OOS block-missing

and OOS logit results for all characteristics and separated by their updating frequency. The first

striking observation is that cross-sectional median or industry median results in roughly twice as

large imputation errors compared to our baseline models local B-XS and global BF-XS. These results

are robust to the updating frequency and the in- or out-of-sample analysis. We conclude that the

current standard of ignoring the time-series and cross-sectional dependency is strongly suboptimal.

The local and global versions of our model are relatively close, but the global version seems to lead

to slightly smaller imputation errors. We will revisit this aspect in more detail in Section 5.3.

Our baseline models are the best within their categories. Within the global models the global

BF-XS dominates the alternative approaches. This is not surprising as using future information

should be beneficial. However, the difference between the global BF-XS and global B-XS for the

out-of-sample data is much smaller compared to using only a cross-sectional model (XS). This is

expected as very persistent characteristics should be well predicted by their past observations. Using

simply the previous value performs worse than using an AR(1) time-series model as characteristics

are usually not stale, but only autocorrelated. A simple backward time-series model, labeled as B,

performs surprisingly well. However these results depend crucially on the availability of previous

observations. Around one third of values are missing at the beginning and cannot be imputed with
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Table 4: Imputation Error for Different Imputation Methods

In-Sample OOS MAR OOS Block OOS Logit

Method all quarterly monthly all quarterly monthly all quarterly monthly all quarterly monthly

Imputation RMSE

global BF-XS 0.09 0.08 0.12 0.13 0.13 0.13 0.10 0.08 0.13 0.10 0.09 0.13
global F-XS 0.09 0.06 0.13 0.15 0.15 0.14 0.10 0.06 0.14 0.18 0.16 0.23
global B-XS 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.13 0.12 0.15
global XS 0.19 0.18 0.21 0.22 0.21 0.24 0.23 0.22 0.24 0.25 0.24 0.27
global B 0.15 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.16
local B-XS 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.12 0.15
local XS 0.21 0.20 0.21 0.23 0.22 0.24 0.23 0.23 0.24 0.25 0.24 0.27
local B 0.15 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.16

prev 0.17 0.16 0.18 0.17 0.16 0.18 0.17 0.16 0.19 0.15 0.14 0.19
XS-median 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.31
ind-median 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.31

Explained Variation 𝑅2

global BF-XS 0.85 0.94 0.80 0.80 0.83 0.79 0.83 0.94 0.77 0.93 0.94 0.55
global F-XS 0.85 0.98 0.77 0.75 0.77 0.74 0.81 0.97 0.71 0.49 0.74 0.06
global B-XS 0.78 0.81 0.77 0.76 0.79 0.74 0.75 0.81 0.71 0.87 0.87 0.48
global XS 0.57 0.61 0.54 0.42 0.47 0.39 0.38 0.43 0.36 0.23 0.35 0.11
global B 0.76 0.79 0.74 0.75 0.78 0.73 0.74 0.79 0.71 0.85 0.86 0.45
local B-XS 0.79 0.82 0.78 0.77 0.80 0.75 0.76 0.81 0.73 0.87 0.87 0.49
local XS 0.50 0.52 0.50 0.40 0.43 0.38 0.37 0.38 0.35 0.25 0.34 0.11
local B 0.76 0.80 0.74 0.75 0.78 0.73 0.74 0.80 0.71 0.85 0.86 0.45

prev 0.66 0.76 0.60 0.64 0.75 0.58 0.63 0.76 0.56 0.84 0.85 0.01
XS-median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ind-median 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00

Note: This table shows imputation RMSE and 𝑅2 by imputation method averaged over all characteristics
and separately for monthly and quarterly updated characteristics. We report the imputation error in-
sample evaluated over all observed data, and out-of-sample for masked characteristics from the fully
present subset of the data. For the out-of-sample analysis we mask 10% of the data either missing at
random or missing in time-series blocks for 12 consecutive months. The logit masking is based on the
logistic regression model with all covariates and fixed effects as estimated in Table 2. The 𝑅2 is the
explained variation relative to a cross-sectional median imputation.

the backward time-series model, but require contemporaneous cross-sectional information. In the

case of block-missing patterns, which is empirically more relevant, the global and local B-XS model

outperforms the global and local B. We conclude that using both information sets, the time-series

and cross-sectional dependency, seems to be beneficial and that our baseline models, local B-XS and

global BF-XS, are the best imputation methods.

The general ordering of imputation methods holds among all masking mechanisms. The outper-

formance of the baseline models, local B-XS and global BF-XS, is even more pronounced for the logit

masking. In this case, most masking occurs for quarterly characteristics. When monthly character-

istics are masked, it is likely that a very large number of characteristics is masked simultaneously

and/or the block of missing data is very long, which provides a challenge for all imputation methods.
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The in-sample results can be interpreted as an evaluation of the parsimonious characteristic

model, while the out-of-sample results also test how well the parsimonious can be estimated from

the partially observed data. The fact that the in-sample and out-of-sample results are very close is

evidence that our characteristic models do not overfit, but provide a good description for character-

istics.

The lower part of Table 4 reports the 𝑅2 which measures the explained variation relative to a

cross-sectional median imputation. It clarifies how substantial the improvements are for our base-

line models. The global BF-XS can achieve an out-of-sample 𝑅2 of 0.93 for logit masking, while the

local B-XS achieves an impressive 0.87. This means in terms of explained variation these methods

achieve an out-of-sample improvement of over (or close to) 90%. The median imputation has by

definition an 𝑅2 of zero.

Many applications use only the subset of largest or smallest characteristic values. One prominent

example are portfolio sorting strategies based on the extreme quantiles of characteristics. These

applications depend on a precise imputation of the extreme characteristic quantiles, but are less

affected by the imputation quality in the center of the distribution. The outperformance of our

baseline models relative to naive imputation is even more pronounced for these values.

Table 5 reports the RMSE for the masked characteristic values which are in the first or fifth

characteristic quintile. By construction themedian imputation performs particularly badly. The local

B-XS has less than half of themedian RMSEwhile the global BF-XS has around one third. This confirms

that our baseline models provide the preferred imputed values even for extreme realizations.

In order to provide some intuition, we illustrate the model implied and imputed time-series for

representative examples. Figure 10 shows characteristic time-series for Microsoft and Hasbro, two

representative companies in different industries and hence with different fundamentals. We show

their characteristic time-series for three characteristics with different levels of persistence. Themost

persistent is market capitalization. Tobin’s Q has a medium level of persistence, while the local

variance is a fast fluctuating characteristic. These three examples are relatively representative as

they capture stylized features of other characteristics. We show the model implied values in-sample

and also the imputation results for out-of-sample missing blocks of 12 months.

The most obvious observation is that the median value creates very large errors in observed and

imputed values. Importantly, if we would use the median imputed values for the missing blocks, we

would also distort the time-series of the characteristics. For example the centered rank quantile for
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Table 5: Imputation Error for Extreme Characteristic Quintiles

In-Sample OOS MAR OOS Block OOS Logit

Method all quarterly monthly all quarterly monthly all quarterly monthly all quarterly monthly

First characteristic quintile

global BF-XS 0.12 0.09 0.15 0.16 0.16 0.16 0.12 0.10 0.16 0.13 0.11 0.17
global F-XS 0.11 0.06 0.16 0.18 0.18 0.17 0.12 0.08 0.17 0.21 0.18 0.26
global B-XS 0.17 0.17 0.16 0.17 0.18 0.17 0.17 0.17 0.18 0.16 0.15 0.19
global XS 0.24 0.24 0.26 0.28 0.27 0.29 0.29 0.28 0.30 0.32 0.31 0.35
global B 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.16 0.19
local B-XS 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.18
local XS 0.26 0.26 0.27 0.29 0.28 0.30 0.30 0.30 0.30 0.32 0.31 0.35
local B 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.16 0.15 0.19

prev 0.19 0.19 0.20 0.19 0.19 0.20 0.20 0.19 0.21 0.18 0.16 0.22
XS-median 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41
ind-median 0.40 0.40 0.41 0.40 0.40 0.41 0.40 0.40 0.41 0.41 0.41 0.41

Fifth characteristic quintile

global BF-XS 0.12 0.10 0.16 0.17 0.16 0.17 0.13 0.10 0.17 0.13 0.11 0.18
global F-XS 0.11 0.06 0.17 0.18 0.18 0.18 0.12 0.07 0.19 0.22 0.19 0.30
global B-XS 0.17 0.17 0.17 0.18 0.17 0.18 0.18 0.17 0.18 0.17 0.15 0.20
global XS 0.25 0.23 0.27 0.28 0.26 0.31 0.29 0.28 0.31 0.32 0.30 0.36
global B 0.18 0.18 0.18 0.19 0.18 0.19 0.19 0.18 0.19 0.17 0.16 0.21
local B-XS 0.17 0.17 0.17 0.18 0.17 0.18 0.18 0.17 0.18 0.16 0.15 0.20
local XS 0.27 0.26 0.28 0.29 0.28 0.31 0.30 0.29 0.31 0.33 0.31 0.36
local B 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.17 0.16 0.21

prev 0.20 0.19 0.21 0.20 0.19 0.22 0.20 0.19 0.22 0.19 0.17 0.24
XS-median 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41
ind-median 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41

Note: This table shows imputation RMSE by imputation method for different types of missingness. We
report the imputation error in-sample evaluated over all observed data, and out-of-sample for masked
characteristics from the fully present subset of the data. For the out-of-sample analysis we mask 10% of
the data either missing at random, missing in time-series blocks for 12 consecutive months, or with the
logistic regression model. We report the RMSE for the subset of masked values which are in the first or
fifth characteristic quintile.

the size of Microsoft would jump from about 0.5 to 0 and back to 0.5. In contrast, the imputed values

with our methods reflect substantially better the level and dynamics of characteristics. Second, our

two baseline models are very exact on the in-sample data. Obviously, the imputation is more chal-

lenging on the out-of-sample data. Third, our models reflect dynamic changes in the out-of-sample

data, which are captured by the cross-sectional factor component. As we will see in Section 5.3, this

cross-sectional component is more relevant for fast changing characteristics like the variance. Last

but not least, the BF-XS seems to “connect” the two end points of the missing data, while the B-XS

model is for obvious reasons “anchored” at the starting point of the missing block.

The aggregated comparison results are robust over time and with respect to the market capital-

ization of the stocks. Figures C.13, C.15 and C.17 in the Appendix show the RMSE for each month.
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Figure 10: Illustrative Model-Implied and Imputed Time-Series
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Panel B: Operating Profitability
(c) Microsoft - Q
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2008 2010 2012 2014 2016 2018 2020

0.4

0.2

0.0

0.2

0.4

masked
observed
imputed-B-XS
imputed-median
imputed-BF-XS

Panel C: Idiosyncratic Volatility
(e) Microsoft - VAR
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Note: This figure shows illustrative realized andmodel-implied characteristic time-series for Microsoft and
Hasbro. We plot the realized characteristic rank over time, and the model implied values with the B-XS,
BF-XS and median model. The gray shaded areas indicate missing blocks of one-year which are not part
of the estimation, and hence serve as out-of-sample evaluation. We consider size, Tobin’s Q and variance,
which are three representative characteristics of decreasing persistence.

The relative ordering of the different methods is very stable over time. Table B.8 in the Appendix

reports the RMSE for different size deciles. While the errors are larger in magnitude among smaller

stocks, the relative comparison between the models stays the same. Importantly, even the largest

size decile accounts for a substantial part of the imputation errors, and hence the results are not

driven by fitting only small cap stocks.9

9Tables B.8 and B.9 show that the results are also robust with respect to filters based on share prices and to excluding
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5.2. Imputation results for different types of missingness

As a next step we want to understand how the imputation results are affected by the type of

missingness. Hence we show all the results of the previous subsection for data missing at the start,

the middle and the end of the sample. Table 6 collects the in-sample and out-of-sample RMSE results.

Note that the type of missingness restricts which models can be used. For example, when observa-

tions are missing at the beginning of the sample, we can obviously not use any of the models that

require prior observations. Similarly, for observations at the end, the forward models are excluded.

Only missingness in the middle of the sample allows us to use all models. Our aggregated results

in the previous subsection only reported the errors for observations where a model was applicable.

Here we separate those effects.

The best model for missing observations at the beginning of the sample are the global F-XS when

using all possible information and the local XS when avoiding a look-ahead bias. These are the

special cases of our baseline models that exclude the prior information. Importantly, the difference

to the median imputation is even more pronounced than for the aggregated results. Therefore, we

recommend to use these two baseline models for imputing the missing values at the start.

The best model for missing observations in the middle are the global BF-XS for full observations

and the local B-XS among the look-ahead-bias free models. The magnitude of the RMSE and relative

ordering is very close to the aggregate results in Table 4. Overall our baseline models dominate the

other approaches. Last but not least, we show that the global B-XS and local B-XS are the best model

for missingness at the end of the sample. While the relative ordering of methods stays the same,

the magnitude of errors seems to be higher.

We conclude that the best model avoiding future information is the local B-XS, and, if data is

missing at the beginning, we replace it by the local XS. The best globalmodel is the global BF-XS, which

we replace by the global F-XS for missingness at the beginning and the global B-XS for missingness

at the end.

5.3. Which information matters?

Which characteristics are hard to predict and what information is the most useful? In order to

answer these questions we compare the imputation errors for each characteristic. In the main text

we focus on the out-of-sample results with block-missing pattern, while the Appendix collects the

financial institutions.
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Table 6: Imputation Error for Types of Missingness

In-Sample OOS MAR OOS Block OOS Logit

Method all quarterly monthly all quarterly monthly all quarterly monthly all quarterly monthly

Start of the sample

global BF-XS - - - - - - - - - - - -
global F-XS 0.10 0.05 0.16 0.17 0.17 0.18 0.12 0.07 0.17 0.22 0.20 0.26
global B-XS - - - - - - - - - - - -
global XS 0.22 0.21 0.24 0.26 0.24 0.28 0.27 0.26 0.28 0.29 0.29 0.29
global B - - - - - - - - - - - -
local B-XS - - - - - - - - - - - -
local XS 0.24 0.23 0.25 0.26 0.25 0.28 0.27 0.26 0.27 0.29 0.29 0.29
local B - - - - - - - - - - - -

prev - - - - - - - - - - - -
XS-median 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.32 0.32 0.31
ind-median 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.32 0.32 0.31

Middle of the sample

global BF-XS 0.09 0.08 0.12 0.13 0.13 0.13 0.10 0.08 0.13 0.10 0.09 0.13
global F-XS 0.09 0.06 0.13 0.14 0.15 0.14 0.1 0.06 0.14 0.13 0.12 0.15
global B-XS 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.15 0.13 0.12 0.15
global XS 0.19 0.18 0.21 0.22 0.21 0.23 0.22 0.21 0.24 0.22 0.21 0.24
global B 0.14 0.15 0.14 0.15 0.15 0.15 0.15 0.143 0.15 0.14 0.13 0.16
local B-XS 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.12 0.15
local XS 0.20 0.12 0.22 0.22 0.22 0.23 0.23 0.22 0.24 0.23 0.22 0.24
local B 0.14 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.16

prev 0.16 0.16 0.18 0.17 0.16 0.18 0.17 0.16 0.18 0.15 0.14 0.19
XS-median 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
ind-median 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

End of the sample

global BF-XS - - - - - - - - - - - -
global F-XS - - - - - - - - - - - -
global B-XS 0.16 0.15 0.17 0.18 0.18 0.17 0.18 0.18 0.17 0.12 0.12 0.14
global XS 0.23 0.23 0.24 0.26 0.25 0.267 0.27 0.27 0.27 0.25 0.25 0.27
global B 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.18 0.13 0.13 0.15
local B-XS 0.16 0.15 0.17 0.18 0.18 0.17 0.18 0.18 0.17 0.12 0.12 0.14
local XS 0.25 0.25 0.25 0.26 0.26 0.27 0.27 0.28 0.27 0.26 0.26 0.27
local B 0.19 0.19 0.19 0.18 0.19 0.18 0.19 0.19 0.18 0.13 0.13 0.15

prev 0.21 0.20 0.22 0.20 0.20 0.22 0.21 0.19 0.22 0.14 0.13 0.17
XS-median 0.35 0.37 0.34 0.34 0.33 0.33 0.35 0.37 0.33 0.32 0.32 0.33
ind-median 0.35 0.37 0.34 0.34 0.33 0.33 0.35 0.37 0.33 0.32 0.32 0.33

Note: This table shows imputation RMSE by imputation method for different types of missingness. We
report the imputation error in-sample evaluated over all observed data, and out-of-sample for masked
characteristics from the fully present subset of the data. For the out-of-sample analysis we mask 10% of
the data either missing at random or missing in time-series blocks for 12 consecutive months. The out-
of-sample logit masking is based on the logistic regression model with all covariates and fixed effects as
estimated in Table 2.

in-sample and out-of-sample missing-at-random and logit masking results. Figure 11 plots the out-

of-sample block-missing imputation errors for individual characteristics sorted in ascending order

based on their time-series volatility. Characteristics on the right, for example short-termmomentum,

fluctuate the most and hence might be harder to predict from the time-series, while the characteris-
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Figure 11: Imputation Error For Individual Characteristics
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The
characteristics are sorted in ascending order based on the time-series standard deviation of characteristics.
We report the imputation error out-of-sample for masked characteristics from the fully present subset of
the data. For the out-of-sample analysis we mask 10% of the data missing in time-series blocks for 12
consecutive months.

tics on the left, for example total assets, are more persistent.

The median or industry median are in almost all cases the worst possible models. The pure

cross-sectional model, which includes the median as a special case for a zero factor model, strictly

dominates the median imputation. The imputation of more volatile characteristics seems to benefit

more from cross-sectional information. On the other hand, the more persistent characteristics seem

to rely more on time-series information. A pure time-series or pure cross-sectional model is not

uniformly better, and in almost all cases a combination of both information leads to superior results.

The global BF-XS model has the smallest errors except for return in net-operating assets (ROA) and

return on equity (ROE). The local B-XS is for almost all characteristics the best local model. The

results are comparable for the logit masking as shown in Figure C.7 in the Appendix.

The results are qualitatively similar for missing-at-random as shown in Figure C.5 in the Ap-

pendix. Overall, the benefit of cross-sectional information for more persistent information seems

to shrink. This is expected, as there are only very few missing points in a row and hence the last

observed values can be very informative. However, the relative ranking stays the same. The results

are comparable for the in-sample analysis.
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Figure 12: Information used for Imputation
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Note: This figure shows the regression coefficients on the cross-sectional factor model and the time-series
information. The XS weight denotes the sum of absolute values of the coefficients on the cross-sectional
factor model. The characteristics are sorted in ascending order based on their autocorrelations.

Figure 13: Global and Local Imputation For Individual Characteristics
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The
characteristics are sorted in ascending order based on the time-series standard deviation of characteristics.
We report the imputation error out-of-sample for masked characteristics from the fully present subset of
the data. For the out-of-sample analysis we mask 10% of the data missing in time-series blocks for 12
consecutive months.

41



In order to assess the relative importance of the time-series and cross-sectional information, we

compare the relative weights in the regressions of the B-XS and BF-XS models. Figure 12 shows the re-

gression coefficients on the cross-sectional factor model and the time-series information for the B-XS

model. The XS weight denotes the sum of absolute values of the coefficients on the cross-sectional

factor model. The characteristics are sorted in ascending order based on their autocorrelation. As

expected, the time-series weight follows closely the autocorrelation. This means that the most per-

sistent characteristics use primarily time-series information for the imputation. In contrast, highly

volatile and only weakly serially correlated characteristics put larger weights on the cross-sectional

factor model. For example, unexplained volume (SUV) puts 80% of its weight on cross-sectional fac-

tors. Figure C.8 shows that the BF-XS exhibits exactly the same pattern. Interestingly, the weights on

past and future information are essentially symmetric. It seems that the weights on past and future

information in the BF-XS add up to the time-series weights in the B-XS model, that is, the relative

weights on the overall time-series is the same in both models. We provide the detailed weights on

the individual factors in Tables B.6 and B.7 in the Appendix, which are in line with our interpretation

of the cross-sectional factors.

Last but not least, we compare the global and localmodels inmore detail. Figures 13 and C.6 show

a comparison of imputation RMSE for local and global method across individual characteristics. As

before, the characteristics are sorted in ascending order based on the time-series standard deviation

of characteristics. As expected by the aggregate statistics, the global models are slightly better

than their local counterpart. However, highly volatile characteristics can benefit from local models.

This is for example visible for the pure cross-sectional models. This implies that the models are

relatively stable over time for most characteristics, but there can be some time variation among the

more volatile characteristics.

6. Asset Pricing

6.1. Selection bias - Firms with missing characteristics are different

Firm characteristics are the most widespread conditioning drivers of expected returns in asset

pricing. Missing financial data can have a profound impact on asset pricing, depending on the appli-

cation and extent of the problem.

Missing values in firm characteristics can have two fundamental effects on asset pricing. The first

effect is the selection bias studied in this section. Asset pricing and investment results depends on

42



which stock are included. Firms with missing characteristics are different from those with observed

entries. Hence, using only the subsample of stocks with fully observed characteristics leads to a

selection bias in asset pricing metrics. This is reflected in the substantially better out-of-sample

investment performance of including all stocks instead of the non-representative subsample with

fully observed data. The second effect is the imputation bias studied in Section 6.2. Asset pric-

ing pricing results depend on the imputation method. Biased imputation methods like the median

imputation lead to uniformly and substantially larger errors in asset pricing metrics compared to

our more precise imputation approach. In all the empirical applications, in order to ensure that the

characteristic information is available to an investor in real time, we use the values of observed or

imputed characteristics lagged by six months.10

6.1.1. Market strategy with observables

We begin this section by documenting a very simple empirical result: even the average return

on a market-style long-only portfolio of stocks depends on whether the portfolio is constructed of

stocks that have particular characteristics observed. In other words, even simply having – or not –

observable values for popular firm characteristics like book-to-market ratio, or Tobin’s Q, on its own

have an impact of asset returns, separate from its value.

Figure 14 shows average returns of stocks with observed or missing characteristics. In each

month, we compute mean returns of all stocks with observed data of a particular characteristics

as well as mean returns of stocks for which the characteristic is missing in the middle of the stock

sample. The figure plots means across time for quarterly characteristics. The presence of many

firm-specific fundamentals seems to have an impact on asset returns – in part, due to the selection

of firms with certain characteristics into the observable set. For some characteristics, stocks with

missing data have lower returns than stocks with observed data, while the reverse is true for other

characteristics. Stocks with missing price-ratios have lower returns than stocks with observed data,

in particular for the sales-to-price, cash-flow-to-price, and earnings-to-price ratios. This pattern is

reversed for investment-related characteristics. The differences in mean returns are economically

large ranging from 8.10% (p.a.) for the sales-to-price ratio to -2.86% for operating accruals. Clearly,

estimating expected returns on only partially observed data can suffer from a selection bias.

10Our results are qualitatively the same if we use a lag of three month or longer lags. Note, our focus is not on the
optimal lag horizon for investments, but to clarify that it has an impact how we deal with missing data. Investors could
also use different lag horizons for different characteristics, yet even in that setting our results largely remain unchanged.

43



Figure 14: Market-wide investment strtagyFigure 1: Market-wide investment strtagy

Note: This figure depicts the average annual return of stocks with observed or missing (in middle of a stock
sample) characteristics. Means are taken by month and then averaged across all monts in the sample.

imputation. The Instrumented Principal Component Analysis (IPCA) models the exposure to latent
factors as a function of characteristics. Intuitively, the IPCA factors are obtained as PCA factors of
characteristic managed portfolios. IPCA can only include stocks for the time periods when they have
a complete set of characteristics. Hence, we either have to take a small subset of fully observed data,
or need to impute the missing values.

We evaluate the performance of the IPCA factors based on the Sharpe ratio of the implied pricing
kernel. Hence, we first obtain the mean-variance efficient combination the latent IPCA factors and
report the Sharpe ratio of this investment strategy. A higher Sharpe ratio implies that the latent
factors are a better approximation of the true pricing kernel. We show the in-sample and out-of-
sample results for different numbers of latent factors. The out-of-sample analysis estimates the
IPCA model and mean-variance efficient combination on the first half of the sample, and reports the
out-of-sample results for the second half of the panel.

Figure 2 shows the in-and out-of-sample Sharpe ratios for IPCA factors. Not surprisingly, the
in-sample Sharpe ratios with more data are higher. This by itself is of limited value, as an in-sample
analysis can overfit the data. Importantly, the out-of-sample Sharpe ratios with all stocks are also
substantially higher than with the subset of fully observed stocks. This findings holds uniformly
for any number of latent factors. In fact, a 3-factor model based on all stocks outperforms even a
9-factor model based on the subset of fully observed data.

Our finding has important implications. First, the stochastic discount factor (SDF) estimated on
all stocks seems to be closer to the true SDF than the one estimated on only the subset of stocks with
fully observed characteristics. Second an investor, who only invests in a non-representative subset
of firms, foregoes profits. These results do not depend on the method used to extract the SDF. We
obtain similar results for characteristic mimicking factors obtain from cross-sectional regressions

2

Note: This figure depicts the average annual return of stocks with observed or missing (in middle of a stock
sample) characteristics. Means are taken by month and then averaged across all monts in the sample.

6.1.2. Investment with missing values

Neglecting firms with missing firm fundamentals leads to suboptimal investment decisions. We

show that the out-of-sample performance of a conditional latent factor model is substantially better

if it includes the larger set of companies with imputed characteristics.

We estimate the conditional latent factor model of Kelly et al. (2019) on the subset of stocks with

fully observed characteristics and the larger set of stocks with imputed characteristics using the

local B-XS imputation. The Instrumented Principal Component Analysis (IPCA) models the exposure

to latent factors as a function of characteristics. Intuitively, the IPCA factors are obtained as PCA

factors of characteristic managed portfolios. IPCA can only include stocks for the time periods

when they have a complete set of characteristics. Hence, we either have to take a small subset of

fully observed data, or need to impute the missing values.

We evaluate the performance of the IPCA factors based on the Sharpe ratio of the implied pricing

kernel. Hence, we first obtain the mean-variance efficient combination the latent IPCA factors and

report the Sharpe ratio of this investment strategy. A higher Sharpe ratio implies that the latent

factors are a better approximation of the true pricing kernel. We show the in-sample and out-of-

sample results for different numbers of latent factors. The out-of-sample analysis estimates the
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Figure 15: Sharpe ratios with IPCA factors
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Note: This figure shows the in- and out-of-sample Sharpe ratios of mean-variance efficient combination
for different number of IPCA factors. We estimate a conditional latent factor model with the Instrumented
Principal Component Analysis of Kelly et al. (2019). The estimation is either on the small subset of fully
observed or the large set of all imputed stocks. The in-sample analysis is estimated on the full time period,
while the out-of-sample analysis estimates the loadings and mean-variance efficient weights on the first
half of the time-series and evaluates the portfolios on the second half.

IPCA model and mean-variance efficient combination on the first half of the sample, and reports the

out-of-sample results for the second half of the panel.

Figure 15 shows the in-and out-of-sample Sharpe ratios for IPCA factors. Not surprisingly, the

in-sample Sharpe ratios with more data are higher. This by itself is of limited value, as an in-sample

analysis can overfit the data. Importantly, the out-of-sample Sharpe ratios with all stocks are also

substantially higher than with the subset of fully observed stocks. This findings holds uniformly

for any number of latent factors. In fact, a 3-factor model based on all stocks outperforms even a

9-factor model based on the subset of fully observed data.

Our finding has important implications. First, the stochastic discount factor (SDF) estimated on

all stocks seems to be closer to the true SDF than the one estimated on only the subset of stocks with

fully observed characteristics. Second an investor, who only invests in a non-representative subset

of firms, foregoes profits. These results do not depend on the method used to extract the SDF. We

obtain similar results for characteristic mimicking factors obtain from cross-sectional regressions
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or machine learning prediction of returns with neural networks.11

In order to understand where this difference comes from, we now turn to the simpler, but very

popular, way to construct cross-sectional strategies based on characteristics, namely decile-sorted

portfolios.

6.1.3. Conditional sorts

In this section, we show how the selection bias with missing data affects conditional expected

returns. We specifically focus on the simplest asset pricing application to dissect the implications

for different characteristics and for conditional means and variances.

Most multivariate asset pricing applications, including multiple sorts, panel regressions onmulti-

ple characteristics or IPCA from the last subsection, require the presence of multiple characteristics.

In order to illustrate the effect of requiring the presence of multiple characteristics, we focus on the

properties of the most basic investment strategies, deciles sorts, and study how they are affected by

the requirements of observing data for additional characteristics. Following the usual convention,

the decile cutoff values are based on NYSE breakpoints, similar to Fama and French (1993).

First, we study the empirical effect of data selection and imputation on conditional returns for

some of themost widely used characteristics, size (ME), book-to-market ratio (B2M), investment (INV),

operating profitability (OP), momentum (R12_2) and long-term reversal (R60_12). In addition, we also

consider the accounting based characteristics net share issues (NI) and expenses to sales (SGA2S),

since those seem to be strongly affected by missing values. We construct value weighted decile

sorted portfolios for the main characteristics, size, value, investment and operating profitability.

In order to understand the effect of requiring the presence of multiple characteristics, we study

the asset pricing implications for the first and last deciles of these four characteristic sorts, when

requiring that additional characteristics are observed. In more detail, we first include only stocks

that have the sorting characteristic available. Then, we take the subset of stocks for which also size

is available. We continue stepwise, by incrementally requiring that in addition INV, OP, NI, SGA2S,

R12_2, R60_13 or all 45 characteristics are available. The decile cutoff points remain the same NYSE

breakpoints.

Figure 16 shows the Sharpe ratio, mean return, standard deviation and percentage of stocks

used in the first and tenth decile. At first, we use the least restrictive sample of stocks that requires

11The results are available upon request.
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Figure 16: Univariate Sorts With and Without Missing Values
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Panel C: Investment
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Panel D: Operating Profitability
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Note: This figure shows the Sharpe ratio, average return, standard deviation and percentage of stocks for
the univariate first and tenth value weighted characteristic sorted deciles for different subset of stock with
and without imputation. We sequentially restrict the set of stocks to those that multiple characteristics
available. First, we include all stocks for which only the sorting characteristic is available, then in addition
we require in addition the availability of size (ME). In the next step, the sorting characteristics, size and
investment (INV) need to be observed. We continue with operating profitability (OP), Net Share Issues (NI),
Selling, general and Administrative expenses to sales (SGA2S, momentum (R12_2) and long-term rever-
sal (R60_13). We sort based on book-to-market, size, investment and operating profitability. We impute
missing values with our baseline local BW-XS model.

only that leading characteristic to be observed, progressively requiring more and more additional

fundamentals to be observed. We also include the strategies with characteristic values imputed with
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the local BW model, which is free of the look-ahead bias and could be easily used by investors in

real time. The first obvious observation is that using all the stock with imputed values or all stocks

for which we only require the availability of a single sorting variable, lead to essentially the same

means and Sharpe ratios. This is reassuring, since it further confirms the validity of our imputation

approach even for the firms that have fairly extreme values of the fundamentals. This result is in

direct contrast with the situation where we simply require additional characteristics to be observed,

which changes the composition of the decile portfolios, its rate of return and Sharpe ratio.

Requiring more characteristics drastically reduces the number of stocks that are included in port-

folios sorts. In the case of size, the number of small stocks (decile 10, based on NYSE breakpoints)

drops from almost 50% of all the tradable companies to less than 10%, whenever all the characteris-

tics are required to be observed. Restricting stocks to have contemporaneous observations for the

book-to-market (B2M), investment (INV), and operating profitability (OP), removes 15% of the over-

all sample. These results are even more extreme for portfolios sorted by the book-to-market ratio

(see Panel A in Figure 16). In this case the number of available stocks for the extreme growth and

value deciles drops from above 10% to about 2% of the sample, whenever all the characteristics are

required to be observed. The requirement to observe ME, INV and OP (in addition to the book-to-

market) already leads to a relative reduction of 10-20% of the initial number of firms, available for

the strategy. The smaller number of stocks has an expected effect on the volatilities of the portfolio

sorts, since one would expect having fewer stocks to lead to less diversified portfolios, and hence,

higher overall volatility. Indeed, we observe that in most cases volatility increases. Note, however,

that in general this does not have to yield a monotonic effect: since characteristics are not missing

at random, both lower degree of diversification and firm selection contributes to the overall effect

on volatility, making it difficult to predict the overall sign of the effect.

Importantly, the systematic structure in missing data creates a selection bias in mean returns.

The mean returns of extreme deciles on investment, size, value, and operating profitability are al-

ready affected by requiring the presence of only three additional characteristics. Once again, due to

the non-random nature of missingness, it can have an ambiguous effect on the risk premia. In all

four cases, requiring the presence of all the characteristics leads overall to lower average returns. As

the average returns tend to decrease in the more restrictive subsample of stocks, while the volatility

effect increases in many cases, the Sharpe ratios tend to decrease as well. However, the exact effect

on the Sharpe ratio and the corresponding t-statistics can be fairly complex.
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Figure 17: Top and Bottom Deciles With and Without Missing Values
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Note: This figure shows the Sharpe ratios and average returns for value weighted decile sorted portfolios,
formed from stocks with observed single or full panel of characteristics. The left set of plots shows the
Sharpe ratios of the top and bottom deciles, while the right set of plots shows the mean returns. The light
blue and green bars correspond to the first and last deciles, comprised of a fully observed panel of stocks
with all the characteristics. The dark blue and green bars correspond to the return on the extreme deciles
formed by stocks required to have only the characteristic available used in sorting.
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Our results extend to the conditional mean based on the majority of characteristics. Figure 17

shows the Sharpe ratios and mean returns for the top and bottom deciles of stocks, sorted by a given

characteristic for two types of samples: first, requiring only that a single characteristic is observed,

and second, requiring all 45 characteristics to be observed at the same time. We group firm-specific

variables by their type, and report both the Sharpe ratio and average return of the corresponding

deciles.

Formost characteristics, the Sharpe ratios on the fully observed panel are lower than on the larger

panel of firms with missing information. Consider for example, the case of sorting based on operat-

ing leverage (characteristic OL in the intangible category in Figure 17). In a fully observed panel, the

Sharpe ratio of the bottom decile decile based on OL, is 25% lower compared to the case of a simple

univariate sort that requires only a single observed characteristic. Similar patterns can be observed

for dividend-to-price (D2P), momentum (R12_7), expenses-to-assets (DPI2A), spread (SPREAD), re-

turn on assets and equity (ROA/ROE), and many others. Hence, the combination of possible lower

expected returns and/or higher volatility on a restricted sample can create a negative selection bias

for simple asset pricing statistics. The directional effect on mean returns is more complex than for

Sharpe ratios, emphasizing again the complex interaction between the sorting characteristics and

missingness. It seems that in many cases, where mean returns are larger on the restricted sample,

the increase in volatility dominates, thus resulting in a lower Sharpe ratio. The corresponding Sharpe

ratios and mean returns of deciles with imputed data are very close to the sorts that require only a

single characteristic to be observed.

The systematic selection bias in the expected returns of decile-sorted portfolios carries over

to univariate long-short factors. Table B.10 in the Appendix reports the mean, standard deviation,

Sharpe ratio, percentage and market value of missing characteristics for univariate long-short decile

factors. As in the case of case of decile sorts, these factors are constructed with NYSE breakpoints.

We compare the results when using (1) only stocks with fully observed 45 characteristics, (2) stocks

with at least 10 characteristics observed and imputed data, (3) only the specific sorting characteristic

observed, the combination of (2) and (3), and the difference between (2) and (3). The selection of

stocks has obviously a strong effect on risk premia and Sharpe ratios, even for simple univariate

long-short factors. As a long-short factor combines the impact of selection and imputation in the

two separate legs, the effects can be complex and more or less pronounced than for the individual

legs.
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6.2. Imputation bias - Median imputation distorts asset pricing

Asset pricing results can depend on the imputation method. We show that median imputation

substantially distorts the estimation of risk premia. Having established in the last subsection, that

researchers should use all data to avoid the selection bias, we now compare the implications of

different imputation methods. We study the fundamental problem of estimating the risk premium

of characteristics from cross-sectional characteristic regressions. This is among the most widely

used applications of characteristics. We follow the standard practice of running cross-sectional

regressions of excess returns on lagged characteristics. These cross-sectional regressions require a

complete vector of characteristics for each stock, and hence necessitate imputation.

We evaluate the risk premium estimates and correlation of factor mimicking portfolios with real-

istic masking of observed data. Simply comparing the risk premia estimates based on characteristics

imputed either with the local B-XS or median values, reveals that we obtain quite different numbers,

but it does not tell us which values are better. Hence, we take our full data set with missing values

and mask additional characteristic values based on the logistic regression model in Table 2. This

logistic regression propensity describes the empirical missingness pattern very well, and creates a

realistic reference data set.12 We impute these masked values either with the local B-XS or median

values. The characteristic mimicking factor portfolios and their risk premia based on the observed

entries without masking are the reference, and represent the true values.

The characteristic regressions yield time-series of characteristic mimicking factor portfolios:

𝐹mimick
𝑡 = ⎛

⎝

𝑁𝑡

∑
𝑖=1

𝑅𝑖,𝑡𝐶𝑡−1
𝑖 ⎞

⎠
⎛
⎝

𝑁𝑡

∑
𝑖=1

𝐶𝑡−1
𝑖 𝐶𝑡−1

𝑖
⊤⎞
⎠

−1

.

The mean of these factor portfolio time-series corresponds to the risk premium for characteristics

in the presence of other characteristics. We report the absolute error in characteristic risk premia of

B-XS and median imputed values relative to true observed values. We also report the correlation in

the time-series of the mimicking factor portfolios without masking and those with imputed values.

Note that the characteristic regressions depend on all characteristics jointly. Hence, the imputation

of some characteristics can affect even the return results for those characteristics that are fully

observed.

Figure 18 shows the absolute errors in risk premia from cross-sectional regressions. The B-

12We obtain qualitatively similar results for block masking, which are available upon request.
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Figure 18: Absolute error in risk premium from cross-sectional regressions
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Note: This figure compares the absolute error in characteristic risk premia of B-XS and median imputed
values relative to true observed values. We estimate characteristic mimicking factor portfolios with cross-
sectional regressions of stock excess returns on characteristics. The risk premium equals the mean of the
mimicking factor portfolios. We mask the characteristic values based on the empirical pattern with the
logistic regression propensity. The masked values are imputed with the local B-XS or median value. The
risk premium with observed entries is the reference.

XS imputed values have uniformly and substantially smaller risk premium errors compared to the

median imputation. For some characteristics like Total Assets (AT) or Operating Leverage (OL), the

error is around four to five times larger for the median imputation. We conclude that asset pricing

metrics can be severely biased from using a naive median imputation.

Figure 19 compares the 𝑅2 of B-XS and median imputed values relative to observed values of

characteristic projected portfolios. The 𝑅2 measures the correlation in the time-series of the mim-

icking factor portfolios. The differences between the B-XS and median imputation are even more

pronounced. The mimicking portfolio time-series are very close to the reference value for B-XS with

correlations over 92% for all characteristics. In contrast, the median imputed time-series provide

a poor approximation that is worse for all characteristics. In some cases, for example OL, the cor-

relation is below 40%. This implies that that not only the first moment of the time-series, which

measures the risk premium, is more precisely estimated with B-XS, but also the second moments.

This matters for statistical inference, which is based on the covariances of the mimicking portfolios,
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Figure 19: 𝑅2 of factor mimicking portfolios from cross-sectional
regressions
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Note: This figure compares the 𝑅2 of B-XS and median imputed values relative to true observed values
of characteristic projected portfolios. We estimate characteristic mimicking factor portfolios with cross-
sectional regressions of stock excess returns on characteristics. We mask the characteristic values based
on the empirical pattern with the logistic regression propensity. The masked values are imputed either
with the local B-XS or median value. The 𝑅2 measures the correlation in the time-series of the mimicking
factor portfolios without masking and those with imputed values.

Figure 20: Characteristic mimicking factor portfolios
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Note: These figures show the time-series of cumulative excess returns of characteristic mimicking factor
portfolios with and without imputation. We estimate characteristic mimicking factor portfolios with cross-
sectional regressions of stock excess returns on characteristics. We mask the characteristic values based
on the empirical pattern with the logistic regression propensity. The masked values are imputed either
with the local B-XS or median value. The mimicking portfolio without masking is the reference. We report
the correlation and absolute error in characteristic risk premia.

and applications that require the time-series of the mimicking factor portfolios.
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Figure 20 shows the time-series of cumulative excess returns of characteristic mimicking factor

portfolios with and without imputation. We highlight the results for book-to-market ratios (B2M),

profitability (PROF) and sales-to-price ratios (S2P), while Figures C.9 to C.12 collect the results for the

remaining characteristics with the same findings. The figures illustrate the precise approximation

with the B-XS imputation. In contrast, we observe a substantial bias in the time-series for median

imputation. This bias leads to wrongmeans, correlations and variances of the resulting characteristic

mimicking factor portfolios.

7. Conclusion

This paper focuses on a very widespread yet rarely recognized issue of missing data in firm-

specific characteristics. First, we document the systematic feature of missing data: it is pervasive

and widespread among the overwhelming majority of firms. In our representative data set of the 45

most often used characteristics, more than 70% of firms are missing at least one of them at any given

point of time. We show that firm fundamentals are not missing-at-random, but display complex

systematic patterns. We leverage the complicated cross-sectional and time-series dependence in

firm characteristics to propose a new imputation method, which is easy to use, and substantially

outperforms existing alternatives.

Our findings are relevant for numerous applications in asset pricing, since, as we demonstrated,

asset returns are affected by missing observations of the firm characteristics. The effects are partic-

ularly pronounced when requiring a large set of characteristics to be observed. While, for the sake

of clarity, we demonstrate our findings with widely used univariate portfolio sorts, cross-sectional

regressions and conditional latent factor models, we suspect it to have a first order effect in return

predictability regressions of more complex models (including machine learning), as well as all the re-

cently proposed advanced frameworks of stock returns that typically require a large balanced panel

of stock characteristics.

Naturally, the problem of missing data does not just apply to stock-specific characteristics, and

is encountered universally in various applications in finance: I/B/E/S forecast data, ESG ratings of

firms, and many others. Given the Big Data environment, and new sources of information being

available with an increasing speed, we suspect that the issue of missing data will become even more

paramount going forward. We hope that our paper laid out the foundations and general guidelines

for imputing missing data that could be applied in many different settings in the follow up work.
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Appendix A. Model

Implementation

In this Appendix we provide a modification of our latent factor model estimator in Section 3.1,

which is faster and easier to implement. The estimation of the eigenvectors of the 𝑁𝑡 × 𝑁𝑡 dimen-

sional characteristic covariance matrix Σ̃XS,𝑡 are computationally expensive. For fully observed data,

up to some normalization, the PCA estimation is “symmetric” in the two dimensions and we could

base our analysis on the eigenvectors of the 𝐿 × 𝐿 matrix 1
𝑁𝑡

∑𝑁𝑡
𝑖=1 𝐶𝑡

𝑖𝐶𝑡
𝑖
⊤. However, in the presence

of missing data, this would impose different assumptions on the missing pattern.

Here we propose a modification of the estimator in Section 3.1, that empirically results in essen-

tially the same estimated model. First, we estimate “noisy” loadings Λ̃𝑡 ∈ R𝐿×𝐾 as the eigenvectors

of the 𝐾 largest eigenvalues of the 𝐿 × 𝐿 matrix

1
|𝑂𝑡

𝑙,𝑝|
∑

𝑖∈𝑂𝑡
𝑙,𝑝

𝐶𝑡
𝑖,𝑙𝐶𝑡

𝑖,𝑝,

where 𝑂𝑡
𝑙,𝑝 is the set of all stocks that have the characteristics 𝑙 and 𝑝 observed at time 𝑡. By con-

struction |𝑂𝑡
𝑙,𝑝| ≤ 𝑁𝑡. The characteristic factors follow from a regression on the estimated Λ̃:

̂𝐹𝑡
𝑖 = ⎛

⎝

𝐿

∑
𝑙=1

𝑊𝑡
𝑖,𝑙Λ̃𝑡

𝑙
̃Λ𝑡
𝑙
⊤⎞
⎠

−1

⎛
⎝

𝐿

∑
𝑙=1

𝑊𝑡
𝑖,𝑙Λ̃𝑡

𝑙𝐶𝑡
𝑖,𝑙⎞
⎠
. (A.1)

In a last step, we obtain the loadings from a regression that accounts for missing observations:

Λ̂𝑡
𝑙 = ⎛

⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖
̂𝐹𝑡
𝑖
⊤⎞
⎠

−1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖𝐶𝑡
𝑖,𝑙
⎞
⎠
.

The regressions, weighted by observed values, provide valid estimates even when the missing pat-

tern depends on the factors. The first matrix, whose eigenvectors are used to extract the noisy

loadings, imposes some restriction on the missing pattern. However, as long as the noisy loadings

are correlated with the actual loadings, the third regression corrects for the complex missing pattern

structure. The advantage of this second approach is that it is much faster to implement. It is moti-

vated by the iterative PCA estimation, which is discussed among others in Xiong and Pelger (2019)

for missing values and Pelger and Xiong (2021a) for noisy loadings in the case of fully observed

data. This alternative implementation also motivates the interpretation of the loadings Λ as “charac-

teristic portfolio weights”, which provides insights into the economic meaning of the characteristic
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factors.

Under the assumptions of constant loadings, the estimation is modified as follows. First, we

estimate noisy loadings Λ̃ as the eigenvectors of the𝐾 largest eigenvalues of 1
𝑇 ∑𝑇

𝑡=1 ( 1
𝑁𝑡

∑𝑁𝑡
𝑖=1 𝐶𝑡

𝑖𝐶𝑡
𝑖
⊤).

The second step of the factor estimation ̂𝐹𝑡
𝑖 is the same, and in the third step we use the pooled

regression

Λ̂𝑙 = ⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖
̂𝐹𝑡
𝑖
⊤⎞
⎠
⎞
⎠

−1

⎛
⎝

𝑇

∑
𝑡=1

⎛
⎝

𝑁𝑡

∑
𝑖=1

𝑊𝑡
𝑖,𝑙 ̂𝐹𝑡

𝑖𝐶𝑡
𝑖,𝑙
⎞
⎠
⎞
⎠
.

Robust Finite Sample Performance with Adaptive Regularization

The finite sample performance of the latent factor model can be improved through adaptive

ridge regularization without affecting the asymptotic inferential theory. The latent characteristic

factors ̂𝐹𝑡
𝑖 are weighted averages of observed characteristics. Hence, the common component ̂𝐶𝑡

𝑖,𝑙 =

̂𝐹𝑡
𝑖

̂Λ𝑡
𝑙
⊤
can be interpreted as a weighted average of observed characteristics. The asymptotic theory

underlying the estimation for the latent characteristic factors assumes that the number of observed

characteristics for a specific stock is large, but is allowed to grow at a lower rate than the number

of all characteristics.

In our finite sample, there are cases where some stocks only have a small number of observed

characteristics. Hence, the characteristic factors ̂𝐹𝑡
𝑖 are averages over only a few entries. This can

become an issue if the characteristics with the largest factor weights in Λ𝑡
𝑙 are unobserved, that is,

the average is taken only over entries that would have negligible weights in the case of fully observed

characteristics.

We solve this problem with an adaptive ridge regression. In more detail, we add a ridge penalty

to the regression A.1 of the observed characteristics on the estimated loadings Λ̃:

̂𝐹𝑡
𝑖 = ⎛

⎝

𝐿

∑
𝑙=1

𝑊𝑡
𝑖,𝑙Λ̃𝑡

𝑙
̃Λ𝑡
𝑙
⊤
+ 𝛾𝑖,𝑡𝐼𝐾⎞

⎠

−1

⎛
⎝

𝐿

∑
𝑙=1

𝑊𝑡
𝑖,𝑙Λ̃𝑡

𝑙𝐶𝑡
𝑖,𝑙⎞
⎠
.

The ridge penalty 𝛾𝑖,𝑡 shrinks characteristic factors with observed characteristics, that have only

small factor weights, towards a cross-sectional median. For example, the first latent factor loads

heavily on profitability characteristics. If a particular stocks at a specific time has all profitability

characteristics missing, then its latent factor ̂𝐹𝑡
𝑖 would overweight the less relevant observed char-

acteristics. A larger ridge penalty would shrink this specific factor realization towards zero.

The adaptive ridge penalty only applies shrinkage when it is needed. If sufficiently many charac-
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teristics are observed, it is suboptimal to apply shrinkage. In our example of the first latent factor,

that loads heavily on profitability characteristics, it is sufficient to observe some of the profitability

characteristics for a specific stock to approximate this factor well. Hence, the adaptive ridge penalty

takes into account the amount of observed entries. More specifically, 𝛾𝑖,𝑡 is an exponentially decay-

ing function in the number of observed characteristics of stock 𝑖 at time 𝑡. The decay exponent is a

universal constant selected by cross-validation. Hence, for a sufficiently many observed entries, the

penalty converges to zero and no shrinkage is applied. However, for stocks that have only very few

observed characteristics, the penalty has an effect. The exponentially fast decay also implies that

the asymptotic theory in Xiong and Pelger (2019) is not affected.

The adaptive regularization is beneficial for logistic masking results. In that case, it is possible

that for some stocks a very large number of entries in the same characteristic group is masked. For

those stocks, the regularization provides robust out-of-sample results. In case of missing-at-random

or block-masking, the out-of-sample results with and without regularization are very similar. Hence,

we suggest to include the adaptive regularization for robustness in finite samples and include it in

our benchmark XS models.

Multihorizon Forecasts

In this appendix we discuss the prediction for longer horizons. Our pure cross-sectional models

(XS) only use contemporaneous information and as such do not impose any assumptions on the time-

series dynamics. In the main text we estimate models that incorporate the time-series dynamics of

characteristics. The estimated models (B-XS, BF-XS, B) estimate one-step ahead forecasts. However,

for blocks of missing time-series obervations we face the issue of a longer horizon forecast. Using a

time-series model for a multi-step prediction requires to make further assumptions on the dynamics

of the cross-sectional factors and the non-systematic component.

The implementations of our baseline models for B-XS, BF-XS and B, that we use in the main text,

estimate the parameters based on one-step ahead forecasts, and plug in the last observed value for

the multi-step forecast. This means that for our implementation of the B-XS model, the prediction

for 𝑠 periods into the future, given that 𝐶𝑙
𝑖,𝑡−1 is the last observed value, is

̂𝐶𝑙,B-XS
𝑖,𝑡+𝑠−1 = ( ̂𝛽𝑙,B-XS)

⊤
(𝐶𝑙

𝑖,𝑡−1 ̂𝐹𝑡
𝑖,1 ⋯ ̂𝐹𝑡

𝑖,𝐾) .

This is different from a recursive imputation of the missing values, which uses the imputed values
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from the last period as an input for the imputation of the next period. Note that a recursive model

requires to take a stand on the time-series dynamics of the factors and idiosyncratic component,

which was not part of the estimation. Essentially, the ̂𝛽𝑙,B-XS could be different for different horizon

forecasts. In this appendix, we present a more general model, which includes our baseline imple-

mentation as a special case. Our more general model estimates the dynamic multi-horizon structure

from the data. We can show that our simple baseline implementation is actually close to an optimal

model. Given its parsimonious structure, the main text only focuses on this transparent model.

Fundamentally, the key element of our model is to combine the information from the contempo-

raneous cross-section and the time-series dimension. A general model can be casted as a weighted

average of separate forecasts that uses different information sets.

First, we start with the same pure cross-sectional factor model as before:

𝐶𝑡
𝑖,𝑙 = 𝐹𝑡

𝑖Λ𝑙
⊤ + 𝑒𝑡𝑖,𝑙 with 𝑖 = 1, ..., 𝑁𝑡 and 𝑙 = 1, ..., 𝐿.

Given the estimated factors and loadings, we obtain our pure XS forecast:

̂𝐶𝑡,XS
𝑖,𝑙 = ̂𝐹𝑡

𝑖 Λ̂⊤
𝑙 .

Importantly, this forecast is available for all entries. We have shown empirically, that a pure XS

model can be improved when combined with time-series information. This is done in the weighted

average step, where we will also distinguish between a model that only uses past information or also,

in addition, future information:

B-XS weighted model:

E [𝐶𝑖,𝑡,𝑙|𝐶𝑖,𝑡−𝑠,𝑙, 𝐹𝑡
𝑖 ] = 𝑤XS,𝑙

𝑠 ̂𝐶𝑡,XS
𝑖,𝑙 + 𝑤B,𝑙

𝑠 𝐶𝑖,𝑡−𝑠,𝑙.

BF-XS weighted model:

E [𝐶𝑖,𝑡,𝑙|𝐶𝑖,𝑡−𝑠,𝑙, 𝐶𝑖,𝑡+𝑘,𝑙, 𝐹𝑡
𝑖 ] = 𝑤XS,𝑙

𝑠 ̂𝐶𝑡,XS
𝑖,𝑙 + 𝑤B,𝑙

𝑠 𝐶𝑖,𝑡−𝑠,𝑙 + 𝑤F,𝑙
𝑘 𝐶𝑖,𝑡+𝑘,𝑙.

This model is closely related to our baseline benchmark model, but allows to deal with multi-horizon

forecasts in a more systematic way. Consider 𝑠 = 1, i.e. we use only a one-step ahead forecast. In
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this case the weighted backward model can be expressed as

E [𝐶𝑖,𝑡,𝑙|𝐶𝑖,𝑡−1,𝑙, 𝐹𝑡
𝑖 ] = ((𝑤XS,𝑙

1 Λ1) ⋯ (𝑤XS,𝑙
1 Λ𝐾) 𝑤TS-B,𝑙

𝑠 )
⊤
( ̂𝐹𝑡

𝑖,1 ⋯ ̂𝐹𝑡
𝑖,𝐾 𝐶𝑖,𝑡−1,𝑙) .

This means that the weighted model is a special case of the baseline benchmark model for a one-

period prediction, but with a constraint on 𝛽𝑙,B-XS. The constraint is sensible as it imposes that 𝐹𝑡
𝑖Λ⊤

captures the pure XS characteristic information, while the time-series information provides the right

level for the forecast, without changing the relative cross-sectional weighting of the pure XS factors.

The weighted framework allows more flexibility for multi-period forecasts with a small number

of parameters and without a priori imposing strong assumptions on the time-series structure. We

could easily obtain a non-parametric model for the weights𝑤XS,𝑙
𝑠 , 𝑤B,𝑙

𝑠 and𝑤F,𝑙
𝑘 . One implementation,

which could be viewed as a non-parametric estimation, is to simply estimate different models for

each forecast horizon without further restricting them. For a specific characteristic 𝑙 and a specific

lack 𝑠, we could stack the characteristics 𝐶𝑙
𝑖,𝑡 over time and the cross-section and run a regression on

the stacked values of 𝐶𝑙
𝑖,𝑡−𝑠 and ̂𝐶𝑡,XS

𝑖,𝑙 . However, we suggest to impose some structure on the weights.

Guided by our empirical findings, the following parametric model provides a parsimonious and

interpretable framework:

𝑤TS-B,𝑙
𝑠 = 𝑎B,𝑙 + 𝑏B,𝑙𝑒−𝛾B,𝑙𝑠

𝑤TS-F,𝑙
𝑘 = 𝑎F,𝑙 + 𝑏F,𝑙𝑒−𝛾F,𝑙𝑘

𝑤XS,𝑙
𝑠 = 𝑎XS,𝑙 + 𝑏XS,𝑙𝑒−𝛾XS,𝑙 min(𝑠,𝑘).

This means that the B-XS and B-XS weighted model can be expressed as

BW weighted model:

E [𝐶𝑖,𝑡,𝑙|𝐶𝑖,𝑡−𝑠,𝑙, 𝐹𝑡
𝑖 ] = (𝑎XS,𝑙 + 𝑏XS,𝑙𝑒−𝛾XS,𝑙𝑠) ̂𝐶𝑡,XS

𝑖,𝑙 + (𝑎B,𝑙 + 𝑏B,𝑙𝑒−𝛾B,𝑙𝑠)𝐶𝑖,𝑡−𝑠,𝑙

BWFW weighted model:

E [𝐶𝑖,𝑡,𝑙|𝐶𝑖,𝑡−𝑠,𝑙, 𝐶𝑖,𝑡+𝑘,𝑙, 𝐹𝑡
𝑖 ] = (𝑎XS,𝑙 + 𝑏XS,𝑙𝑒−𝛾XS,𝑙 min(𝑠,𝑘)) ̂𝐶𝑡,XS

𝑖,𝑙 + (𝑎B,𝑙 + 𝑏B,𝑙𝑒−𝛾B,𝑙𝑠)𝐶𝑖,𝑡−𝑠,𝑙

+ (𝑎F,𝑙 + 𝑏F,𝑙𝑒−𝛾F,𝑙𝑘)𝐶𝑖,𝑡+𝑘,𝑙

This model has as two special cases: One special case keeps a weight of one on the last observed
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value, the second special case interpolates linearly between the last and first observed values. The

parameters of the weight functions can be easily estimated from minimizing the squared error of

𝑇

∑
𝑡=1

𝑁𝑡

∑
𝑖=1

𝑆

∑
𝑠=1

𝑊𝑡
𝑖,𝑙 (𝐶𝑙

𝑖,𝑡 − 𝑤XS,𝑙
𝑠 ̂𝐶𝑡,XS

𝑖,𝑙 − 𝑤B,𝑙
𝑠 𝐶𝑖,𝑡−𝑠,𝑙)

2

on the observed data.

The parametric model formulation has the benefit of being easy to interpret. The value of 𝑎+ 𝑏

measures the short-term effect, and 𝛾 measures the decay in information. A very persistent charac-

teristic is expected to have a large value for 𝑎 but a small value for 𝑏 and 𝛾.13

The more flexible model, that allows for horizon dependent weights, does not lead to substan-

tial improvements relative to our baseline implementation. Table A.1 compares the global B-XS as

implemented in the main text, and the more flexible global weighted B-XS. Note, that in-sample a

more flexible model will by construction always result in smaller RMSE. However, the differences

seem to be very small. For OOS missing-at-random we deal primarily with one-step ahead forecasts,

and hence the additional flexibility of the weighed B-XS cannot help. The only case, where the more

general structure can be relevant, is the OOS block-missing analysis. However, the improvements

seem to be minor. We conclude that our simple model is almost as good as a more complex model.

Hence, we favor the more parsimonious model as our baseline.

Table A.1: Imputation Error for Different Imputation Methods

In-Sample OOS MAR OOS Block OOS Logit

Method all quarterly monthly all quarterly monthly all quarterly monthly all quarterly monthly

weighted B-XS 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 0.13 0.12 0.15
global B-XS 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.13 0.12 0.15

Note: This table shows imputation RMSE for the global B-XS and global weighted B-XS methods averaged
over all characteristics and separately for monthly and quarterly updated characteristics. We report the
imputation error in-sample evaluated over all observed data, and out-of-sample for masked characteristics
from the fully present subset of the data. For the out-of-sample analysis we mask 10% of the data either
missing at random or missing in time-series blocks for 12 consecutive months.

13The weighted framework can be generalized to include a time-series forecasting model. This forecast could be based
for example on an autoregressive model or a more complex non-parametric time-series model. Given the information
set 𝐼𝑡−𝑠 and a forecasting model, we could include the forecast E [𝐶𝑖,𝑡,𝑙|𝑡−𝑠] in the weighted model with an additional
weight 𝑤TS,𝑙

𝑠 .
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Appendix B. Tables

Table B.1: Missing by Characteristic Quintiles

All ME Quintile Characteristic Quintile
[1-2] (2-3] (3-4] (4-5] [1-2] (2-3] (3-4] (4-5]

A2ME 12.43% 13.44% 10.51% 10.23% 9.93% 8.50% 9.56% 11.43% 15.25%
AC 43.20% 39.89% 34.04% 32.28% 26.67% 52.34% 26.01% 23.93% 51.18%
AT 12.43% 13.44% 10.51% 10.23% 9.93% 11.25% 10.20% 9.29% 9.01%
ATO 19.36% 22.33% 17.71% 16.24% 14.06% 19.27% 15.69% 14.11% 14.89%
B2M 10.69% 12.13% 8.67% 7.95% 6.63% 8.53% 7.75% 8.59% 12.31%
BETA_d 46.97% 56.44% 48.95% 44.73% 31.59% 39.19% 29.91% 28.54% 38.25%
BETA_m 35.85% 43.79% 37.57% 33.96% 23.76% 35.33% 22.39% 21.68% 32.85%
C2A 14.54% 15.49% 12.28% 12.10% 12.39% 15.45% 14.34% 12.39% 7.57%
CF2B 11.99% 14.17% 10.00% 8.86% 7.11% 9.73% 10.20% 10.09% 13.30%
CF2P 8.94% 10.81% 7.16% 5.38% 2.86% 8.62% 6.35% 6.36% 5.77%
CTO 19.35% 22.32% 17.70% 16.23% 14.06% 19.37% 15.25% 14.60% 15.24%
D2A 24.79% 25.89% 21.39% 20.77% 19.39% 22.07% 18.57% 18.61% 19.21%
D2P 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DPI2A 55.95% 51.92% 52.41% 50.37% 44.98% 57.90% 37.42% 33.58% 38.17%
E2P 8.94% 10.81% 7.16% 5.38% 2.86% 8.70% 6.33% 5.94% 9.14%
FC2Y 28.24% 28.17% 24.02% 22.34% 23.87% 15.19% 17.68% 17.27% 20.42%
HIGH52 61.96% 70.83% 64.36% 60.54% 44.51% 83.61% 59.03% 49.68% 78.85%
INV 33.04% 38.42% 32.44% 30.16% 24.25% 43.89% 23.13% 21.88% 37.65%
IdioVol 0.04% 0.09% 0.03% 0.01% 0.00% 0.05% 0.03% 0.03% 0.05%
LEV 16.87% 16.14% 13.46% 14.17% 13.40% 12.68% 12.97% 13.45% 16.62%
ME 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NI 32.01% 39.49% 32.54% 29.44% 22.76% 39.96% 23.09% 24.72% 32.03%
NOA 20.41% 23.11% 19.00% 17.98% 16.52% 17.71% 17.17% 17.08% 15.99%
OA 32.31% 24.86% 20.88% 20.51% 19.30% 40.22% 17.57% 15.58% 42.48%
OL 14.88% 16.34% 12.74% 12.30% 12.36% 15.26% 11.42% 11.68% 13.30%
OP 18.95% 14.32% 10.00% 8.81% 7.08% 10.94% 10.85% 9.61% 8.99%
PCM 17.12% 21.26% 16.81% 13.15% 10.61% 17.53% 14.05% 11.89% 10.13%
PM 13.91% 14.98% 11.53% 10.82% 9.91% 11.82% 11.73% 11.56% 14.21%
PROF 18.24% 21.22% 16.95% 15.13% 11.73% 18.78% 13.32% 12.78% 14.74%
Q 12.43% 13.44% 10.51% 10.23% 9.93% 14.38% 11.61% 9.76% 8.32%
R12_2 20.73% 26.04% 21.98% 19.41% 13.29% 36.47% 14.75% 11.49% 41.87%
R12_7 20.56% 25.75% 21.80% 19.32% 13.23% 39.37% 15.27% 12.00% 45.58%
R2_1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
R36_13 48.09% 58.13% 50.21% 45.42% 32.03% 57.91% 28.88% 22.84% 57.89%
R60_13 63.55% 74.31% 66.17% 60.78% 44.31% 63.36% 36.02% 29.05% 56.02%
RNA 21.66% 24.03% 19.65% 18.63% 17.24% 21.01% 16.50% 15.87% 18.25%
ROA 24.85% 28.86% 23.71% 21.98% 18.45% 25.90% 20.29% 17.08% 20.22%
ROE 23.15% 27.61% 21.93% 19.76% 15.17% 25.53% 17.74% 14.86% 20.98%
RVAR 0.04% 0.07% 0.03% 0.01% 0.03% 0.02% 0.02% 0.03% 0.04%
S2P 9.27% 11.08% 7.26% 5.42% 2.91% 7.87% 6.21% 6.50% 8.21%
SGA2S 28.27% 28.23% 24.03% 22.35% 23.87% 14.81% 17.56% 17.45% 20.65%
SPREAD 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SUV 7.74% 10.50% 8.07% 6.30% 4.23% 28.97% 6.01% 7.66% 36.33%
TURN 5.55% 7.80% 5.57% 4.30% 2.82% 9.18% 4.80% 3.53% 3.96%
VAR 0.04% 0.07% 0.03% 0.01% 0.03% 0.02% 0.02% 0.03% 0.04%

Note: This table reports the percentage of missing observations for different size and characteristic quintiles. The means are
pooled by stocks.
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Table B.2: Lengths of Missing Blocks

number of gaps mean length median length number of gaps mean length median length

A2ME 11693 11.14 9 OA 3814 18.6 7
AC 11948 12 9 OL 11320 8.85 3
AT 11693 11.14 9 OP 6542 11.75 6
ATO 7550 11.95 9 PCM 10324 9.65 3
B2M 11617 11.16 9 PM 11535 9.54 3
BETA_d 1324 31.46 4 PROF 11595 11.3 9
BETA_m 1556 28.58 5 Q 11693 11.14 9
C2A 6599 12.18 6 R12_2 1406 42.02 23
CF2B 6447 11.93 6 R12_7 2165 26.92 7
CF2P 4770 13.93 6 R2_1 2040 25.54 6
CTO 7458 12.05 9 R36_13 1812 33.59 23
D2A 14002 14.67 9 R60_13 1169 44.34 48
D2P 2040 25.54 6 RNA 12979 9.61 6
DPI2A 5612 29.51 12 ROA 6968 12.42 9
E2P 4770 13.93 6 ROE 6818 12.57 9
FC2Y 7927 15.5 9 RVAR 2019 25.89 7
HIGH52 1137 23.45 4 S2P 5238 13.32 6
INV 13076 11.28 9 SGA2S 7919 15.52 9
IdioVol 2162 24.31 6 SPREAD 2085 25.01 6
LEV 13952 13.64 9 SUV 2129 22.96 4
ME 2040 25.54 6 TURN 2156 22.53 3
NI 8757 12.11 9 VAR 2019 25.89 7
NOA 4071 16.71 7

Note: This table shows the number of missing blocks and their mean and median length for each characteristic.

64



Table B.3: OOS RMSE for Different Cross-Sectional Factor Models

Number of factors all characteristics quarterly characteristics monthly characteristics

local B-XS

1 0.143 0.142 0.145
2 0.142 0.141 0.145
3 0.142 0.141 0.144
4 0.142 0.140 0.144
5 0.142 0.140 0.145
6 0.142 0.140 0.145
7 0.142 0.140 0.146
8 0.143 0.139 0.149
9 0.148 0.141 0.158

global B-XS

1 0.144 0.142 0.146
2 0.143 0.142 0.146
3 0.143 0.142 0.146
4 0.143 0.141 0.146
5 0.143 0.141 0.147
6 0.143 0.140 0.149
7 0.146 0.140 0.154
8 0.150 0.142 0.164
9 0.174 0.153 0.207

local XS

1 0.261 0.261 0.262
2 0.248 0.245 0.252
3 0.238 0.232 0.249
4 0.234 0.228 0.245
5 0.232 0.226 0.243
6 0.232 0.225 0.243
7 0.232 0.226 0.244
8 0.236 0.229 0.249
9 0.251 0.240 0.270

Note: This table shows the out-of-sample imputation RMSE for different number of factors for the local and global cross-
sectional factor model with or without the past time-series information. For the out-of-sample analysis we mask 10% of the
data randomly in time-series blocks of 12 consecutive months.
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Table B.4: OOS RMSE in Characteristic Space for XS Factor Models

Number of factors all characteristics quarterly characteristics monthly characteristics
Constant factor weights on ranks

6 0.814 0.775 0.877
Factor model on normalized raw characteristics, global fit

1 0.956 0.944 0.967
2 0.931 0.910 0.960
3 0.925 0.903 0.955
4 0.919 0.888 0.965
5 0.930 0.894 0.983
6 0.965 0.913 1.047
7 1.021 0.951 1.130
8 1.125 1.021 1.287
9 1.569 1.356 1.888

Factor model on normalized raw characteristics, local fit
1 0.956 0.946 0.964
2 0.942 0.928 0.956
3 0.936 0.922 0.952
4 0.935 0.920 0.951
5 0.940 0.926 0.956
6 0.957 0.937 0.982
7 0.969 0.954 0.986
8 0.992 0.980 1.003
9 1.058 1.020 1.113

Factor model on kernel transformation of ranks global fit
1 0.916 0.905 0.927
2 0.871 0.852 0.897
3 0.833 0.798 0.888
4 0.823 0.791 0.872
5 0.813 0.779 0.866
6 0.819 0.783 0.875
7 0.841 0.806 0.893
8 0.943 0.924 0.968
9 1.394 1.277 1.576

Factor model on kernel transformation of ranks local fit
1 0.913 0.902 0.923
2 0.867 0.850 0.889
3 0.835 0.807 0.877
4 0.824 0.798 0.863
5 0.818 0.791 0.858
6 0.816 0.789 0.856
7 0.821 0.793 0.862
8 0.839 0.810 0.883
9 0.919 0.839 1.043

Note: This table shows the out-of-sample imputation RMSE in the original characteristic space without transforming charac-
teristics into ranks. The characteristics are normalized by their cross-sectional mean and variance. The RMSE are further
normalized by the RMSE of a medial that sets imputed values to zero, i.e. a simple median imputation. The first model is our
baseline factor model estimated on ranks and transformed back into the characteristic space with the empirically estimated
density function of each characteristic. We estimate the density function with the machine learning method, k-nearest neighbor.
The second and third model estimates the factor model directly on the characteristics. In the fourth and fifth case, we estimate
the factor model in the kernel transformed space with a Gaussian kernel and revert it back to the raw characteristics. For the
out-of-sample analysis we mask 10% of the data randomly in time-series blocks of 12 consecutive months.
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Table B.5: Imputation Error By Size Deciles

In-Sample OOS MAR OOS Block

size decile method all quarterly monthly all quarterly monthly all quarterly monthly

1
local B-XS 0.16 0.15 0.17 0.18 0.17 0.19 0.22 0.22 0.22
local XS 0.23 0.24 0.22 0.26 0.27 0.26 0.25 0.26 0.24
local B 0.17 0.16 0.18 0.19 0.17 0.20 0.24 0.24 0.23

2
local B-XS 0.15 0.14 0.15 0.16 0.16 0.17 0.20 0.21 0.19
local XS 0.21 0.22 0.20 0.24 0.25 0.23 0.23 0.24 0.22
local B 0.16 0.14 0.16 0.17 0.16 0.18 0.21 0.22 0.20

3
local B-XS 0.14 0.13 0.15 0.16 0.15 0.16 0.19 0.20 0.18
local XS 0.20 0.21 0.20 0.23 0.24 0.23 0.22 0.23 0.22
local B 0.15 0.14 0.16 0.16 0.16 0.17 0.20 0.22 0.20

4
local B-XS 0.14 0.13 0.15 0.16 0.15 0.16 0.19 0.19 0.18
local XS 0.20 0.21 0.19 0.23 0.24 0.22 0.22 0.23 0.22
local B 0.15 0.14 0.16 0.16 0.15 0.17 0.20 0.21 0.19

5
local B-XS 0.14 0.13 0.14 0.15 0.14 0.16 0.18 0.19 0.17
local XS 0.20 0.21 0.19 0.22 0.23 0.22 0.22 0.22 0.21
local B 0.15 0.13 0.15 0.16 0.15 0.16 0.19 0.21 0.18

6
local B-XS 0.13 0.12 0.14 0.15 0.14 0.15 0.18 0.18 0.17
local XS 0.20 0.20 0.19 0.22 0.23 0.22 0.21 0.22 0.21
local B 0.14 0.13 0.15 0.15 0.14 0.16 0.19 0.20 0.18

7
local B-XS 0.13 0.12 0.14 0.14 0.14 0.15 0.17 0.18 0.16
local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.22 0.21
local B 0.14 0.13 0.14 0.15 0.14 0.15 0.18 0.20 0.17

8
local B-XS 0.13 0.12 0.14 0.14 0.13 0.15 0.17 0.18 0.16
local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.21 0.21
local B 0.14 0.13 0.14 0.15 0.14 0.15 0.18 0.19 0.17

9
local bw 0.13 0.12 0.13 0.14 0.13 0.14 0.16 0.17 0.16
local XS 0.19 0.20 0.19 0.22 0.22 0.22 0.21 0.21 0.21
local B 0.14 0.12 0.14 0.14 0.13 0.15 0.18 0.18 0.17

10
local B-XS 0.12 0.11 0.13 0.13 0.13 0.14 0.16 0.16 0.15
local XS 0.19 0.19 0.19 0.21 0.21 0.22 0.21 0.21 0.21
local B 0.13 0.12 0.14 0.14 0.13 0.14 0.17 0.18 0.16

Note: This table shows out of sample imputation RMSE by imputation method for each size decile, overall and also for monthly
updated and quarterly updated characteristics. We report the imputation error in-sample evaluated over all observed data, and
out-of-sample for masked characteristics from the fully present subset of the data. For the out-of-sample analysis we mask 10%
of the data either missing at random or missing in time-series blocks for 12 consecutive months.
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Table B.6: Information used for Imputation for B-XS Model

Characteristic F1 F2 F3 F4 F5 F6 Prev Val

A2ME -0.008 0.077 0.007 -0.007 0.038 -0.008 0.816
AC -0.001 -0.011 -0.009 -0.002 0.010 0.039 0.841
AT -0.003 -0.001 0.001 -0.004 -0.000 0.001 0.990
ATO -0.003 -0.009 -0.056 0.031 -0.014 -0.021 0.857
B2M -0.002 0.032 0.002 0.004 0.023 0.004 0.916
BETA_d 0.006 -0.007 -0.007 -0.027 0.005 -0.018 0.943
BETA_m 0.003 -0.005 -0.004 -0.013 0.001 -0.009 0.965
C2A 0.002 -0.004 0.002 0.004 -0.001 -0.004 0.982
CF2B -0.027 -0.008 0.002 0.022 0.041 -0.005 0.822
CF2P -0.020 0.009 -0.009 -0.002 0.021 0.011 0.925
CTO -0.001 -0.005 -0.042 0.013 -0.009 -0.002 0.909
D2A 0.003 -0.001 -0.008 -0.005 -0.004 -0.006 0.962
D2P -0.004 0.002 0.001 0.002 0.000 -0.001 0.985
DPI2A -0.018 -0.037 -0.013 -0.061 0.011 0.102 0.660
E2P -0.030 0.002 -0.005 0.010 0.023 0.013 0.883
FC2Y 0.005 -0.005 0.005 0.006 0.007 -0.009 0.968
HIGH52 -0.051 -0.022 0.029 0.047 -0.106 0.019 0.681
INV -0.019 -0.028 0.004 -0.029 0.018 0.062 0.850
IdioVol 0.132 -0.011 -0.059 -0.049 0.113 0.066 0.506
LEV -0.001 0.008 -0.000 -0.011 0.003 0.000 0.969
ME -0.013 -0.010 0.002 -0.013 -0.018 -0.010 0.948
NI 0.009 -0.012 0.007 -0.023 -0.001 0.030 0.910
NOA -0.005 0.004 -0.014 -0.024 0.005 0.036 0.910
OA -0.007 -0.007 -0.015 0.010 0.013 0.018 0.661
OL 0.008 -0.004 -0.038 0.017 -0.017 -0.010 0.908
OP -0.026 -0.005 -0.019 -0.009 0.028 0.000 0.873
PCM -0.002 -0.005 0.005 0.003 0.012 -0.003 0.971
PM -0.014 -0.003 0.005 -0.001 0.011 0.005 0.947
PROF -0.004 -0.002 -0.020 0.009 0.014 -0.016 0.934
Q 0.010 -0.082 -0.009 0.007 -0.037 0.005 0.802
R12_2 -0.036 -0.047 0.006 0.014 -0.055 0.101 0.721
R12_7 -0.043 -0.057 0.006 0.016 -0.061 0.136 0.652
R2_1 -0.042 -0.050 0.006 0.008 -0.122 0.003 -0.056
R36_13 -0.016 -0.018 -0.000 -0.003 0.016 0.002 0.906
R60_13 -0.012 -0.014 0.000 -0.003 0.011 0.000 0.941
RNA -0.022 -0.022 -0.010 0.013 0.014 -0.003 0.886
ROA -0.032 -0.024 -0.019 0.007 0.022 0.013 0.875
ROE -0.042 -0.026 -0.017 0.005 0.039 0.009 0.835
RVAR 0.112 -0.008 -0.051 -0.038 0.100 0.060 0.584
S2P -0.003 0.038 -0.040 0.005 0.012 -0.008 0.878
SGA2S 0.005 -0.004 0.005 0.006 0.006 -0.007 0.974
SPREAD 0.094 -0.008 -0.028 -0.023 0.070 0.045 0.626
SUV 0.001 -0.015 -0.003 -0.052 -0.019 -0.022 0.025
TURN 0.005 -0.067 -0.029 -0.143 -0.019 -0.069 0.637
VAR 0.126 -0.017 -0.059 -0.064 0.108 0.053 0.520

Note: This table shows the the regression coefficients on the cross-sectional factor model and the past time-series information
of the global BW-XS model. We report the coefficients on each of the six factors and the past value.
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Table B.7: Information used for Imputation for BF-XS Model

Characteristic F1 F2 F3 F4 F5 F6 Prev Val Next Val

A2ME -0.005 0.045 0.004 -0.003 0.022 -0.005 0.466 0.432
AC -0.001 -0.003 -0.002 -0.001 0.007 0.018 0.497 0.494
AT -0.001 0.001 0.000 -0.002 0.000 0.000 0.507 0.490
ATO -0.001 -0.002 -0.013 0.007 -0.003 -0.004 0.490 0.482
B2M -0.000 0.018 0.000 0.003 0.013 0.000 0.487 0.477
BETA_d 0.002 -0.002 -0.002 -0.008 0.001 -0.005 0.498 0.489
BETA_m 0.001 -0.001 -0.001 -0.004 0.000 -0.003 0.493 0.500
C2A 0.001 -0.002 0.001 0.002 -0.001 -0.003 0.502 0.493
CF2B -0.005 -0.002 -0.000 0.006 0.016 -0.001 0.491 0.491
CF2P -0.005 0.005 -0.003 -0.000 0.009 0.002 0.500 0.481
CTO -0.001 -0.002 -0.014 0.003 -0.002 0.001 0.490 0.482
D2A 0.001 -0.000 -0.002 -0.000 -0.002 -0.004 0.500 0.497
D2P -0.001 0.001 0.000 0.000 0.001 -0.000 0.499 0.499
DPI2A -0.004 -0.009 -0.005 -0.026 0.008 0.046 0.477 0.477
E2P -0.011 0.002 -0.003 0.004 0.015 0.005 0.480 0.484
FC2Y 0.002 -0.002 0.002 0.002 0.001 -0.003 0.500 0.491
HIGH52 -0.023 -0.020 0.015 0.023 -0.067 0.019 0.426 0.440
INV -0.006 -0.006 0.002 -0.014 0.011 0.024 0.490 0.478
IdioVol 0.058 -0.007 -0.027 -0.026 0.052 0.030 0.390 0.408
LEV -0.000 0.002 -0.000 -0.004 0.001 0.000 0.502 0.492
ME -0.006 -0.005 0.001 -0.007 -0.009 -0.005 0.509 0.466
NI 0.002 -0.003 0.003 -0.008 0.001 0.011 0.497 0.491
NOA -0.002 0.002 -0.004 -0.012 0.004 0.019 0.488 0.488
OA -0.001 -0.002 -0.004 0.004 0.007 0.015 0.498 0.497
OL 0.003 -0.003 -0.017 0.008 -0.008 -0.005 0.483 0.478
OP -0.007 -0.002 -0.006 -0.002 0.013 0.000 0.487 0.488
PCM -0.001 -0.002 0.002 0.001 0.007 -0.001 0.498 0.493
PM -0.007 -0.001 0.002 -0.001 0.009 0.002 0.488 0.490
PROF -0.001 -0.001 -0.006 0.003 0.005 -0.006 0.498 0.489
Q 0.005 -0.047 -0.005 0.003 -0.021 0.004 0.461 0.432
R12_2 -0.016 -0.024 0.002 0.008 -0.024 0.059 0.442 0.455
R12_7 -0.018 -0.027 0.002 0.008 -0.025 0.071 0.447 0.432
R2_1 -0.043 -0.050 0.006 0.009 -0.122 0.003 -0.057 -0.034
R36_13 -0.004 -0.005 -0.000 -0.001 0.006 -0.001 0.493 0.492
R60_13 -0.002 -0.003 0.000 -0.001 0.003 -0.001 0.497 0.494
RNA -0.005 -0.005 -0.003 0.002 0.008 0.002 0.493 0.489
ROA -0.007 -0.005 -0.005 0.001 0.007 0.002 0.499 0.477
ROE -0.009 -0.006 -0.004 0.001 0.012 0.002 0.494 0.476
RVAR 0.022 -0.001 -0.010 -0.006 0.022 0.014 0.484 0.440
S2P -0.002 0.021 -0.021 0.004 0.007 -0.005 0.478 0.460
SGA2S 0.002 -0.002 0.002 0.002 0.001 -0.003 0.502 0.490
SPREAD 0.058 -0.007 -0.018 -0.020 0.045 0.027 0.368 0.412
SUV 0.001 -0.016 -0.004 -0.053 -0.018 -0.022 0.034 0.037
TURN 0.005 -0.046 -0.021 -0.100 -0.012 -0.047 0.391 0.387
VAR 0.054 -0.009 -0.026 -0.032 0.049 0.024 0.397 0.411

Note: This table shows the the regression coefficients on the cross-sectional factor model and the past time-series information
of the global BF-XS model. We report the coefficients on each of the six factors and the past and future values.
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Table B.8: Imputation Error For Different Size Filters

estimation evaluation aggregate quarterly monthly

< $ 1 firms
< $ 1 firms 0.09 0.10 0.05
≥ $ 1 firms 0.16 0.15 0.17

all 0.16 0.15 0.17

≥ $ 1 firms
< $ 1 firms 0.26 0.30 0.24
≥ $ 1 firms 0.14 0.14 0.14

all 0.14 0.14 0.14

all
< $ 1 firms 0.26 0.30 0.24
≥ $ 1 firms 0.14 0.14 0.14

all 0.14 0.14 0.14

Note: This figure shows the imputation RMSE for the global B-XS model across fits and evaluations on firms with filters based
on share prices.

Table B.9: Imputation Results with and without Financial Firms

estimation evaluation aggregate quarterly monthly

financial firms
financial firms 0.14 0.13 0.14

non financial firms 0.14 0.13 0.14

non financial firms
financial firms 0.14 0.14 0.14

non financial firms 0.14 0.14 0.14

This figure shows the imputation RMSE for the global B-XS model across fits and evaluations on financial and non-financial
firms.
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Table B.10: Univariate Long-Short Decile Factors with and without Imputation

(1) Fully Observed (2) Obs ≥ 10 (3) Specific Char Observed (2) + (3) (2) - (3)

mean stdev Sharpe vw % % mean stdev Sharpe vw % % mean stdev Sharpe vw % % mean stdev Sharpe vw % % mean stdev Sharpe vw % %

A2ME 3.52 11.2 0.31 0.22 0.41 2.44 9.06 0.27 0.4 0.63 1.66 6.27 0.26 0.92 0.99 1.66 6.27 0.26 0.93 1.0

AC 1.79 5.22 0.34 0.22 0.41 1.87 5.0 0.37 0.4 0.63 1.97 5.07 0.39 0.7 0.79 1.98 5.05 0.39 0.72 0.82 2.15 13.98 0.15 0.02 0.03

AT 1.41 4.51 0.31 0.22 0.41 1.35 4.34 0.31 0.4 0.63 1.38 4.24 0.32 0.92 0.99 1.38 4.24 0.32 0.93 1.0

ATO 2.14 5.29 0.4 0.22 0.41 2.13 5.21 0.41 0.4 0.63 2.25 5.31 0.42 0.89 0.99 2.25 5.31 0.42 0.89 0.99 1.88 18.31 0.1 0.01 0.0

B2M 2.38 7.74 0.31 0.22 0.41 2.53 7.28 0.35 0.4 0.63 2.3 5.71 0.4 0.93 0.99 2.3 5.71 0.4 0.93 1.0 1.69 25.72 0.07 0.0 0.0

BETA_d 2.11 8.7 0.24 0.22 0.41 2.25 8.5 0.27 0.4 0.63 2.18 8.03 0.27 0.78 0.95 2.18 8.03 0.27 0.79 0.95

BETA_m 2.38 9.21 0.26 0.22 0.41 2.61 8.8 0.3 0.4 0.63 2.65 8.53 0.31 0.85 0.96 2.65 8.53 0.31 0.86 0.96

C2A 2.09 6.19 0.34 0.22 0.41 2.04 5.98 0.34 0.4 0.63 2.21 6.09 0.36 0.91 0.99 2.22 6.1 0.36 0.91 0.99 4.87 15.3 0.32 0.0 0.0

CF2B 1.79 5.25 0.34 0.22 0.41 1.89 5.02 0.38 0.4 0.63 1.87 4.71 0.4 0.92 0.99 1.88 4.71 0.4 0.92 0.99 1.04 20.62 0.05 0.0 0.0

CF2P 1.89 6.53 0.29 0.22 0.41 2.09 6.65 0.31 0.4 0.63 1.52 3.98 0.38 0.93 0.99 1.52 3.98 0.38 0.93 1.0

CTO 1.87 4.97 0.38 0.22 0.41 1.95 4.93 0.4 0.4 0.63 2.07 4.96 0.42 0.89 0.99 2.07 4.96 0.42 0.9 0.99 1.2 18.15 0.07 0.01 0.0

D2A 1.67 5.81 0.29 0.22 0.41 1.79 5.25 0.34 0.4 0.63 1.86 5.34 0.35 0.78 0.91 1.83 5.21 0.35 0.83 0.94 1.95 7.2 0.27 0.04 0.03

D2P 2.3 5.1 0.45 0.22 0.41 2.32 4.88 0.48 0.4 0.63 2.12 4.17 0.51 1.0 1.0 2.12 4.17 0.51 1.0 1.0

DPI2A 1.76 6.17 0.29 0.22 0.41 1.74 5.9 0.3 0.4 0.63 1.85 5.92 0.31 0.5 0.61 1.84 5.91 0.31 0.61 0.77 1.58 9.68 0.16 0.11 0.16

E2P 2.27 6.39 0.36 0.22 0.41 2.23 5.97 0.37 0.4 0.63 2.08 5.23 0.4 0.93 0.99 2.08 5.23 0.4 0.93 1.0 3.25 25.49 0.13 0.0 0.0

FC2Y 1.73 4.65 0.37 0.22 0.41 1.76 4.58 0.38 0.4 0.63 1.93 4.99 0.39 0.75 0.8 1.95 4.99 0.39 0.78 0.83 2.73 7.24 0.38 0.03 0.03

HIGH52 1.19 4.37 0.27 0.22 0.41 1.23 4.23 0.29 0.4 0.63 1.27 3.94 0.32 0.66 0.9 1.27 3.94 0.32 0.66 0.9

INV 1.78 6.27 0.28 0.22 0.41 1.91 6.07 0.32 0.4 0.63 1.96 6.01 0.33 0.83 0.97 1.96 5.98 0.33 0.84 0.98 0.85 15.38 0.06 0.01 0.0

IdioVol 2.78 8.45 0.33 0.22 0.41 2.91 8.47 0.34 0.4 0.63 3.37 8.98 0.37 1.0 1.0 3.37 8.98 0.38 1.0 1.0

LEV 2.07 6.06 0.34 0.22 0.41 1.91 6.0 0.32 0.4 0.63 1.75 5.74 0.31 0.86 0.95 1.75 5.72 0.31 0.88 0.97 2.15 12.19 0.18 0.02 0.02

ME 1.48 4.59 0.32 0.22 0.41 1.48 4.46 0.33 0.4 0.63 1.43 4.3 0.33 1.0 1.0 1.43 4.3 0.33 1.0 1.0

NI 1.91 6.26 0.31 0.22 0.41 1.87 5.99 0.31 0.4 0.63 1.84 5.57 0.33 0.83 0.97 1.84 5.58 0.33 0.84 0.97 2.07 10.69 0.19 0.01 0.0

NOA 1.64 5.97 0.27 0.22 0.41 1.65 5.75 0.29 0.4 0.63 1.64 5.04 0.33 0.89 0.99 1.64 5.04 0.33 0.89 0.99 1.25 30.89 0.04 0.01 0.0

OA 1.8 5.29 0.34 0.22 0.41 1.78 5.09 0.35 0.4 0.63 1.94 5.12 0.38 0.75 0.8 1.93 5.13 0.38 0.76 0.83 1.11 23.06 0.05 0.01 0.03

OL 1.81 4.98 0.36 0.22 0.41 1.94 4.99 0.39 0.4 0.63 2.03 4.92 0.41 0.9 0.99 2.04 4.92 0.42 0.91 0.99 2.63 15.15 0.17 0.01 0.0

OP 1.88 5.28 0.36 0.22 0.41 1.87 5.12 0.36 0.4 0.63 1.97 5.04 0.39 0.83 0.93 1.97 5.04 0.39 0.84 0.93 2.19 23.16 0.09 0.0 0.0

PCM 1.63 4.98 0.33 0.22 0.41 1.61 4.76 0.34 0.4 0.63 1.7 4.81 0.35 0.89 0.99 1.7 4.81 0.35 0.91 0.99 3.96 13.19 0.3 0.01 0.0

PM 1.79 5.71 0.31 0.22 0.41 1.69 5.27 0.32 0.4 0.63 1.55 4.48 0.35 0.9 0.98 1.55 4.48 0.35 0.91 0.99 2.74 19.2 0.14 0.01 0.0

PROF 1.87 4.83 0.39 0.22 0.41 1.92 4.73 0.41 0.4 0.63 1.99 4.79 0.41 0.9 0.99 1.99 4.79 0.42 0.9 0.99 2.06 18.77 0.11 0.0 0.0

Q 1.6 5.13 0.31 0.22 0.41 1.65 4.96 0.33 0.4 0.63 1.78 5.23 0.34 0.92 0.99 1.79 5.23 0.34 0.93 1.0

R12_2 2.34 6.46 0.36 0.22 0.41 2.41 6.24 0.39 0.4 0.63 2.59 6.34 0.41 0.92 0.98 2.59 6.34 0.41 0.92 0.98

R12_7 2.26 6.61 0.34 0.22 0.41 2.39 6.48 0.37 0.4 0.63 2.65 6.53 0.41 0.92 0.98 2.66 6.53 0.41 0.92 0.98

R2_1 1.85 6.17 0.3 0.22 0.41 1.92 5.93 0.32 0.4 0.63 2.07 5.94 0.35 1.0 1.0 2.07 5.94 0.35 1.0 1.0

R36_13 1.94 6.5 0.3 0.22 0.41 2.06 6.36 0.32 0.4 0.63 2.02 6.05 0.33 0.77 0.95 2.01 6.05 0.33 0.78 0.95 0.49 14.98 0.03 0.01 0.0

R60_13 1.76 6.08 0.29 0.22 0.41 1.87 6.12 0.31 0.4 0.63 1.89 5.87 0.32 0.64 0.91 1.89 5.86 0.32 0.65 0.91 1.77 14.03 0.13 0.01 0.0

RNA 1.85 5.13 0.36 0.22 0.41 1.79 4.88 0.37 0.4 0.63 1.89 4.92 0.39 0.87 0.98 1.89 4.91 0.38 0.88 0.98 2.99 16.75 0.18 0.01 0.0

ROA 1.66 5.07 0.33 0.22 0.41 1.64 4.79 0.34 0.4 0.63 1.75 4.91 0.36 0.87 0.98 1.76 4.9 0.36 0.87 0.98

ROE 1.7 5.15 0.33 0.22 0.41 1.63 4.76 0.34 0.4 0.63 1.75 4.84 0.36 0.87 0.98 1.76 4.84 0.36 0.88 0.98

RVAR 2.83 9.11 0.31 0.22 0.41 2.98 8.95 0.33 0.4 0.63 3.5 9.25 0.38 1.0 1.0 3.5 9.25 0.38 1.0 1.0

S2P 2.81 6.95 0.4 0.22 0.41 2.51 6.41 0.39 0.4 0.63 2.69 6.39 0.42 0.92 1.0 2.69 6.38 0.42 0.93 1.0 -0.06 26.34 -0.0 0.0 0.0

SGA2S 1.78 5.1 0.35 0.22 0.41 1.78 4.85 0.37 0.4 0.63 1.97 5.37 0.37 0.75 0.8 1.99 5.31 0.37 0.78 0.83 2.65 7.38 0.36 0.03 0.03

SPREAD 3.17 10.44 0.3 0.22 0.41 3.32 10.19 0.33 0.4 0.63 3.68 9.59 0.38 1.0 1.0 3.68 9.59 0.38 1.0 1.0

SUV 1.78 5.24 0.34 0.22 0.41 1.8 5.13 0.35 0.4 0.63 1.96 5.0 0.39 0.93 1.0 1.96 5.0 0.39 0.94 1.0

TURN 2.49 7.96 0.31 0.22 0.41 2.61 7.75 0.34 0.4 0.63 2.74 7.63 0.36 0.94 1.0 2.74 7.63 0.36 0.94 1.0

VAR 2.77 9.32 0.3 0.22 0.41 2.92 9.2 0.32 0.4 0.63 3.35 9.39 0.36 1.0 1.0 3.35 9.39 0.36 1.0 1.0

This table shows the mean, volatility, Sharpe ratio, value percentage and percentage of total stocks used to construct long-short
decile factors. The quantile cutoffs are based on deciles of fully present NYSE data. We consider (1) fully observed data, (2)
only ≥ 10 observed characteristics, where the rest is imputed, (3) specific characteristic present, other characteristics missing,
(4) union of 3 and 2 (in 3 or 2), (5) not in (3) but in (2). Mean and standard deviations are reported as percentages. We use the
global B-XS model to impute missing values that have prior observations available and the global XS model for the case without
prior observations.
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Table B.11: Firm Characteristics

Acronym Name Definition Reference Freq

A2ME Assets to market cap Total assets (AT) over market capitalization (PRC*SHROUT) as of current month Bhandari (1988) Q

AC Accrual Change in operating working capital per split-adjusted share from the fiscal year end t-2 to t-1 divided by book
equity (defined in B2M) per share in t-1. Operating working capital per split-adjusted share is defined as current
assets (ACTQ) minus cash and short-term investments (CHEQ) minus current liabilities (LCTQ) minus debt in current
liabilities (DLCQ) minus income taxes payable (TXPQ).

Sloan (1996) Q

AT Total Assets Total Assets (ATQ) Gandhi and Lustig (2015) Q

ATO Net sales over lagged
net operating assets

Net sales (SALEQ) over lagged net operating assets. Net operating assets are the difference between operating assets
and operating liabilities (defined in NOA)

Soliman (2008) Q

B2M Book to Market Ratio Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITCQ), minus preferred
stock (PSTKQ). SH is shareholdersâ�� equity (SEQQ). If missing, SH is the sum of common equity (CEQQ) and preferred
stock (PSQ). If missing, SH is the difference between total assets (ATQ) and total liabilities (LTQ). The market value
of equity (PRC*SHROUT) is as of the current month.

Fama and French (1992) Q

Beta_d CAPM Beta Product of correlations between the excess return of stock i and the market excess return and the ratio of volatilities.
We calculate volatilities from the standard deviations of daily log excess returns over a one-year horizon requiring
at least 120 observations. We estimate correlations using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.

Frazzini and Pedersen (2014) M

Beta_m Market Beta Coefficient of the market excess return from the regression on excess returns in the past 60 months (24 months
minimum)

Fama & MacBeth (1973) M

C2A Ratio of cash and short-
term investments to to-
tal assets

Ratio of cash and short-term investments (CHEQ) to total assets (ATQ) Palazzo (2012) Q

CF2B Free Cash Flow to Book
Value

Cash flow to book value of equity is the ratio of net income (NIQ), depreciation and amortization (DPQ), less change
in working capital (WCAPCH), and capital expenditure (CAPX) over the book-value of equity (defined in B2M)

Hou et al. (2011) Q

CF2P Cashflow to price Cashflow over market capitalization (PRC*SHROUT) as of currrent month. Cashflow is defined as income before
extraordinary items (IBQ) plus depreciation and amortization (DPQ) plus deferred taxes (TXDBQ).

Desai, Rajgopal & Venkatachalam
(2004)

Q

CTO Capital turnover Ratio of net sales (SALEQ) to lagged total assets (ATQ) Haugen and Baker (1996) Q

D2A Capital intensity Ratio of depreciation and amortization (DPQ) to total assets (ATQ) Gorodnichenko and Weber (2016) Q

D2P Dividend Yield Total dividends (DIVAMT) paid from July of t-1 to June of t per dollar of equity (ME) in June of t Litzenberger and Ramaswamy
(1979)

M

DPI2A Change in property,
plants, and equipment

Changes in property, plants, and equipment (PPEGTQ) and inventory (INVTQ) over lagged total assets (ATQ) Lyandres, Sun, and Zhang (2008) Q

E2P Earnings to price The earnings used in months (t, t+1, t+2) are the earning from the quarter reported at time t (IBQ). P (actually ME)
is price times shares outstanding at the end of current month.

Basu (1983) Q

FC2Y Fixed costs to sales Ratio of selling, general, and administrative expenses (XSGAQ), research and development expenses (XRDQ), and
advertising expenses (XADQ) to net sales (SALEQ)

D’��Acunto, Liu, Pflueger, and We-
ber (2016)

Y

HIGH52 Closeness to past year
high

The ratio of stock price at the end of the current calendar month and the highest daily price in the past year George and Hwang (2004) M

IdioVol Idiosyncratic volatility ”Standard deviation of the residuals from a regression of excess returns on the Fama and French three-factor model” Ang, Hodrick, Xing, and Zhang
(2006)

M

INV Investment Change in total assets (ATQ) from the fiscal quarter ending in month t-12 to the fiscal quarter ending in t, divided
by t-12 total assets

Cooper, Gulen, and Schill (2008) Q

LEV Leverage Ratio of long-term debt (DLTTQ) and debt in current liabilities (DLCQ) to the sum of long-term debt, debt in current
liabilities, and stockholders’�� equity (SEQQ)

Lewellen (2015) Q

ME Size Total market capitalization at the end of the current month defined as price times shares outstanding Fama and French (1992) M

LT_Rev Long-term reversal Cumulative return from 60 months before the return prediction to 13 months before Jegadeesh and Titman (2001) M

TURN Turnover Turnover is last month’��s volume (VOL) over shares outstanding (SHROUT) Datar, Naik, and Radcliffe (1998) M

NI Net Share Issues The change in the natural log of split-adjusted shares outstanding (CSHO*AJEX) from the fiscal yearend in t-2 to the
fiscal yearend in t-1

Pontiff and Woodgate (2008) M

NOA Net operating assets Difference between operating assets minus operating liabilities scaled by lagged total assets (ATQ). Operating assets
are total assets (ATQ)minus cash and short-term investments (CHEQ), minus investment and other advances (IVAOQ).
Operating liabilities are total assets (ATQ), minus debt in current liabilities (DLCQ), minus long-term debt (DLTTQ),
minus minority interest (MIBQ), minus preferred stock (PSTKQ), minus common equity (CEQQ).

Hirshleifer, Hou, Teoh, and Zhang
(2004)

Q

OA Operating accruals Changes in non-cash working capital minus depreciation (DPQ) scaled by lagged total assets (ATQ). Non-cash working
capital is defined in Accrual (AC)

Sloan (1996) Q

OL Operating leverage Sum of cost of goods sold (COGSQ) and selling, general, and administrative expenses (XSGAQ) over total assets (ATQ) Novy-Marx (2011) Q

OP Operating profitability Annual revenues (REVTQ) minus cost of goods sold (COGSQ), interest expense (TIEQ), and selling, general, and
administrative expenses (XSGAQ) divided by book equity (defined in B2M)

Fama and French (2015)

PCM Price to cost margin Difference between net sales (SALEQ) and costs of goods sold (COGSQ) divided by net sales (SALEQ) Bustamante and Donangelo (2016) Q

PM Profit margin Operating income after depreciation (OIADPQ) over net sales (SALEQ) Soliman (2008) Q

Note: Continued on next page.
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Acronym Name Definition Reference Freq

PROF Profitability Gross profit (GP) divided by the book value of equity (defined in B2M) Ball, Gerakos, Linnainmaa, and
Nikolaev (2015)

Y

Q Tobin’s Q ”Tobinâ��s Q is total assets (ATQ), the market value of equity (SHROUT times PRC) minus cash and short-term
investments (CEQQ), minus deferred taxes (TXDBQ) scaled by total assets (ATQ)”

Kaldor (1966) Q

R12_2 Momentum To be included in a portfolio for month t (formed at the end of month t-1), a stock must have a price for the end of
month t-13 and a good return for t-2. In addition, any missing returns from t-12 to t-3 must be -99.0, CRSP’s code
for a missing price. Each included stock also must have ME for the end of month t-1.

Fama and French (1996) M

R12_7 Intermediate momen-
tum

Cumulative return from 12 months before the return prediction to seven months before Novy-Marx (2012) M

R36_13 Long-term reversal Cumulative return from 36 months before the return prediction to 13 months before De Bondt and Thaler (1985) M

R2_1 Short-term reversal Lagged one-month return Jegadeesh and Titman (1993) M

RNA Return on net operat-
ing assets

Ratio of operating income after depreciation (OIADPQ) to lagged net operating assets. Net operating assets are the
difference between operating assets minus operating liabilities. (defined in NOA)

Soliman (2008) Q

ROA Return on assets Income before extraordinary items (IBQ) to lagged total assets (ATQ) Balakrishnan, Bartov, and Faurel
(2010)

Q

ROE Return on equity Income before extraordinary items (IBQ) to lagged book-value of equity (defined in B2M) Haugen and Baker (1996) Q

RVAR Residual Variance Variance of the residuals from a regression of excess returns in the past two months on the CAPM model Ang, Hodrick, Xing, and Zhang
(2006)

M

S2P Sales to price Ratio of net sales (SALEQ) to the market capitalization (ME) Lewellen (2015) Q

SGA2S Selling, general and ad-
ministrative expenses
to sales

Ratio of selling, general and administrative expenses (XSGAQ) to net sales (SALEQ) Freyberger, Neuhierl, Weber (2017) Q

SPREAD Bid-ask spread The average daily bid-ask spread in the current month Chung and Zhang (2014) M

SUV Standard unexplained
volume

Difference between actual volume and predicted volume in the current month. Predicted volume comes from a
regression of daily volume on a constant and the absolute values of positive and negative returns. Unexplained
volume is standardized by the standard deviation of the residuals from the regression

Garfinkel (2009) M

VAR Variance Variance of daily returns in the past 60 days Ang, Hodrick, Xing, and Zhang
(2006)

M

Note: This table summarizes the information about the 45 characteristics. We report the abbreviation, name, definition, reference and
updating frequency.
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Table B.12: CRSP and Compustat dependencies in the construction of characteristics

Characteristic CRSP Dependencies Compustat Dependencies
Monthly Daily Quarterly Yearly

A2ME prc, shrout atq
AC actq, atq, ceqq, cheq, dlcq, lctq, ltq, pstkq, pstkq, seqq, txditcq, txpq
AT atq
ATO atq, atq, ceqq, cheq, dlcq, dlttq, ivaoq, mibq, pstkq, saleq
B2M prc, shrout atq, ceqq, ltq, pstkq, pstkq, seqq, txditcq
BETA_d ret ret
BETA_m ret
C2A atq, cheq
CF2B atq, capxy, ceqq, dpq, ltq, niq, pstkq, pstkq, seqq, txditcq, wcapchy
CF2P prc, shrout dpq, ibq, txdbq
CTO atq, saleq
D2A atq, dpq
D2P divamt, prc, shrout
DPI2A atq, invtq, ppegtq
E2P prc, shrout ibq
FC2Y saleq, xrdq, xsgaq xad
HIGH52 prc prc
INV atq
IdioVol ret ret
LEV dlcq, dlttq, seqq
ME prc, shrout
NI ajexq, cshoq
NOA atq, atq, atq, ceqq, cheq, dlcq, dlttq, ivaoq, mibq, pstkq
OA actq, atq, cheq, dlcq, dpq, lctq, txpq
OL atq, cogsq, xsgaq
OP atq, ceqq, cogsq, ltq, pstkq, pstkq, revtq, seqq, tieq, txditcq, xsgaq
PCM cogsq, saleq
PM oiadpq, saleq
PROF atq, ceqq, ltq, pstkq, pstkq, seqq, txditcq gp
Q prc, shrout atq, ceqq, txdbq
R12_2 prc, prc, ret, shrout
R12_7 ret
R2_1 ret
R36_13 ret
R60_13 ret
RNA atq, atq, ceqq, cheq, dlcq, dlttq, ivaoq, mibq, oiadpq, pstkq
ROA atq, ibq
ROE atq, ceqq, ibq, ltq, pstkq, pstkq, seqq, txditcq
RVAR ret ret
S2P prc, shrout saleq
SGA2S saleq, xsgaq
SPREAD ret askhi, bidlo
SUV ret ret, vol
TURN shrout, vol
VAR ret ret

This table shows the CRSP and Compustat dependencies in the construction of characteristics. We report for each characteristic,
which CRSP and Compustat variables are used in the construction and the corresponding updating frequency.
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Appendix C. Figures

Figure C.1: Missing Observations by Characteristic Pooled by Stocks

(a) Pooled Mean across Stocks (Equally-weighted)
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(b) Pooled Mean across Stocks (Value-weighted)
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Note: This figure shows the average percentage of missing observations for each characteristic. The means are pooled by
stocks, which are equally weighted in the top panel and value-weighted in the bottom panel. We decompose the missing values
in those missing at the start (no previous observations), the middle (some previous and future observations), the end (no further
observations) and completely missing.
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Figure C.2: Heatmap of Pairwise Correlation from 1967–1976
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Note: This figure shows the pairwise correlations across time and stocks for each characteristic. The time period is the early
sample from 1967-1976.
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Figure C.3: Composition of Latent Factors by Characteristic Categories
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(d) Factor 4
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(f) Factor 6
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Note: This figure shows the global factor loadings on the characteristics for the first 6 factors. The loadings are colored by the
category to which the characteristic belongs.

77



Figure C.4: Composition of Latent Factors Grouped by Frequencies

(a) Factor 1

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.2

0.1

0.0

0.1

0.2

M
QY
Q
QM

(b) Factor 2

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4 M
QY
Q
QM

(c) Factor 3

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.4

0.3

0.2

0.1

0.0

0.1

0.2 M
QY
Q
QM

(d) Factor 4

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.4

0.3

0.2

0.1

0.0

0.1

0.2 M
QY
Q
QM

(e) Factor 5

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.2

0.1

0.0

0.1

0.2

0.3

0.4 M
QY
Q
QM

(f) Factor 6

BE
TA

_d
BE

TA
_m D2

P
Id

io
Vo

l
M

E
TU

RN
R2

_1
R1

2_
2

R1
2_

7
R3

6_
13

R6
0_

13
HI

GH
52

RV
AR

SP
RE

AD SU
V

VA
R

FC
2Y

PR
OF

A2
M

E AC AT AT
O

C2
A

CF
2B CT
O

D2
A

DP
I2

A
IN

V
LE

V NI
NO

A OA OL OP PC
M PM RN
A

RO
A

RO
E

SG
A2

S
B2

M
CF

2P E2
P Q

S2
P

0.3

0.2

0.1

0.0

0.1

0.2

0.3 M
QY
Q
QM

Note: This figure shows the global factor loadings on the characteristics for the first 6 factors. The loadings are colored by the
frequency at which the characteristic is updated.
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Figure C.5: Imputation Error For Individual Characteristics

Panel A: In-Sample
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Panel B: Out-Of-Sample Missing at Random
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The characteristics are
sorted in ascending order based on the time-series standard deviation of characteristics. We report the imputation error in-
sample evaluated over all observed data, and out-of-sample for masked characteristics from the fully present subset of the data.
For the out-of-sample analysis we mask 10% of the data missing at random.
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Figure C.6: Global and Local Imputation For Individual Characteristics

Panel A: In-Sample
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Panel B: Out-Of-Sample Missing at Random
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Note: This figure shows the imputation RMSE by imputation method across individual characteristics. The characteristics are
sorted in ascending order based on the time-series standard deviation of characteristics. We report the imputation error in-
sample evaluated over all observed data, and out-of-sample for masked characteristics from the fully present subset of the data.
For the out-of-sample analysis we mask 10% of the data missing at random.
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Figure C.7: Imputation Error For Individual Characteristics
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Panel B: Out-Of-Sample Logit
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Note: This figure shows the imputation out-of-sample RMSE by imputation method across individual characteristics. The
characteristics are sorted in ascending order based on the time-series standard deviation of characteristics. The logit masking
is based on the logistic regression model with all covariates and fixed effects as estimated in Table 2. The lines have empty
entries for characteristics that are always observed.
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Figure C.8: Information used for Imputation for BF-XS model
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Note: This figure shows the regression coefficients on the cross-sectional factor model and the time-series information. The
XS weight denotes the sum of absolute values of the coefficients on the cross-sectional factor model. The characteristics are
sorted in ascending order based on their autocorrelation.
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Figure C.9: Characteristic mimicking factor portfolios
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Note: These figures show the time-series of cumulative excess returns of characteristic mimicking factor portfolios with and
without imputation. We estimate characteristic mimicking factor portfolios with cross-sectional regressions of stock excess re-
turns on characteristics. Wemask the characteristic values based on the empirical pattern with the logistic regression propensity.
The masked values are imputed either with the local B-XS or median value. The mimicking portfolio without masking is the
reference. We report the correlation and absolute error in characteristic risk premia.
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Figure C.10: Characteristic mimicking factor portfolios

0 100 200 300 400 500

2.0

1.5

1.0

0.5

0.0

D2P

fully observed
bw-xs-reg  rp-error: 0.0015 corr: 1
xs-median  rp-error: 0.0041 corr: 0.99

0 100 200 300 400 500
2.5

2.0

1.5

1.0

0.5

0.0
DPI2A

fully observed
bw-xs-reg  rp-error: 0.0035 corr: 0.99
xs-median  rp-error: 0.0056 corr: 0.97

0 100 200 300 400 500
1.0

0.5

0.0

0.5

E2P

fully observed
bw-xs-reg  rp-error: 0.01 corr: 0.98
xs-median  rp-error: 0.018 corr: 0.93

0 100 200 300 400 5001.5

1.0

0.5

0.0

0.5

1.0
FC2Y

fully observed
bw-xs-reg  rp-error: 0.012 corr: 0.98
xs-median  rp-error: 0.047 corr: 0.68

0 100 200 300 400 500

0.0

0.5

1.0

HIGH52

fully observed
bw-xs-reg  rp-error: 0.004 corr: 1
xs-median  rp-error: 0.0063 corr: 0.99

0 100 200 300 400 500

6

4

2

0

IdioVol
fully observed
bw-xs-reg  rp-error: 0.0074 corr: 1
xs-median  rp-error: 0.026 corr: 0.98

0 100 200 300 400 500
2.5

2.0

1.5

1.0

0.5

0.0
INV

fully observed
bw-xs-reg  rp-error: 0.0042 corr: 0.99
xs-median  rp-error: 0.011 corr: 0.94

0 100 200 300 400 500

1.5

1.0

0.5

0.0

LEV
fully observed
bw-xs-reg  rp-error: 0.0097 corr: 0.98
xs-median  rp-error: 0.023 corr: 0.85

0 100 200 300 400 500
0

2

4

6

8

10
ME

fully observed
bw-xs-reg  rp-error: 0.017 corr: 0.99
xs-median  rp-error: 0.085 corr: 0.87

0 100 200 300 400 500

2.0

1.5

1.0

0.5

0.0

NI

fully observed
bw-xs-reg  rp-error: 0.003 corr: 0.99
xs-median  rp-error: 0.0083 corr: 0.94

0 100 200 300 400 500

0

1

2

3

NOA
fully observed
bw-xs-reg  rp-error: 0.0079 corr: 1
xs-median  rp-error: 0.022 corr: 0.96

0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

1.25

1.50
OA

fully observed
bw-xs-reg  rp-error: 0.0033 corr: 0.99
xs-median  rp-error: 0.0046 corr: 0.98

Note: These figures show the time-series of cumulative excess returns of characteristic mimicking factor portfolios with and
without imputation. We estimate characteristic mimicking factor portfolios with cross-sectional regressions of stock excess re-
turns on characteristics. Wemask the characteristic values based on the empirical pattern with the logistic regression propensity.
The masked values are imputed either with the local B-XS or median value. The mimicking portfolio without masking is the
reference. We report the correlation and absolute error in characteristic risk premia.
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Figure C.11: Characteristic mimicking factor portfolios

0 100 200 300 400 500

6

4

2

0

OL

fully observed
bw-xs-reg  rp-error: 0.035 corr: 0.98
xs-median  rp-error: 0.12 corr: 0.66

0 100 200 300 400 500
1.5

1.0

0.5

0.0

0.5

1.0
OP

fully observed
bw-xs-reg  rp-error: 0.011 corr: 0.98
xs-median  rp-error: 0.022 corr: 0.92

0 100 200 300 400 500
0

2

4

6

8

PCM
fully observed
bw-xs-reg  rp-error: 0.011 corr: 1
xs-median  rp-error: 0.041 corr: 0.95

0 100 200 300 400 5004

3

2

1

0

1
PM

fully observed
bw-xs-reg  rp-error: 0.012 corr: 0.99
xs-median  rp-error: 0.044 corr: 0.92

0 100 200 300 400 500

0

1

2

3
PROF

fully observed
bw-xs-reg  rp-error: 0.013 corr: 0.97
xs-median  rp-error: 0.024 corr: 0.9

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5
R2_1

fully observed
bw-xs-reg  rp-error: 0.0018 corr: 1
xs-median  rp-error: 0.0037 corr: 0.99

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

R12_2

fully observed
bw-xs-reg  rp-error: 0.0047 corr: 1
xs-median  rp-error: 0.0096 corr: 0.98

0 100 200 300 400 500
2.5

2.0

1.5

1.0

0.5

0.0

R12_7

fully observed
bw-xs-reg  rp-error: 0.0041 corr: 1
xs-median  rp-error: 0.0075 corr: 0.98

0 100 200 300 400 500
0.25
0.00
0.25
0.50
0.75
1.00
1.25

R36_13
fully observed
bw-xs-reg  rp-error: 0.0024 corr: 1
xs-median  rp-error: 0.0061 corr: 0.98

0 100 200 300 400 5002.5

2.0

1.5

1.0

0.5

0.0

R60_13

fully observed
bw-xs-reg  rp-error: 0.0036 corr: 1
xs-median  rp-error: 0.0058 corr: 0.99

0 100 200 300 400 500

0

1

2

3
RNA

fully observed
bw-xs-reg  rp-error: 0.012 corr: 0.98
xs-median  rp-error: 0.035 corr: 0.85

0 100 200 300 400 5003

2

1

0

1

ROA
fully observed
bw-xs-reg  rp-error: 0.0092 corr: 0.99
xs-median  rp-error: 0.021 corr: 0.97

Note: These figures show the time-series of cumulative excess returns of characteristic mimicking factor portfolios with and
without imputation. We estimate characteristic mimicking factor portfolios with cross-sectional regressions of stock excess re-
turns on characteristics. Wemask the characteristic values based on the empirical pattern with the logistic regression propensity.
The masked values are imputed either with the local B-XS or median value. The mimicking portfolio without masking is the
reference. We report the correlation and absolute error in characteristic risk premia.
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Figure C.12: Characteristic mimicking factor portfolios
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Note: These figures show the time-series of cumulative excess returns of characteristic mimicking factor portfolios with and
without imputation. We estimate characteristic mimicking factor portfolios with cross-sectional regressions of stock excess re-
turns on characteristics. Wemask the characteristic values based on the empirical pattern with the logistic regression propensity.
The masked values are imputed either with the local B-XS or median value. The mimicking portfolio without masking is the
reference. We report the correlation and absolute error in characteristic risk premia.
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Figure C.13: In-Sample Imputation Error Over Time
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Note: This figure shows in-sample time series RMSE𝑡 for different imputation methods. This is evaluated over all observed data
in the sample.
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Figure C.14: In-Sample Imputation Error Over Time
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Note: This figure shows in-sample time series RMSE𝑡 for different imputation methods. This is evaluated over all observed data
in the sample.
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Figure C.15: Out-Of-Sample Missing at Random Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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Figure C.16: Out-Of-Sample Missing at Random Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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Figure C.17: Out-Of-Sample Block Missing Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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Figure C.18: Out-Of-Sample Block Missing Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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Figure C.19: Out-Of-Sample Logit Missing Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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Figure C.20: Out-Of-Sample Logit Missing Imputation Error Over Time
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Note: This figure shows out-of-sample time series RMSE𝑡 for different imputation methods. This is evaluated over the masked
out-of-sample characteristics.
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