Resurrecting the Value Factor from its Redundancy

Manuel Ammann¹ Tobias Hemauer¹ Simon Straumann² ¹University of St.Gallen

²WHU - Otto Beisheim School of Management

Abstract

- The value factor has **no incremental pricing power** in the Fama-French five-factor model. Its pricing power is primarily subsumed by the investment factor.
- We show that the relationship between the two factors arises because their sorting variables are driven by cash flow and discount rate shocks.
- Only discount rate shock-driven stocks contain pricing information. They generate value and investment premia more than 50% higher than the usual premia.
- Value and investment factors constructed using only discount rate shock-driven stocks cannot subsume each other and improve the five-factor model's pricing power.
- Multifactor models should include a value factor constructed from stocks for which book-to-market is a good expected return indicator.

Motivation

- Value factor is a well-established risk factor (Fama and French, 1993, 1996, 2015)
 - Main source of the Fama-French three-factor model's pricing power.
 - Fama and French (2015) provide a theoretical motivation for the value factor.
- Recently published papers put relevance of value factor in the presence of the investment factor into question:
 - Fama and French (2015): value factor is redundant in the five-factor model ($\alpha \approx$ 0); its pricing power is primarily subsumed by the investment factor ($\rho \approx 0.7$).
 - Hou, Xue, and Zhang (2015): simple economic model that can motivate the profitability and investment factors, but not the value factor.
- Goal: Resolving the recent controversy about the value factor.
 - Why are the value and investment factors so closely related?
 - Does a value factor capture pricing information beyond an investment factor?

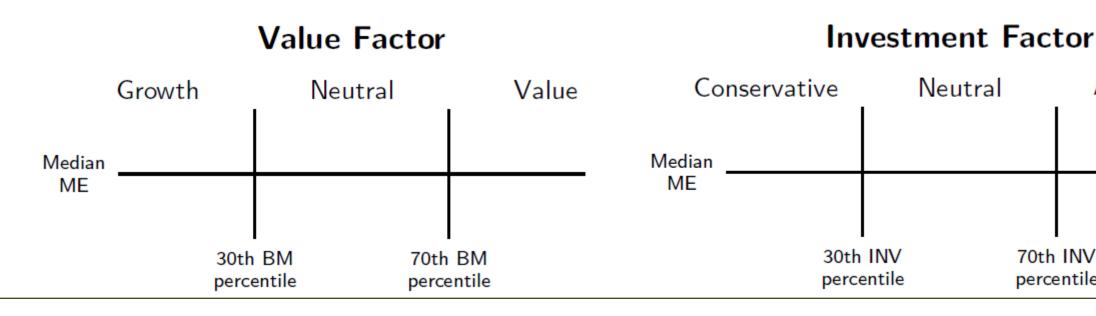
Theoretical Framework

- Thesis: book-to-market and investment driven by cash flow and discount rate shocks.
 - Investors value firms based on the dividend discount model.
 - Firm managers determine investments based on the NPV rule.
- Negative cash flow shock: Expected dividends and cash flows from projects decrease.

$$M_0 = \sum_{t=1}^{\infty} \frac{E_0(\frac{D_t}{D_t})}{(1+r)^t}$$

 $M_0 \downarrow \Rightarrow \frac{B_0}{M_0} \uparrow$

$$I_0 \le \sum_{t=1}^T \frac{E_0(CF_t)}{(1+r)^t}$$


- Positive discount rate shock: expected dividends and cash flows from projects discounted at higher rate.
- $M_0 = \sum_{t=1}^{\infty} \frac{E_0(D_t)}{(1+r)^t}$ $M_0 \downarrow \Rightarrow \frac{B_0}{M_0} \uparrow$

Aggressive

Prediction: Only stocks whose book-to-market and investment is driven by discount rate shocks should contain the factors' pricing information.

Data

- Sample period: July 1963 December 2019
- All common US stocks traded on NYSE, AMEX, and NASDAQ.
- Construction of value (HML) and investment (CMA) factor portfolios following Fama and French (2015):

Methodology

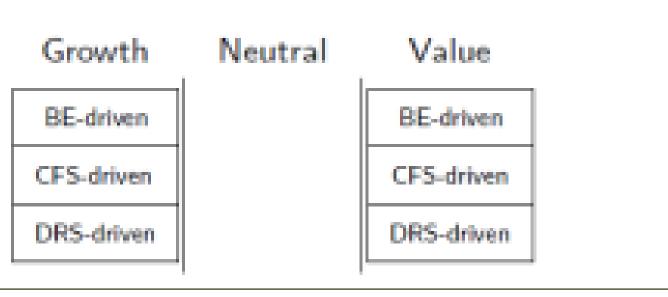
Market equity- vs. book equity-driven: Decomposition of change in book-to-market:

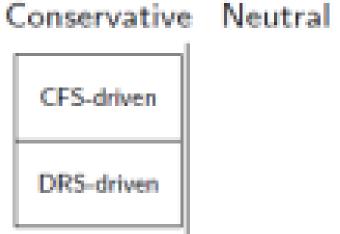
$$log(BM_{i,t}/BM_{i,t-1}) = log(BE_{i,t}/BE_{i,t-1}) + (-log(ME_{i,t}/ME_{i,t-1}))$$

Cash flow shock proxy: Profitability shocks following Hou and van Dijk (2019):

$$PS_{i,t} = \frac{E_{i,t}}{A_{i,t-1}} - E_{t-1} \left(\frac{E_{i,t}}{A_{i,t-1}} \right)$$

Discount rate shock proxy: Residual return from regression of firms' contemporaneous (demeaned) returns on (demeaned) profitability shocks:

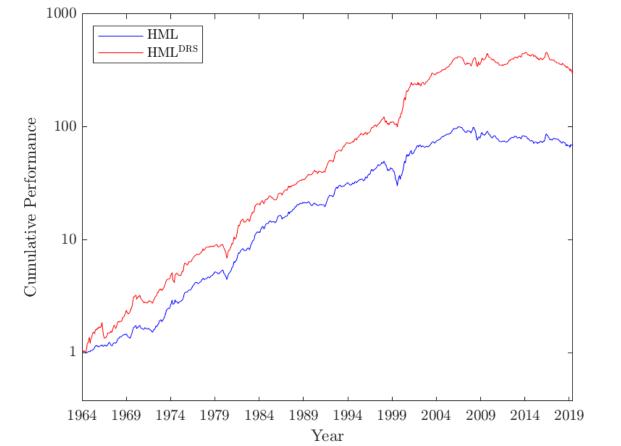

$$\overline{R}_{i,t} = c_{1,t} \overline{PS}_{i,t} + RR_{i,t}$$

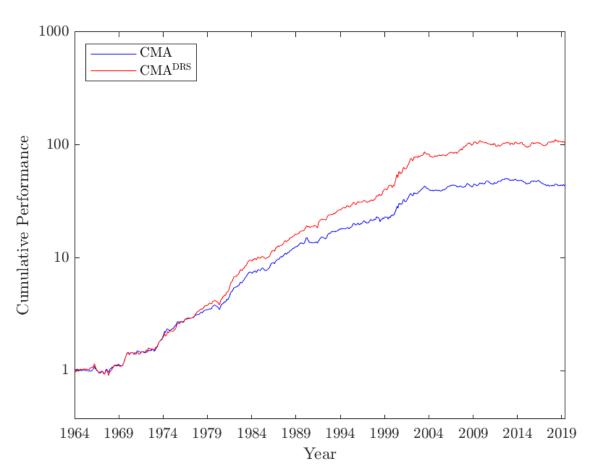

Decomposition of Factor Portfolios

Splitting factor portfolios into book equity-driven, cash flow shock-driven, and discount rate shock-driven parts:

Value Factor

Investment Factor





Aggressive
CFS-driven
DRS-driven

Discount Rate Shock-Driven Factors

	HML	HML ^{CFS}	HML ^{DR\$}	CMA	CMA ^{CFS}	CMA ^{DRS}
Mean	0.30***	0.17	0.54***	0.21***	0.07	0.34***
	(2.79)	(1.45)	(4.14)	(2.93)	(0.90)	(4.28)

- > Only factors' discount rate shock-driven parts earn value and investment premia.
- > Discount rate shock-driven value and investment factors outperform standard factors.

Spanning Regressions

						nvestment				
	INV	VAL	μ	σ	α	β^{MP}	β^{SMB}	β^{RMW}	β^{VAL}	R ²
(1)	standard	standard	0.21***	1.82	0.20***	-0.11***	-0.03*	-0.18***	0.41***	0.52
			(2.93)		(3.92)	(-9.11)	(-1.79)	(-7.76)	(22.25)	
(2)	standard	DRS	0.21***	1.82	0.16***	-0.12***	-0.05***	-0.14***	0.29***	0.44
			(2.93)		(2.90)	(-9.05)	(-2.60)	(-5.39)	(17.93)	
(3)	DRS	DRS	0.34***	2.07	0.20***	-0.09***	0.05**	-0.01	0.33***	0.36
			(4.28)		(3.01)	(-5.50)	(2.07)	(-0.46)	(17.17)	
				Dene	ndent Easter	- Value				
				Depe	endent Factor	: Value	CMD	DMW	7 10 17	d
	INV	VAL	μ	Dере σ	endent Factor	: Value $_{eta^{MP}}$	$_{\beta}SMB$	$_{\beta}^{RMW}$	β^{INV}	R
(1)	INV standard	VAL standard	μ 0.30***			: Value _B MP 0.03	_β SMB 0.04	β ^{RMW} 0.24***	β ^{INV} 1.05***	
(1)				σ	α	β^{MP}				
(1) (2)			0.30***	σ	α 0.00	β ^{MP} 0.03	0.04	0.24***	1.05***	0.46
	standard	standard	0.30***	σ 2.75	0.00 (-0.04)	β ^{MP} 0.03 (1.32)	0.04 (1.34)	0.24*** (6.22)	1.05*** (22.25)	0.46
	standard	standard	0.30*** (2.79) 0.54***	σ 2.75	0.00 (-0.04) 0.25**	β ^{MP} 0.03 (1.32) 0.01	0.04 (1.34) 0.11***	0.24*** (6.22) 0.13**	1.05*** (22.25) 1.14***	0.46 0.36 0.34

> A value factor that uses only stocks for which book-to-market is a good indicator of expected returns is **no longer redundant**.

Pricing Information

		Fal	nel A: Fama-Fre				
	α	β^{MP}	βSMB	βRMW	β^{CMA}	$_{\beta}HML$	R
HMLDRS	0.25***	-0.01	0.05*	-0.05	0.31***	0.78***	0.58
	(2.83)	(-0.61)	(1.77)	(-1.19)	(4.65)	(19.21)	
CMADRS	0.10*	0.01	0.10***	0.12***	0.95***	-0.03	0.62
	(1.93)	(0.66)	(5.61)	(4.66)	(24.22)	(-1.39)	
		$_{\beta}MP$	-	justed Five-Facto	or Model $_{_{eta}CMA}DRS$	$_{\beta HML}^{DRS}$	Р
HML	α 0.04	β ^{MP} -0.03*	β^{SMB}	β^{RMW}	$\beta^{CMA^{DRS}}$	β ^{HML^{DRS}}	0.57
HML	-0.04 (0.56)	β ^M P 0.03* (1.88)	-	1	or Model _β CMA ^{DRS} 0.10** (2.35)	β ^{HML^{DRS} 0.56*** (22.07)}	0.57
HML CMA	-0.04	-0.03*	βSMB -0.04	β ^{RMW} 0.11***	β ^{CMA^{DRS} 0.10**}	0.56***	

- > DRS-driven value and investment factors can price Fama-French value and investment factors, but not vice versa.
- > DRS-driven value and investment factors capture more pricing information.

Conclusion

- Value and investment premia can be enhanced by using only stocks whose book-tomarket and investment are predictably good indicators of expected returns.
- A value factor that uses only stocks that reflect pricing information captures incremental pricing information and is no longer redundant.
- Multifactor models should include a value factor that captures pricing information more accurately.
- Value and investment factors built from stocks for which book-to-market and investment are good indicators of expected returns improve pricing performance.

Contact

Tobias Hemauer University of St.Gallen

tobias.hemauer@unisg.ch

References

- Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3–56. • Fama, Eugene F., and Kenneth R. French, 1996, Multifactor explanations of asset pricing anomalies, Journal of Finance 51, 55–84.
- Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, Journal of Financial Economics 116, 1–22.
- Hou, Kewei, and Mathijs A. van Dijk, 2019, Resurrecting the size effect: Firm size, profitability shocks, and expected stock returns, Review of Financial Studies 32, 2850–2889.
- Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach, Review of Financial Studies 28, 650–705.