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Abstract

This paper proposes a novel finite-state Markov chain approximation method for Markov
processeswith continuous support. Themethod can be used for both uni- andmultivariate
processes, as well as non-stationary processes such as those with a life-cycle component.
The method is based on minimizing the information loss between a misspecified approx-
imating model and the true data generating process. In contrast to existing methods, we
provide both an optimal grid and transition probability matrix. We provide guidance on
how to select the optimal number of grid points. The method outperforms existing meth-
ods in several dimensions, including parsimoniousness. We compare the performance of
ourmethod to existingmethods through the lens of an asset-pricingmodel, and a life-cycle
consumption-savings model. We find the choice of the discretization method matters for
the accuracy of the model solutions, the welfare costs of risk, and the amount of wealth
inequality a life-cycle model can generate.

Keywords: Numerical methods, Kullback–Leibler divergence, life-cycle dynamics, earn-
ings process
JEL classification codes: C63, C68, D15, E21

* Acknowledgements: Both authors are grateful to the invaluable comments from José Víctor Ríos Rull, Frank Kleibergen,
Christian Stoltenberg, Robin Lumsdaine, as well as seminar participants at the University of Zürich and University of Ams-
terdam. Janssens is grateful to the Dutch Research Council for the NWO Research Talent Grant, project number 406.18.514
and to Erasmus Trustfonds for the Professor Bruins Prize 2018, funding the research visit to University of Pennsylvania
during which this paper was written, as well as to Frank Schorfheide for hosting this visit. We thank the Society of Compu-
tational Economics for the CEF 2022 Student Prize. All errors are our own.

Contact information:
†EvaF. Janssens: University ofAmsterdam, Postbus 15867, 1001NJAmsterdam, TheNetherlands, e-mail: e.f.janssens@uva.nl
‡ Sean McCrary: University of Pennsylvania, The Ronald O. Perelman Center for Political Science and Economics 133 South
36th Street, Suite 150, Philadelphia, PA 19104, United States, e-mail: smccrary@sas.upenn.edu



1 Introduction

Numerical methods to solve nonlinear dynamic stochastic models often rely on finite-state
Markov chain approximations of continuous stochastic processes. These models are used
to answer many policy-relevant questions and to study business cycles, asset pricing, intra-
household insurance and more. The stochastic process is an important input for these models
and its finite-state Markov chain approximation should therefore resemble the original pro-
cess as closely as possible. This paper proposes a novel method that can be used for the
discretization of continuous Markov processes while providing both an optimal grid and
transition probability matrix, as well as a way to select the optimal number of grid points for
the discretization. This is an improvement to the existing literature that typically assumes
(a given) equal-distant or equal-quantile grid and only provides the corresponding transition
probabilitymatrix. Formultivariate processes, our discretizationmethod does not rely on ten-
sor products, avoiding the curse-of-dimensionality issue other discretization methods face.
We also extend our method so that it can be used for non-stationary processes with life-cycle
dynamics, providing age-dependent grids and transition probability matrices.

Approximating a continuous Markov process by a discrete Markov process inherently comes
down to picking a misspecified model according to a certain objective function. Existing
discretization methods such as those in Rouwenhorst (1995) and Farmer and Toda (2017)
focus on choosing the transition probability matrix such that the discretized process matches
a set of low order moments of the underlying continuous-support process. For a small class
of optimization problems, this procedure may be optimal.1 However, for the more general
class of these decision problems, all moments – both conditional and unconditional – of the
stochastic process may matter to the agent, and to what extent will depend on the nature of
the decision problem and the characteristics of the stochastic process.

Ideally, a discretization procedure would therefore minimize the welfare loss of an agent
that uses the discretized process instead of the continuous-support process when solving
their optimization problem. However, given that the solution to the optimization problem
under the continuous process is typically unknown, which is why a discretization is needed
for numerical computation, this welfare loss cannot be evaluated. Instead, we propose to
minimize the information loss that the agent faces when using the misspecified discrete
process instead of the continuous process. This objective has the feature that it is not problem
specific, and if the information loss between the misspecified process and true process can

1For example, in a consumption-saving or portfolio-selection problem with quadratic utility, such a dis-
cretization should match the conditional mean and variance.
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be made arbitrarily small asymptotically, an implication of Portmanteau’s lemma is that the
welfare loss of using the misspecified process can also be made arbitrarily small.

To minimize the information loss, we use the Kullback-Leibler (KL) divergence between the
continuous-support process and the discretized process. To link the continuous and discrete
distributions, we assume that in themisspecified process, each observation is equal to the sum
of a state-dependent level and an error term. This state is unobserved, and the evolution of the
unobserved state is governed by a discrete first-orderMarkov process. This effectively embeds
adiscreteMarkov chain into a continuous supportprocessvia a continuousmeasurement error,
i.e., a HiddenMarkovModel (HMM). By Douc andMoulines (2012), the maximum likelihood
estimator of a misspecified HMM minimizes the KL-divergence between the model and the
true distribution. The objective of minimizing the KL-divergence is asymptotically equivalent
to simulating data from the continuous-support process, and estimating theHMMparameters
viamaximum likelihood on this simulated data. Ourmethod can be seen as a full-information
discretization method, compared to moment-matching methods like Rouwenhorst (1995),
Gospodinov and Lkhagvasuren (2014), and Farmer and Toda (2017).

For computational reasons, a discrete process ideally is low dimensional. Our HMM method
can be seen as a probabilistic clustering method, where each realization of the continuous-
support stochastic process has a certain probability to fall into a certain cluster. We can rely on
methods from the clustering literature to select the optimal number of grid points. Therefore,
we propose using a scree-plot in the log likelihood of the HMM, such that the number of grid
points is chosen such that the information gain from including an additional grid point is
diminishing. The interpretation of an HMM as a dimension reduction method for dependent
data is common in the statistics literature (McLachlan, Lee, and Rathnayake, 2019).

We apply our discretization method to a large number of stochastic processes, namely an
autoregressive process with Gaussian errors and with errors from a normal mixture distribu-
tion (colloquially, “fat tails”), an AR(1) with stochastic volatility (SV), a Vector AutoRegression
(VAR) process, the earnings process in Guvenen, Karahan, Ozkan, and Song (2021) that fea-
tures life-cycle dynamics, non-employment shocks and fat tails, and the non-parametric and
highly non-linear earnings process of Arellano, Blundell, and Bonhomme (2017). We compare
how our method performs compared to the methods by Rouwenhorst (1995), Tauchen (1986),
Farmer andToda (2017), and the binningmethod ofAdda andCooper (2003) (and the adaption
of Adda and Cooper (2003) by De Nardi, Fella, and Paz-Pardo (2020) to discretize Arellano
et al. (2017)). We find that our method can outperform existing methods in various dimen-
sions, where the performance is most pronounced in the AR(1) with fat tails, the AR(1)-SV,
the Guvenen et al. (2021) and the Arellano et al. (2017) process. However, even for simple
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AR(1) processes, we find that our method produces the lowest mean-squared forecast error,
implying that a decision maker makes smaller forecasting errors when using our discretized
process than the discretized process that follows from existingmethods. In addition, we show
that ourmethod can generate amore parsimonious discretization than othermethodswithout
sacrificing in terms of information loss to the continuous-support process, which is attractive
for computational efficiency.

We evaluate the performance of our method in two economic applications. First, an asset
pricing model where dividend growth follows an AR(1) process with stochastic volatility.
As shown by De Groot (2015), this model has a closed-form solution. We use this solution
as a benchmark to compare the performance of our method against the standards in the
literature. We find our method is more accurate than the method of Farmer and Toda (2017)
or a binning method as in Adda and Cooper (2003) with a small number of gridpoints. In
particular, we analyze the accuracy of the three discretization methods for estimates of the
certainty equivalent level of consumption (CEC) and find that our method deviates 0.8-1.9%
from the closed-form solution of De Groot (2015), while themethod of Farmer and Toda (2017)
results in deviations ranging from 8.3-12.2%, and the Adda and Cooper (2003) method has
deviations ranging from 4%-5.4%. These results highlight the importance of considering a
full-information approach, as for a highly non-linear object as the CEC, all information of the
stochastic process is important and should be incorporated in the discretization.

Second,weanalyze theperformanceof ourmethod through the lensof a life-cycle consumption-
saving model. In this application, we consider two discretized processes that both feature
life-cycle dependence; the process proposed in Guvenen et al. (2021), henceforth GKOS, and
the non-parametric process in Arellano et al. (2017), henceforth ABB. We find that the choice
of the discretization method matters greatly for the mean and variance of asset holdings
and consumption over the life-cycle, and also matters for other relevant statistics that are
often reported in a life-cycle context, such as the covariance between earnings changes and
consumption changes, the partial insurance to permanent earnings shocks as measured by
Blundell, Pistaferri, and Preston (2008), and the welfare cost of risk.

For the GKOS process, binning-based methods can underestimate the welfare cost of risk
by as much as 17-24 percentage points relative to our method, because they fail to capture
the rich dynamics of non-employment and the higher-order moments of fat-tailed processes.
Our discretization of ABB results in a welfare cost of risk that is 6.7 percentage points larger
than the one obtained by applying the binning method used in De Nardi et al. (2020). This
discrepancy comes from the fact that our discretization better captures the excess kurtosis and
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skewness of the ABB process over the life-cycle. Welfare cost estimates are important tools for
policy analysis and their sensitivity to the choice of the discretization method highlights the
importance of having an accurate approximation that captures all moments of the stochastic
process well.

To our knowledge, this paper is the first to discretize the GKOS process, which, together
with the ABB process, is considered to be at the frontier of the earnings dynamics literature
(Altonji, Hynsjö, and Vidangos, 2022). Our parsimonious discretization allows for an easy
interpretation of and comparison between both processes. We find the largest source of
risk in GKOS comes from the probability of non-employment, which is a highly persistent
state whose persistence rises over the life-cycle. In contrast, most risk in ABB comes from
the highest earnings state, which features a considerable probability of earnings loss next
period, especially at younger ages. In contrast to GKOS, the low-earnings states in ABB are
fairly constant in their dynamics over the life-cycle while the transition probabilities related
to the highest earnings states do change with age. In our life-cycle model, we find that our
discretization of ABB can generate wealth inequality similar to that observed in the United
States. This is not the case for other discretization methods, nor for the GKOS process.

The paper proceeds as follows. The next subsection discusses the related literature. Section 2
discusses our discretization method and how it can be applied to an AR(1) process. Section 3
presents the asset pricingmodel with stochastic volatility and Section 4 discusses the life-cycle
model and the discretization of the GKOS and ABB processes. Section 5 concludes. Appendix
Section B presents the discretization of the AR(1) process in more detail, as well as an AR(1)
process with fat tails, the VAR process and a different specification of the AR(1)-SV process.
In Appendix Section F, these processes are also incorporated in the life-cycle model of Section
4, to demonstrate that even for linear Gaussian processes, the discretization method matters
and can lead to different conclusions.

Related literature Several papers have proposed methods to discretize stochastic processes.
Most of these, such as Tauchen (1986), Rouwenhorst (1995), Tauchen and Hussey (1991), Terry
and Knotek II (2011), and Gospodinov and Lkhagvasuren (2014) are designed for specific
linear and Gaussian processes, such as AR(1) or VAR processes. Fella, Gallipoli, and Pan
(2019) adapt the methods of Rouwenhorst (1995), Tauchen and Hussey (1991) and Adda and
Cooper (2003) to processes with a life-cycle component, and analyze how it performs under
settingswhere the innovations are drawn fromamixture of normals. Kopecky and Suen (2010)
assess the performance of various methods for AR(1) processes close to unit-root, and finds
that Rouwenhorst (1995) ismore robust to these highly persistent environments. Galindev and
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Lkhagvasuren (2010) adapt Rouwenhorst (1995) to a setting with highly-persistent correlated
AR(1) shocks. Civale, Díez-Catalán, and Fazilet (2016) adapt the Tauchen (1986) method to
accommodate autoregressive processes with innovations drawn from a normal mixture2. An
important difference of these methods to ours is that our method is generally applicable to
any process, and provides both an optimal grid and transition probability matrix, while these
methods typically take a grid as input, and/or assume equal-distant or equal-quantile grids.

Some discretization methods are applicable to a larger class of stochastic processes. Binning
methods as in Adda and Cooper (2003), which discretize via a partition in the quantile space,
are applicable to any stochastic process. However, binning methods take the grid spacing as
an input. Our discretizationmethod provides an optimal grid as well. Another method that is
applicable to any Markov process is Farmer and Toda (2017), who propose a method to refine
discrete approximations by moment matching. Their method takes as inputs a grid, an initial
transition probability matrix, and a set of moments to match, where the goal is to match these
moments exactly - if possible - with a transitionmatrix that is close to the initial approximation
measured through relative entropy. Our method, in contrast, can be seen as a full-information
discretization method that does not rely on prior information to obtain identification.

For multivariate processes, most existing methods rely on tensor grids, which leads to a curse
of dimensionality and is computationally unattractive. As stated by Gordon (2021), tensor
grids are inefficient, because many of the grid points will rarely be visited. Gordon (2021)
proposes the use of pruning and sparse grids for VARmodels. Our method results in optimal
grids that do not suffer from the issue that Gordon (2021) aims to solve, and is applicable to
any type of process.

2 Discretization using Hidden Markov Models

Let H8C ∈ R: , 8 = 1, ..., # , C = 1, ..., ), denote a random variable for which the data generat-
ing process is any discrete-time continuous-support Markov process. Denote its probability
distribution by 5 (y). The objective is to approximate the distribution of y by a misspecified
model, with probability distribution ?(y;�), by choosing parameter vector � such that the
relative entropy from the misspecified distribution % to the distribution � of the misspecified
model is minimized.

The relative entropy is defined as the logarithmic difference between the distributions � and
%, where the expectation is taken using the distribution �, also known as the Kullback–Leibler

2Normal mixtures can generate non-zero skewness and excess kurtosis
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(KL) divergence:

DKL =

∫
log

(
5 (y)
?(y;�)

)
5 (y)3y. (1)

Minimizing theKLdivergencewith respect toparameter vector� requires taking thederivative
of Equation 1 with respect to �: ∫

∇� log ?(y;�) 5 (y)3H = 0

⇔ E 5
[
∇� log (?(y;�))

]
= 0.

Typically, E 5 (·) is hard to evaluate, and can be replaced by an estimate, by simulating data
ysim = {HC})C=1 from 5 (y), and evaluating ∇� log (?(·;�)) in the simulated data.

2.1 Hidden Markov Model

As our misspecified model, we propose using the following Hidden Markov Model (HMM).
By Douc and Moulines (2012), the maximum likelihood estimator of a misspecified HMM
minimizes the KL divergence between the misspecified process and the true underlying pro-
cess, making an HMM suitable for our above-stated objective. Denote the data by H8 ,C ∈ R: ,
and denote unobserved states G8 ,C ∈ {1, ..., <}. The latent state G8 ,C lies in a finite discrete set
{1, 2, . . . , <} which evolves according to a time-homogeneous first-order Markov process.

H8 ,C |G8 ,C = �C(G8 ,C) + diag(�C)�8 ,C , �8 ,C ∼ #(0, �:) (2)

G8 ,C+1 |GC ∼ Π8 9 ,C . (3)

Denote bold variables y = {H8 ,1, H8 ,2, . . . , H8 ,)}#8=1 and x = {G8 ,1, G8 ,2, . . . , G8 ,)}#8=1 as realiza-
tions of this random process. The transition matrix ΠC has stationary distribution δC =
(�1,C , �2,C , . . . , �<,C). Note, δC is a 1 × < row vector. Parameter vector � in Equation (1) thus
consists of:

(i) the parameters in transition probability matrixΠC , denoted byΠ8 9 ,C . This matrix is allowed
to be time-varying. In the case that there is no time dependence, that is, ΠC = Π for all
C = 1, ..., ), the number of parameters in Π is < × <, of which < × (< − 1) are linearly
independent, given that each row sums to one;

(ii) �C is the grid, and is allowed to be time-varying. When there is no time dependence,
�C = � is a < × : matrix;
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(iii) �2
C is the variance of the error term, which is allowed to be varying. If H8 ,C ∈ R: has : > 1,
we assume the variance is a diagonal matrix diag(�1, ..., �:). It is also possible to allow
� to be state-dependent, that is, to let � vary with each realization of x.

The HMM in Equation (2) can be estimated using the Expectation-Maximization (EM) algo-
rithm that we will describe below. As follows from Douc and Moulines (2012), the maximum
likelihood estimator of parameter vector � = (vec(Π), vec(�), �) in the model in Equation (2) is
the set of parameters that minimizes the information loss as specified in Equation (1). These
parameters � = (Π, �, �) gives a discretization of the process 5 (y), where � is the grid of the
discretized process, and Π governs the transitions between the < states.

We will consider time series settings where # = 1, as well as panel # ≥ 2. The inclusion
of a panel dimension allows for the estimation of parameters that vary with C (e.g., over the
life-cycle).

2.2 Estimation of HMM

We first discuss the general procedure we use for the estimation of the HMM. Let )C
9
(H8 ,C) =

%(H8 ,C |G8 ,C = 9) denote the density of H8 ,C conditional on G8 ,C being in state 9. That is,

)C9(H8 ,C) =
1

�
√

2�
4
− 1

2�2 (H8 ,C−�C(9))
2
, (4)

if : = 1, or det(2�ΣC)−
1
2 4−

1
2 (H8 ,C−�C(9))′(ΣC)−1(H8 ,C−�9) for : > 1, where ΣC = diag(�2

C ). It will be useful
to think of the following matrix form for the observation densities:

�C(H8 ,C) =
©­­­«
)C1(H8 ,C) 0

. . .

0 )C<(H8 ,C)

ª®®®¬ , (5)

that is,�C is an < × < diagonal matrix with the observation densities as diagonal elements.

The complete data likelihood (CDL) of the model in Equation (2) is given by

ℒ(� |y,x) = ?(y,x|�) = ?(y |x, �)?(x|�), (6)

and the maximum likelihood estimator is given by

�∗ = argmax
�

ℒ(� |y,x). (7)
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If the latent states xwere observed, the log-likelihood would be straightforward to maximize.
This is because the log-likelihood is given by

log (ℒ(� |y,x)) = log (?(y |x, �)) + log (?(x|�)) , (8)

and, conditional on x, the parameters Π do not influence y and, similarly, the parameters
(µ, �) do not matter for x. Together this implies the log-likelihood is given by

log (ℒ(� |y,x)) = log (?(y |x,µ, �)) + log (?(x|Π)) (9)

That is, the parameters governing the observation equation and state transition equation
could be solved for separately, given x. Intuitively, if the states x are observed, one could
estimate Π using only data on transitions from x, estimate �(G8 ,C = 9) by averaging the H8 ,C
that are observed when G8 ,C is in state 9, and then estimate Σ using the sample variance of the
observations y demeaned by the estimates of µ.

In practice, the latent states x are unobservable, but we can use the EM algorithm tomaximize
the likelihood. The EM algorithm (or Baum-Welch algorithm in the case of HMMs) iterates
between updating the posterior distribution over the latent states ?x = ?(x|y, �) taking the
parameters and observations (y, �) as fixed in the E step, and updating the parameters �(8)→
�(8+1) taking the latent states and observations (?x, y) as fixed in the M step.

We now describe the E-step. Let HC
8
= (H8 ,1, H8 ,2, . . . , H8 ,C), i.e., the observed values up to time C

for individual 8. The forward probabilities α8 ,C(9) are given by

α8 ,C(9) = ?
(
HC8 , G8 ,C = 9 |�

)
(10)

We can define α8 ,C recursively as

α8 ,1(9) = �1, 9)
C
9(H8 ,1)

α8 ,C+1(9) =
(
<∑
:=1
α8 ,C(:)Π: 9,C

)
)C9(H8 ,C+1),

(11)

or in matrix form
α8 ,C = α8 ,C−1ΠC�C(H8 ,C). (12)
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Similarly, let H)
8,C+1 = (H8 ,C+1, H8 ,C+2, . . . , H8 ,)), i.e., the observed values from time C + 1 to ) for

individual 8. The backward probabilities β8 ,C(:) are given by

β8 ,C(:) = ?
(
H)8,C+1 |G8 ,C = :, �

)
(13)

We can define β8 ,C recursively as

β8 ,)(:) = 1

β8 ,C(:) =
<∑
9=1
Π: 9,C)

C
9(H8 ,C+1)β8 ,C+1(9),

(14)

or, in matrix form,
β′8 ,C = Π�C(H8 ,C+1)β′8 ,C+1. (15)

Using these probabilities, we can define the probability of being in state : at time C, and
observing y8 ,C as

?(y8 ,C , G8 ,C = : |�) = α8 ,C(:)β8 ,C(:). (16)

This leads to a posterior probability of being in state :, given by

γ8 ,C(:) = ?(G8 ,C = : |y8C , �) =
?(y8 ,C , G8 ,C = : |�)

?(y8 ,C |�)
=

?(y8 ,C , G8 ,C = : |�)∑<
9=1 ?(y8 ,C , G8 ,C = 9 |�) =

α8 ,C(:)β8 ,C(:)∑<
9=1α8 ,C(9)β8 ,C(9)

.

(17)

We can also define the posterior transition probability between state 8 at time C and state 9 at
time C + 1 as

�8 ,C(:, 9) = ?(G8 ,C+1 = 9 , G8 ,C = : |y8 ,C , �)
∝ β8 ,C+1(9))C9(H8 ,C+1)Π: 9,Cα8 ,C(:),

(18)

where the last line follows from the definition of γ8 ,C(:) from above.
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At last, the " step is given by

�;C(9) =
∑#
8=1 H

;
C?(G8 ,C = 9 |y8 ,C , �)∑#

8=1 ?(G8 ,C = 9 |y8 ,C , �)
=

∑#
8=1 H

;
8 ,C
γ8 ,C(9)∑#

8=1 γ8 ,C(9)
(19)

(�;C)2 =
∑#
8=1

∑<
9=1(H ;8 ,C − �

;
C(9))2?(G8 ,C = 9 |y8 ,C , �)∑#

8=1
∑<
9=1 ?(G8 ,C = 9 |y8 ,C , �)

=
1
#

#∑
8=1

<∑
9=1
(H ;8 ,C − �

;
C(9))2γ8 ,C(9) (20)

Π@ 9,C =

∑#
8=1 ?(G8 ,C = 9 , G8 ,C−1 = @ |y8 ,C , �)∑#

8=1 ?(G8 ,C−1 = @ |y8 ,C , �)
=

∑#
8=1 �8 ,C(@, 9)∑#
8=1 γ8 ,C(@)

, (21)

for ; = 1, ..., :.

When omitting time-dependence, the M-step becomes

�8
;
=

∑)
C=1

∑#
8=1 H

;
8 ,C
γ8 ,C(9)∑)

C=1
∑#
8=1 γ8 ,C(9)

(22)

(�;)2 = 1
#)

)∑
C=1

#∑
8=1

<∑
9=1
(H ;8 ,C − �

;
9)

2γ8 ,C(9) (23)

Π@ 9 =

∑)
C=2

∑#
8=1 �8 ,C(@, 9)∑)

C=2
∑#
8=1 γ8 ,C(@)

, (24)

for ; = 1, ..., :.

Given the updated transition matrix ΠC we can update the stationary probabilities as

δC = 1′ (�< −ΠC +*)−1 . (25)

Here* is a < × < matrix of ones.

For the estimation of models with rich life-cycle dynamics, we will use an iterative adaption
of this algorithm. This is described in Appendix Section A.
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2.3 Imposing structure through restrictions

One can impose additional structure by estimating the process under a set of restrictions.
In the estimation, this happens through modifying the M step. For example, for symmetric
processes, a symmetry restriction can be imposed on �. In case of a process that is symmetric
around zero and an odd number of grid points <, this means that:

�(d</2e) = 0, and �(d</2e − A) = −�(d</2e + A), for A = 1, ...., b</2c (26)

Similarly, a process can also be symmetric in its dynamics, as reflected by the transition
probability matrix. In that case, the restriction takes the form

Π8 , 9 = Π(<+1−8),(<+1−9). (27)

2.4 Imposing structure through a penalty term

For the specific restrictions in Equations (26)-(27), a closed-form solution is available for theM-
step. In other cases, one may want to introduce restrictions through penalty terms rather than
hard restrictions. For example, one wants the discretized process to target certain moments.
Denote a certain set of moments functions of the discretized process byℳ(?(y;�)) and the
moments of the continuous process by ℳ( 5 (y)). In that case, instead of maximizing the
log-likelihood of the simulated data ysim, maximize:

log(ℒ(� |y, x)) − �D (ℳ( 5 (y)),ℳ(?(y;�))) (28)

where � ∈ R+ is a scalar parameter andD(·, ·) a distance measure of choice. � is chosen by the
researcher. A higher � should be chosen if the researcher considers it more important that the
discretization matches the momentsℳ. Typically the M-step will no longer be analytically
tractable and numerical optimization will be necessary.

Another example is when one wants to encourage sparsity in one or more dimensions of the
grid in the case that : > 1, where : is the dimension of H8C . This can limit the number of
distinct entries in the grid, and can force the grid to be more tensor-like.

2.5 Allowing for life-cycle dynamics

For age-dependent life-cycle processes, like GKOS and ABB, we want to allow for age-
dependent transition probabilities and grid placement. The EM algorithm above already
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allows for this, and, using Equations (19)-(21), the transition probability matrix ΠC and the
grid �C are fully time-varying (where time is corresponding to age). In this case, the asymp-
totics depend on # and a different transition probability matrix and grid are estimated for
every age group.

2.6 Selecting the number of grid points

To select the number of grid points <, we face a trade-off between minimizing the extent of
misspecification from the discretization on the one hand, and wanting a low number of grid
points as is desirable for computational reasons. The intuition of using a HMM is that this
provides a so-called “soft-clustering”. Therefore, we propose to use an elbowplot based on the
log-likelihood of the misspecified HMM on the H-axis, and the number of grid points on the
G-axis. Recall that the log-likelihood is proportional to the information loss of themisspecified
model relative to the true continuous process. An elbow plot is a heuristic commonly used
for the selection of the number of factors or clusters when reducing the dimensionality of a
dataset. This will ensure that < is chosen such that that the decrease in the information loss
from adding an additional grid point is diminishing.

Example: AR(1) process To demonstrate the use of the elbow plot, we use an AR(1) process
with Gaussian errors:

HC = �HC−1 + ���C , �C ∼ #(0, 1), C = 1, ..., ). (29)

We simulate a time series of length) = 100, 000 from the process in Equation (29), and estimate
the HMM of Equation (2) on the simulated data for different choices of the grid size <. We
impose both restriction (26) and (27) because of the symmetry of the process. The black sold
line in Figure 1 then displays the maximum log likelhood obtained as < varies from 3 to 27.
As can be seen from this figure, the black solid line is elbow shaped, and the elbow lies at
< = 7. Alternatively, if one wants to choose < such that the elbow graph is almost flat, we
would in this case recommend < = 15.

Figure 1 also displays the true log likelihood of the continuous-support AR(1) process in red.
As can be seen, as < becomes larger, the HMM log likelihood converges to the true log likeli-
hood. In addition, the figure visualizes the implied log likelihood of three competingmethods
that are often used for discretizing AR(1) processes. To obtain these log likelihoods, we use
the obtained discretization from the existing method in our HMM model, and interpret the
given grid and transition probability matrix Π as a restriction, but estimate the correspond-
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Figure 1: Elbow plot for an AR(1) process with Gaussian innovations. � = 0.95, �� = 1 and ) = 100, 000. The
red line displays the true log likelihood for the AR(1) process, the other lines visualizes existing methods.
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ing variances Σ. We can use this statistic to demonstrate how much more parsimonious our
method is than existing methods, and that we can achieve the same relative information loss
as existing methods with fewer grid points. As can be seen from Figure 1, while we already
capture almost all of the information of the true process at 25 grid points, this does not hold
for the existing methods. We can achieve the same information loss they achieve at 25 grid
points with only 15.

2.7 Evaluation criteria

We compute a number of statistics in addition to the relative information loss described in the
previous subsection. We will focus on the standard set of statistics, such as unconditional and
unconditional moments, as well as accuracy of one-step ahead predictions. Themean squared
forecast error (MSFE) of themisspecifiedmodelmeasures the one-step ahead forecasting error
that the agent makes. For this statistic, we assume that an agent assigns the grid point closest
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to the current realization of HC for forecasting HC+1. Formally, the MSFE is defined as

MSFE = 1
)

)∑
C=1
(HC − ĤC)2,

where ĤC =
∑
9

Π8 9 · �(GC = 9), and 8 = argmin
8∈{1,...,<}

|HC−1 − �(GC−1 = 8)|
(30)

Note, the accuracy of the MSFE captures both the effect of an accurate transition matrix and
grid point placement.

2.8 Application to linear Gaussian processes

We apply our method to a large number of stochastic processes and compare its performance
to existing methods. For the AR(1) process with Gaussian innovations, the AR(1) process
with fat tails and the VAR process, these results are summarized in Appendix B. In the
applications that follow below, we will apply our method to an AR(1)-SV process, and the
earnings processes of Guvenen et al. (2021) and Arellano et al. (2017).

3 Application I: asset pricing model with stochastic volatility

In this section, we evaluate the performance of our method in an asset pricing model with
stochastic volatility. Most models that involve solving a dynamic stochastic optimization
problem with a continuous-support process do not have a closed-form solution. This makes
analyzing the implications of the choice of the discretization method hard due to the lack of
a benchmark solution. However, as shown by De Groot (2015), the model we present below
does have a closed-form solution for the price-dividend ratio and the conditional expected
return on equity. This allows us to compare the true value of those statistics with the solutions
from a model with a discretized process.

The first subsection will present the analytically tractable asset pricing model of De Groot
(2015). Next, we demonstrate how to discretize the AR(1)-SV process in the De Groot (2015)
model using our and two other methods, and analyze their respective performances at captur-
ing various moments of the stochastic process. Finally, we assess how the numerical solutions
with each methods perform relative to the analytical benchmark solution of De Groot (2015).
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3.1 Analytical benchmark

We use the Lucas tree asset pricing model of De Groot (2015), who derives closed-form solu-
tions for the price-dividend ratio and conditional expected return on equity when dividend
growth is assumed to follow an autoregressive process with stochastic volatility.

As in De Groot (2015), there is a representative agent maximizing her discounted stream of
utility:

E0

∞∑
C=0

�C
21−�
C

1 − � (31)

s.t. 2C + BC+1?C ≤ (3C + ?C)BC , (32)

where 2C is consumption, BC an asset with price ?C and dividends 3C . Parameter � ∈ (0, 1)
denotes the discount factor and � is the coefficient of relative risk aversion.

The growth rate of dividends HC = ln(3C/3C−1) is assumed to follow an AR(1) process with
stochastic volatility:3

HC = H̄ + �(HC−1 − H̄) +
√
�C�C (33)

�C = �̄ + ��(�C−1 − �̄) + $��,C . (34)

with persistence in levels � ∈ (−1, 1), and �C is i.i.d. #(0, 1). The randomvariable �C is the time-
varying conditional variance of dividend growth. Parameter �� ∈ (−1, 1) is the persistence of
the stochastic volatility process, and ��,C is also i.i.d. #(0, 1). Market clearing, BC = 1, implies
that 2C = 3C . Defining the price-dividend ratio as EC := ?C/3C , the first order condition of the
representative agent’s maximization problem is given by:

EC = EC�

(
3C+1
3C

)1−�
(EC+1 + 1). (35)

3Note that this is not a desirable way to define an AR(1)-SV process, given that �C can become negative, in
which case √�C is imaginary. In the parametrization we use, taken from Bansal and Yaron (2004), the probability
of a negative value for � is very small. However, to demonstrate our performance in discretizing the more-
commonly encountered specification of an AR(1)-SV process, we also discretize a different specification of the
AR(1)-SV process in Appendix B.

15



De Groot (2015) derives a closed-form solution for the price-dividend ratio EC and the condi-
tional expected return on equity defined as:

EC'
4
C+1 = EC

(
3C+1 + ?C+1

?C

)
, (36)

which we provide in more detail in Appendix Section C.

Instead of using the continuous-support process in Equations (33)-(34), one can assume HC
follows a discrete Markov process, and obtain exact solutions for the price-dividend ratio, the
conditional expected return on equity, and other objects of interest. The expressions for the
solution to the discrete model are also provided in Appendix Section C.

3.2 Discretizing the AR(1)-SV process of De Groot (2015)

The process of Equations (33)-(34) is multivariate, so when applying our methodwe discretize
over HC and �C jointly. First, we demonstrate how our method selects the optimal grid and the
number of grid points. Figure 2 visualizes the log likelihood of the misspecified HMM for
different choices of grid size <.

Figure 2 looks different from the elbow plot of an AR(1) in Figure 1. In particular, we see
a jump in the log likelihood when going from 13 to 15 grid points. The increase of the log
likelihood can be understood from looking at the optimal grids that ourmethod selects, which
are visualized in Figure 3. Figure 3(a) shows the optimal grid for < = 11 grid points, and
shows how ourmethod assigns grid points in the tails with higher variances than in the center.
This is consistent with the intuition behind an AR(1)-SV process, as it is more likely to end up
at a higher absolute value of HC with a higher realization of the variance �C . As < becomes 15
or higher, our optimal grid adds what we call ‘double’ or ‘triple’ states. These are grid points
with very similar levels for H, but different values for the variance �. These grid points will
have different dynamics to next period’s states, as will be reflected by different rows in the
transition probability matrix for these states.

Figure 2 also visualizes the log likelihood of the existing methods when we use the grid and
transition probability matrix we obtain from them as constraints for our maximum likelihood
estimation of the HMMs, and compute the log-likelihood that corresponds to their discretiza-
tion. As can be seen, once < = 15, the information loss of existing methods relative to ours
increases, and when we give their methods 27 grid points (<H = 7, <ℎ = 3), we can achieve
the same information loss with 15 only grid points.
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Figure 2: Elbow plot for the AR(1)-SV process in Equations (33)-(34).
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Parameters taken from Bansal and Yaron (2004): � = 1.5, �� = 0.855, $ = 7.4000 × 10−5, �̄ = 0.0012, � = 0.95,
� = 0.868, H̄ = 0.0179. Based on ) = 200, 000. We only visualize a selected number of grid points for the binning
method and the Farmer-Toda method, because their methods rely on a tensor grid, and cannot be computed for
any choice of <. For their methods, we keep the dimension of �, denoted <�, fixed to three, and increase the
dimension of H, denoted <H .

Table 1: Comparison for an AR(1) process with stochastic volatility as in Equation (33)-(34) () = 200, 000)
parametrized as in Bansal and Yaron (2004).

Method Janssens-McCrary Farmer-Toda Binning
m = 15 (<H = 5, <� = 3 for Farmer-Toda and binning)
Dev. uncond. mean H 0.018 0.018 0.018
% dev. uncond. variance H −15.4 0.525 −23.7
% dev. autocorrelation H 3.35 −0.053 −5.66
Abs. dev. uncond. skewness H <0.001 0.044 0.023
% dev. uncond. kurtosis H −9.42 -19.2 −37.5
% abs. dev. cond. mean H 0.003 0.002 0.004
% abs. dev. cond. variance H 33.3 26.3 26.0
Abs. dev. cond. skewness H 0.543 1.16 0.580
% abs. dev. cond. kurtosis H 51.3 81.1 18.5
MSFE H 0.0013 0.0018 0.0017
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Figure 3: Visualisation of optimal grid for two optimal grids (< = 11, 17), and the tensor grid following from
the Farmer and Toda method, where the data generating process is an AR(1) process with stochastic volatility as
in Equation (33)-(34).
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(c) Farmer-Toda method: < = 27 (<H = 9, <� = 3)
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Parameters taken from Bansal and Yaron (2004): � = 1.5, �� = 0.855, $ = 7.4000 × 10−5, �̄ = 0.0012, � = 0.95,
� = 0.868, H̄ = 0.0179. Height of the bars depicts the variance level at the grid points, positioning on the G-axis
of the bars depicts the level of H. The distinction between the red, green and black bars is to indicate that for <
large, pairs of grid points arise where H has very similar values, but the value of the variance differs.

We compare our discretization with two existing methods, one being the method of Farmer
and Toda (2017), and the other a simulation-based binning method based on the method by
Adda and Cooper (2003).4 Table 1 computes several statistics to compare the performance of
our method and the existing methods at capturing moments of H. As can be seen, the Farmer
and Toda (2017) method does well at the mean and variances, as these are the moments they
match, while we do well at higher order moments such as the skewness and kurtosis. The
MSFE of the other methods is 30-40% larger than ours, supporting that we do give an agent a
better process to make forecasts with.

4Weuse the codes provided on the personal website of A.A. Toda, available at https://alexisakira.github
.io/discretization/.

18

https://alexisakira.github.io/discretization/
https://alexisakira.github.io/discretization/


3.3 Accuracy of the models solutions

To compare the relative performance of our method versus existing methods at solving the as-
set pricing model, we compare moments of the discrete solutions to the analytical benchmark.
To compute moments, we simulate a long time series of dividend growth HC and variances �C
and compute, using the closed-form solutions of De Groot (2015), the implied price-dividend
ratios EC and expected returns on equity EC'4C+1 at each point in time. We compute several
moments of these time series. Next, we also simulate data from the discretized processes,
and compute the corresponding expected return on equity and price-dividend ratio using
Equations (C.2) and (C.1).

To assess the accuracy of the different solutions, we compute the summary statistic

log10(|"̂/" − 1|),

for different moments "̂ of the time series simulated from the discretization and moments"
computed from the simulation from the benchmark solution. Lower values of log10(|"̂/"−1|)
indicate the moments of the discrete model are closer to those of the benchmark.

These results are summarized in Table 2. The parametrization used for the results in the
table are based on the estimates of the stochastic volatility process in Bansal and Yaron (2004),
annualized as in De Groot (2015). We choose risk aversion � and the discount factor � such
that the price-dividend ratio is finite.5 Overall, our method always perform best at the mean,
and often the variance of both statistics.

An object economists often care about is the welfare cost of risk, measured in terms of con-
sumption. In the endowment economy considered in this application, we can measure the
welfare cost of risk using the certainty equivalent consumption (CEC). This object is defined
as follows:

+(3) = D(3) + �E[+(3′)|3],

where +(3) is the value to the household of being in state 3 where 3 is the level of aggregate
dividends. This value reflects the present discounted value of the risky dividend (i.e., con-
sumption) stream. One could ask what the certainty equivalent level of consumption is that
would make the household indifferent between the risky consumption stream and a certain
(constant) level of consumption. We denote that constant value by G(3), which is the solution

5De Groot (2015) provides an expression the parameters have to satisfy such that the price-dividend ratio is
finite, we provided it in Appendix C.
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Table 2: Accuracy of asset pricing model solutions for the price-dividend ratio EC and the conditional expected
return on equity E'4

C+1.

" log10(|"̂/" − 1|)
Janssens-McCrary Farmer-Toda Adda-Cooper

< = 9 < = 3 x 3 < = 3 x 3
Mean EC 18.10 −1.67 −1.51 −1.13
Variance EC 9.61 −1.33 −0.29 −0.07
Skewness EC 0.59 −0.23 −0.36 −0.03
Kurtosis EC 3.79 −0.32 −1.01 −0.22
Mean EC('4C+1) 1.08 −3.10 −2.37 −2.67
Variance EC('4C+1) 0.01 −0.64 −0.49 −0.28
Skewness EC('4C+1) 0.29 −0.28 −1.02 −0.09
Kurtosis EC('4C+1) 3.20 −0.42 −1.55 −0.28

< = 15 < = 5 x 3 < = 5 x 3
Mean EC 18.10 −2.77 −2.23 −1.29
Variance EC 9.61 −0.65 −2.33 −0.19
Skewness EC 0.59 −0.60 −0.63 −0.09
Kurtosis EC 3.79 −0.54 −0.58 −0.27
Mean EC('4C+1) 1.08 −4.51 −2.44 −2.73
Variance EC('4C+1) 0.01 −0.64 −0.49 −0.28
Skewness EC('4C+1) 0.29 −0.57 −0.39 −0.16
Kurtosis EC('4C+1) 3.20 −0.74 −0.63 −0.36

Comparison of moments of simulated time-series from the discretized model solutions (denoted by "̂) and
the analytical closed-form model solution (denoted by "), such that the relative accuracy of the solution for
moment" is measured by log10(|"̂/" − 1|). The lower (more negative) this value is, the closer this moment
of the simulated time series of the discrete model solution is to themoment of time series from the exact model
solution. Lowest values are marked in bold.
Parameters taken from Bansal and Yaron (2004): � = 1.5, �� = 0.855, $ = 7.4000 × 10−5, �̄ = 0.0012, � = 0.95,
� = 0.868, H̄ = 0.0179.

to:
+(3) = D(G(3))

1 − � .

We solve for G(1) numerically by simulation using the true stochastic process for dividend
growth and the discretized processes. Certainty equivalent consumption G measures the
willingness to pay to remove all risk. Lower values of G indicate a higher willingness to pay,
so to the extent the discretizations fail to capture risk, they will overstate G relative to the true
value.
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Table 3: Accuracy of asset pricing model solutions for the certainty equivalent of consumption (CEC): true value
of CEC compared to those following from three different methods. The lower the percentage deviation, the closer
the solution of the discretized model is to the truth. Different grid sizes are presented.

Janssens-McCrary Farmer-Toda Adda-Cooper
CEC (true) % dev % dev % dev

< = 9 < = 3 x 3 < = 3 x 3
1.65 0.76% 8.28% 5.41%

< = 15 < = 5 x 3 < = 5 x 3
1.65 1.93% 12.22% 3.95%

Lowest values are marked in bold. Parameters taken from Bansal and Yaron (2004):
� = 1.5, �� = 0.855, $ = 7.4000 × 10−5, �̄ = 0.0012, � = 0.95, � = 0.868, H̄ = 0.0179. The
notation < = 0 × 1 indicates that H is discretized with 0 grid points and � is discretized
with 1 grid points. This is because Farmer-Toda and Adda-Cooper make use of tensor
grids. Janssens-McCrary does not. Average is taken over 50 simulations of the CEC.

In Table 3, we analyze the accuracy of the different methods when it comes to the computation
of the CEC for two different grid sizes. As follows fromTable 3, ourmethod produces themost
accurate estimates of the CEC, with deviations in percentage points 0.8-2% from the truth.
The other twomethods are at best 4% away from the truth, and at worst 12%, underestimating
the amount of consumption the household is willing to give up to remove risk.

4 Application II: life-cycle model

In this section, we evaluate the quantitative implications of using different methods for con-
sumption, wealth andwelfare through a life-cycle consumption-savings model. While simple,
our model forms the basis for most of the heterogeneous agent quantitative macro literature,
so we would expect our results on the importance of accurate discretization to hold in richer
models. In addition, we use this section to demonstrate how our method can be applied
to non-linear non-Gaussian processes with life-cycle dynamics where the parameters of the
discrete process are allowed to vary over time.

We consider the discretized version of the GKOS andABB earnings processes. We first discuss
the life-cycle model we will use in our analysis. Next, we discuss the two stochastic processes,
our performance at discretizing these processes, and what the implications are for the model
solutions, using our and existing methods.
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4.1 Model and calibration

We begin by discussing the model environment, followed by the household optimization
problem, and the details of the calibration strategy.

Environment. Weconsider a partial equilibrium life-cycle version of the canonical incomplete-
markets model without aggregate uncertainty. Households live up to ) periods, where the
first C < )A are spent working and the remaining periods are spent in retirement. Working
households supply one unit of labor inelastically with pre-tax earnings eC that evolve stochas-
tically as described in more detail below. Retired households receive pension 1 and die with
probability 1− BC each period. Asset markets are incomplete. Agents can borrow and save via
an uncontingent bond, at risk-free interest rate A, up to an exogenous borrowing limit 0.

Household problem. At every age, agents choose consumption 2 and saving 0′ subject to the
budget constraint which depends on the current state of assets 0 and earnings e. During their
working age C < )A , households solve the following optimization problem:

+C(0, e) = max
2,0′

{
D(2) + �EC+C+1 (0′, e′)

}
,

s.t. 2 + 0′ = �(e) + (1 + A)0
0′ ≥ 0,

where earnings satisfy
eC = 6CIC .

That is, earnings in levels eC are the product of a common deterministic age component 6C and
an idiosyncratic stochastic component IC that evolves according to a (possibly age-dependent)
Markov transition matrix ΠC . The specification for 6C is taken from Guvenen et al. (2021).

Retired households solve the following problem:

+C(0) = max
2,0′

{
D(2) + �BC+C+1 (0′)

}
,

s.t. 2 + 0′ = 1 + (1 + A)0
0′ ≥ 0,

where 1 is a pension benefit paid to all retired households, and BC is the probability of surviving
from period C to C + 1.
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Calibration. Agents enter the model at age 25 and work until age )A = 65, after which they
can be retired up to 25 years, so ) = 80. If agents reach ) = 80, they die with certainty. The
exact year of death after retirement is stochastic, and the survival probabilities are from the
Social Security Administration actuarial life table. Retirement benefit 1 is chosen to match the
45% replacement rate of average earnings, which is a good approximation of the system in the
United States (Mitchell and Phillips, 2006).

Utility has CRRA form:
D(2) = 21−�/1 − �.

The coefficient of relative risk aversion is set to 2. The risk free rate is 2% and the borrowing
limit is 12% of average earnings, which De Nardi et al. (2020) find is roughly the ratio of
credit cards limits to income in the Survey of Consumer Finances. The discount factor � is
calibrated to match a wealth to income ratio of 3.1 for the working age population, and this
will be re-calibrated for each process, and each discretization method we use for these income
processes.

Following Benabou (2002) the labor income tax function has the form

�(H) = (1 − ")H1−�. (37)

The parameters " and � govern the level and progressivity of the tax function. Following
Krueger and Wu (2021) we set the progressivity parameter to 0.1327, and the level parameter
to 0.1575. The calibration is summarized in Table 4.

Table 4: Model parameters

Parameter Description Value Motivation
� Risk aversion 2.0 De Nardi et al. (2020)
1 Retirement benefits 0.45 Mitchell and Phillips (2006)
A Risk-free interest rate 0.04 De Nardi et al. (2020)
0 Borrowing limit -0.12 De Nardi et al. (2020)
� Income tax progressivity 0.1327 Krueger and Wu (2021)
" Income tax level 0.1575 Krueger and Wu (2021)
W/I Wealth-to-income ratio 3.1 De Nardi et al. (2020)
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Model statistics. After solving the model, we will report several statistics, such as covariances
and variances of consumption, asset holdings and earnings over the life cycle. In addition,
we compute two other statistics. First, we compute the certainty equivalent value (CEV). This
is the fraction of lifetime consumption an individual would be willing to give up to live in a
world without risk instead. Specifically let 21 be the sequence of consumption arising in an
economy with risk and 20 be the sequence of consumption without risk. The CEV is defined
in term of welfare as

,
(
(1 − ��+)20) =, (

21)
that is, the fraction of consumption one would be willing to give up to remain in the economy
without risk. Second, we report the partial insurance to persistent income shocks coefficient
as in Blundell et al. (2008).

#%BPP = 1 − cov(Δ28C , H8 ,C+1 − H8 ,C−2)
cov(ΔH8C , H8 ,C+1 − H8 ,C−2)

.

This statistic measures the extent to which consumption adjusts to unpredictable persistent
changes in income. This is a statistic that is sometimes used to calibrate life-cycle models, in
which case this statistic is computed both for actual data and for the model. It is therefore
important to know how sensitive this coefficient is to the discretization method used for the
earnings process.

4.2 Discretizing Guvenen, Karahan, Ozkan and Song (2021)

We now consider the earnings process of Guvenen et al. (2021). We first discuss the details of
the process, then how each method performs at discretizing this process in terms of capturing
the different moments over the life-cycle.

The GKOS earnings process is given by:6

H 8C = (1 − �8C)4(I
8
C+�8C)

I 8C = �I 8C−1 + �
8
C

I 80 ∼ #(0, �I0)

�8C ∼

#(��,1, ��,1) with prob. ?I

#(��,2, ��,2) with prob. 1 − ?I

(38)

6Note that we leave out the non-stochastic elements of the income-level, such as the fixed-effect. For the
estimated values of the parameters, we refer to their paper.
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�8C ∼

#(��,1, ��,1) with prob. ?�

#(��,1, ��,2) with prob. 1 − ?�

E 8C ∼


0 with prob. 1 − ?E(C , I 8C),
min{1, exp(�)} with prob. ?E(C , I 8C)

? 8E(C , IC) =
4�

8
C

1 + 4�8C
, where �8C ≡ 0 + 1C + 2I 8C + 3I 8CC.

Here H 8C is the income level of individual 8 at time C, I 8C is the persistent component of income,
�8C is the transitory component and E 8C is a non-employment indicator. The process can be
interpreted as an extended persistent-transitory earnings process, where the main novelties
are (i) the fat-tailed innovations to the persistent and transitory component, and (ii) the non-
employment shocks EC .

We use a multivariate discretization on log(H 8C + 1) and I 8C jointly. We allow the grid and
transition probabilities of our discretization to be age-dependent without any restrictions. We
use nine grid points, because, as one can see below in Section 4.2.1, nine grid points is sufficient
to capture the process well.7

The optimal time-varying grids are visualized in Figure 4. The panel on the right displays
how the grid points have a positive trend in age, and this is most notable in the grid point with
the highest income level. This allows the right tail of the income distribution to get fatter over
time if the stationary distribution over the grid points is reasonably constant across ages. As
can be seen, the discretization method shows that it is optimal to have multiple zero-income
states. In the case of < = 9, two unemployment states is optimal. As the number of grid
points increases, the method adds grid points further in the tails, as well as more zero-income
states (not visualized here). Having multiple states with an income level of zero results in
heterogeneity in job-finding probabilities.

Figure E1 in the Appendix visualizes the age-dependent transition probability matrix. The
first two rows represent the zero-income states, and by looking at the diagonal, we can see
that these states differ in terms of their persistence, and that this persistence changes with
age. The first row represents a less persistent non-employment state than the second row. The
persistence of this state does increase 40 percentage points over the life-cycle, and at the end

7Guvenen et al. (2021) remark that many grid points would be required to appropriately discretize their
income process. Our ability to discretize the process well with only nine grid points comes from the optimal
grid that follows from our method, and the choice of variables to which we apply the discretization method.
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Figure 4: Visualisations of the optimal grid of the discretization of the stochastic process in Guvenen et al. (2021)
with < = 9.

(a) Optimal grid at age ) = 65.
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(b) Optimal grid over the life-cycle
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of the working life, ending up in this non-employment state implies an 80% probability of still
being there next period. The second non-employment state is highly persistent already from
the beginning of the life-cycle, and towards the end of life the only “escape” out of this state
is by transitioning into the other non-employment state. This suggests that in the Guvenen et
al. (2021) process, non-employment becomes an almost absorbing process towards the end of
working life. Here it should be noted that Guvenen et al. (2021) do not differentiate between
unemployment and non-employment, which explains why these transition probabilities out
of the zero-income states are different from those we know from the unemployment duration
literature.

4.2.1 Comparison between methods

To the best of our knowledge, this paper is the first to discretize the process in Guvenen et
al. (2021). To demonstrate the performance of our method, we propose two different binning
methods: (i) “simple" binning and (ii) “clever" binning. Both methods are explained in
more detail in Appendix Section D. The simple binning method determines a grid with a
non-employment state and then bins on quantiles for all H > 0, and computes the transition
probabilities between these bins based on simulation. The clever binning method comes
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down to having a equal-quantile-based tensor grid between the persistent component I, the
employment status E and the transitory component �. Just as in our discretization, this will
generate heterogeneous transition probabilities out of non-employment.

Figure 5 displays how the unconditional moments of the earnings levels in the process in
Equation (38) vary by age, and the extent to which our discretization method and the existing
methods can replicate this. As these figures show, our discretization method captures both
the unconditional mean, variance, skewness and kurtosis of the earnings levels well, and does
so better than the two binning methods. The simple binning method performs better than the
clever binning method in this dimension.

Figure 5b also shows the unconditional moments of the arc-changes in earnings H, H8 ,C+1−H8 ,C
(H8 ,C+1+H8 ,C)/2 ,

a statistic the paper byGuvenen et al. (2021) focuses on. Looking at the unconditionalmoments
of H8 ,C+1−H8 ,C
(H8 ,C+1+H8 ,C)/2 presented here, we see that the simple binning method performs best at these

statistics, but we do perform better at capturing the variance, skewness and kurtosis over the
life-cycle than the clever binning method. The simple binning method performs well at this
statistic by construction, given that it matches period-to-period transitions.

In Figure 6, the life-cycle development of the non-employment dynamics are visualized for
the three different discretizations employed. As can be seen, our discretization is able to both
match the levels and the development of the two-period and three-period ahead conditional
non-employment probabilities over the life-cycle better than both binningmethods. The clever
binning method performs better at these moments than the simple binning method because
of its use of a tensor grid in the non-employment status. The simple binningmethod performs
well at the one-period-ahead persistence of non-employment by construction, but fails to
capture the long-run non-employment dynamics.

Overall, we conclude that the simple binning method captures some moments well by con-
struction, but misses out on the longer-term non-employment dynamics as well as the cross-
section of earnings. Our method’s discretization performs consistently well across all mo-
ments, and, because of that, captures the overall riskiness of the process better than the two
binning methods. Particularly capturing the longer-term non-employment risk well should
matter for the estimates of the welfare cost of risk. The tensor-based clever binning method
is outperformed in all dimensions by our method, most likely because nine grid points is not
sufficient when using tensor grids.
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Figure 5: Age-dependent moments, for three different discretizations with < = 9 grid points of the stochastic
process by Guvenen et al. (2021).
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(b) Unconditional moments of arc changes in earnings H8 ,C+1−H8 ,C
(H8 ,C+1+H8 ,C )/2
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Solid red line represents the continuous-support process, solid black line is our discretization
method, blue dotted line is the clever binning method, the blue dash-dot line is the simple
binning method.
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Figure 6: Non-employment dynamics for three different discretizations of the Guvenen et al. (2021) process with
< = 9 grid points.
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Solid red line represents the continuous-support process, solid black line is our discretization
method, blue dotted line is the clever binning method, the blue dash-dot line is the simple
binning method.

4.3 A life-cycle model with the earnings process of Guvenen et al. (2021)

Next, we illustrate the importance of the choice of the discretization method for the earnings
process of Guvenen et al. (2021) through the lens of the life-cycle model described above.
Figure 7 shows how the choice of the discretization method matters for the model solution,
and leads to different implications of how assets and consumption develop over the life cycle
of an individual.

The discretization method matters for how the variance in the change in assets from one
period to another varies over the life cycle. At the end of the working life, the variance in asset
changes is more than twice as large for our discretization method than for the simple binning
method. For the variance in consumption changes we see a similar pattern, but this statistic
peaks around age 45-50 and goes down again towards the end of the life-cycle. However,
the variance of consumption changes implied by our method is again higher than that of the
binning methods.

Table 5 summarizes some additional statistics computed from the life-cycle model solutions.
Looking at the certainty equivalent (CEV) in this table, the lifetime consumption an individual
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Figure 7: Simulations from the life-cycle model for three different discretizations of the earnings process of
Guvenen et al. (2021). Assets, consumption and earnings over the life-cycle (age on the x-axis).
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Solid line represents our discretization method, the dashed line is the clever binning method,
the dashed-dot line is the simple binningmethod. The last panel depicts the continuous-support
earnings process. Data is simulated on the grid, and the solution is computed using the four
different discretizations.

Table 5: Summary statistics computed from simulations from the life-cycle model for three different discretizations
of the earnings process of Guvenen et al. (2021). < = 9 is used for the discretization. Rescaled such that mean
income for all processes is the same.

Method Janssens-McCrary Clever binning Simple binning
Variance 28C 0.808 0.295 0.427
Variance Δ28C 0.043 0.031 0.033
Variance 08C 11.065 2.986 4.749
Variance Δ08C 0.139 0.205 0.078
Covariance 28C , H8C 0.873 0.297 0.446
Covariance Δ28C , ΔH8C 0.072 0.072 0.056
CEV 0.921 0.683 0.752
#%BPP 0.378 0.394 0.431
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would be willing to sacrifice in order to remove all risk, we see that this value varies across
discretization methods. The CEV that follows from a model solved with our discretization
method is higher thanwhen using a binning-based discretization. This is not surprising given
that we capture the long-term non-employment dynamics better – an important source of risk
in this model – as well as the overall cross-sectional distribution of earnings. The difference
of 17 percentage points is large considering typical policy experiments only cause the CEV to
change by 1-2 percentage points.

Note that a CEV of 0.92 is a large number. This comes from the highly-persistent non-
employment state in the stochastic process of Guvenen et al. (2021) that the individuals in our
life-cycle model, as we will demonstrate in the next paragraphs. In reality, non-employment
is – in part – a labor supply choice, and part involuntary unemployment. The Guvenen et al.
(2021) process does not distinguish between the two. Therefore, not all aspects of this process
are truly exogenous, and the CEV overestimates the actual earnings risk in this economy.
Re-estimating the process in Guvenen et al. (2021) such that EC only captures involuntary
non-employment goes beyond the scope of this paper, and our goal is merely to demonstrate
the ability of our method to discretize highly non-standard processes such as Guvenen et al.
(2021), and, furthermore, that the discretization method one chooses matters for the welfare
implications in a life-cycle model.

4.3.1 Main sources of risk in Guvenen et al. (2021)

In this subsection, we use our discretization method to study what the main sources of risk
are in the earnings process of Guvenen et al. (2021). As discussed by Guvenen et al. (2021),
there are two main features of the earnings process that are important in matching several
moments of the earnings data they use, being (i) non-employment shocks and (ii) innovations
to earnings being drawn from a normal mixture. We analyze the relative contribution of these
features to the overall risk an individual faces by shutting down the non-employment shocks.

We compute the certainty equivalent for the discretized process ofGuvenen et al. (2021) (i) as in
Equation (38) and (ii) when E 8C = 0 for all 8 , C. These results are summarized in Table 6. As can
be seen, the non-employment risk is the most important source of risk individuals face, and
removing this risk decreases the CEV from 0.92 to 0.51 when using our discretization method,
and from 0.75 to 0.34 when using simple binning with the same number of gridpoints. In both
cases, the discretization based on simple binning estimates the CEV to be 17 percentage points
lower than our discretization. Adding more grid points to the binning method increases
its CEV when considering the process without non-employment risk, but does not help as
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Table 6: Certainty equivalent (CEV) for a variation on the earnings process of Guvenen et al. (2021). Rescaled
such that mean income for all processes is the same.

Guvenen et al. Guvenen et al.
No nonempl. risk

CEV JM < = 9 0.921 0.505
CEV simple binning < = 9 0.752 0.339
CEV simple binning < = 60 0.775 0.413

Note that we do not report CEV’s for the clever binning method when there is no non-
employment risk, because this method takes a tensor grid in the non-employment state EC .

much in the presence of non-employment risk. This insight is comparable to what we find in
Appendix Section F, where Table F2 shows that a binning-based method underestimates the
CEV of a process with fat tails.

4.4 Discretizing Arellano et al. (2017)

Next, we discuss how we discretize the nonparametric earnings process in Arellano et al.
(2017). As in Arellano et al. (2017), let.8C denote log H8C , where H8C is unexplained pre-tax labor
earnings. Decompose .8C as follows:

.8C = �8C + �8C , 8 = 1, ..., # , C = 1, ..., ).

Here �8C denotes the persistent component and �8C denotes the transitory component. The
transitory component has mean zero and is independent over time and from all �8B . The
persistent component �8C follows a general first-order Markov process, with its �th conditional
quantile given �8 ,C−1 by &C(�8 ,C−1, �) for each � ∈ (0, 1), i.e., without loss of generality:

�8C = &C(�8 ,C−1, D8C), (D8C |�8 ,C−1, �8.C−2, ...) ∼ Uniform(0, 1), C = 2, ..., )

This model allows for nonlinear dynamics of earnings, and in particular, generates nonlinear
persistence:

�C(�8C−1, �) =
%&C(�8 ,C−1, �)

%�
, �C(�) = E

[
%&C(�8 ,C−1, �)

%�

]
� measures persistence of earnings histories and individuals with similar income levels but
different values of � may have very different expectations over their next period’s earnings.
Arellano et al. (2017) estimate this model non-parametrically, approximating & using low-
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order products of Hermite polynomials and limiting time-dependence to age-dependence,
i.e.,

&C(�8 ,C−1, �) = &(�8 ,C−1, age8C , �) =
 ∑
:=0

0
&

:
(�)):(�8 ,C−1, age8C).

One advantage of ourmethod is that it only requires a simulated sample from the true stochas-
tic process, therefore it can also be applied non-parametric methods as those by Arellano et al.
(2017). We focus on the discretization of �8C only, as the transitory component �8C is i.i.d. over
time. The simulated values from the stochastic process are noisy, so we truncate the data at
four age-dependent standard deviations about the mean.8 We use 14 grid points, because, as
we show below, that is sufficient to be able to capture the processwell. The grids and transition
probability matrices vary at each age. We visualize the time-varying transition probabilities
and grid in Figures E2 and E3 in the Appendix.9

4.4.1 Comparison across methods

We compare the performance of our discretization method with the method De Nardi et al.
(2020) propose to discretize the Arellano et al. (2017) process. In particular, their method
adapts Adda and Cooper (2003) and uses simulation-based binning for both the persistent
component �8C and the transitory component �8C and then uses a tensor grid to obtain a
discretization for H8C . The innovation of their method is to add bins in the tails of the process.
Note that their discretization originally was applied to a re-estimated version of Arellano et al.
(2017) that uses after-tax earnings. Their discretization for �8C uses 18 grid points. For details
we refer to their paper.

Figure 8 visualizes the moments of �C and Δ�C for the Arellano et al. (2017) process, our
discretization and the binning method of De Nardi et al. (2020) that we below will refer to
as ‘tail binning’. As can be seen, our discretization method does a good job at capturing the
mean, skewness and kurtosis of the levels of �C . For the variance, our method is better at the
younger ages, while the tail binning method does better at ages 50 and higher. Overall, the
tail-binning method misses the gradual increase in skewness and kurtosis over the entire life
cycle, and instead catches up by rapidly increasing around age 45-50.

For the differences Δ�C , we observe that our method and the tail binning method perform
similarly well at the mean, but our performance is better at the variance, skewness and

8For the simulations from their earnings process, we use the publicly-available codes that accompany their
publication.

9< = 10 is chosen here for readability.
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kurtosis. We do still underestimate the excess kurtosis and skewness compared to the true
process, but less than the tail binning method.

4.5 A life-cycle model with the ABB earnings process

Next, we use the earnings process of Arellano et al. (2017) in our life-cycle model. Figure
9 visualizes how the mean of assets and consumption and the variance of changes in assets
and consumption evolve in the models solved using the two different discretizations. As
can be seen, the development of the mean over the life-cycle is fairly similar, but there are
considerable differences in the variance of asset and consumption changes. The differences
can be well-explained by the differences we observe in Figure 8, where we visualize how our
and the tail-binningmethod by DeNardi et al. (2020) perform at capturing themoments of the
underlying process. The tail-binning method fails to capture the gradual increase in skewness
and kurtosis of the process over the lifecycle, but sees a rapid increase around age 50, and an
overestimation of those moments at the end of the life-cycle. This is reflected in the variance
of asset changes that follow from their discretization, which is consequently too low at the
earlier ages, and too high at the ages above 55. A similar pattern is visible for consumption
changes.

Table 7 summarizes several other moments simulated from the life-cycle model, and we see
that our solution generatesmore asset and consumption inequality than the tail-binning-based
solution. We also compute the welfare cost of risk, the CEV, and find that ours is 0.233, while
the tail-binning method suggests a CEV of 0.166, implying we get an estimate that is 6.7
percentage points, that is 40%, larger.

We believe that these differences can also explain the results found in De Nardi et al. (2020),
concluding that the CEV of a canonical earnings process is higher than the highly-nonlinear
earnings process of Arellano et al. (2017). Using a discretization method that better captures
the development of the higher-order moments over the life-cycle seems to generate higher
CEV estimates. We should add that the paper of De Nardi et al. (2020) uses a different process
than we consider here, and that we have to be careful when extrapolating our conclusions
here to the process considered in their paper.
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Figure 8: Moments of �C and Δ�C for the process of Arellano et al. (2017). The red line is data simulated from
the Arellano et al. (2017) process, the black line follows from our discretization method, and the blue dotted line
is based on the tail binning methhod of De Nardi et al. (2020).
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Figure 9: Two discretizations of Arellano et al. (2017) in a life-cycle model. Solid line is the model solution using
our discretization, dashed line uses the tail-binning method of De Nardi et al. (2020).
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Table 7: Summary statistics computed from the life-cycle model for two different discretizations of the ABB
earnings process. < = 14 is used for JM, binning uses 18.

Discretization method Janssens-McCrary Tail-binning
Variance 28C 1.939 0.988
Variance Δ28C 0.067 0.061
Variance 08C 240.3 139.7
Variance Δ08C 3.007 3.108
Covariance 28C and H8C 3.241 2.111
Covariance Δ28C and ΔH8C 0.163 0.160
CEV 0.233 0.166
#%BPP 0.660 0.678
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4.6 Comparing Guvenen et al. (2021) and Arellano et al. (2017) and their implications for
wealth inequality

Our discretized processes allow for a direct comparison between the process of Guvenen et al.
(2021) and Arellano et al. (2017). First of all, we note that the time-varying grids of Arellano et
al. (2017), as visualized in Appendix Figure E3, has grid points much further in the tails than
the process by Guvenen et al. (2021).10 There are also considerable differences in the life-cycle
dynamics of the transition probabilities between the two processes. All life-cycle dynamics
of the transition probabilities in Guvenen et al. (2021) occurs in the non-employment and
low-earnings states. In contrast, Arellano et al. (2017) is estimated on a sample of employed
married males in the PSID, and the transition probabilities of the low-earnings states are fairly
constant. The transition probabilities of the high-earnings states do vary over the life-cycle.
As can be seen in Figure E2, the persistence of the highest earnings state increases over the
life-cycle, while the persistence of the second and third-highest earnings state decrease.

Finally, we use the different discretizations of the processes of Guvenen et al. (2021) and
Arellano et al. (2017) in the life-cycle model to analyze their implications for wealth inequality.
Table 8 summarizes wealth shares of the United States as reported in Krueger, Mitman, and
Perri (2016) and as follow from the life-cycle model for the different earnings processes and
discretizations.

Table 8 compares the wealth distribution using our discretization of the ABB and GKOS
processes in the life-cyclemodel versus existingmethods. Note that a better discretizationdoes
not necessarily lead to a better model fit in terms of the wealth distribution, but our method
generates wealth shares that are very similar to those observed in the Panel Study of Income
Dynamics (PSID) and the Survey of Consumer Finances (SCF) data sets in 2006 and 2007. The
tail binning discretizationmethod proposed by DeNardi et al. (2020) overestimates the wealth
shares of the lower quantiles, and underestimates the wealth shares of the higher quantiles.
For example, it underestimates the wealth share of the top 20% by 9.7 percentage points, while
our discretization is only 2.3 percentage points below the wealth share found in the PSID.
For the top 1%, our discretization generates a wealth share that is only 1.4 percentage points
above the share found in the SCF. The Gini coefficient that follows from our discretization
is equal to the Gini coefficient Krueger et al. (2016) obtain from the SCF, while using the
discretization method proposed by De Nardi et al. (2020) leads to a Gini coefficient that is 0.09
lower. The GKOS process does not generate as much income inequality as the Arellano et al.
(2017) process, and therefore can not generate enough wealth inequality to match the wealth

10Note that the grid in Figure E3 still has to be exponentiated for a comparison with Figure 4b.
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Table 8: Wealth inequality measures. Data on from Krueger et al. (2016).

Data Model + Guvenen
% Share held by: PSID, 06 SCF, 07 Janssens-McCrary Clever binning Simple binning
Q1 -0.9 -0.2 -1.1 -1.3 -1.2
Q2 0.8 1.2 -0.1 3.3 2.9
Q3 4.4 4.6 7.5 14.1 12.0
Q4 13.0 11.9 21.9 31.1 26.0
Q5 82.7 82.5 71.8 52.8 60.3
T1% 30.9 33.5 11.5 4.0 6.2
Gini 0.77 0.78 0.71 0.56 0.61

Data Model + ABB
% Share held by: PSID, 06 SCF, 07 Janssens-McCrary Tail-binning
Q1 -0.9 -0.2 -0.4 -0.4
Q2 0.8 1.2 0.8 1.7
Q3 4.4 4.6 5.5 8.2
Q4 13.0 11.9 13.6 17.3
Q5 82.7 82.5 80.4 73.0
T1% 30.9 33.5 34.9 28.4
Gini 0.77 0.78 0.78 0.69

shares observed in household surveys. Our discretization of GKOS does generatemorewealth
inequality than the two binning methods. For example, we underestimate the share of the top
1% by about 19-22 percentage points, while the binningmethods miss the wealth shares of the
top 1% by 24-29 percentage points. Consequently, the Gini coefficient that follows from our
method is 0.06-0.07 below the SCF estimate, and the other methods result in Gini coefficients
that are even lower. It follows that if one were using the wealth distribution to assess the
performance of the standard incomplete markets model, they could erroneously conclude the
model provides a poor fit without an accurate discretization of the earnings process.

5 Conclusion

This paper proposes a novel discretization method for a large class of stochastic processes
which provides both an optimally selected grid and transition probabilitymatrix. Themethod
is based on minimizing the information loss of an individual using our discretized process
to make its decisions rather than the true continuous-support process. We compare its per-
formance to existing methods such as those by Farmer and Toda (2017), Rouwenhorst (1995),
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Tauchen (1986), and Adda and Cooper (2003). Our discretized process provides a closer fit to
the continuous-support process, and, a lower mean squared forecast error than when using
any of the othermethods. We apply ourmethod to a large set of continuous-support processes,
and find that the gain of using our method is largest in case of multivariate processes such
as the AR(1) process with stochastic volatility, and processes with a life-cycle component like
those proposed by Arellano et al. (2017) and Guvenen et al. (2021).

We apply and compare our method in twomain applications. The first application is an asset-
pricingmodel with stochastic volatility, which, as shown by De Groot (2015) has a closed-form
analytical solution. We use this analytical solution as our benchmark to the solutions based
on different discretization methods. We find that our method results in numerical solutions
closer to this benchmark, especially with regards to the welfare cost of risk.

We also evaluate the effect of the choice of discretization method on the solutions that follow
from a life-cyclemodel with a variety of different earnings processes, and find that themethod
matters greatly for several statistics, such as the pass-through of income risk to consumption,
and the welfare cost of risk. Given that both are commonly reported statistics, the fact that
they depend so strongly on the choice of the discretization method is an important insight
for applied modeling. Finally, we find the choice of the different method matters for the
amount of wealth inequality that a model can generate, and we show that a discretization of
Guvenen et al. (2021) and Arellano et al. (2017) using our method can generate wealth shares
and other wealth inequality statistics closer to those observed in the data than when using
other methods.

Discretized stochastic processes have many more applications than the asset-pricing and life-
cycle models we use to benchmark out method. Our method’s generality provides a tool to
bridge the gap between reduced form statistical processes and applied quantitative modeling.
We hope this opens the door to the use of richer statistical processes in structural economic
models.
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A Amulti-step EM algorithm for HMM

In this section, we outline the multi-step EM algorithm we use for the estimation of the HMM
in case of life-cycle dynamics, where the transition matrix ΠC and grid �C are allowed to vary
by age. The large number of parameters to be estimated here requires # to be large, and the
EM algorithm has to converge for many parameters. A multi-step algorithm provides more
stability.

Assume a panel of H8C ∈ R: , C = 1, ..., ) and 8 = 1, ..., # . Assume a given grid size <.
Initialization:

• Estimate a Gaussian Mixture Model on H81, 8 = 1, ..., # . This gives a grid for the first
time period and iteration, �1

1, stationary probabilities �1
1 and the filtered probabilities 
1

1.
Set iteration 9 = 1.

We have a forward and backward step. For the forward step, set C = 1 and:

• Estimate the HMM of Section 2.2 for (H8C , H8C+1), 8 = 1, ..., # , restricting the grid of time
period C to �9C , the stationary probabilities of time period C to � 9C , the forward probabilities
to 


9

C (except for C = 1, in which case they follow from Equation (11)). For 9 > 1, also
restrict the backward probabilities for C + 1 to those obtained from the backward step,
�
9−1
C+1, else set to 1. Estimate and store the grid �

9

C+1, the transition probability matrix Π9

C ,
stationary probabilities � 9

C+1, and forward probabilities 
 9
C+1. Set C = C + 1 and repeat up

until and including C = ) − 1.

For the backward step, set C = ) and:

• Estimate the HMM of Section 2.2 for (H8C−1, H8C), 8 = 1, ..., # , restricting the grid of time
period C to �9C , the stationary probabilities of time period C to � 9C , the forward probabilities
to 


9

C , the backward probabilities to �
9

C (for C < )). When C = ), all of these (except the
backward probabilities) come from the last time period of the forward step. Estimate
and store the grid �

9

C−1, the transition probability matrix Π9

C−1, stationary probabilities
�
9

C−1, and backward probabilities � 9
C−1. Set C = C − 1 and repeat up until and including

C = 2.

Once can iterate multiple times between the forward and backward step until they stabilize.
In that case, update 9 = 9 + 1.
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B Discretization of linear Gaussian processes

B.1 Discretizing an AR(1) process with Gaussian innovations

We consider an autoregressive process of order one with Gaussian errors:

HC = �HC−1 + ���C , �C ∼ #(0, 1), C = 1, ..., ). (B.1)

We simulate data from the process in Equation (29). We impose both restriction (26) and (27)
because of the symmetry of the process. Figure 1 in the main paper visualizes the elbow
plot for this process. In Figure B1 we visualize the same log likelihood as in Figure 1 of the
main paper, but we also add the log likelihoods that we obtain when we interpret the grids
and transition probabilities of the existing methods as restrictions of our misspecified HMM.
This visualizes the relative information loss of all methods relative to the true process. We
can see that our method always produces the smallest information loss, and converges to
the true process log likelihood faster. The information loss in the Rouwenhorst method and
Farmer-Toda method is (almost) identical. The Tauchen method loses more information for
low grid sizes <, but catches up on the Rouwenhorst and Farmer-Toda method from 11 grid
points onwards.

We can use Figure B1 to analyze howmuchmore parsimonious our discretization is in terms of
information loss than the existing methods. For example, we can obtain a similar information
loss with nine grid points where the existing methods need thirteen.

Comparingourmethod to theTauchen (1986), Rouwenhorst (1995) andFarmer andToda (2017)
method, we obtain the results summarized in Table B1. For both grid sizes, the mean-squared
forecast error indicates that our discretization has a much better fit to the data simulated from
the continuous-support process than the discretized processes implied by the other methods.
Focusing on conditional and unconditional moments, we see that for < = 7, our method does
better at capturing the conditional skewness and conditional kurtosis than the other methods.
Given that the Rouwenhorst (1995) targets the first two moments and the autocorrelation,
it is not unexpected that we do not outperform this method in this dimension. Consistent
with Figure B1, as < increases, the Tauchen (1986) method provides a better discretization,
and actually captures the conditional skewness and kurtosis better than our method, and
outperforms the discretizations that follow from applying Rouwenhorst (1995) and Farmer
and Toda (2017) with regards to the MSFE.
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Figure B1: Log likelihoods for the misspecified HMM of an AR(1) process, discretized by our method and existing
methods for different values of grid size <.
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B.2 Discretizing an AR(1) with a mixture of Gaussian innovations

We now consider an autoregressive process of order one with a mixture of Gaussian errors:

HC = �HC−1 + �C , �C ∼


#(0, �2

1) with probability ?1

#(0, �2
2) with probability ?2

#(0, �2
3) with probability 1 − ?1 − ?2.

(B.2)
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Table B1: Comparison AR(1), lowest values in bold.

Method Janssens-McCrary Tauchen Rouwenhorst Farmer-Toda
m = 7
Abs dev. uncond. mean H < 0.001 < 0.001 < 0.001 < 0.001
% dev. uncond. variance H -11.1 52.8 < 0.001 < 0.001
% dev. autocorrelation H 0.31 1.24 0.06 0.04
Abs. dev. uncond. skewness H 0.005 0.019 < 0.001 -0.043
% dev. uncond. kurtosis H -5.33 -7.53 -11.6 -7.19
Abs. dev. cond. mean H 1.25 5.88 < 0.001 < 0.001
% abs. dev. cond. variance H 12.80 18.2 < 0.001 < 0.001
Abs. dev. cond. skewness H 0.65 1.11 1.42 2.11
% abs. dev. cond. kurtosis H 95 151 195 735
MSFE H 1.41 1.83 1.51 1.51
m = 11
Abs dev. uncond. mean H < 0.001 < 0.001 < 0.001 < 0.001
% dev. uncond. variance H -3.5 25.8 < 0.001 < 0.001
% dev. autocorrelation H 1.11 -0.105 0.117 0.096
Abs. dev. uncond. skewness H 0.019 -0.030 0.014 -0.004
% dev. uncond. kurtosis H -0.707 -6.05 -8.05 -1.04
Abs. dev. cond. mean H 1.45 3.21 < 0.001 < 0.001
% abs. dev. cond. variance H 17.2 26.2 < 0.001 < 0.001
Abs. dev. cond. skewness H 0.303 0.217 1.05 1.05
% abs. dev. cond. kurtosis H 29.37 7.61 117 571
MSFE H 1.20 1.29 1.32 1.32

Parametrization of AR(1): � = 0.95, � = 1. ) = 5, 000.
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Figure B2: Elbow plot for an AR(1) process with a mixture of Gaussian innovations
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Parametrization: � = 0.9, �2
1 = 0.1, �2

2 = 0.2, �2
3 = 0.8, ?1 = 0.2, ?2 = 0.6. ) = 40, 000.

46



Table B2: Comparison for an AR(1) process with a mixture of Gaussian innovations

Method Janssens-McCrary Farmer-Toda Binning
m = 7
Dev. uncond. mean H < 0.001 < 0.001 -0.036
% dev. uncond. variance H -6.51 -1.06 -22.2
% dev. autocorrelation H 1.44 -0.124 -2.37
Abs. dev. uncond. skewness H -0.013 0.023 -0.108
% dev. uncond. kurtosis H -9.79 -16.4 -40.3
Abs. dev. cond. mean H 0.020 <0.001 0.016
% abs. dev. cond. variance H 24.45 <0.001 10.59
% abs. dev. cond. skewness H 0.92 1.14 1.00
% abs. dev. cond. kurtosis H 24.4 20.2 90.7
MSFE H 0.192 0.199 0.222
m = 15
Dev. uncond. mean H < 0.001 < 0.001 −0.030
% dev. uncond. variance H -3.12 -1.06 -11.0
% dev. autocorrelation H 0.959 -0.077 -0.693
Abs. dev. uncond. skewness H -0.008 0.047 -0.086
% dev. uncond. kurtosis H -2.13 3.29 -26.4
Abs. dev. cond. mean H 0.028 <0.001 0.012
% abs. dev. cond. variance H 15.7 <0.001 9.71
% abs. dev. cond. skewness H 0.651 1.01 1.00
% abs. dev. cond. kurtosis H 26.3 135 90.7
MSFE H 0.166 0.174 0.181

Parametrization: � = 0.9, �2
1 = 0.1, �2

2 = 0.2, �2
3 = 0.8, ?1 = 0.2, ?2 = 0.6. The Farmer-Toda method here matches

the first four conditional moments, but does not manage to match them at each grid point. In that case, it only
matches the first two or three.

Figure B2 shows the elbow plot to determine the optimal number of grid points. For the
specific parametrization of � = 0.9, �2

1 = 0.1, �2
2 = 0.2, �2

3 = 0.8, ?1 = 0.2, ?2 = 0.6, 9 grid
points is suggested. We compare our discretization method to the method by Farmer and
Toda (2017) and the binning method by Adda and Cooper (2003) and also visualizes the log
likelihood that is obtained when using the obtained grid for their discretization methods as
restrictions in our HMM model. As can be seen, the relative information loss between our
method and the binning method is large. The method by Farmer and Toda (2017) does better,
but at < = 19 falls down, because from < = 19 onwards, it is able to match more moments,
but this seems to go at the cost of the overall fit to the true process.
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Figure B2 also shows that we can be more parsimonious than the other two discretizations.
When < = 19 for Farmer and Toda (2017), we can get to the same information loss to the
true process using 14 grid points instead. For binning, the difference is even larger, and when
binning uses < = 13, we can get to the same information loss with 6 grid points.

Next, Table B2 summarizes several statistics to compare our discretization method with the
method by Farmer and Toda (2017). The method by Farmer and Toda (2017) aims to match
both conditional and unconditional first to fourth ordermoments, butwe see that theirmethod
only outperforms at the unconditional variance, autocorrelation, and the conditional mean
and variance. The reason is that their method drops moment-restrictions it cannot match, and
therefore sometimes doesworse at those. We perform better with respect to all othermoments
(except the conditional kurtosis at < = 7).

B.3 Discretizing VAR models

In this subsection, we demonstrate the performance of our method for discretizing a bivariate
VAR model of the form

H1
C = �11H

1
C−1 + �12H

2
C−1 + �

1
C (B.3)

H2
C = �21H

1
C−1 + �22H

2
C−1 + �

2
C , (B.4)

where �C ∼ #(0,Σ).

We consider three different parametrizations but keep the grid size fixed to < = 17 to show
how our discretization method optimally selects the grid. The optimal grids are visualized
in Figure B3. As can be seen, as opposed to a tensor grid, our optimal grid incorporates the
structure of the process into the grid. For example, in a VAR model where both variables are
positively correlated (�12 = �21 > 0), if H1 is large, H2 is also likely large. Figure B3b shows
how this is reflected in our optimal grid, while a standard tensor grid as in Figure B3d does
not reflect this co-dependence.

Table B3 summarizes the performance of our discretization compared to the discretization
of Farmer and Toda (2017) for two different parametrizations of the VAR model in Equation
(B.3). In their discretization, Farmer andToda (2017) target thefirst two conditionalmoments.11
As we can see, they outperform our discretization method on the first two conditional and

11Their optimization procedure cannot target higher-order moments for this specific model and parametriza-
tion.
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Figure B3: Visualisation of optimal grid for three different parametrizations of the data generating process in
Equation (B.3), < = 25.
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(d) Symmetric and positively correlated:
Farmer-Toda

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

For all three parametrizations, Σ = diag(0.1).
Panel (a): �11 = 0.7, �12 = 0, �21 = 0, �22 = 0.7
Panel (b) and (d): �11 = 0.7 �12 = 0.2, �21 = 0.2, �22 = 0.7
Panel (c): �11 = 0.7 �12 = 0.1, �21 = 0.0, �22 = 0.7.

unconditional moments, but for all other moments, our method is closer to the true process.
Our method also has a smaller mean squared forecast error.
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Table B3: Comparison for VAR model in Equation (B.3) for < = 25 (<H1 = 5, <H2 = 5 for Farmer-Toda).

Method Janssens-McCrary Farmer-Toda
Parametrization 1
Abs. dev. uncond. mean H 0.087 < 0.001

% dev. uncond. variance H -0.134 0.005
% dev. autocorrelation H 0.106 -0.436
Abs. dev. uncond. skewness H <0.001 0.072
% dev. uncond. kurtosis H -0.037 -0.100
Abs. dev. correlation(H1, H2) 0.031 -0.002
Abs. dev. cond. mean H 0.035 < 0.001

% abs. dev. cond. variance H 35.8 < 0.001

% abs. dev. cond. skewness H 0.203 0.490
% abs. dev. cond. kurtosis H 13.1 17.3
MSFE H 0.104 0.104
Parametrization 2
Abs. dev. uncond. mean H 0.093 < 0.001

% dev. uncond. variance H -0.142 0.009
% dev. autocorrelation H 0.102 -0.326
Abs. dev. uncond. skewness H -0.005 0.082
% dev. uncond. kurtosis H -0.040 -0.223
Abs. dev. correlation(H1, H2) 0.058 -0.036
Abs. dev. cond. mean H 0.035 < 0.001

% abs. dev. cond. variance H 34.8 < 0.001

% abs. dev. cond. skewness H 0.293 0.615
% abs. dev. cond. kurtosis H 14.36 29.97
MSFE H 0.106 0.117

Parametrization 1: �11 = 0.7 �12 = 0.1, �21 = 0.0, �22 = 0.7. Parametrization 2:
�11 = 0.7 �12 = 0.1, �21 = 0.1, �22 = 0.7. The statistics average over H1 and H2.
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B.4 Discretizing an AR(1) with stochastic volatility

Consider the following stochastic process:

HC = �HC−1 + 4 ℎC/2�C , �C ∼ #(0, 1)
ℎC = � + )(ℎC−1 − �) + �ℎ�C , �C ∼ #(0, 1).

(B.5)

Figure B4: Average log likelihood for the misspecified HMM of the AR(1)-SV process
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Parametrization: � = 0.9, � = −1.9, �2
ℎ
= 0.4228, ) = 0.3. T=150,000.

For the discretization, we treat the process in Equation (B.5) as a multivariate process in H and
ℎ. Figure B4 visualizes the log-likelihood of this model for different grid sizes. Interestingly,
the log likelihood has a small jump at< = 17 rather than beingmonotonously increasing. This
is not due to numerical imprecisions, but because of the way our discretization method selects
its optimal grid, which we will elaborate upon below. Figure B4 also visualizes in red the log
likelihood of the true process. As can be seen, our process gradually converges to the true
process, but less fast than for a simple AR(1) process. We compute the implied log likelihoods
of the competing methods too, interpreting their discretization as a restriction for our HMM.
As follows, the information loss from using their discretization methods is substantial. We
can obtain the same relative information loss as the Farmer-Toda process does in 27 grid points
with only 7.
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Figure B5: Visualisation of optimal grid for three different grid sizes (< = 17, 21, 27), where the data generating process is an AR(1) process with
stochastic volatility as in Equation (B.5).
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(d) Toda-Farmer method: < = 27 (<H = 9, <ℎ = 3)
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Parametrization: � = 0.9, � = −1.9, �2
ℎ
= 0.4228, ) = 0.3. Height of the bars depicts the variance level at the grid points, positioning on the G-axis of

the bars depicts the level of H. The distinction between the red and black bars is to indicate that for < large, pairs of grid points arise where H has
very similar values, but the value of the variance differs. Red bars are states that have a variance level below 0.4, black bars are above 0.4
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Figure B5 visualizes the optimal grid for different grid sizes <. At < = 17 grid points, the
method focuses on fitting H well, and, as can be seen, captures the fact that in the tails, the
value of exp(ℎ/2) is larger than in the middle. However, as more grid points are added, e.g.
for < = 21 and < = 27, states will appear with very similar levels of H as other grid points,
but other values for ℎ. These grid points appear from < = 19 onwards, which explains the
temporary decline in the explained variation after < = 17, which only measures the fit of
H. On the other hand, the log likelihood, which measures the fit in both H and ℎ, shows a
steep increase from < = 19 to < = 21, capturing the fact that the process does a good job at
modelling the joint dynamics of ℎ and H.

Next, we compare our discretization method to other discretization methods. We use the
method and codes of Farmer and Toda (2017), as well as a two-dimensional binning method
adapted fromAdda andCooper (2003). For the two-dimensional binningmethod, we simulate
data from the AR(1)-SV model, and create bins for H and ℎ based on equal quantiles. The grid
value is the median of the bin. The overall grid for (H, ℎ) follows from the tensor grid. We
compute the joint transitions between all bins to determine the transition probability matrix.

One important advantage of our discretization method is that ours does not rely on tensor
grids, but, as visualized in Figure B5, optimally determines the joint grid of H and ℎ. In
contrast, panel (d) in Figure B5 shows that in case of a tensor product, each H-level will always
have a fixed and pre-determined number of ℎ-levels. Our process suggests that this is far from
optimal, because, e.g., for very large (or small) levels of H, mostly large values of ℎ are relevant.

We compare the performance of the different discretization methods in Table B4. Our dis-
cretizationmethoddoes abetter job at capturing the stationarydistributionof H of theAR(1)-SV
process, both for < = 9 and < = 27. Our discretization is closer to the unconditional mean,
variance, skewness and kurtosis of the true process.

The discretization of Farmer and Toda (2017) is closer in terms of the autocorrelation of H. In
terms of conditional moments, the method by Farmer and Toda (2017) performs well at the
mean and variance, because these are moments their method explicitly targets. We do well
at the conditional skewness. Binning does well at the conditional kurtosis. The difference
between the MSFE’s are large, especially for < = 9, but also at < = 27 the MSFE is 12% higher
for Farmer and Toda (2017), and 23% for binning.
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Table B4: Comparison for an AR(1) process with stochastic volatility

Method Janssens-McCrary Farmer-Toda Binning
m = 9 (<H = 3, <ℎ = 3 for Farmer-Toda and binning)
Dev. uncond. mean H < 0.001 < 0.001 0.003
% dev. uncond. variance H -8.48 -9.61 -40.9
% dev. autocorrelation H 2.70 -0.021 -10.5
Dev. uncond. skewness H -0.006 -0.032 -0.016
% dev. uncond. kurtosis H -4.25 -64.3 -54.7
% abs. dev. cond. mean H 0.026 < 0.001 0.061
% abs. dev. cond. variance H 25.6 15.8 34.3
Abs. dev. cond. skewness H 0.493 2.42 1.27
% abs. dev. cond. kurtosis H 139.8 292.6 60.3
MSFE H 0.218 0.365 0.402
m = 27 (<H = 9, <ℎ = 3 for Farmer-Toda and binning)
Dev. uncond. mean H < 0.001 < 0.001 0.003
% dev. uncond. variance H -3.78 6.47 -15.7
% dev. autocorrelation H 1.66 -0.166 -2.09
Dev. uncond. skewness H -0.032 -0.011 -0.010
% dev. uncond. kurtosis H -1.31 -25.4 -32.0
% abs. dev. cond. mean H 0.024 < 0.001 0.020
% abs. dev. cond. variance H 27.7 2.78 11.1
Abs. dev. cond. skewness H 0.733 1.20 0.416
% abs. dev. cond. kurtosis H 226.8 288.5 37.4
MSFE H 0.194 0.218 0.240

Parametrization: � = 0.9, � = −1.9, �2
ℎ
= 0.4228, ) = 0.3. ) = 100, 000.
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C An asset pricing model with stochastic volatility

C.1 A closed-form solution

From De Groot (2015), we obtain closed-form expressions for the asset pricing model with
stochastic volatility presented in Equations (33)-(34). The solution for the price-dividend ratio
is given by:

EC =

∞∑
8=1

�8 exp(�8HC + �8�̄ + �8(�C − �̄) + �8),

where

�8 =

(
1 − �
1 − �

)
�(1 − �8)

�8 =
1
2

(
1 − �
1 − �

)2 (
8 − 2�
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1 − � + �
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1 − �2
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��
2
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1 − �

)2 (
)1 + )2���

8−1
� + )3�

8−1 + )4�
2(8−1)
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�8 = �8$
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1
8

(
1 − �
1 − �

)4 (
8)2

1 + )
2
2
1 − �28

�

1 − �2
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1 − �28
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2
4
1 − �48

1 − �4 ...

... + 2)1)2
1 − �8�
1 − ��

+ 2)1)3
1 − �8
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1 − �28

1 − �2 + 2)2)3
1 − (���)8

1 − ���
...

... + 2)2)4
1 − (���2)8

1 − ���2 + 2)3)4
1 − �38

1 − �3

)
and

)1 =
1

1 − ��
, )2 =

−��(�� + �)(1 − �)2

(�2 − ��)(� − ��)(1 − ��)
,

)3 =
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The conditional expected return on equity is defined as

EC'
4
C+1 = EC

(
3C+1 + ?C+1

?C

)
=
EC exp(HC+1) + ECEC+1 exp(HC+1)

EC

The solution to this expression gives that

EC exp(HC+1) = exp
(
�HC +

1
2 �̄ +

��
2 (�C − �̄) +

1
8$

2)
and

ECEC+1 exp(HC+1) =
∞∑
8=1

�8 exp
(
(�8 + 1)�HC + (�8 +

1
2(�8 + 1)2)�̄ + 1

2(�8 + 1)2��(�C − �̄) + ...

(�8 +
1
2(

1
2(�8 + 1)2 + �8)2)$2

)
.

As shown by De Groot (2015), there is a parameter restrictoin that guarantees a finite price-
dividend ratio:

� exp

(
1
2

(
1 − �
1 − �

)2
�̄ + (1 − �)4

8(1 − �)4(1 − ��)2
$2

)
< 1.

We chose our parametrization of � and � such that this condition is satisfied, follow De Groot
(2015) for the other parameters.

C.2 A discretized solution

Instead of solving the model using the continuous-support process in Equations (33)-(34), one
can discretize the stochastic process and obtain approximate solutions for the price-dividend
ratio, the conditional expected return on equity, and other objects of interest. If HC follows
a discrete-state-space first-order Markov process with states HB , B ∈ {1, ..., <} and transition
probability matrixΠwith elementsΠBB′ = %(HC+1 = HB′ |HC = HB), then we can rewrite Equation
(35) as

E(HB) = �
<∑
B′=1

exp((1 − �)HB′)(E(HB′) + 1)ΠBB′

which solves to

E =
(
�< − �Πdiag(exp(1 − �)H)

)−1
�Π exp((1 − �)H), (C.1)
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where < denotes the number of discrete states of HC , H is an B × 1 vector with all the levels HC
attains, and E is an B × 1 vector with all discrete realizations of the price-dividend ratio in each
discrete realization of H. Similarly, for the vector of conditional expected returns on equity at
each value of the grid HB , denoted '4(HB), we have

'4(HB) =
(∑

B′
ΠBB′ exp(HB)(1 + E(HB′))

)
/E(HB). (C.2)

The reason why we are interested in the performance of capturing EC'4C+1 is because of its
non-linear dependence on EC , which is also approximated. The approximation errors will
compound in a non-trivial way, and we are interested in how accurate our discretization
method is when these errors accumulate.
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D Two binning methods for Guvenen et al. (2021)

D.1 Simple binning

We adapt Adda and Cooper (2003) such that it can deal with the large number of 0-states that
the Guvenen et al. (2021) process generates, as well as the life-cycle dependence. Choose<−1
quantile levels, typically with equal distance, and denote these by G1, ..., G<−1. We define bins
18 , 8 = 1, ..., <:

11 = [0, 0], 12 = [quantileG1
(H |H > 0), quantileG2

(H |H > 0)], ... ,
1< = [quantileG<−1

(H |H > 0), +∞]
(D.1)

The grid is then given by �1 = 0 for the first grid point, and �8 = quantile(G8+G8−1)/2(H |H > 0) for
the others. To determine the transition probability matrix, simulate # life-cycles of length )
(resulting in a panel of dimensions () × #)) from the process in Equation (38) and assign the
simulated observations of H into bins. The transition probabilities at age C are computed by
counting the transitions between bins:

%C8, 9 =

∑#
8=1 �{H8 ,C+1 ∈ 18 |H8 ,C ∈ 1 9}∑#

8=1 �{H8 ,C ∈ 1 9}
.

D.2 Clever binning

In this binning method, we use more information about the process, and do not simply bin
on H, but instead, first, bin on the persistent component of earnings, I. Therefore, first, select
the discretization level for I, denoted <I , and correspondingly have equal-distance quantiles,
denoted by GI1 , ..., G

I
<I−1. The bins for I are defined as 1I

8
, 8 = 1, ..., <I : 1I1 = [−∞, quantileGI1 ],

1I
8
= [quantileGI

8−1
(I8 ,C), quantileGI

8
(I8 ,C)] and 1I<I

= [quantileGI
<−1
(I8 ,C),+∞]. The corresponding

grid for I is thengivenby themidpoints: �I
8
= quantile(GI

8
+GI

8−1)/2
(I), for 8 = 1, ..., <I . Simulating

a series of I, the transition probabilities for I can then be computed by

%8 , 9 =

∑#
8=1 �{I8 ,C+1 ∈ 18 |I8 ,C ∈ 1I9 }∑#

8=1 �{I8 ,C ∈ 1I9 }
. (D.2)

Next, we double the grid, because for each value of I, one can either be unemployed with
probability ?CE , or employed with probability 1 − ?CE , see Equation (38). This gives a tensor
grid of (E8C ∈ {0, 1}) ⊗ (I8C ∈ {1I8 }

<I

8=1). To compute the transition probabilities of this tensor
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grid, one needs to multiply %8 , 9 of Equation (D.2) by ?C+1
E or 1 − ?C+1

E respectively, where this
probability is defined in Equation (38).

At last, one should discretize the transitory component � for the employed states. If the
number of discretization levels for � is given by <� with an equal-distant grid, the transition
probabilities %(I8C+1 ∈ 1I8 , � ∈ 1

�
9
, EC+1 = 0|(I8C+1 ∈ 1I: , � ∈ 1

�
;
, EC = 0) = 1

<�
%(I8C+1 ∈ 1I8 , EC+1 =

0|I8C+1 ∈ 1I: , EC = 0).
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E Age-dependent transition probabilities and grids

Figure E1: Visualisation of the age-dependent transition probabilities for a < = 9 discretization of the stochastic process in Guvenen et al. (2021).
The order of the matrix corresponds with a sorted (low-to-high) earnings grid, where the two lowest states are zero-earnings states.

60



Figure E2: Visualisation of the age-dependent transition probabilities for a < = 10 discretization of the stochastic process in Arellano et al. (2017).
The order of the matrix corresponds with a sorted (low-to-high) earnings grid.
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Figure E3: Visualisation of the age-dependent grid of a < = 10 discretization of the stochastic process in Arellano
et al. (2017).
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F Life-cycle model with other stochastic processes

F.1 A life-cycle model with an AR(1) process for earnings

In this subsection we show that even when the earnings process is given by a simple AR(1)
process, the choice of the discretization method matters. We compare our method with the
method of Farmer and Toda (2017) and Tauchen (1986). We do not consider the Rouwenhorst
method in this section, because the discretization is almost identical to one by Farmer and
Toda (2017) for the AR(1) process.

Some summary statistics are provided in Table F1, and visualized in Figure F1.

Figure F1: Simulations from the life-cycle model for three different discretizations of an AR(1) process. < = 7 for
all methods. Assets, consumption and earnings over the life-cycle (age on the x-axis).

Solid black line represents our discretization method, the dashed line is the Farmer-Toda method, the
dash-dot line is the Tauchenmethod. Note that in all cases, the data is simulated from the continuous-
support earnings process, but the solution is computed using the four different discretizations, which
is why in the last column, the three lines coincide, but in the other graphs, the lines are different.
Process scaled such that mean of HC is 1 for all discretizations.
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Table F1: Summary statistics computed from simulations from the life-cyclemodel for three different discretizations
of an AR(1) process. < = 7 is used for the discretization. Parametrization of log HC : � = 0.95, � = 0.2. Process
scaled such that mean of HC is 1 for all discretizations.

Discretization method Janssens-McCrary Farmer-Toda Tauchen
Variance 28C 0.16 0.16 0.16
Variance Δ28C 0.009 0.008 0.007
Variance 08C 16.4 16.8 15.9
Variance Δ08C 0.07 0.07 0.07
Covariance 28C and H8C 0.19 0.19 0.19
Covariance Δ28C and ΔH8C 0.01 0.01 0.01
CEV 0.40 0.40 0.49
)%BPP 0.45 0.49 0.50

Both Figure F1 and Table F1 show that the discretization method matters for the implications
that follow from a life-cycle model, even when discretizing an AR(1) process. Our discretiza-
tion implies welfare costs similar to those of the Farmer-Toda method, but a lower partial
insurance to persistent income shocks coefficient, as measured by )%BPP, defined in Blundell et
al. (2008). This also leads to a lower variance in assets for our method. Our method captures
the higher order moments of the process better, as seen in Table B1, which can explain this
difference. The CEV for the Tauchenmethod is considerably higher, and the variance in assets
lower. Recall from Appendix Section B1 that the Tauchen method does not perform well for
lower values of <.

F.2 A life-cycle model with an AR(1) earnings process with fat tails

Next, we analyze the implications of using our discretization method versus other discretiza-
tion methods when the earnings process is an AR(1) process where the innovations have fat
tails. As can be seen, our discretization method is similar in terms of conclusions as the one
by Farmer and Toda (2017). The Farmer and Toda (2017) method aims to match the first four
moments of the continuous process. Using a binning method, however, does lead to different
results. For example, the variance in consumption changes can be up to four times as large
when using the binning method, see Figure F2. As can be seen in Table F2, the certainty
equivalent value is lower when using binning. This suggests that the binning method does
not capture the amount of risk in the process well. Recall from Table B2 in Appendix A that
the binning performed poorly at most moments of the stochastic process, even for a large
grid. The MSFE of the binning method is 10% larger than our method for < = 15, and they
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method performs poorly at matching both the conditional and unconditional kurtosis of the
continuous-support process.

Another importantdifferencebetween themethods is thepartial insurance topersistent income
shocks, measured by #%BPP. The binning method suggests a partial insurance coefficient that
is half the size of ours and the coefficient that follows from the discretization of Farmer and
Toda (2017). The same holds for. the covariance between consumption changes and earnings
changes, which for the binning method is double in size.

Figure F2: Simulations from the life-cycle model for three different discretizations of an AR(1) process with fat
tails. < = 17 for all methods. Assets, consumption and earnings over the life-cycle (age on the x-axis).
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Solid black line represents our discretizationmethod, the dashed line is the Farmer-Todamethod,
the dash-dot line is the binning method. Note that in all cases, the data is simulated from the
continuous-support earnings process, but the solution is computed using the four different
discretizations, which is why in the last column, the four lines coincide, but in the other graphs,
the lines are different. Parametrization: � = 0.9, �2

1 = 0.1, �2
2 = 0.2, �2

3 = 0.8, ?1 = 0.2, ?2 = 0.6.
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Table F2: Summary statistics computed from simulations from the life-cyclemodel for three different discretizations
of an AR(1) process with fat tails. < = 17 is used for the discretization. Parametrization of log HC : � = 0.9,
�2

1 = 0.1, �2
2 = 0.2, �2

3 = 0.8, ?1 = 0.2, ?2 = 0.6. Processes rescaled such that HC has a mean of one.

Discretization method Janssens-McCrary Farmer-Toda Binning
Variance 28C 0.38 0.39 0.52
Variance Δ28C 0.05 0.05 0.16
Variance 08C 25.7 24.8 15.5
Variance Δ08C 0.45 0.46 0.60
Covariance 28C and H8C 0.45 0.46 0.60
Covariance Δ28C and ΔH8C 0.09 0.10 0.19
CEV 0.56 0.56 0.51
#%
�%%

0.62 0.61 0.25

F.3 A life-cycle model with an AR(1)-SV earnings process

In Figure F3 we visualize several summary statistics of simulations from a life-cycle with an
AR(1)-SV earnings process, where we compare three different discretization methods: (i) our
proposed method, (ii) the method by Farmer and Toda (2017) and (iii) a two-dimensional
binning method adapted from Adda and Cooper (2003).

The choice of the discretization method matters for the asset and consumption choices of
individuals. Although the mean consumption and asset holdings over the life-cycle are
similar across discretizationmethods, this is not the case for the variances. For example, when
using our discretization method, individuals face a variance of their consumption changes
that is up to two times as large than when using the other discretization methods. The
differences between the discretization methods also can be seen from Table F3. The choice of
the discretization method also matters for the covariance between consumption and income
(as well as between their first differences), and this covariance is considerably higher when
using our discretization method. Our CEV is similar to the one found by the Farmer-Toda
method, but we do find a higher partial insurance coefficient #%BPP.
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Figure F3: Simulations from the life-cycle model for three different discretizations of an AR(1)-SV process.
< = 27 for all methods. Assets, consumption and earnings over the life-cycle (age on the x-axis).
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Solid black line represents our discretizationmethod, the dashed line is the Farmer-Todamethod,
the dash-dot line is the binning method. The last panel depicts the continuous-support earnings
process. Data is simulated on the grid, and the solution is computed using the four different
discretizations. Parametrization: � = 0.9, � = −1.9, �2

ℎ
= 0.4228, ) = 0.3.

Table F3: Summary statistics computed from simulations from the life-cyclemodel for three different discretizations
of an AR(1)-SV earnings process. < = 27 is used for the discretization.

Discretization method Janssens-McCrary Farmer-Toda Binning
Variance 28C 0.43 0.35 0.24
Variance Δ28C 0.03 0.02 0.02
Variance 08C 26.4 16.3 13.2
Variance Δ08C 0.28 0.17 0.15
Covariance 28C and H8C 0.49 0.39 0.28
Covariance Δ28C and ΔH8C 0.06 0.05 0.04
CEV 0.61 0.61 0.54
#%BPP 0.67 0.60 0.63
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