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1. Introduction

A long-standing point of inquiry in asset pricing and market micro-structure research

concerns the role of retail traders. On the one hand, retail traders may generate noise that

provides liquidity and incentivizes informed trading, both necessary elements for financial

markets to function efficiently (Grossman and Stiglitz, 1980; Kyle, 1985; Black, 1986; Barber

and Odean, 2000). On the other hand, correlated sentiment among retail traders can induce

modest transitory price impacts that generate limits to arbitrage (Shleifer and Vishny, 1997;

Barber et al., 2008, 2009). A few key features of financial markets have likely driven the his-

torical modesty of retail traders’ price impact. Specifically, transaction costs have restricted

retail trading to a small portion of market volume. Moreover, correlated sentiment among

retail traders was mainly confined to herd behavior or everyday exposure to salient events

along with inefficient Bayesian updating (e.g., Banerjee, 1992; Bikhchandani et al., 1998;

Barber et al., 2021) rather than deliberate coordination.

While these features previously characterized financial markets, recent innovations have

dramatically changed the environment for retail traders. For example, Robinhood’s advent of

commission-free trading in 2015, followed by major online trading platforms such as Charles

Schwab, TD Ameritrade, and E-trade in 2019, relaxed retail trading costs considerably.

These events partially explain the exponential growth in retail trading, now responsible

for as much as 25% of stock market volume (McCrank, 2021). In addition, social media

platforms such as Reddit facilitate direct coordination among retail traders. These evolving

characteristics are all well represented in the ”GameStop” event in 2021, whereby retail

traders joined forces to drive up GameStop’s stock price by 3,000% to engineer a short

squeeze. The GameStop event raises two critical questions. First, has improved coordination

introduced the possibility that entertainment motivates many retail traders rather than

profit? Second, is the GameStop event an anomaly, or have these features allowed retail

traders to become ”the ants that move the log,” thus potentially altering their role in financial

markets?
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Gaining an adequate understanding of these questions will likely require considerable

theoretical and empirical analysis and, therefore, is well beyond the scope of a single study.

Thus, this paper aims to provide an initial systematic exploration of this topic by employ-

ing various novel empirical techniques in various settings with granular data on Robinhood

trading activity and interactions among retail traders on Reddit. First, I use the standard

logit regression to estimate ex-ante crash probabilities, where a ”crash” is defined as the log

monthly return lower than -20%.1 Estimating crash risk by a return threshold is informa-

tive. According to Beason and Schreindorfer (2022), 80% of the average equity premium is

attributable to monthly returns below -10%. However, crashes defined as over -20% monthly

return drop constitute only 5% of all stock returns in the CRSP universe from 1996-2021.

Thus, predicting ex-ante crash risk is challenging because of the relatively low frequency

of crashes, making it hard to construct valid counterfactuals. I employ a novel machine-

learning technique that substantially improves the predictive power of low-probability binary

outcomes.

Consistently with prior literature (e.g., Jang and Kang, 2019; Atilgan et al., 2020), ex-ante

crash risk is negatively correlated with future stock returns. Specifically, a one-standard-

deviation increase in crash risk is associated with an approximately 50 bps drop in monthly

risk-adjusted returns. The return predictability remains strong conditioning on other tail

risk measures (e.g. V aR in Atilgan et al. (2020)). Moreover, when lagged sentiment is high,

the overpricing of high crash-risk stocks is more severe. These results are consistent with

the predictions in Brunnermeier et al. (2007), where investors underestimate the left-tail

probabilities when sentiment is high and thus buy more than the rational amount. Further-

more, consistent with the theory, I document that Robinhood traders disproportionately

buy stocks with high ex-ante crash risk. In contrast, institutional investors tend to sell high

crash-risk stocks.

It is hard to determine the direction of causality, which perhaps even cuts both ways.

1The -20% cutoff is motivated by prior literature (e.g., Jang and Kang, 2019), and I explore alternative
return thresholds in Appendix.
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That is, are retail traders merely attracted to high-tail-risk stocks? Or are they part of

what creates the tail risk? To partially unpack the potential for the latter channel, building

on the recent advancement in social transmission theory (Han et al., 2022), I exploit the

history of the social media platform Reddit and the first-time appearances of stock tickers

on “Wallstreetbets” as a quasi-natural experiment. Specifically, I use a stacked “difference-

in-differences” approach (Gormley and Matsa, 2011; Cengiz et al., 2019) to document a

causal effect of investors’ online conversations on the ex-ante crash risk of stocks. I partially

alleviate the possible endogeneity concerns by carefully constructing a match sample and

conditioning on a set of characteristics that draw retail attention. The results show that

on average the crash risk of stocks increases by approximately 10% within the first three

months of appearance on “Wallstreetbets”.

Recent work on social transmission (Hu et al., 2021) shows that the online conversations

of retail investors on “Wallstreetbets” contain information that possibly drives future stock

prices on a daily basis. To bolster the previous results, I build on this work and construct

a novel and plausible instrument for investment-related conversations by utilizing the entire

history of Reddit posts. Through an instrumental variable estimation approach, I show that

a one-standard-deviation increase in online discussions in “Wallstreetbets” is associated with

an approximately 2.3% increase in ex-ante crash risk at a daily frequency, where I follow prior

literature (e.g., Bollen and Whaley, 2004; Van Buskirk, 2011; Kim and Zhang, 2014; Kim

et al., 2016) and use the option implied volatility SKEW as the proxy for crash risk. These

results corroborate the previous “difference-in-differences” framework and suggest that retail

investors could cause extreme stock returns via efficient herding.

Have retail traders become the ants that move the log? This paper presents a preliminary

analysis to address whether we’ve reached a paradigm shift in the role of retail traders. There

are several unique contributions. First, to the best of my knowledge, this is the first study

that conducts causal inference on retail influence on crash risk or left-tail risk. Moreover,

this paper proposes a new ex-ante crash risk measure via novel methodologies.
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The rest of the paper is organized as follows. Section 2 briefly reviews the existing litera-

ture. Section 3 explains the construction of ex-ante crash risk and corresponding results for

estimating monthly crash probabilities. Section 4 conducts asset pricing tests for crash risk

in the cross-section of stock returns. Section 5 discusses the distorted belief mechanism for

the negative price of crash risk. Section 6 documents the causal effect of retail conversations

on firm crash risk. Section 7 constructs a novel instrument to provide further evidence on

the causal effect of social transmission on crash risk. Section 8 conducts robustness tests.

Section 9 concludes.

2. Literature Review

This study is related to an extensive list of areas in literature. First and foremost, it

concerns the firm-level crash risk. The corporate finance literature studies the determinants

of firm crash risk. These determinants are often motivated by managers hoarding bad news

(Jin and Myers, 2006). The idea is that the hoarding delays the information transmission

such that when it is ultimately released, there is a sudden drop in the price corresponding to

the size of the cumulative bad news. Motivated by this theory, the literature has proposed

a list of determinants that could endogenously influence crash risk, such as earnings man-

agement (Hutton et al., 2009), tax avoidance (Kim et al., 2011), annual report readability

(Li, 2008), CSR (Kim et al., 2014), liquidity (Chang et al., 2016), short interest (Callen and

Fang, 2015), and governance (Andreou et al., 2016; An and Zhang, 2013). This paper differs

from this literature in that it estimates crash risk at a monthly frequency, by utilizing a rich

set of conditional information (Chen and Zimmermann, 2021).

In asset pricing, a rich body of literature extracts information from option prices to

determine the size of tail risk. For example, Pan (2002) provides theoretical support for the

jump-risk premia implied by near-the-money short-dated options that help explain volatility

smirk. Xing et al. (2010) studies the relationship between implied volatility smirks and the
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cross-section of stock returns. They show that the difference between the implied volatility

of out-of-money put options and at-the-money call options shows strong predicting power

for future stock returns. Yan (2011) show that jump size proxied by the slope of volatility

smile predicts the cross-section of stock returns. The present study uses option information

as one set of variables in predicting crashes, thus exploiting a far richer information set.

The third strand of literature on crash risk directly predicts the probability of crashes.

Chen et al. (2001) employs cross-sectional regressions to forecast the skewness of daily stock

returns. Campbell et al. (2008) use a dynamic logit model to predict distress probabilities

for the cross-section of firms. Conrad et al. (2014) show that high distress risk stocks are

also likely to become jackpots. They use a logit model to predict the probability of deaths

and jackpots. Jang and Kang (2019) exploits a multinomial logit model to jointly predict

probabilities of crashes and jackpots at an annual horizon.

This study is also related to the literature on the relationship between investor trading and

market efficiency and bubble formation. De Long et al. (1990a), De Long et al. (1990b), and

Abreu and Brunnermeier (2003) provide the theoretical support to and empirical evidence

of positive feedback traders and their potential impact on market. Retail investors are

believed to be “noise traders” that trade too much (Barber and Odean, 2000). Speculative

retail traders tend to chase lottery-like stocks, experiencing subsequent negative trading

alpha, and affect stock prices accordingly (Han and Kumar, 2013). Recent evidence from

“Robinhood Traders” shows that they tend to herd more on extreme past-return stocks,

which are more attention-grabbing (Barber et al., 2021), while there is also evidence that

mimicking portfolios based on the characteristics of “Robinhood Traders” do not seem to

underperform the market, but instead could be a market stabilizing force (Welch, 2020). On

the pricing impact of retail trading, Foucault et al. (2011) was one of the first papers that use

a quasi-natural experiment to identify the causal effect of retail trading on stock volatility.

Finally, this study is related to the emerging literature that studies the implications and

applications of machine learning methodologies in asset pricing. They are mostly concerned
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with resolving the “factor zoo” problem (Kozak et al., 2020; Feng et al., 2020; Bianchi et al.,

2021; Gu et al., 2020).

3. Data and Estimation of Crash Risk

I use two sets of measures for ex-ante crash risk, one monthly measure, and one daily

measure. The monthly measure is the ex-ante probability of stock crashing in a certain

month, while the daily measure SKEW is motivated by Xing et al. (2010), and defined

as the difference between the implied volatility of out-of-money put option and that of the

at-the-money call option.2 I will start by describing the monthly measure and defer the

discussion of the daily measure to Section 7.

3.1. Estimation of Monthly Ex-Ante Crash Risk

I define firm-level crashes as stock monthly log returns lower than -20%. The choice is

reasonable in the following sense. Prior literature uses log annual returns of -70% as the

cutoff points (Conrad et al., 2014; Jang and Kang, 2019). The unconditional probabilities of

crashes defined this way at the annual frequency are roughly 5%. At a monthly frequency,

a cutoff point at -20% agrees with this distribution. Thus the universe of stock returns falls

into two categories – crashes and otherwise. Then the monthly ex-ante crash risk is defined

as follows:

CrashRiski,t = E[P (ri,t < −20%)|Xi,t−j] (1)

Where r is the monthly log return. j ∈ [1, 2, 3, 4, 5, 6] is the months in each training

window, or in other words the period we draw conditional information. X is a set of firm-

level predictors.

Estimating the ex-ante probabilities of future crashes naturally calls for a logistic regres-

2The SKEW measure by Xing et al. (2010) is widely used in the corporate finance literature as a proxy
for firm crash risk. See for example...
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sion, where the dependent variable is a binary response Dcrash, where it equals one if the

log monthly return is lower than -20%, and zero otherwise. A critical issue arises, however,

in forecasting rare events such as crashes. The usual logistic estimator could produce sub-

optimal results due to the poor finite sample properties (King and Zeng, 2001). I provide a

simple intuition for this argument in Appendix B.1. Though the difficulties and the associ-

ated statistical issues in forecasting rare events are rarely studied in economics, the remedy

is readily available in machine learning literature. I follow Jiang et al. (2020) and introduce

an Ensemble method, “Easy Ensemble” (EEC), that combines random undersampling and

bootstrapping (Liu et al., 2008) to supplement the logistic regression approach. A detailed

discussion of this technique can be found in Appendix B.2.

To estimate the ex-ante probabilities of a crash, it is essential to conduct out-of-sample

procedures. Thus I use a rolling window of 6 months to estimate parameters and fit the

following month to produce an OOS estimate of crash risk. With respect to the independent

variables, in a slight departure from prior literature, I choose a large set of characteristics

that have been shown as return predictors as the independent variables in the estimation

process. Specifically, I use variables obtained from Chen and Zimmermann (2021). These

are monthly firm-level characteristics that have been shown in the literature as important

drivers of future returns, and these variables encompass all variables that were considered

as predictors of crashes (Campbell et al., 2008; Conrad et al., 2014; Jang and Kang, 2019).

I limit the data scope to between 1996 and 2020, both to reduce the computation load and

to ensure maximum data usage, as some variables are only available from 1996 (for example,

option variables). Therefore, with 6-month rolling windows for training, our out-of-sample

prediction starts from July 1996 to December 2020, comprised of 294 months. I use CRSP

for monthly stock returns. I require common stocks with a share code of 10 or 11 and with

prior month-end stock prices greater than $5 to avoid extreme outliers.

Next, I compare the usual logistic estimator with the EasyEnsemble method in forecasting

performances. To illustrate the performance difference, I conduct the following experiment.
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For the whole sample, I plot the percentages of real crashes predicted by either model against

a decision threshold from zero to one, meaning that at each threshold, all stocks with a

predicted probability higher than that would be labeled “crash”. The results are shown in

Figure 1.

[Fig. 1 about here.]

Note that EasyEnsemble outperforms logistic regression in the low threshold region. This

result is desirable because we know that crashes are low-probability events (the unconditional

probability of a crash is around 5-6%), and we want the classifier to do well in this region.

For example, at the 7% threshold, meaning that we predict all stocks with a probability

estimate greater than 7% to crash in the next month, logistic regression is able to capture

72% of all real crashes, while EasyEnsemble is able to capture 85%.

3.2. Summary Statistics

Given the refined estimate of monthly ex-ante crash risk, we can examine its relationship

with firm characteristics. In particular, we are interested in the relationship between the

risk and the underlying regressors. We summarize the relationship between the machine

learning-generated crash risk and the top regressors in Appendix. The summary statistics

of both logit-generated ex-ante crash risk and machine learning-generated crash risk, along

with all relevant stock characteristics and other data used in later analyses, are presented in

Table

[Table 1 about here.]

On top of firm-level crashes, the aggregate probability of a market crash is of great

interest to researchers and practitioners alike. Although one can argue that the aggregate

stock market crash is systematic, while firm-level crashes are more idiosyncratic in nature,

aggregating firm-level crash probabilities might still contain information about the aggregate
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crash risk. One possible reason for this logic is that we use a fixed threshold (-20% log return)

to define crashes, and thus aggregating these firm-level probabilities contains a systematic

component. Therefore, I aggregate monthly firm-level crash risk to the market level by their

lagged market capitalizations and plot the series in Figure 2.

[Fig. 2 about here.]

On top of the aggregate crash risk series, I also plot NBER recession periods (NBER,

2021) in the gray shaded areas. Though not immediately clear, the series does contain some

information about future possibilities of market crashes, as there are signs of spikes ahead

of or during recession periods. Next, we move on to examine the pricing implications of

firm-level monthly crash risk.

4. Monthly Crash Risk and Stock Returns

In this section, I examine whether the ex-ante monthly crash risk is priced in the market.

I conduct both time-series portfolio analysis and cross-sectional analysis. Prior literature

(Conrad et al., 2014; Jang and Kang, 2019; Atilgan et al., 2020) has indicated that crash

risk, or left-tail risk, is negatively priced in the market. Though my measure is different in

its time frequency and construction, we should expect similar behavior.

4.1. Portfolio Analysis

At the end of each month, I sort stocks into ten decile portfolios based on their estimated

ex-ante crash probabilities. Then I compute both value-weighted and equal-weighted excess

returns of each portfolio and the hedge portfolio that long high crash risk decile portfolio

and short low crash risk decile portfolio. I regress the time series of returns on various asset

pricing factors and compute the alpha estimates and their associated T -statistics. The asset

pricing models include: CAPM, Fama-French three-factor model (FF3) (Fama and French,
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1993), then augmented with a momentum factor (FF4) (Carhart, 1997), Fama-French five-

factor model (FF5) (Fama and French, 2015), and then augmented with momentum factor

(FF6). To show the consistency of the results and the superiority of the EasyEnsemble

method, I show alpha estimates using both logistic regression and EasyEnsemble in Table 2.

[Table 2 about here.]

As shown in Table 2, when we long top crash risk decile portfolio and short bottom

decile portfolio, we produce consistent and significant negative alphas across different asset

pricing models, equal-weighted or value-weighted, with T -statistics of magnitude well over

3. Note also that when we compare the results from using logit-generated crash risk and

machine learning-generated crash risk, the latter shows superiority in both the magnitude

of alpha and the T -statistics. This is a strong piece of evidence that machine learning not

only produces consistent results with conventional methods but also demonstrates better

forecasting efficacy, as it classifies correctly more actual crashes that contribute to lower

returns in the subsequent month.

4.2. Cross-Sectional Regressions

Next, I run Fama-MacBeth cross-sectional regressions (Fama and MacBeth, 1973) follow-

ing the procedure in Fama and French (2020). Each month, I regress raw stock returns on

cross-sectionally standardized lagged firm characteristics. Then I average the coefficients to

arrive at the final estimates. The coefficients on characteristics can be directly interpreted as

average priced return spread for one standard deviation increase of the corresponding firm

risk. I include common risk characteristics such as the natural log of market capitalizations,

natural log of book-to-market ratio, asset growth, gross profitability, momentum (prior 11-

to-1 month returns), short-term reversal (prior 1-month returns), and my estimated crash

probabilities from the Ensemble method. On top of these variables, I control for a set of

anomaly characteristics that are shown to be significantly correlated with future stock re-
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turns: idiosyncratic volatility, illiquidity (Amihud, 2002), market beta, tail Beta (Kelly and

Jiang, 2014), coskewness(Harvey and Siddique, 2000), and net operating assets NOA (Hir-

shleifer et al., 2004). Bali et al. (2011) proposes a measure MAX that represents investors’

preference for lottery-like payoffs. MAX stands for the maximum daily return achieved by

each stock in the prior month. To see if the estimated crash risk carries additional informa-

tion that distinguishes it from MAX, I add the MAX measure as a control variable in the

Fama-MacBeth regressions.

Atilgan et al. (2020) also studies the left-tail risk, although their measure is constructed

differently. Their “value-at-risk” (V aR) is entirely based on historical returns and is defined

as the return conditioning on probability distribution, which differs from our measure that

takes return cutoff as given and estimates ex-ante probabilities. To see whether our crash

risk contains incremental information about future stock returns than the V aR measure, I

include V aR as a control variable. The V aR measure is the negative of 1 percentile daily

return of the stock in the past year. I report the regression results in Table 3.

[Table 3 about here.]

Table 3 suggests several points. First, both logit-generated ex-ante crash risk and ma-

chine learning-generated crash risk are significantly and negatively correlated with future

stock returns, and their magnitudes are very similar to each other. Second, the loadings on

crash risk are robust even after controlling for common risk characteristics and go beyond a

plethora of tail risk-related variables, including the lottery-payoff proxy MAX (Bali et al.,

2011). Third, when our crash risk is not included in the regression, the V aR measure is sig-

nificantly and negatively correlated with future stock returns, consistent with the results in

Atilgan et al. (2020). However, when our crash risk is included in the regression, the loading

on V aR becomes insignificant, while our crash risk measure loads negative and significant

consistently. This suggests that both our logit-generated and machine learning-generated

crash risk measures contain more information than V aR and consequently subsume its ef-

fect. Depending on the control variables and the measure we use, a one-standard-deviation
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increase in ex-ante monthly crash risk is associated with approximately a 45-51 bps drop

in subsequent risk-adjust returns, which translates into -5.47% to -6.12% in annual risk-

adjusted returns. These results corroborate the prior literature that ex-ante crash risk is

negatively priced, and also provide strong evidence that our crash risk measure contains

richer and incremental information than existing crash risk measures.

5. A Possible Economic Mechanism: Distorted Belief

The negative price of crash risk does not agree with rational expectations, as a rational

investor would naturally demand a positive risk premium for holding such risk. Prior litera-

ture attempts to explain the phenomenon via several arguments. One argument is the limits

to arbitrage (Shleifer and Vishny, 1997; Conrad et al., 2014; Jang and Kang, 2019). They

show evidence that institutional investors tend to “ride the bubble” as rational speculators,

instead of trading against crash risk as rational arbitragers, since high crash risk stocks tend

to be small, illiquid, and hence costly to short. The second argument is that investors un-

derestimate the momentum in the left tail (Atilgan et al., 2020), meaning that stocks that

crashed the last month may well be highly possible to continue crashing in the subsequent

month. Investors somehow fail to understand this dynamic and “bought the dip”, which

renders the stocks with high crash probabilities overpriced. However, it is unclear why this

momentum exists. Moreover, since the V aR measured used Atilgan et al. (2020) is an ex-

post measure, it does not answer the question from an investor behavior perspective. A third

argument pertains to the observation that stocks with extreme past returns are attention-

grabbing, and retail investors have a preference for such stocks (Barber and Odean, 2008;

Barber et al., 2021). However, it is reasonable to assume that investors are drawn to extreme

past winners, as they might be over-extrapolating past returns. It is nonetheless puzzling

why investors should prefer extreme past losers. Moreover, it is difficult to understand why

investors should prefer high left-tail stocks. Even if they underestimate the momentum in
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the left tail, these are undesirable stocks from a risk-return tradeoff standpoint. In addition,

over time, investors should be able to learn from past observations that high crash risk stocks

are overpriced, as many of them indeed crashed in the subsequent month.

The literature in behavioral theories provides valuable guidance in terms of investor

beliefs and preferences towards crash risk or left tail risk. Two theories, in particular,

have clear predictions about investors’ attitudes towards the left tail. One is cumulative

prospect theory (CPT) by Barberis and Huang (2008). They show that investors with a

CPT preference would overweight small probability events. One example is that people

would gamble on slim chances of big payoffs, but buy insurance for plane crashes. The

implication is that investors with CPT preference should shun high crash risk stocks since

they effectively deem those crashes more likely to happen than the true distribution. If all

investors have such a preference, high crash risk stocks should be underpriced, and thus

produce a positive risk-adjusted return. This prediction does not seem to conform to the

empirical observation.

The second theory is the optimal expectations theory (OET) by Brunnermeier et al.

(2007). They show that investors may derive anticipatory utility when holding an optimistic

subjective belief about stock returns, even though such beliefs prove to be wrong afterward.

If investors hold such a belief, they would effectively shift their subjective return distribution

to the right when their sentiment is high. The implication is that when sentiment is high,

investors with such beliefs tend to think that crashes are less likely than reality, and thus

overbuy high crash risk stocks. The pricing implication is that crash risk or left tail risk is

overpriced and thus predicts a negative risk-adjusted return.

The evidence presented in this paper and the prior literature for the negative price of

crash risk agrees with the optimal expectations theory. To further establish evidence as to

whether investors overbuy high crash risk stocks when their sentiment is high, I conducted

several tests to provide additional evidence.
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5.1. Crash Risk Portfolio Returns and Sentiment

First, I examine the relationship between the crash risk hedge portfolio returns and

sentiment. If investors hold optimal expectations, then the loss on the crash risk high-

minus-low hedge portfolio would be higher when lagged sentiment is high, since investors’

belief distortion would be more severe during such periods.

I follow Baker and Wurgler (2006) and use their sentiment index as a proxy for the

market-wide sentiment. In particular, I use the sentiment measure that is orthogonal to

macroeconomic indicators to alleviate the impact of market risks. Since their index is avail-

able up to the year 2018, my sample is hence limited between July 1996 and December 2018.

Then I divide the sample period into two subperiods, where one is the high sentiment period

when sentiment is higher than the median value of the whole sample, and another is the low

sentiment period. Then I compute the excess returns of the top decile portfolio, the bottom

decile portfolio, and the long-short hedge portfolio that long high crash risk stocks and short

crash risk stocks, in each of the subperiods. I then compute the differences in these returns

between high and low sentiment periods. The results are summarized in Panel A of Table 4.

[Table 4 about here.]

It is immediately clear from the table that the high-crash-risk stocks experience the

lowest returns after a high sentiment period when mispricing is most severe, while they

do not show negative returns on average after low sentiment months. On the other hand,

there is no statistically significant difference between high and low sentiment periods for

low-crash-risk stocks. On the whole, a long-short strategy that is long high-crash-risk stocks

and short low-crash-risk stocks produces more negative and significant excess returns after

high sentiment months. These results are consistent with our hypothesis that when investors

are bullish, they are more likely to overbuy high-crash-risk stocks, and thereby the expected

returns of these stocks would be lower.

To further examine the relationship between crash risk and sentiment, I run Fama-
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MacBeth regressions and panel regressions of stock returns on firm characteristics for high-

and low-lag-sentiment months separately. The hypothesis is that the price of crash risk

should be more negative immediately after high sentiment months. As before, high senti-

ment months are defined as those months with lag sentiment higher than the sample median,

and low sentiment months are defined as those months with lag sentiment lower than the

sample median. The results are reported in the first two columns in Panel B of Table 4.

We can see from the table that when lagged sentiment is high, the coefficient on crash

risk is -0.619%, compared to -0.405% when lagged sentiment is low. In other words, the

price of crash risk associated with a one-standard-deviation increase in the risk is 21 bps

lower when lagged sentiment is high. Though the difference between the two coefficients is

not statistically significant (T -statistic of -1.2), the annualized return difference is large at

-2.52%. This is another piece of evidence that high crash risk stocks are more overpriced

when lagged sentiment is high.

To further assess this phenomenon, I also conduct the following analysis. I define a

dummy variable SentD, where it equals one if the lagged sentiment is higher than the

sample median, and zero otherwise. I first run a panel regression of stock returns on crash

risk and other firm characteristics, with firm and time fixed effects. Then I include the

SentD variable and interact it with crash risk. The hypothesis is that the interaction term

should be significantly negative since when lagged sentiment is high, the overpricing of high

crash risk stocks should be more severe. I report the results in Columns (3) and (4) in Panel

B of Table 4.

As shown in the table, even after including firm and time-fixed effects, the ex-ante crash

risk is consistently priced negatively, albeit with a smaller magnitude. In Column (4), when

we interact the sentiment dummy with crash risk, the loading on crash risk is much smaller

in magnitude and statistically significant at 5% level, while the coefficient on the interaction

term is negative and statistically significant at 1%, with a much higher magnitude. These

results are consistent with our hypothesis that when lagged sentiment is high, investors buy
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more high crash risk stocks, which causes the overpricing of these stocks even higher, and

therefore the subsequent returns turn out to be much lower than in low lagged sentiment

periods.

5.2. Trades on Crash Risk

Next, we examine whether some investors are likely to buy high-crash-risk stocks. This

hypothesis is the underlying assumption of the previous literature that high-crash-risk stocks

are overpriced and is an implication from (Brunnermeier et al., 2007). To explore this

hypothesis, I first use Robintrack data to construct a retail trading measure and examine

whether they tend to buy high-crash-risk stocks.3

As has been extensively discussed in Barber et al. (2021) and Welch (2020), Robintrack

data contains hourly stock popularity numbers that are measured by how many users on

Robinhood hold a particular stock at a certain hour. Since we cannot observe the number

of shares they hold for each stock, and there is no data for the total number of users for

each time period, the next best solution is to measure the change in the number of users for

each stock. As crash risk is estimated at a monthly frequency, I use month-end numbers of

Robinhood users to merge the data. I first construct a log measure for Robinhood trading:

Change inLog(#Useri,t) = log(#Useri,t)− log(#Useri,t−1) (2)

Then I follow Barber et al. (2021) and construct a percentage change measure for Robin-

hood trading:

%Change#Useri,t = #Useri,t/#Useri,t−1 − 1 (3)

Where t is at the monthly frequency to match the frequency of our ex-ante crash risk

3Robintrack: https://www.robintrack.net/.
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measures. The specification is as follows:

Robinhood Tradei,t = α0 + β × CrashRiski,t +
∑
p

βpControlp,i,t−1 + αi + λt + ϵi,t (4)

Where we add firm and time fixed effects to account for unobserved heterogeneity that

might be correlated with the error term. The Robinhood sample runs from May 2018 to

August 2020. I regress the Robinhood trading measures on both measures of ex-ante crash

risk, controlling for the lagged log of the user number and a set of firm characteristics. The

results are reported in Columns (1) to (4) of Table 5.

[Table 5 about here.]

The table shows that over the sample period when Robinhood data is available, retail

investors on average tend to buy high-crash-risk stocks, consistent with our hypothesis.

Importantly, in all specifications, we control for such commonly used lottery characteristics

as MAX and MIN (Bali et al., 2011), which are defined as maximum and minimum daily

returns of the previous month, and total skewness of the previous month. The coefficient on

crash risk is consistently and significantly positive in Robinhood trading tests, meaning that

retail preference for high-crash-risk stocks goes beyond the conventional proxies for lottery

characteristics defined in the literature (Barberis and Huang, 2008; Bali et al., 2011).

A related question arises as to whether institutional investors would be liquidity providers

and act as counterparties since literature has shown that they are reluctant to short the left

tail, and would rather ride the bubble. I examine this issue by regressing the change of

institutional holdings on the same set of characteristics. The institutional holdings data

comes from Thomson Reuters 13F filings data and is defined as the percentage of shares

held by institutional investors. The change in the holdings is the difference between the

current quarter’s holdings and the previous quarter’s. The results are shown in Columns (5)

and (6) in Table 5.
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The results show that there is strong evidence that institutions might be the counterparty

of retail investors for crash risk. In sharp contrast to Robinhood trading results, the coeffi-

cients on both crash risk measures are negative and statistically significant for institutional

trading tests. Taken together, these results support the hypothesis that retail traders derive

anticipatory utilities from distorted subjective beliefs. Consistent with the predictions in

Brunnermeier et al. (2007), when lagged sentiment is high, investors underestimate left-tail

risks and tend to overbuy stocks with high crash risk, which in turn drives up their prices,

leading to lower expected returns subsequently. Both the pricing results and retail trading

results conform to this theory.

6. Retail Influence on Monthly Crash Risk

Evidence from the previous section shows that retail investors tend to buy high ex-ante

crash risk stocks, and this effect is over and beyond the effect of the usual proxies for lottery

characteristics. These buying activities could be inconsequential if retail investors are pure

“noise traders” (De Long et al., 1990a), as their trades are idiosyncratic and would be

canceled out on average. However, when their trades are correlated because of attention

or herding, they could forecast subsequent returns (Barber and Odean, 2008; Barber et al.,

2021). Social media is instrumental in facilitating herding behavior, as it transmits trading

strategies more efficiently. As implied in Han et al. (2022), there is an inherent feedback

loop in correlated trading and asset prices. When investors (receivers) take note of other

investors’ (senders) recent trading success, as demonstrated by their bragging on social media

of the high recent returns of their stock picks, they continue to trade in the same direction,

thus pushing the stock price even higher. The implication is that regardless of whether

investors display a preference for skewness, their trading actions would produce such results

and influence stock prices.

There is causal evidence that suggests higher participation by retail investors does induce
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higher stock volatility (Foucault et al., 2011). They may be marginal price setters for small

stocks (Graham and Kumar, 2006). Retail short sellers predict negative future returns, and

they seem to have superior knowledge of small firm fundamentals (Kelley and Tetlock, 2017).

Much of the literature focuses on predictive tests, as it is extremely difficult to find ideal

settings for the proper identification of causality.

I explore a particular shock to the retail attention and herding channel that might have

influenced retail investors’ trading behavior, which in turn could drive the change in the

crash risk of the underlying stocks.

6.1. The Advent of Wallstreetbets

“Wallstreetbets” is a “Subreddit” on the social media platform “Reddit”, and has gar-

nered considerable attention from the investment community largely because of the “GameStop”

saga. The Subreddit started in April 2012, and today it has over 12 million subscribers.

These subscribers call themselves “degenerates”, and frequently exchange trading ideas and

post their gains and losses. In a recent study, Hu et al. (2021) shows that conversations

on “Wallstreetbets” have information content that predicts next-day returns. A study from

a different discipline, Li and Wu (2018) shows that retailers displaying past sales numbers

can induce consumers to herd and buy more of the products. These studies suggest that

social media as a platform for idea sharing can facilitate more efficient herding. Therefore,

it is conceivable that the advent of a highly efficient platform for sharing ideas might affect

asset prices, including the crash risk of the underlying stocks, following the results that retail

investors exacerbate the overpricing of high-crash-risk stocks.

I examine this issue by tracing back to the origin of “Wallstreetbets” when it was founded

in April 2012. I obtain and process all posts from April 2012 when the Subreddit started till

December 2020, and find out all stock tickers that were mentioned in these posts.4 I drop

all ticker names that are also common English words, slang, and abbreviations. To illustrate

4The complete history of Reddit comments data comes from https://files.pushshift.io/reddit/

comments/.
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the growing community on “Wallstreetbets”, I plot the number of posts each month that

mention ticker names, and also the number of unique ticker names mentioned each month

in Figure 3.

[Fig. 3 about here.]

Panel A of Figure 3 plots the number of posts that mention ticker names on the Subreddit

“Wallstreetbets”, and Panel B plots the number of unique tickers/firms each month. The

time series spans from April 2012 when “Wallstreetbets” was started to December 2020. It

shows that the activities on “Wallstreetbets” exploded after the pandemic began in 2020. It

also shows the growing breadth of retail investor interests in the number of stocks.

6.2. The Staggered First Appearances of Stock Tickers

Members started to mention stocks in their posts on “Wallstreetbets” on the first day

of the Subreddit. According to Han et al. (2022), people are more likely to mention certain

stocks if these stocks happen to have high past returns. If other people see these posts, they

are more likely to follow suit and trade in the same direction. This could in turn affect the

stock returns.

To test this hypothesis, I focus on the seven-month window around each “event”, where

“event” means a stock ticker appeared for the first time on “Wallstreetbets”. Thus there

are three months pre-event, and three months post-event. Since conversations about stocks

are not exogenous per se, we need a matching strategy and control variables that can offset

the endogenous portion of the test. Therefore, I use propensity score matching by running

logistic regression. The response is a dummy variable Di,t = 1 if a stock i appears on

“Wallstreetbets” for the first time at time t, or zero otherwise. The independent variables

include lagged market capitalization, prior-month return, asset growth, book-to-market ratio,

gross profitability, idiosyncratic risk, illiquidity, MAX, and prior 12-month return, to proxy

for the common stock characteristics.
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The estimated parameters are then fit to the whole sample to generate fitted values as

the propensity score for each stock at each point in time. To match each event, I use the

score generated for each “never treated” stock three months prior to the event and find five

stocks that have the closest propensity scores to each treated stock.5

After the matching process, I follow Gormley and Matsa (2011); Cengiz et al. (2019)

and stack each event cohort, where each cohort contains the treated stock and the matched

sample. Then I run the following specification:

CrashRiski,c,t = γ0 + βDi,c,t + δc,t + αi,c +
∑
p

βpControlp,i,t−1 + ϵi,t (5)

Where CrashRiski,c,t is the estimated crash risk of stock i in cohort c at time t. Di,c,t

is a dummy variable that indicates whether a stock i in cohort c is treated at time t. δc,t is

Cohort× Time fixed effects. αi,c is Unit×Cohort fixed effects. Then β is the coefficient of

interest that estimates the average treatment effect on the treated stocks. The results are

reported in Column (1) and Column (3) of Table 6, where Column (3) adds control variables.

The control variables include the natural log of market capitalization, prior-month return,

asset growth, gross profitability, illiquidity (Amihud, 2002), MAX (Bali et al., 2011), prior

12-month return, and idiosyncratic risk. Standard errors are clustered at the unit level.

[Table 6 about here.]

When control variables are not included, there is a 1.03 percentage point estimated

increase in logit-generated crash risk when a stock is first mentioned on “Wallstreetbets”,

and the coefficient is highly statistically significant. When control variables are included,

the magnitude reduces to approximately 56 bps, and the coefficient remains statistically

significant at the 1% level. This corroborates our hypothesis that when a stock was mentioned

on social media and subsequently draws more attention that possibly induces more correlated

retail trading, which could increase stock crash risk.

5“Never treated” means the stock never appears on “Wallstreetbets”. This is to ensure the cleanest
matching. There are in total 2,276 unique stocks that are never mentioned on “Wallstreetbets”.
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A critical assumption for the difference-in-differences analysis is the “parallel trend”

assumption, where the treated group and the control group should not have significant

differences before the event happens. To examine this “parallel-trend” assumption, I conduct

a dynamic approach, where instead of examining the coefficient on the treatment dummy, I

run the following specification:

CrashRiski,c,t = γ0 +
+3∑

j=−3

βjDi,j,c,t + δc,t + αi,c +
∑
p

βpControlp,i,t−1 + ϵi,t (6)

Where the dummy variables Di,j,c,t indicate whether a stock i is treated in cohort c at

time t, and the distance j ∈ [−3, 3] from the current month to the treatment month. Month

−1 is chosen as the base month that will be omitted from the regression. The results are

included in Column (3) and (6) of Table 6.

As shown in the table, the coefficients for the two months before the event are econom-

ically and statistically insignificant. On the other hand, the coefficients on the treatment

month and the months after the treatment are economically and statistically significant.

These results provide strong support to the assumption that there are no significant differ-

ences between treatment and control groups before the treatment.

To provide further evidence of the “parallel trend” assumption, I also plotted the coeffi-

cients on the dummy variables Di,j,c,t with their 95% confidence intervals in Figure 4.

[Fig. 4 about here.]

The figure provides visual support for the “parallel trend” assumption for our “difference-

in-differences” analysis. The dynamic results, together with the static results, provide strong

evidence that there is a possible causal effect of increased retail attention on stock crash risk.

6.3. Size and Institutional Ownership

Foucault et al. (2011) show that retail investors have an outsized impact on stock volatil-

ity, especially for smaller stocks, where the standard limits to arbitrage argument apply
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(Shleifer and Vishny, 1997). Smaller stocks are traded thinly and thus are less liquid. Be-

cause of their price tag, they are usually the preferred habitat of retail investors, and thus

their institutional holding is usually lower. As a result, their prices can stay distant from

their fundamentals for an extended period of time, since rational investors are reluctant to

arbitrage for the arbitrage would be costly.

The same argument should apply to crash risk. Prior literature has shown that high

crash risk stocks tend to be smaller and more costly to arbitrage (Jang and Kang, 2019).

We have also shown in Section 5 that retail investors seem to display a preference for high

crash risk stocks possibly because of their distorted beliefs (Brunnermeier et al., 2007). The

combination of these factors should lead to a natural hypothesis that retail attention should

have an outsized impact on the crash risk of smaller stocks and stocks with lower institutional

ownership.

To examine this hypothesis, I divide the universe of stocks into two subgroups based on

either lagged size or institutional ownership. Then I define a dummy variable Dsize/io = 1 if

the stock is larger than the median or zero otherwise, based on the lagged value of each stock

three months prior to each event. In the case of institutional ownership, Dsize/io = 1 if the

ratio of institutional ownership for the stock is greater than the median or zero otherwise,

based on the lagged value of institutional ownership three months prior to each event. Then

I interact Dsize/io with the Treated dummy variable in the same “stacked difference-in-

differences” specification:

CrashRiski,c,t = γ0+β1Di,c,t+β2Di,c,t×Dsize/io+ δc,t+αi,c+
∑
p

βpControlp,i,t−1+ ϵi,t (7)

I report the results of this specification in Table 7. Columns (1) to (4) report the results

of using logit-generated crash risk as the dependent variable, while Columns (5) to (8) use

machine learning-generated crash risk as the dependent variable. Columns (1), (3), (5), and

(7) only include the treated dummy and the interaction between the treated and the size
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dummy or IO dummy. Columns of even numbers add control variables. Standard errors are

clustered at the unit level.

[Table 7 about here.]

Consistent with our hypothesis, the coefficient on the interaction term between the

treated and size dummy or the IO dummy is negative and economically, and statistically

significant. For example, as shown in Column (1) when controls are not included, if the

stock is below median size, the first appearance on “Wallstreetbets” increases stock crash

risk by 1.5 percentage points, much higher than our baseline estimate of 1.03%. If the stock

is above the median size, the effect is much smaller at approximately 57 bps. In column (2)

when control variables are included, being a small stock that first appears on ‘Wallstreet-

bets” leads to a 1.04 percentage points increase in crash risk. The interaction term between

Treated and the size dummy remains significantly negative. The results are consistent when

using institutional ownership as the main variable of interest. These results are consistent

with prior literature that retail investors have a higher impact on smaller stocks or stocks

with a lower level of institutional ownership.

6.4. Supporting Evidence from Trading Volume and Volatility

One necessary assumption for our analysis is that retail investors pile in the stocks that are

mentioned on social media. While we do not have individual trading data, there should be a

surge in trading volume and volatility (Foucault et al., 2011) around the events. To examine

whether this is the case, we re-run the “difference-in-differences” analysis but substitute

the dependent variable with trading volume and return volatility, where trading volume is

defined as the monthly total volume of shares traded scaled by total shares outstanding, and

volatility is defined as daily return volatility of the current month. The results are reported

in Table 8.

[Table 8 about here.]
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The table shows clearly that there is a significant surge in both trading volume and

return volatility in the treated stocks that first appeared on “Wallstreetbets”. Moreover,

the dynamic tests confirm that there is no evidence that the “parallel trend” assumption is

violated. In fact, before the event happens, there is a downward trend for the treated stocks

in terms of trading volume and return volatility. This can be more readily shown in Figure

5.

[Fig. 5 about here.]

Taken together, these results support our main analysis that heightened retail attention

as a result of social transmission leads to higher ex-ante crash risk. Moreover, there is

evidence that retail activities are behind the surge of trading interests in these stocks.

7. Retail Traders and Crash Risk: Daily Evidence

In this section, we approach the main questions using the daily data by exploring the

SKEW measure by Xing et al. (2010), which is widely used as a proxy for firm-level crash

risk (Bollen and Whaley, 2004; Van Buskirk, 2011; Kim and Zhang, 2014; Kim et al., 2016).

It is motivated by the notion that a volatility smirk indicates investors’ expectation of a

steep decline in the underlying asset value (Bates, 2000).

Using SKEW as a proxy has the following advantages. First, it is available at a daily

frequency for stocks that have options traded. Second, it is easy to compute as it only

relies on implied volatility. Third, it is ex-ante in nature and thus conforms to our purpose.

Formally, SKEW is defined as follows:

SKEWi,t = ImpliedV olOTM−Put
i,t − ImpliedV olATM−Call

i,t (8)

Following Xing et al. (2010), I screen the options based on the following criteria. Days

to expiration are between 10 and 60 days. Implied volatilities are between 0.03 and 2. Open
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interest must be greater than zero. Option price must be greater than $0.125. Volume is

non-missing. For out-of-money put options, the moneyness is between 0.8 and 0.95. For

at-the-money call options, the moneyness is between 0.95 and 1.05. We choose the implied

volatility of the put option with moneyness closest to 0.95, and the implied volatility of the

call option with moneyness closest to 1 to compute the SKEW measure for the day.

7.1. SKEW and Daily Returns

Xing et al. (2010) show that SKEW is significantly negatively correlated with future

weekly returns. To test whether this is the case in the daily frequency and to check whether

daily SKEW can be used as a suitable proxy for ex-ante crash risk, we need to examine

whether SKEW is significantly negatively correlated with future daily returns.

Therefore I follow Hu et al. (2021) and use the following specification:

Ri,t = α + βSKEWi,t−1 +
∑
p

βpControli,p,t−1 + λt + ϵi,t (9)

Where t is at a daily frequency. The control variables include prior day return, prior

month-end log of market capitalization, book-to-market ratio, cumulative 19-day returns

lagged for 2 days (reversal), cumulative 100-day returns lagged for 21 days (momentum),

prior month average trading volume scaled by total shares outstanding (liquidity), and prior

month volatility of daily returns. For robustness, I run both Fama-MacBeth regressions and

panel regressions and report the results in Panel A of Table 9.

[Table 9 about here.]

Panel A of Table 9 shows that throughout all specifications, the SKEW measure is

negatively correlated with future daily stock returns, which is statistically significant at the

1% level. These results corroborate the findings in the prior literature and provide support

for using SKEW as a valid proxy for ex-ante crash risk at the daily frequency.
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7.2. Retail Trading of SKEW

In section 5, we show that retail investors have a tendency to buy high ex-ante crash risk

stocks. To see whether this is also the case in the daily frequency, we again use the trading

measure derived from Robintrack to regress on the contemporaneous SKEW measure and

the same set of control variables that we used in the previous test. We regress retail trading

measures on the contemporaneous SKEW measure instead of the lagged measure because

we want to examine retail trading behavior on the “ex-ante” measure of crash risk. The

results are reported in Panel B of Table 9.

To control for common market-wide shocks, we follow the prior specifications and include

day fixed effects and cluster standard errors at the stock level. From Panel B of Table 9,

we see that both regressions using different measures for retail trading load positively and

significantly on the contemporaneous SKEW , the proxy for ex-ante crash risk measure.

These results are consistent with our prior monthly results that retail investors tend to

overbuy high crash-risk stocks.

Apparently, these results only report the positive correlation between crash risk and

retail trading, while the causality can go both directions, just like in the monthly case. To

see whether retail behaviors have a real influence on ex-ante crash risk, we turn to online

conversations in “Wallstreetbets” again but follow a different path. We want to examine

whether the intensity of daily conversations about certain stocks can have a significantly

positive impact on the ex-ante crash risk of these stocks.

7.3. Online Conversations and SKEW: Endogeneity

Apparently, online conversations about stocks are endogenous. As shown in Han et al.

(2022), agents receive prominent presentations of other agents’ trading strategies, typically

represented by high past returns, and thus follow the same strategy, which leads to feedback

on the stock returns. Because of this feedback loop, it’s impossible to separate the two legs

of the circle via the usual regression specifications.
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Specifically, consider the following specification, where we regress the SKEW measure

on the number of times each stock is mentioned on social media, controlling for a set of stock

characteristics.

SKEWi,t = α0 + βSocialTransmissioni,t−1 +
∑
p

βpControli,p,t−1 + λt + σi + ϵi,t (10)

In a slight abuse of notation, the t − 1 in the subscript of “Social Transmission” means

the pre-trading hours from 16:30 PM on the previous day to 09:00 AM on the current day,

while the t − 1 in the controls ranges from the previous day to previous month, depending

on the variable referred to. In this specification, even when we use the two-way fixed effects

estimator, “Social Transmission” is still correlated with the idiosyncratic error term, and

thus the estimate of the coefficient β is inconsistent.

7.4. A Plausible Instrument

Let’s consider the following scenario. Person A zones away during his long and boring

working hours by wandering aimlessly on social media. His/her favorite venue for wandering

is Reddit, a popular platform for talking about anything. Each sub-venue specializing in a

different topic is called a “Subreddit”, a symbol of rich social life in a society. Apart from

working, person A spends a tremendous amount of time on hobbies such as football, fishing,

and political debates, where he/she posts and comments on the corresponding Subreddits.

Apart from all this, person A has developed a keen interest in stock trading, and thus

becomes a subscriber of “Wallstreetbets”, as he/she can always find interesting ideas for

trading there. For person A, Reddit almost satisfies all his/her needs for socializing, and the

migration cost is high, plus there is no comparable platform (Chang et al., 2014).

Therefore, person A’s activities on “Wallstreetbets” are correlated with his/her activities

on other Subreddits. In other words, person A is more likely to post on “Wallstreetbets” if

he/she is also posting on other Subreddits. However, it is logical that person A’s activities
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on other Subreddits have no direct bearing on stock market returns. Such an influence can

only be exerted via his/her activities on “Wallstreetbets”.

Formally, consider the following specification.

WSB Postsi,t−1 = α0 + βZNon Finance Postsi,t−1 + ϵi,t−1 (11)

SKEWi,t = α1 + βXWSB Postsi,t−1 +
∑
p

βpControli,p,t−1 + λt + ui,t (12)

Where the first equation represents the first-stage regression, and the second equation

represents the instrumental variable estimation. The subscript i represents stock i and

simultaneously all the agents that mention stock i. To operationalize this procedure, we

must ensure that the non-finance conversations are truly non-finance related. Therefore, the

name of the Subreddit matters.

To ensure that we extract non-finance posts from non-finance “Subreddits”, I follow

the strategy used in Li et al. (2021). I choose a set of “seed words” and find out 50

words/phrases that are closest in meaning to each seed word. Finally, I choose those “Sub-

reddits” whose title does not contain these keywords. The seed words I choose include:

“finance”, “stock-market”, “stocks”, “wall-street”, “trading”, “forex”, “options”, “invest-

ment”, “bond-market”, and “bonds”.

How to find words/phrases that are similar in meaning to the seed words? Recent ad-

vances in computational linguistics offer powerful tools to help solve the problem. First, we

want to vectorize the words/phrases into fixed-length vectors. Then we compute the cosine

similarity between each pair of vectors to check their distance to each other as a proxy for

meaning closeness. To do this, I use the pre-trained word embedding system called “Global

Vectors for Word Representation” (GloVe) developed by Pennington et al. (2014). These vec-

tors are trained on the whole corpus of Wikipedia up to 2014 and Gigaword 5 (Parker et al.,

2011) on the co-occurrences of words and phrases. I use the 300D version of GloVe, which

means that each word/phrase is represented by a 300 dimension vector: V = [x1, x2, ..., x300].
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Thus the cosine similarity between two words V1 and V2 is:

CosineSim1,2 =
V1 · V2

||V1|| · ||V2||
(13)

The cosine similarity measure for word vectors ranges between zero and one, with one

being the closest meaning.6 I find out the top 50 most similar words/phrases for each seed

word and group them together. Because of duplicates, we end up with a set of 351 keywords

that are related to the topic of finance. I then use these keywords to screen all the Subreddits.

7.5. Instrumental Variable Results

With all the data processed, we are ready to construct the instruments. First, we denote

a user j’s number of posts on “Wallstreetbets” about stock i on day t as nWSB
i,j,t , and his/her

number of posts on non-finance “Subreddits” as nnonFin
i,j,t . Then stock i’s total number of

posts on “Wallstreetbets” on day t is NWSB
i,t =

∑
j n

WSB
i,j,t . The instrument we construct for

this variable would be NnonFin
i,t =

∑
j n

nonFin
i,j,t , where the term is summing over all j that

have posted on “Wallstreetbets” about stock i on day t.

We proceed to run the regressions of the daily SKEW measure on our main variable of

interest – the number of “Wallstreetbets” posts NWSB
i,t , instrumented by the total number

of non-finance posts by the same users NnonFin
i,t , controlling for the same set of independent

variables we use in prior settings. First, we run panel regressions without using the instru-

ment. Then, to test whether there is evidence that the instrument violates the exclusion

restriction, I add the instrument into the regression to see whether the instrument is inap-

propriately excluded. Finally, I run the regression with instrumental variable estimation.

The first stage regression is untabulated, but the coefficient on the instrument is 0.049 and

statistically significant at the 1% level, and the R2 is 3.4%. I report the main results in

Table 10.

6Because all word vectors contain nonnegative numbers, the cosine similarity between any pair of word
vectors is nonnegative.
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[Table 10 about here.]

The insignificant coefficient on the number of non-finance posts in Column (2) supports

the exclusion restriction assumption. The significantly positive coefficient on the number of

“Wallstreetbets” posts in the instrumental variable estimation in Column (3) is consistent

with our prior results of the “Difference-in-Differences” specification that online conversations

among retail investors positively influence the ex-ante crash risk of stocks. A one-standard-

deviation increase in the number of “Wallstreetbets” posts is associated with a 15 bps increase

in the SKEW measure on average. Since the mean SKEW is 0.065, the 15 bps increase

translates into approximately 2.3% increase in ex-ante crash risk on a daily basis.

These results, combined with our prior results on monthly crash risk, support our hypoth-

esis that social media conversations are instrumental in facilitating more efficient herding

of individual investors, which in turn drives the increase in the ex-ante crash risk of the

underlying stocks.

8. Robustness Tests

In this section, we conduct various alternative tests to examine whether our results are

robust.

8.1. Pricing Results Using Crash Risk Defined by Alternative Thresholds

The pricing results for crash risk are robust to the definition of “crash” using other

thresholds. I re-run the estimations of ex-ante crash risk and the associated alpha estimates

of the hedge portfolios by defining a crash using the following thresholds: log monthly

returns of less than -10%, -15%, -25%, and -30%. For brevity, I show only alpha estimates

of regressions benchmarking the Fama-French five-factor model plus a momentum factor. In

each of these alternative definitions, the crash risk estimated using both logit regression and

machine learning method (“EasyEnsemble”) consistently produce negative and significant
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alphas. Detailed results are presented in Section C.1. These results show further evidence

for the superiority of machine learning models.

8.2. Retail Influence on Crash Risk Using Other Specifications

Possible causal influence of the online conversations of retail investors can be shown via

other specifications. Here we consider several different specifications to demonstrate the

robustness of our findings.

8.2.1. Band Widths and Earnings Days

we start by examining whether changing the event windows would make our results

go away. Our main test uses a window of [-3,+3], or 7 months in total for each stock’s

first appearance on “Wallstreetbets”. Here, we use the same specifications but change the

window to either [-1,+1] or 3 months, or [-2,+2] or 5 months. We report the results in

Columns (1), (2), (4), and (5) in Table A.2. Furthermore, there might be a concern that

the first appearances of stocks on “Wallstreetbets” are endogenous because these firms’

information events might be the underlying reason that prompted the users to talk about

these stocks. Therefore, in a separate test, we drop all stock-month observations that happen

to be the months of earnings announcements. Arguably, earnings announcements are the

biggest information events for individual stocks. After dropping these events, we are left

with approximately 77% of our original sample. We then run the same specification as our

main test and report the results in Columns (3) and (6) in Table A.2. Throughout all the

settings, we find consistent and strong evidence that our results are robust to different event

windows. Moreover, the results do not seem to be driven by firms’ information events.

8.2.2. First-Year Effects

First, we limit our attention to the narrow window around the first year of “Wallstreet-

bets”, since it is possible that the influence of the Subreddit is particularly prominent during
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the early days when there are few other choices of online conversations on investment. I

define the period between April 2011 and March 2012 before the advent of “Wallstreetbets”

as the pre-period and the period between April 2012 and March 2013 as the post-period.

I treat all firms whose ticker names were mentioned on “Wallstreetbets” during the post-

period as treated firms. The resulting set of firms whose ticker names were mentioned on

“Wallstreetbets” in its first year consists of 236 unique firms.

I use these firms as treated firms that could experience elevated herding in their trading

because of the advent of “Wallstreetbets”. Then I test the following specification:

CrashRiski,t = γ0 + β × Treated+
∑
p

βpControlp,i,t−1 + αi + λt + ϵi,t (14)

Where Treated is a dummy variable that equals one if the firm’s ticker is mentioned

in “Wallstreetbets” and if the period is from April 2012 to March 2013 and zero otherwise.

Firm and month fixed effects are included, and hence the two dummy variables are absorbed,

leaving the interaction intact. The results are reported in Columns (1) and (2) in Table 11.

[Table 11 about here.]

As shown in the table, there is a significant and positive increase in crash risk for the

treated stocks whose ticker names were mentioned during the first year of “Wallstreetbets”,

even after controlling for a group of firm characteristics, including MAX. The magnitude of

increase in these specifications is approximately 40 bps or a 6% increase compared to the

unconditional mean of stock crash risk.

8.2.3. Treatment in Multiple Periods

I consider the following hypothesis. After a ticker name first appeared on “Wallstreet-

bets”, the attention for the stock is elevated, and subsequently, retail trading follows, which

leads to a potential increase in its crash risk. Since we have the full history of “Wall-

streetbets” till the end of 2020, we can pinpoint the month when each of the ticker names
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was first posted on the Subreddit. There are in total 3507 unique tickers mentioned on

“Wallstreetbets”, and the months of their first time mentioning scattered across the sample

period. In comparison, during the same sample period, there are 5856 unique firms in the

CRSP/Compustat universe that satisfy our basic screening.7

The assumption here is that once the ticker name is mentioned on “Wallstreetbets” for the

first time, the ticker remains treated afterward. I again estimate the following specification:

CrashRiski,t = γ0 + β × Treated+
∑
p

βpControlp,i,t−1 + αi + λt + ϵi,t (15)

Where the treated status begins in the month after the month when the ticker was first

mentioned on “Wallstreetbets”. Thus the specification contains units that are treated in

different time periods. The results are reported in Columns (3) and (4) in Table 11.

Across all specifications, there is a significant and positive coefficient on Treated, pro-

viding evidence that once a stock is mentioned on “Wallstreetbets”, its crash risk becomes

elevated. The magnitude is approximately 40 bps or a 6% increase compared to the uncon-

ditional mean of ex-ante crash risk.

One obvious concern is endogeneity since retail attention on stocks is not random and

could be just reflecting underlying changes of characteristics in stocks. To partially alleviate

the concern, I conducted a falsification test, randomly shuffling the months when the stocks

were treated. Then I estimate the same specification, except that Pseudo−Treated replaces

the dummy variable Treated. The results are reported in Table A.3. As shown in the table,

the coefficients on “Pseudo-Treated” is virtually indistinguishable from zero. These results

lend credibility to the validity of our quasi-natural experiment, supporting our hypothesis

that the rise of Reddit contributes to the increased crash risk of the stocks that receive

community attention.

7Here the screening refers to selecting common stocks with a share code of 10 or 11 with non-missing
returns.
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8.2.4. Realized Crashes

In our main tests, we used the estimated ex-ante measure of crash risk to test whether

the social transmission of investment ideas on investment forums could have a causal impact

on the left-tail risk. Arguably the estimated ex-ante measure could contain measurement

errors. On the other hand, we might be also interested in directly testing whether social

transmission could cause realized crashes. To maintain consistency with the main tests, I run

the same specification as the main test except that I replace the dependent variable with a

dummy variable Crashi,t, which equals one if the stock crashes in the month, or equivalently,

its log return is lower than -20% or any of the thresholds. Thus the specification is as follows:

Crashi,c,t = γ0 +
+3∑

j=−3

βjDi,j,c,t + δc,t + αi,c + ϵi,t (16)

I report the results in Table A.4 in Appendix. As the table shows, all the coefficients

on the interaction term Treated are positive and statistically significant at the 1% level.

These results provide strong evidence that social transmission not only impacts the ex-ante

distribution of stock returns but also influences ex-post outcomes.

9. Conclusion

Recent development in financial technology (FinTech) like “Robinhood” has dramatically

reduced the hurdle for retail trading. In addition, popular online forums like “Reddit”

facilitate more efficient sharing of trading ideas. These innovations can likely amplify the

effect of correlated retail trading behaviors. Because of distorted beliefs, retail investors

tend to over-buy high crash risk stocks, contributing to the negative price of crash risk.

The buying activities and subsequent price reactions formulate a possible feedback loop.

The resulting more elevated level of crash risk contributes to exacerbated market volatility,

potentially damaging investor welfare.
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Future research avenues could further explore social media’s role in forming investor

beliefs and their subsequent trading behavior. As reflected in the meme stock frenzy, the

mass psychology of the online investing community could be influenced without apparent

fundamental information, often to the harm of such investors. Studying this interaction

between social media conversations and asset prices could help us understand the intricacies

of price formation and aid policymakers in their pursuit of protecting potentially novice and

vulnerable investor groups.

36



Fig. 1. Out-of-Sample Predicted Crashes by Thresholds. The figure depicts the total per-
centage of out-of-sample predicted crashes for logistic regression and EasyEnsemble against
decision thresholds. The X-axis is the decision threshold from zero to one. The Y-axis gives
the percentage of real crashes successfully predicted by either model based on the decision
threshold. For example, at the 7% threshold, meaning that we predict all stocks with a
probability greater than 7% to crash in the next month, logistic regression is able to catch
72% of all real crashes, while EasyEnsemble is able to catch 85%.

37



Fig. 2. Aggregate Crash Risk. The figure plots market-wide aggregate ex-ante crash proba-
bilities from 1996 to 2020. The aggregation is done by weighting the monthly ex-ante crash
risk of each firm by their lagged market capitalizations as follows:

AggCrashRiskt =
∑

i MarketCapi,t−1×CrashRiski,t∑
i MarketCapi,t−1

The red solid line indicates the aggregate crash probabilities by using the machine learning-
generated crash probabilities, while the blue dashed line uses the logit-generated crash prob-
abilities. The gray shaded areas indicate NBER recession periods (NBER, 2021). The time
series run from July 1996 to December 2020.
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Fig. 3. Monthly Number of Posts and Unique Tickers on “Wallstreetbets”. The figure plots
the total number of posts each month on the Subreddit “Wallstreetbets” that mention stock
ticker names, and also the number of unique ticker names mentioned each month in Panel A
and Panel B respectively. For a ticker to be counted, it must not be common English words,
slang, or abbreviations. The time series spans from April 2012 when “Wallstreetbets” was
established to December 2020.
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Fig. 4. Dynamic Treatment Effects of the First Appearances of Tickers on “Wallstreetbets”.
This figure plots the dynamic treatment effects between three months prior to the treatment
and three months after the treatment to examine whether the “parallel trend” assumption
holds for the “difference-in-differences” analysis on whether the first appearances of stock
tickers on “Wallstreetbets” can have a positive and significant effect on stock crash risk. The
“difference-in-differences” specification is as follows:

CrashRiski,c,t = γ0 +
∑+3

j=−3 βjDi,j,c,t + δc,t + αi,c +
∑

p βpControlp,i,t−1 + ϵi,t
Where the dummy variables Di,j,c,t indicate whether a stock i is treated in cohort c at time
t, and the distance j ∈ [−3, 3] from the current month to the treatment month. Month −1
is chosen to be the base month that will be omitted from the regression. Month 0 is the
treatment month, and a green dotted line is plotted for better illustration. The coefficients
on the rest of the dummies Di,j,c,t together with their 95% confidence interval bands are
then plotted against their respective time periods. The blue markers display results using
logit-generated crash risk as the dependent variable, while the golden markers use machine
learning-generated crash risk. CrashRiski,c,t is the estimated crash risk of stock i in cohort
c at time t. δc,t is Cohort× Time fixed effects. αi,c is Unit×Cohort fixed effects. Standard
errors are clustered at the unit level. The regression results are reported in Column (3) and
(6) in Table 6.
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Fig. 5. Dynamic Treatment Effects: Trading Vol & Volatility. This figure plots the dynamic
treatment effects between three months prior to the treatment and three months after the
treatment to examine whether the “parallel trend” assumption holds for the “difference-
in-differences” analysis on whether there is a surge in trading volume and volatility after
the first appearances of stock tickers on “Wallstreetbets”. The “difference-in-differences”
specification is the same specification as in our main test except that we replace the dependent
variable with either trading volume or return volatility. Panel A display results on trading
volume, while Panel B shows results for return volatility. The regression results are reported
in Column (3) and (6) in Table 8.

41



T
ab

le
1:

S
u
m
m
ar
y
S
ta
ti
st
ic
s

T
h
is

ta
b
le

re
p
or
ts

th
e
su
m
m
ar
y
st
at
is
ti
cs

of
ou

r
m
ai
n
va
ri
ab

le
ex
-a
n
te

m
on

th
ly

cr
as
h
ri
sk

an
d
ot
h
er

fi
rm

ch
ar
ac
te
ri
st
ic
s
u
se
d

la
te
r
in

ou
r
an

al
y
se
s.

T
h
er
e
ar
e
tw

o
se
ts

of
cr
as
h
ri
sk

es
ti
m
at
es
.
C
ra
sh

1
is
es
ti
m
at
ed

b
y
lo
gi
t
re
gr
es
si
on

,
an

d
C
ra
sh

2
b
y
m
ac
h
in
e

le
ar
n
in
g
(E

E
C
-A

d
ab

o
os
t)
.
T
o
d
iff
er
en
ti
at
e
ou

r
m
ea
su
re

fr
om

th
e
le
ft
-t
ai
l
m
ea
su
re

V
a
R

in
A
ti
lg
an

et
al
.
(2
02
0)
,
w
e
al
so

in
cl
u
d
e

th
ei
r
m
ea
su
re
.
V
a
R
1%

is
d
efi
n
ed

as
th
e
1
p
er
ce
n
ti
le

d
ai
ly

re
tu
rn

of
th
e
st
o
ck

in
th
e
p
as
t
ye
ar
,
w
h
il
e
V
a
R
5%

is
th
e
5
p
er
ce
n
ti
le

d
ai
ly

re
tu
rn

of
th
e
st
o
ck

in
th
e
p
as
t
ye
ar
.
O
th
er

va
ri
ab

le
s
in
cl
u
d
e
th
e
n
at
u
ra
l
lo
g
of

m
ar
ke
t
ca
p
it
al
iz
at
io
n
s
(S

iz
e)
,
th
e
n
at
u
ra
l
lo
g

of
b
o
ok

-t
o-
m
ar
ke
t
ra
ti
o,

as
se
t
gr
ow

th
(A

T
G
),
gr
os
s
p
ro
fi
ta
b
il
it
y
(G

P
),
m
om

en
tu
m

(p
ri
or

11
-t
o-
1
m
on

th
re
tu
rn
s,
M

O
M

),
an

d
sh
or
t-
te
rm

re
ve
rs
al

(p
ri
or

1-
m
on

th
re
tu
rn
s,
S
T
−
R
ev
),
id
io
sy
n
cr
at
ic
vo
la
ti
li
ty
,
il
li
q
u
id
it
y
(A

m
ih
u
d
,
20
02
),
m
ar
ke
t
b
et
a,

ta
il
B
et
a

(K
el
ly

an
d
J
ia
n
g,

20
14
),

co
sk
ew

n
es
s(
H
ar
ve
y
an

d
S
id
d
iq
u
e,

20
00
),

M
A
X

(B
al
i
et

al
.,
20
11
).

I
O

is
th
e
in
st
it
u
ti
on

al
ow

n
er
sh
ip

fo
r
ea
ch

st
o
ck
,
m
ea
su
re
d
at

th
e
q
u
ar
te
rl
y
fr
eq
u
en
cy
.
U
se
rN

u
m

is
th
e
to
ta
l
n
u
m
b
er

of
u
se
rs

fo
r
ea
ch

st
o
ck

on
R
ob

in
h
o
o
d
b
y

th
e
en
d
of

ea
ch

m
on

th
.
T
h
e
sa
m
p
le

st
ar
ts

fr
om

J
u
ly

19
96

to
D
ec
em

b
er

20
21
,
ex
ce
p
t
fo
r
R
ob

in
h
o
o
d
u
se
r
n
u
m
b
er
s
w
h
er
e
it

is
li
m
it
ed

to
b
et
w
ee
n
M
ay

20
18

an
d
A
u
gu

st
20
20

d
u
e
to

th
e
d
at
a
av
ai
la
b
il
it
y
of

R
ob

in
tr
ac
k
(h
t
t
p
s
:
/
/
r
o
b
i
n
t
r
a
c
k
.
n
e
t
/
).

C
ra
sh
1

C
ra
sh
2

V
aR

1%
V
aR

5%
S
iz
e

B
et
a

L
og
(B

/M
)

A
T
G

G
P

M
O
M

co
u
n
t
1,
38
3,
26
4

1,
38
3,
26
4

1,
39
3,
93
3

1,
39
3,
93
3

1,
43
9,
82
3

1,
28
4,
82
4

1,
27
3,
51
2

1,
23
5,
65
7

1,
06
8,
24
6

1,
34
6,
72
0

m
ea
n
0.
09

0.
10

-0
.0
8

-0
.0
5

5.
73

1.
08

-0
.7
7

0.
20

0.
32

0.
14

st
d

0.
13

0.
09

0.
05

0.
03

2.
17

0.
85

1.
04

3.
45

0.
39

0.
84

1%
0.
00

0.
00

-0
.2
6

-0
.1
6

1.
33

-0
.2
1

-3
.7
5

-0
.5
4

-0
.7
8

-0
.8
6

25
%

0.
02

0.
03

-0
.1
1

-0
.0
7

4.
14

0.
50

-1
.3
2

-0
.0
3

0.
15

-0
.2
3

50
%

0.
04

0.
07

-0
.0
7

-0
.0
4

5.
62

0.
93

-0
.6
9

0.
06

0.
30

0.
04

75
%

0.
11

0.
14

-0
.0
5

-0
.0
3

7.
18

1.
48

-0
.1
4

0.
19

0.
48

0.
32

99
%

0.
64

0.
42

0.
00

0.
00

11
.0
8

3.
72

1.
72

2.
64

1.
25

2.
89

S
T
-R

ev
V
ol

S
ke
w

T
ai
lB
et
a

C
os
ke
w

Id
io
R
is
k

Il
li
q

M
ax

R
et

IO
U
se
rN

u
m

co
u
n
t
1,
46
9,
59
3

1,
46
6,
22
8

1,
43
7,
11
1

95
1,
65
4

1,
35
6,
66
3

1,
43
5,
09
7

1,
34
5,
88
1

1,
44
0,
26
3

49
6,
20
4

87
,4
56

m
ea
n
0.
01

0.
03

0.
24

0.
72

0.
22

0.
03

4.
72

0.
08

0.
41

34
18
.4
6

st
d

0.
20

0.
03

1.
00

0.
58

0.
29

0.
03

46
.2
4

0.
11

0.
34

21
49
6.
13

1%
-0
.4
3

0.
00

-2
.6
4

-0
.4
9

-0
.4
1

0.
00

0.
00

0.
01

0.
00

6.
00

25
%

-0
.0
7

0.
02

-0
.2
8

0.
37

0.
04

0.
01

0.
00

0.
03

0.
09

95
.0
0

50
%

0.
00

0.
03

0.
20

0.
63

0.
20

0.
02

0.
03

0.
06

0.
36

31
9.
00

75
%

0.
07

0.
04

0.
72

0.
99

0.
37

0.
04

0.
55

0.
10

0.
71

11
61
.0
0

99
%

0.
62

0.
15

3.
25

2.
52

1.
09

0.
15

86
.3
9

0.
45

1.
09

64
69
1.
10

42

https://robintrack.net/


Table 2: Decile High-Minus-Low Portfolio Alphas
This table presents the analysis of portfolios sorted on the ex-ante crash risk measures
estimated by both logit and machine learning (EEC-AdaBoost). At the end of each month,
stocks are ranked by their ex-ante crash probabilities produced by either logit or machine
learning into ten decile portfolios. Then we compute both equal-weighted portfolio returns
and value-weighted returns by their lagged market capitalization. The hedge portfolio is
long in the top decile ex-ante crash risk portfolio and short in the bottom decile crash
risk portfolio. Then the hedge portfolio return series are regressed on risk factor returns
from various empirical asset pricing models. The asset pricing models include: CAPM,
Fama-French three-factor model (FF3) (Fama and French, 1993), then augmented with a
momentum factor (FF4) (Carhart, 1997), Fama-French five-factor model (FF5) (Fama and
French, 2015), and then augmented with momentum factor (FF6). Then we report the
resulting intercepts (alphas) and their associated T -statistics. The upper panel presents
results from using value-weighted portfolio returns, while the lower panel presents equal-
weighted results. The left half shows results from using ex-ante crash risk estimated from
logistic regressions, and the right from machine learning (EEC-AdaBoost). Standard errors
are adjusted using the Newey-West procedure (Newey and West, 1986) with 6 lags.

Logit EEC-Adaboost

Pricing model Alpha T-stat Alpha T-stat

Value-weighted CAPM -1.852 -3.730 -1.967 -4.393
FF3 -1.842 -4.440 -1.963 -5.456
FF4 -1.533 -3.531 -1.775 -4.636
FF5 -0.874 -2.834 -1.120 -3.947
FF6 -0.696 -2.263 -1.023 -3.442

Equal-weighted CAPM -2.470 -5.571 -2.458 -5.325
FF3 -2.461 -7.941 -2.452 -7.573
FF4 -2.106 -7.161 -2.173 -7.005
FF5 -1.656 -5.637 -1.783 -6.093
FF6 -1.438 -5.788 -1.614 -5.947

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Fama-MacBeth Cross-Sectional Regressions
This table reports Fama-MacBeth cross-sectional regressions of raw returns on ex-ante crash
risk and lagged firm characteristics in the spirit of Fama and French (2020). First, we regress
monthly stock returns of each month on lagged firm characteristics. Then we average the
coefficients and report the associated standard errors. Our main variables of interest are
the two ex-ante crash risk measures. One is estimated by logit regression, and the other
by machine learning (EEC-Adaboost). Columns (1) and (2) use the logit-generated crash
risk as the main variable, while Columns (3) and (4) use the machine learning-generated
crash risk. To differentiate our measure from the left-tail measure V aR in Atilgan et al.
(2020), I include their measure in Columns (2) and (4) as a control variable, where V aR1%
is defined as the negative of 1 percentile daily return of the stock in the past year. In Column
(5), I only include V aR1% as the sole variable to proxy for left-tail risk to ensure that our
results are consistent with Atilgan et al. (2020). Other control variables include the natural
log of market capitalizations, the natural log of book-to-market ratio, asset growth, gross
profitability, momentum (prior 11-to-1 month returns), and short-term reversal (prior 1-
month returns). In Column (3), I add idiosyncratic volatility and illiquidity (Amihud, 2002).
In Column (4), I add market beta, tail Beta (Kelly and Jiang, 2014), coskewness(Harvey
and Siddique, 2000), net operating assets NOA (Hirshleifer et al., 2004), and MAX (Bali
et al., 2011). All independent variables are standardized cross-sectionally each month to be
mean zero and standard deviation of unity, such that the coefficients on all the independent
variables can be directly read as the percentage increase in average stock returns if the
underlying independent variable increase by one standard deviation. Standard errors are
adjusted according to Newey-West procedures (Newey and West, 1986) with 6 lags.

(1) (2) (3) (4) (5)
Dependent Variable: Returns in %

Crash Risk (Logit) -0.491*** -0.453***
(0.080) (0.077)

Crash Risk (EEC) -0.507*** -0.459***
(0.097) (0.086)

VaR1% -0.123 -0.097 -0.246***
(0.082) (0.074) (0.083)

Controls YES YES YES YES YES

Observations 545,367 545,290 545,367 545,290 564,466
R-squared 0.083 0.086 0.083 0.085 0.084

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Sentiment and Crash Risk Returns
This table presents the relationship between the price of crash risk and sentiment. Panel
A reports the value-weighted portfolio excess returns for high-crash-risk, low-crash-risk, and
long-short hedge portfolios in both high sentiment and low sentiment periods and their
differences. Market-wide sentiment is defined by Baker and Wurgler (2006). Our sample
is limited between July 1996 and December 2018 because of the availability of the index.
High and low sentiment periods are defined as either above or below median sentiment over
the sample period. Panel B reports regression results. In Columns (1) and (2), we run
Fama-MacBeth cross-sectional regressions of stock returns on crash risk and lagged firm
characteristics for high- and low-lag-sentiment periods separately. Control variables include
all the firm characteristics used in Table 3. Standard errors are estimated according to
Newey-West procedure (Newey and West, 1986) with 6 lags. In Columns (3) and (4), we
run panel regressions of stock returns on the same independent variables as the previous
specification, with firm and time fixed effects. In Column (4), we add a dummy variable
SentD, where it equals one if the lagged sentiment is higher than the sample median, and zero
otherwise. We interact SentD with crash risk, and hence the coefficient on the interaction
term can be interpreted as the incremental price of crash risk when lagged sentiment is high.
All independent variables are standardized cross-sectionally each month to be mean zero and
standard deviation of unity. Standard errors are clustered at the firm level.

Panel A: Portfolio Excess Returns and Sentiment

High Sent Low Sent High-Low

Low crash risk 0.597* 0.812** -0.215
(0.314) (0.309) 0.436

High crash risk -1.849* 0.879 -2.728**
(1.008) (0.880) (1.280)

Long-short -2.446** 0.067 -2.513**
(0.943) (0.709) (1.144)

Panel B: Price of Crash Risk and Sentiment

(1) (2) (3) (4)
FMB Panel

VARIABLES Low Sent High Sent Return Return

Crash Risk -0.405*** -0.619*** -0.335*** -0.135**
(0.108) (0.141) (0.050) (0.062)

SentmentD×Crash Risk -0.374***
(0.063)

Controls YES YES YES YES

Observations 240,805 269,577 545,227 510,260
R-squared 0.078 0.085 0.168 0.159

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Investor Trading and Crash Risk
This table presents results from regressing Robinhood user trading measures and institu-
tional trading measures on crash risk, controlling for other firm characteristics. The first
Robinhood user trading measure is the monthly change of the natural log of user numbers
holding a particular stock, where the user numbers are from the online brokerage Robinhood
(Robintrack). The second Robinhood user trading measure is the percentage change in the
number of users over the previous month. The institutional trading measure is the quarterly
change in the ratio of institutional holding for each stock. We regress all of these trading
measures on the contemporaneous crash risk measures constructed from both logit regres-
sions and the machine learning method (EEC-AdaBoost). Columns (1) to (4) add lagged
log of the number of users as a control variable. For all specifications, the control variables
include the natural log of market capitalization, the natural log of book-to-market ratio, as-
set growth, gross profitability, momentum, short-term reversal, MAX and MIN (Bali et al.,
2011), defined as the highest and lowest daily returns of the previous month, total skewness
of daily returns in the previous month, illiquidity (Amihud, 2002), and Fama-French three-
factor betas estimated from the previous month. Firm and Time fixed effects are included,
and robust standard errors are included in parentheses.

(1) (2) (3) (4) (5) (6)
VARIABLES Change in Log(User) User%Change IO Change

Crash Risk (Logit) 0.093*** 0.154*** -0.026***
(0.010) (0.020) (0.002)

Crash Risk (EEC) 0.104*** 0.156*** -0.013***
(0.016) (0.028) (0.003)

Controls YES YES YES YES YES YES

Observations 63,692 63,692 63,692 63,692 375,339 375,339
R-squared 0.241 0.240 0.191 0.190 0.500 0.500
Firm & Time FE YES YES YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: First Appearances of Stock Tickers on “Wallstreebets” and Crash Risk
This table reports results from a “stacked difference-in-differences” approach (Gormley and
Matsa, 2011) that examines the effect of first appearances of stocks tickers on “Wallstreet-
bets” on their ex-ante crash risk. Columns (1) to (3) use logit-generated crash risk as the
dependent variable, while Columns (4) to (6) use machine learning-generated crash risk.
“Wallstreetbets” was started in April 2012. From the beginning of “Wallstreetbets” to the
end of 2020, we find all the stock tickers that are ever mentioned in the Subreddit and the
first month they were mentioned. We then define each of these instances as one event and
each of the stocks as a treated stock. We match each treated stock with five control stocks
from the pool of “never treated” stocks via propensity score matching based on lagged char-
acteristics three months prior to each event. Then the “cohorts” containing treated and
control observations are stacked together and the following specification is run:

CrashRiski,c,t = γ0 + βDi,c,t + δc,t + αi,c +
∑

p βpControlp,i,t−1 + ϵi,t
Where CrashRiski,c,t is the estimated crash risk of stock i in cohort c at time t. Di,c,t is
a dummy variable that indicates whether a stock i in cohort c is treated at time t. δc,t is
Cohort× Time fixed effects. αi,c is Unit×Cohort fixed effects. Then β is the coefficient of
interest that estimates the average treatment effect on the treated stocks. The results are
reported in Columns (1), (2), (4), and (5), where Columns (2) and (5) add control variables.
The control variables include the natural log of market capitalization, prior-month return,
asset growth, gross profitability, illiquidity, MAX (Bali et al., 2011), prior 12-month return,
and idiosyncratic risk. Columns (3) and (6) examine the dynamic treatment effects around
the events. Standard errors are clustered at the unit level.

(1) (2) (3) (4) (5) (6)
VARIABLES Crash Risk (Logit) Crash Risk (EEC)

Treated 1.032*** 0.560*** 0.674*** 0.303***
(0.103) (0.129) (0.054) (0.064)

Month -3 0.009 0.001
(0.160) (0.082)

Month -2 -0.041 0.041
(0.140) (0.074)

Month 0 0.464*** 0.152**
(0.136) (0.076)

Month +1 0.326* 0.152
(0.185) (0.097)

Month +2 0.689*** 0.478***
(0.199) (0.095)

Month +3 0.735*** 0.508***
(0.218) (0.105)

Observations 208,502 125,734 125,734 208,502 125,734 125,734
R-squared 0.874 0.909 0.909 0.921 0.946 0.946
Cohort×Units FE YES YES YES YES YES YES
Cohort×Month FE YES YES YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: First Appearances of Stock Tickers on “Wallstreebets”: Trading Vol & Volatility
This table reports results from a “stacked difference-in-differences” approach (Gormley and
Matsa, 2011) that examines the effect of first appearances of stocks tickers on “Wallstreet-
bets” on their trading volume and volatility. Columns (1) to (3) use trading volume as the
dependent variable, while Columns (4) to (6) use return volatility. “Wallstreetbets” was
started in April 2012. From the beginning of “Wallstreetbets” to the end of 2020, we find
all the stock tickers that are ever mentioned in the Subreddit and the first month they were
mentioned. We then define each of these instances as one event and each of the stocks as a
treated stock. We match each treated stock with five control stocks from the pool of “never
treated” stocks via propensity score matching based on lagged characteristics three months
prior to each event. Then the “cohorts” containing treated and control observations are
stacked together and the following specification is run:

TradingV oli,c,t = γ0 + βDi,c,t + δc,t + αi,c +
∑

p βpControlp,i,t−1 + ϵi,t
Where TradingV oli,c,t is the trading volume of stock i in cohort c at time t. Di,c,t is a
dummy variable that indicates whether a stock i in cohort c is treated at time t. δc,t is
Cohort× Time fixed effects. αi,c is Unit×Cohort fixed effects. Then β is the coefficient of
interest that estimates the average treatment effect on the treated stocks. The results are
reported in Columns (1), (2), (4), and (5), where Columns (2) and (5) add control variables.
The control variables include the natural log of market capitalization, prior-month return,
asset growth, gross profitability, illiquidity, MAX (Bali et al., 2011), prior 12-month return,
and idiosyncratic risk. Columns (3) and (6) examine the dynamic treatment effects around
the events. Standard errors are clustered at the unit level.

(1) (2) (3) (4) (5) (6)
VARIABLES Trading Volume Volatility

Treated 0.227*** 0.146*** 0.260*** 0.162***
(0.026) (0.032) (0.021) (0.026)

Month -3 -0.067* -0.037
(0.034) (0.041)

Month -2 -0.059* -0.068*
(0.031) (0.038)

Month 0 0.336*** 0.497***
(0.042) (0.042)

Month +1 0.066* 0.024
(0.038) (0.039)

Month +2 0.015 0.013
(0.041) (0.042)

Month +3 -0.017 -0.055
(0.044) (0.042)

Observations 209,478 125,748 125,748 212,961 125,748 125,748
R-squared 0.931 0.954 0.954 0.790 0.842 0.843
Cohort×Units FE YES YES YES YES YES YES
Cohort×Month FE YES YES YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Daily Returns, Retail Trading, and Crash Risk (SKEW )
This table examines the relationship between daily returns and lagged SKEW measure,
and the relationship between Robinhood user trading and the contemporaneous SKEW
measure. Panel A reports regressions of daily stock returns on lagged SKEW measure as a
proxy for crash risk in the daily frequency. The SKEW measure follows Xing et al. (2010):

SKEWi,t = ImpliedV olOTM−Put
i,t − ImpliedV olATM−Call

i,t

The option data is from Option Metrics. We screen the option data based on the following
conditions. Days to expiration are between 10 and 60 days. Implied volatilities are between
0.03 and 2. Open interest must be greater than zero. Option price must be greater than
$0.125. Volume is non-missing. For out-of-money put options, the moneyness is between
0.8 and 0.95. For at-the-money call options, the moneyness is between 0.95 and 1.05. We
choose the implied volatility of the put option with moneyness closest to 0.95, and the
implied volatility of the call option with moneyness closest to 1 to compute the SKEW
measure for the day. Columns (1) and (2) report Fama-MacBeth cross-sectional regressions,
while Columns (3) and (4) report panel regressions. The control variables include prior
day return, prior month-end log of market capitalization, book-to-market ratio, cumulative
19-day returns lagged for 2 days (reversal), cumulative 100-day returns lagged for 21 days
(momentum), prior month average trading volume scaled by total shares outstanding (liq-
uidity), and prior month volatility of daily returns. For panel regressions, we include day
fixed effects, and standard errors are clustered at the stock level. Panel B reports panel
regressions of Robinhood user trading measures on contemporaneous SKEW measure as a
proxy for ex-ante crash risk and control variables. The trading measures include the change
in the log of user numbers and the percentage change of user numbers from the previous day.

(1) (2) (3) (4)
Panel A: Daily Stock Returns and Crash Risk (SKEW )

VARIABLES FMB Panel

Lag Option SKEW -0.001*** -0.002*** -0.001*** -0.001***
(0.000) (0.000) (0.000) (0.000)

Controls NO YES NO YES

Observations 2,071,209 2,010,815 2,071,209 2,010,815
R-squared 0.003 0.072 0.199 0.201

Panel B: Robinhood User Trading and Crash Risk (SKEW )

VARIABLES Change in % Change in
Log(Robinhood Users) Robinhood Users

Option SKEW 0.001** 0.001**
(0.000) (0.001)

Controls YES YES

Observations 703,614 862,423
R-squared 0.011 0.003

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

50



Table 10: Instrumental Variable Estimation: “WSB” Posts and Crash Risk (SKEW )
This table reports the results of regressing the daily SKEW measure on the number of
“Wallstreetbets” posts, controlling for other stock characteristics. Column (1) reports a
panel regression of SKEW on the number of “Wallstreetbets” posts. Column (2) adds the
proposed instrument “number of non-finance posts” to test the exclusion restriction. Col-
umn (3) reports the result of instrumental variable estimation. Denote a user j’s number
of posts on “Wallstreetbets” about stock i on day t as nWSB

i,j,t , and his/her number of posts
on non-finance “Subreddits” as nnonFin

i,j,t . Then stock i’s total number of posts on “Wall-
streetbets” on day t is NWSB

i,t =
∑

j n
WSB
i,j,t . The instrument we construct for this variable

would be NnonFin
i,t =

∑
j n

nonFin
i,j,t , where the term is summing over all j that have posted on

“Wallstreetbets” about stock i on day t. The IV specification is as follows:
NWSB

i,t−1 = α0 + βZN
nonFin
i,t−1 + ϵi,t−1

SKEWi,t = α1 + βXN
WSB
i,t−1 +

∑
p βpControli,p,t−1 + λt + ui,t

The t − 1 subscripts on the number of posts refer to the time period of 16:30 PM the pre-
vious day to 9:00 AM on day t. The first stage regression of NWSB

i,t on NnonFin
i,t produces a

coefficient of 0.049, statistically significant at the 1% level, and a R2 of 3.4%, which dispels
the weak instrument concern. In all specifications, the control variables include prior day re-
turn, prior month-end log of market capitalization, book-to-market ratio, cumulative 19-day
returns lagged for 2 days (reversal), cumulative 100-day returns lagged for 21 days (momen-
tum), prior month average trading volume scaled by total shares outstanding (liquidity), and
prior month volatility of daily returns. We include day fixed effects, and standard errors are
clustered at the stock level.

(1) (2) (3)
VARIABLES Panel Panel IV

Number of “Wallstreetbets” Posts 0.070*** 0.067*** 0.193***
(0.019) (0.018) (0.035)

Number of Non-Finance Posts 0.005
(0.004)

Controls YES YES YES

Observations 2,655,209 2,655,209 2,655,209
R-squared 0.089 0.089 0.042
Day FE YES YES YES
Firm Cluster YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

51



Table 11: Wallstreebets and Crash Risk: Alternative Settings
This table examines the impact of the advent of “Wallstreetbets” on ex-ante crash risk.
Columns (1) and (2) examine the effect of stock ticker appearances in the first year of
“Wallstreetbets”, which was founded in April 2012. The dependent variable is the crash
risk, while the independent variable of interest is Treated, which is a dummy variable that
equals one if the firm’s ticker is mentioned in “Wallstreetbets” and if the period is from April
2012 to March 2013, and zero otherwise. Columns (3) and (4) examine the “continued” effect
of stock ticker appearances on “Wallstreetbets”. The independent variable of interest is again
Treated, but now it equals one if the firm’s ticker is first mentioned in “Wallstreetbets” in a
particular month and for all the period after the month when the ticker is first mentioned.
Thus the treated stocks have different time periods for their treated status. The sample
period for Test 2 starts from January 2012 to December 2020. In all specifications, we control
for the natural log of market capitalization, the natural log of book-to-market ratio, asset
growth, gross profitability, momentum, short-term reversal, idiosyncratic risk, illiquidity
(Amihud, 2002), MAX (Bali et al., 2011), defined as the highest daily returns of the previous
month, market beta, tail beta (Kelly and Jiang, 2014), coskewness (Harvey and Siddique,
2000), and net operating assets (Hirshleifer et al., 2004). Firm and Time fixed effects are
included, and standard errors are clustered at the firm level.

(1) (2) (3) (4)
Dependent Var: Crash Risk

Setting 1 Setting 2

VARIABLES logit EEC logit EEC

Treated 0.008*** 0.004*** 0.004*** 0.004***
(0.002) (0.001) (0.001) (0.001)

Controls YES YES YES YES

Observations 51,842 51,842 211,984 211,984
R-squared 0.677 0.787 0.691 0.814
Firm & Time FE YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix A. Selected Variable Definitions

ATG = asset growth over the previous year

Book V alue of Equity = SEQ+ TXDITC − Perferred, preferred is PSTKRV , or

PSTKL, or PSTK, whichever is first available.

CrashRisk = predicted monthly ex-ante probability of a stock crash, where a

crash is defined as the log monthly return less than a threshold.

The main results use -20% as the threshold

GP = gross profitability, equals (REV T − COGS)/AT

IdioRisk = Daily residual volatility obtained by regressing the previous

month’s daily excess returns on the market factor returns

Illiquidity = monthly mean of daily absolute return over price times volume

of that day, see Amihud (2002)

MOM = Prior eleven-to-one month return

NOA = net operating assets/lag AT

SKEW = difference between the implied volatility of out-of-money put

option and that of the at-the-money call option, see Xing et al.

(2010)

Appendix B. In Praise of Machine Learning

B.1. The Black Swan Problem

When predicting rare events, the usual logistic estimator could produce biased estimates

due to the poor finite sample properties (King and Zeng, 2001). A simple intuition can be

illustrated as follows.

The cost of misclassifying crashes as “normal” cases is far higher than misclassifying

“normal” cases as crashes. In the first scenario, investors would be faced with huge unex-

pected losses, whereas the second would be analogous to giving up average returns. Thus,
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the cost of misclassification is asymmetric. The loss function in a generic logistic regression

is not cost-sensitive, meaning that it treats each observation equally.

Formally, for logistic regression, its loss function is log loss, or cross-entropy, as repre-

sented by Equation 17.

logLoss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (17)

Now we separate the two classes and denote the sizes of them as Nnormal and Ncrash,

where Nnormal denotes the number of “normal” observations, and Ncrash denotes the number

of crashes. Then the log loss function can be written as:

logLoss = − 1

Nnormal +Ncrash

[

Nnormal∑
i=1

log(pnormal
i )]− 1

Nnormal +Ncrash

[

Ncrash∑
i=1

log(pcrashi )] (18)

Where the first term refers to the log loss of classifying “normal” cases, and the second

term refers to “crashes”.

Now consider the “imbalanced sample” case, where Nnormal >> Ncrash. In the limit, fix

Ncrash and let Nnormal/Ncrash → ∞. Then the second term of Equation 18 tends to zero, and

effectively we are only minimizing the log loss on the “normal” cases. King and Zeng (2001)

shows that in a finite sample, using generic logistic regression on an imbalanced sample, or

“rare event classification” problems, would produce biased coefficients and underestimate

the probability of rare events.

B.2. EasyEnsemble Estimation

“Easy Ensemble” (EEC) is conducted as follows. In each rolling training window of 6

months, I randomly sample a subset of normal observations (non-crash) and pair them with

the crash observations, thus ensuring an equal number of observations between crashes and

normal observations. This sample is thereby deemed “balanced”. I fit an estimator on this
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sample and save the parameters. I repeat this process 50 times by independently (with

replacement) sampling 50 subsets from the non-crash observations, hence constructing 50

bootstrapped and balanced samples and their associated saved parameters. An Ensemble

is built upon these results and arrives at a final estimate. Since each bootstrapped sample

is balanced, the cost of misclassifying crashes is given sufficient attention, contributing to a

better estimate.

EasyEnsemble method requires setting a base estimator from which it builds the En-

semble. I use Adaptive Boosting (Freund and Schapire, 1997), or AdaBoost, as the base

estimator. Boosting is an Ensemble method that converts a group of weak learners to a

strong one (Zhou, 2012). In AdaBoost, each iteration of the algorithm dynamically adapts

to the falsely classified instances of the last iteration. This has been shown to produce

superior forecasting performance.8

A relevant concern over any resampling technique is that such technology would invariably

change prior distribution before training. In our case, we are undersampling the “normal”

cases to match the number of “crashes”, resulting in a distribution of 50-50. The probabilities

produced in such a system would reflect the new distribution, thus making further inferences

about these probabilities less realistic. To match realistic prior distributions, I use the

cross-validated classifier calibration technique (Zadrozny and Elkan, 2001, 2002; Platt et al.,

1999; Niculescu-Mizil and Caruana, 2005) to bring the probability estimates back to realistic

priors.9

8EasyEnsemble is a flexible algorithm that allows a large set of estimators. In untabulated results, using
other base estimators produce similar results.

9The calibration is done via cross-validation. Each training sample, in our case, 6-month rolling data,
is randomly split into training and validation sets. The base estimator (EasyEnsemble) is first trained on
the training set and then calibrated to fit the validation set to obtain a probability estimate. Then the
probabilities are averaged across each of the calibrated estimators for predicting the test set. Please refer to
the referenced papers for technical details.
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B.3. Forecasting Performance

To evaluate the forecasting performance of EasyEnsemble against logistic regression, I

choose two commonly used metrics from the machine learning literature: ROC-AUC and

Average Precision (McClish, 1989; Brodersen et al., 2010; Yue et al., 2007; He and Garcia,

2009). ROC-AUC is the area under the curve of ROC. Average precision is the weighted

mean of precisions at each threshold, where the weight is the increase in recall from the prior

threshold. The two metrics are threshold-free, meaning they measure the model’s overall

performance regardless of the decision threshold.

We choose these threshold-free metrics because we are uncertain about the true prior

distribution of crashes since they are relatively rare. The threshold-free feature gives us

tremendous flexibility in choosing the best model.

Since there are 294 forecasting windows, we have a time series of the metrics above. Thus

we are able to compare the mean metrics between logistic regression and EasyEnsemble and

compute standard errors and T -statistics. EasyEnsemble has a mean ROC of 0.775, while

logit has a mean ROC of 0.759. The difference is 0.016 and is statistically significant at 1%.

B.4. Interpretation

EasyEnsemble, unlike logistic regression, does not produce readily interpretable coeffi-

cients. To pinpoint what variables are significant predictors of crashes, I follow Jiang et al.

(2020) and compute Spearman’s rank correlations between each variable and the estimated

crash probabilities.

Specifically, I compute the rank correlations between each of the 204 variables and crash

probabilities each month. Then I average each variable’s rank correlations across time and

save the time-series mean. To examine which variables are important predictors, I take the

absolute values of these correlations and rank them based on the absolute values. The higher

the absolute value, the more important the variable is. Since all variables are standardized

before entering into machine learning algorithms, their levels of importance are directly
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comparable. I plot the top 20 most important variables with their absolute rank correlations

with crash risk in Figure A.1.

[Fig. A.1 about here.]

It can be seen from the figure that from the bottom to the top of the bar chart, or

from the most important to the 20th most important: idiosyncratic volatility (Ali et al.,

2003), idiosyncratic volatility by Fama-French three-factor model (IdioVol3F) (Ang et al.,

2006), idiosycratic risk by CAPM (IdioRisk), bid-ask spread (Amihud and Mendelson, 1986),

Maximum daily return over last month (MaxRet) (Bali et al., 2011), analyst forecasted

earnings (FEPS) (Cen et al., 2006), 52-week high (High52) (George and Hwang, 2004),

market cap (size), quarterly ROA (roaq) (Balakrishnan et al., 2010), ROE (Haugen and

Baker, 1996), cash flow to market (CF) (Lakonishok et al., 1994), firm age (Barry and

Brown, 1984), governance (Gompers et al., 2003), net payout yield (Boudoukh et al., 2007),

net external financing (Bradshaw et al., 2006), share turnover volatility (std turn) (Chordia

et al., 2007), earnings forecast to price (SFE) (Elgers et al., 2001), predicted analyst forecast

error (PredictedFE) (Frankel and Lee, 1998), revenue growth rank (Lakonishok et al., 1994),

and off-season reversal years 16 to 20 (Heston and Sadka, 2008).

Many of these variables make intuitive sense. For example, idiosyncratic risk, 52-week

high, and MaxRet have been shown to have a strong and negative correlation with future

stock returns. Apart from the fact that these predictors are important in forecasting the

cross-section of stock returns, their forecasting power naturally extends to stock crashes.

Appendix C. Other Results

C.1. Robustness: Alpha Estimates by Alternative Definitions of Crash Risk

This section presents the alpha estimates by defining a crash using the following thresh-

olds: log monthly returns of less than -10%, -15%, -25%, and -30%. For brevity, I show only
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alpha estimates of benchmarking the Fama-French five-factor model plus a momentum fac-

tor. The alpha estimates and their associated T -statistics for both logit and “EasyEnsemble”

are presented in Table A.1.

[Table A.1 about here.]

C.2. Robustness: Changing Bandwidths and Dropping Earnings Months

This subsection reports the results of robustness tests for our main results. First, we use

the same specifications but change the window to either [-1,+1] or 3 months, or [-2,+2] or

5 months. We report the results in Columns (1), (2), (4), and (5) in Table A.2. Second, we

drop all stock-month observations that happen to be the months of earnings announcements,

then run the same specification as our main test and report the results in Columns (3) and

(6) in Table A.2.

[Table A.2 about here.]

C.3. Falsification Tests

To partially alleviate the endogeneity concern that online conversation of stock tickers is

not random, I design a falsification test as follows. I randomly shuffle the months when the

stocks become treated. Then I estimate the same specification as in Columns (3) and (4) of

Table 11, except that the dummy variable Treated is replaced by Pseudo − Treated. The

results are reported in Table A.3.

[Table A.3 about here.]

C.4. Realized Crashes

Here we are interested in testing whether social transmission could directly cause realized

crashes. To maintain consistency with the main tests, I run the same specification as the
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main test except that I replace the dependent variable with a dummy variable Crashi,t, which

equals one if the stock crashes in the month, or equivalently, its log return is lower than -20%

or any of the thresholds (namely, -10%, -15%, -25%, and -30%). Thus the specification is as

follows:

Crashi,c,t = γ0 +
+3∑

j=−3

βjDi,j,c,t + δc,t + αi,c + ϵi,t (19)

The results are reported in Table A.4.

[Table A.4 about here.]
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Fig. A.1. Top 20 Variables with Highest Absolute Rank Correlations with Crash Risk. The
figure depicts the top 20 most important variables with their absolute rank correlations with
crash risk. Specifically, I compute the rank correlations between each of the 204 variables and
crash probabilities each month. Then I average each variable’s rank correlations across the
294 test windows and save the time-series mean. To examine which variables are important
predictors, I take the absolute values of these correlations and rank them based on the
absolute values. The higher the absolute value, the more important the variable is. Since
all variables are standardized before entering into machine learning algorithms, their levels
of importance are directly comparable. From top to bottom of the bar chart, the 20th most
important variable is off-season reversal years 16 to 20 (Heston and Sadka, 2008), and the
most important variable is idiosyncratic volatility (Ali et al., 2003).
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Table A.1: Decile High-Minus-Low Alphas: Alternative Definitions
This table presents the high-minus-low long-short zero-cost strategy alpha estimates and
their associated T -statistics for both logistic regression and EasyEnsemble, by alternative
definitions of crash risk. Crashes are defined using the following thresholds: log monthly
returns of less than -10%, -15%, -25%, and -30%. Then the probabilities of crashes are
estimated using these thresholds. At the end of each month, stocks are ranked by their
ex-ante crash probabilities produced by either logit or EasyEnsemble into ten decile portfo-
lios. Then the hedge portfolio return series are regressed on risk factor returns. The asset
pricing model is the Fama-French five-factor model (Fama and French, 2015) augmented
with momentum factor (FF6). For each of the thresholds, the upper panel presents results
from value-weighted portfolios, while the lower panel presents equal-weighted results. The
left half shows results from using crash risk estimated from logistic regressions, and the right
from EasyEnsemble. T -statistics are included and standard errors are adjusted using the
Newey-West (Newey and West, 1986) procedure with 6 lags.

Logit EEC-AdaBoost

Threshold Weighting Alpha T-stat Alpha T-stat

log(ret) < −10% value -0.405 -1.291 -1.164 -3.989
equal -1.637 -6.467 -1.783 -6.466

log(ret) < −15% value -0.855 -2.920 -1.249 -4.059
equal -1.601 -6.704 -1.758 -6.615

log(ret) < −25% value -0.825 -2.764 -1.157 -3.920
equal -1.475 -5.816 -1.716 -6.358

log(ret) < −30% value -0.751 -2.444 -1.047 -3.714
equal -1.444 -5.544 -1.603 -6.120

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: Wallstreetbets and Crash Risk: Falsification
This table conducts a falsification or placebo test on the impact of the appearances of stock
tickers on “Wallstreetbets” on the stock crash risk. “Wallstreetbets” was founded in April
2012. The dependent variable is the crash risk estimated by both logit regression and machine
learning method (EEC-AdaBoost), while the independent variable of interest is Pseudo −
Treated, which is a dummy variable that equals one if the firm’s ticker is first mentioned
on “Wallstreetbets” in a particular month and if the period is after the “pseudo-month”
when the ticker is first mentioned. The pseudo-treated status is generated by randomly
shuffling the months when the treated stocks are first mentioned on “Wallstreetbets”. The
sample period starts from January 2012 to December 2020. We control for the natural
log of market capitalization, the natural log of book-to-market ratio, asset growth, gross
profitability, momentum, short-term reversal, idiosyncratic risk, illiquidity (Amihud, 2002),
MAX (Bali et al., 2011), defined as the highest daily returns of the previous month, market
beta, tail beta (Kelly and Jiang, 2014), coskewness (Harvey and Siddique, 2000), and net
operating assets (Hirshleifer et al., 2004). Firm and time fixed effects are included, and
standard errors are clustered at the firm level.

(1) (2)
Dependent Var: Crash Risk

VARIABLES Logit EEC

Pseudo-Treated -0.000 0.000
(0.001) (0.001)

Controls YES YES

Observations 211,984 211,984
R-squared 0.691 0.814
Firm & Time FE YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.4: Wallstreetbets Conversations on Realized Crashes
This table reports results from a “stacked difference-in-differences” approach (Gormley and
Matsa, 2011) that examines the effect of first appearances of stocks tickers on “Wallstreet-
bets” on whether they will experience realized crashes. The dependent variable is a dummy
variable Crashi,t, which equals one if the stock crashes in the current month, or equiva-
lently, its log return is lower than -20% or any of the thresholds. From Column (1) to (5),
the threshold varies from -10% to -30%. “Wallstreetbets” was started in April 2012. From
the beginning of “Wallstreetbets” to the end of 2020, we find all the stock tickers that are
ever mentioned in the Subreddit and the first month they were mentioned. We then define
each of these instances as one event and each of the stocks as a treated stock. We match each
treated stock with five control stocks from the pool of “never treated” stocks via propensity
score matching based on lagged characteristics three months prior to each event. Then the
“cohorts” containing treated and control observations are stacked together and the following
specification is run:

Crashi,c,t = γ0 +
∑+3

j=−3 βjDi,j,c,t + δc,t + αi,c + ϵi,t
Where Di,c,t is a dummy variable that indicates whether a stock i in cohort c is treated at
time t. δc,t is Cohort × Time fixed effects. αi,c is Unit × Cohort fixed effects. Then β is
the coefficient of interest that estimates the average treatment effect on the treated stocks.
Standard errors are clustered at the unit level.

(1) (2) (3) (4) (5)
VARIABLES Crash10 Crash15 Crash20 Crash25 Crash30

Treated 0.015*** 0.010*** 0.008*** 0.008*** 0.011***
(0.004) (0.003) (0.003) (0.002) (0.002)

Constant 0.170*** 0.110*** 0.075*** 0.052*** 0.035***
(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 215,770 215,770 215,770 215,770 215,770
R-squared 0.550 0.552 0.548 0.547 0.541
Cohort×Units FE YES YES YES YES YES
Cohort×Month FE YES YES YES YES YES

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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