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Abstract

We exploit regional variations in exposure to heat stress to study if physical climate

risk is priced in municipal and corporate bonds as well as in equity markets. We find

consistent evidence across asset classes that local exposure to heat stress is associated

with higher yield spreads for bonds and conditional expected returns for stocks. These

results are (i) observed robustly only starting in 2013–15, (ii) mostly absent for physical

risks other than exposure to heat stress, and (iii) consistent with macroeconomic models

where climate change has a direct negative impact on aggregate consumption.
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1 Introduction

Climate change is expected to cause direct damages to society by amplifying many natural

hazards. The risk appears to be manifesting itself along several physical dimensions: a) heat

stress, which refers to increase in the frequency of heat waves over time; b) droughts, which is

partly but not entirely related to heat stress; c) floods, which can cause extensive damages in

a relatively short period of time; d) hurricanes, which has increased in intensity and frequency

in different parts of the world; and, e) sea level rise, affecting predominantly coastal areas.

Our study explores how exposure to such physical risks affects the debt issuance costs of

municipalities and corporations, as well as conditional expected returns on equities, focusing

especially on the impact of heat stress. Understanding how climate-related risks affect the

cost of capital is crucial for making decisions about investment in mitigation.

While concerns about global warming initiated much of the research on climate risk,

implications of heat stress exposure for asset prices are not well understood. Among the

candidate climate change risks, heat stress exposure stands out quantitatively as the most

significant contributor to economic damages. Importantly, estimates by Hsiang et al. (2017)

suggest that by the end of the century, annual damages associated with direct consequences

of extreme heat – such as an increase in energy expenditures and mortality, and a decrease

in labor productivity – will amount to several percentages of GDP, while damages associated

with increased hurricane activity are estimated to be an order of magnitude smaller at around

0.1% of GDP each year. Similarly, estimates in Hallegatte et al. (2013) suggest that damages

related to sea-level rise are relatively modest at around 0.1% of GDP.

A recent paper by Jones et al. (2020) has shown that heat stress increases the risk of

wildfires, which can cause massive damages to property and human lives. This, in turn,

can increase bankruptcy risk of municipalities and utilities, raising their cost of capital.1

1As an important recent example of heat risk borne by investors, California experienced massive wildfires
in 2017 and 2018, which imposed a heavy cost on the communities living in the affected areas, and on the fiscal
health of the affected counties (e.g. Paradise, the Wildfire-Ravaged California Town, Warns of Municipal
Bond Default, WSJ, July 22, 2022). California’s largest utility, Pacific Gas and Electric (PG&E) filed for
Chapter 11 bankruptcy in January 2019 on a total of about $30 billion of liabilities after these wildfires across
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However, economic exposure to heat stress extends much beyond wildfire risk, even when the

risk manifests only in a gradual manner that is less starkly visible. Indeed, distinctly among

the types of physical risk, many effects of heat stress are not associated with immediately

measurable, damage-causing events, rendering the risk effectively uninsurable.2 In recent

recognition of the relative intangibility of heat dangers, consideration is being given to naming

heat waves and exploring ranking systems as is presently done for storms.3

To reiterate, while heat stress is the primary channel through which climate change is

projected to cause damage to the economy, we know relatively little about how exposure

to this risk affects asset prices and the cost of borrowing by entities that are exposed to it.

We fill this important gap in the literature. We employ two measures of physical climate

stress risks: (i) Hsiang et al. (2017)’s Spatial Empirical Adaptive Global-to-Local Assessment

System (SEAGLAS) estimates of economic damages from climate change in the United States

at county-level using data up to 2013, and (ii) for each firm in the S&P 500, Moody’s

427 measure of climate stress exposure as of December 2019 based on the locations of its

physical assets such as production plants and offices, with a similar measure as of Feb 2020

for municipalities. We study the impact of these physical climate risk measures on prices in

three financial asset classes over the period 2006-2020: (a) credit spreads on municipal bonds,

(b) credit spreads on corporate bonds, and (c) conditional levered and unlevered expected

return on large U.S. stocks.

To the best of our knowledge, our paper is the first in the literature to explore and provide

evidence of a consistent link between heat stress and its systematic impact on prices in these

three asset classes in the form of increased credit spreads and risk premia. We also highlight

the state. The stock price of PG&E fell precipitously following the financial distress. The Wall Street Journal
called it the “first climate change bankruptcy” (PG&E: The First Climate-Change Bankruptcy, Probably Not
the Last, WSJ, January 18, 2019). The bankruptcy imposed costs, by way of reduced utility services and
increased costs, on families residing in affected areas as well as on municipal bondholders who invested in
the debt issued by PG&E. In addition, tax payers also were affected as assistance was provided by Federal
Emergency Management Agency (FEMA) and other federal agencies.

2See Center for Law, Energy, and the Environment (2020) for an extensive study of the practical difficulties
of developing an insurance market for heat stress.

3See, for example, California debates naming heatwaves to underscore deadly risk of extreme heat, The
Guardian, 1 March 2022.
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the relative importance of heat stress in having an asset price impact, i.e., compared to

other physical climate risks (drought, flooding, hurricane, and sea level rise). In addition, we

characterize the important channels through which heat stress affects asset prices, namely

through increased energy expenditures and lowered labor productivity.

The main empirical challenge when estimating the effect of physical climate risk exposure

on asset prices is that they may be correlated with some other important sources of cash

flow risk (see e.g. Goldsmith-Pinkham et al., 2021). We tackle this problem directly with

flexible credit rating - year fixed effects to control for issuer-level heterogeneity in overall

creditworthiness, essentially allowing us to vary physical climate risk exposure while keeping

other major sources of cash flow risks fixed. In most cases, using credit ratings to control

for other time-varying cash flow risks would constitute a “bad control problem”, because any

sufficiently meaningful risk exposure should have a direct impact on credit ratings. However,

we argue and provide evidence that physical climate risks have had, until very recently, very

limited impact on credit ratings due to the high degree of model uncertainty associated with

climate change damage projections.

1.1 Summary of main results

Our main findings, summarized for the 427 measure in Figure 1, are as follows. For municipal

bonds, we find that a one standard deviation increase in heat stress exposure is associated

with yield spreads that are higher by around 5 basis points per annum (bps).4 Similar

results for SEAGLAS measure – that allows us to assess the absolute impact of heat related

damages to yield spreads – suggest that exposure to heat stress related annual damages

that equal 1% of GDP are associated with around 15 bps higher credit spreads compared to

a municipality not exposed to such losses. Importantly, adding flexible credit rating fixed

effects to control for issuer-level heterogeneity in overall creditworthiness has little impact on

our results. Such an approach makes sense due to the observation that physical climate risks

4Throughout the text, we summarize our year-by-year estimates by taking the average estimate between
2013 and 2020 and rounding it to the nearest multiple of 5 bps.
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Figure 1: Estimated impact of heat score on spreads and expected returns. The
figure shows year-by-year coefficient estimates and 95% confidence interval on how one stan-
dard deviation increase in heat stress exposure affects credit spreads (municipal bonds and
non-investment grade corporate bonds) and conditional expected returns (equities). See Ta-
bles 3 (Column 4), Table 6 (Column 3), and Table 7 (Column 2) for full results.
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have had, until very recently, very limited impact on credit ratings. Our results here suggest

that municipalities in locations with higher heat stress exposure find access to bond markets

more expensive. This result is important as these are precisely the ones which need capital

to invest more in climate-risk abatement projects.

The positive spread we estimate only emerges in the second half of our sample starting

around 2013, consistent with earlier observations (e.g., Goldsmith-Pinkham et al., 2021,

Giglio et al., 2021) that attention to climate change significantly increased during this time

period. The difference in spreads is mainly coming from sub-samples where the impact of

long-term climate risk on creditworthiness is likely to be strongest: bonds with long maturity

or low credit rating, and revenue-only bonds issued by competitive enterprises and utilities

that do not have the general tax collections to support their credit repayments.

As mentioned earlier, extreme heat can cause damages to the local economy through sev-

eral different channels. During hot weather, energy demand increases substantially mainly

due to increased need for cooling (which today constitutes around 10% of all electricity

consumption in the U.S.). Also, energy supply is adversely impacted due to the decreased

efficiency of electricity production when ambient temperatures are high. Furthermore, labor

productivity is adversely affected by hot weather, especially in high-risk industries such as

construction and mining where workers are directly exposed to outside temperatures.5 Fi-

nally, extreme temperatures have negative impacts on human health increasing healthcare

costs and mortality. After establishing our main results, we take a closer look at these indi-

vidual channels. This analysis reveals that the effect of heat stress on credit spreads is mainly

related to an expected increase in energy expenditures and decrease in labor productivity

in high-risk industries, with little evidence for projected decrease in labor productivity in

low-risk industries (e.g. service industry) and excess mortality. One interpretation of these

5As a recent example of direct impact of heat stress on outdoor labor productivity, Oregon’s Occupational
Safety and Health Administration (OHSA) adopted a new rule in June 2022 to protect outdoor workers from
excessive heat by requiring employers to provide an increasing number of heat rest breaks when ambient tem-
peratures reach 90 and 100 degrees Fahrenheit, respectively (Rules to Address Employee and Labor Housing
Occupant Exposure to High Ambient Temperatures, Oregon OSHA Administrative Order 3-2022).
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findings is that adaptation for different channels of temperature exposure is important in

mapping heat stress to economic costs.6

We find qualitatively similar results in corporate bond spreads. Among S&P 500 com-

panies, a one standard deviation increase in exposure to heat stress is associated with yield

spreads that are higher by around 40 bps for sub-investment grade corporate bonds, with lit-

tle effect for investment grade bond spreads.7 Unlike municipal bonds whose claims are often

subordinated to the pension fund claims on municipalities,8 corporate bonds are senior to

equity holders and thus are better protected, especially if the issuer is of investment grade.9

This intuition suggests that the heat stress exposure impact in corporate claims are likely

borne more by high-yield bond investors (and equity holders) who have a lower position in

the priority structure.

Importantly, to confirm that heat stress exposure indeed affects cash flows of companies,

we show that it directly affects their expected default frequency (EDF), and consistent with

our other results, the effect is stronger for longer-horizon EDF. Moody’s KMV’s EDF measure

uses a structural model based distance-to-default and maps it into a statistical probability of

default using historical default experience data. When we examine the impact of heat stress

exposure on credit spreads controlling for EDF (which includes both climate damages and

non-climate cash flow risk), we find that (i) the effect of firm-level EDF on spreads is in line

with a reasonable assumption on loss given default; and, (ii) the residual effect of heat stress

on spreads remains positive but is dampened and is not as robust over time statistically.

Together, these results can be interpreted as the risk premium on climate damages being of

a similar order of magnitude – or possibly higher – as that on the non-climate cash flow risk

in firm-level EDFs.

6The importance of endogenous adaptation to heat stress in measuring welfare losses has been emphasized
in Heal and Park (2013) and Heutel et al. (2021).

7Our results are robust to examining “option-adjusted” spreads (OAS) that account for embedded options
such as callability or putability of bonds.

8This type of subordination was vividly illustrated in the bankruptcies of Detroit and Puerto Rico.
9Moreover, municipalities, counties and utilities have fixed locations, whereas a corporate entity can shift

its physical assets to mitigate climate-related risks.
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The distinction between expected climate damages and the premium on this risk is crucial

not only from an asset-pricing perspective, but also because different macroeconomic models

of climate change make different predictions on the sign of this premium (see, e.g., Giglio

et al., 2021). This distinction can also have a large impact on private incentives to mitigate

climate change risk such as climate abatement investment decisions, and hence on optimal

climate policy. Hence, to make further progress in distinguishing expected cash flows from

discount rates, we next turn our attention on the pricing of U.S. stocks. The measure for

conditional expected return introduced by Martin and Wagner (2019) allows us to disentangle

discount rates from expected cash flows. We find that a one standard deviation increase in

heat stress exposure is associated on average with around 45 bps increase in annual expected

returns for S&P 500 companies.

We recognize that our earlier results on the impact of heat stress on credit spreads and

EDFs imply that a firm’s market leverage is affected by heat stress exposure too; structural

models of credit risk would in turn imply that this effect on leverage would amplify any non-

climate related risk premia in our measurement of expected returns. To address this concern,

we unlever our measure of conditional expected returns (following Doshi et al., 2019) and

find that the effect of heat stress exposure on unlevered returns remains significant though

its magnitude is on average lower at 30 bps increase per annum. Highly consistent with our

earlier findings in municipal bond markets, this difference first emerged around 2013 with

little evidence during earlier years. This result suggests that the equity market premium on

physical climate risk is positive.

2 Related literature

There is currently an active research agenda studying how the ongoing climate change af-

fects asset prices. Broadly speaking, climate change risk can materialize through two distinct

channels, usually referred to as “transition” and “physical” risks. First, as climate change
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intensifies, governments may impose stricter regulations on carbon emissions, hurting the

profitability of carbon-intense companies. Consistent with this channel, Bolton and Kacper-

czyk (2020, 2021) find that companies with higher CO2 emissions have higher historical

returns than companies with lower emissions. Ilhan et al. (2021) use options data to show

that more carbon-intense firms have more downside tail risk. In corporate bond markets,

Seltzer et al. (2020) show that after the 2015 Paris Agreement, the credit ratings and yield

spreads reacted more for highly polluting firms than for the lesser polluting ones. Sautner

et al. (2022) highlight that shocks to upside opportunities associated with climate change

may also affect risk premia, and indeed find evidence consistent with this hypothesis.

The second climate risk is due to exposure of physical assets to the negative consequences

of climate change. As climate change intensifies, extreme events such as hurricanes, wild-

fires, heat waves, droughts, and floods are expected to become more frequent and intense.

Furthermore, rising sea level may lead to permanent destruction of coastal assets such as

real estate. Indeed, Bernstein et al. (2019) and Baldauf et al. (2020) find a negative relation

between exposure to rising sea level and house prices in the U.S. However, Murfin and Spiegel

(2020) find no significant relation with a relatively tight upper bound. In municipal bond

markets, Painter (2020) finds that bonds issued by large coastal counties with more exposure

to rising sea level have higher yields compared to bonds issued by less exposed municipalities.

This difference is concentrated on long-term bonds with no evidence for differences in yields

for short-term bonds. Goldsmith-Pinkham et al. (2021) also find such a relation but with

significantly smaller magnitude. Correa et al. (2021) find evidence that changes in hurricane

risk exposure affect corporate loan spreads. Hong et al. (2019) find that the stock prices

in food industry react only slowly to projected increases in drought exposure. Bansal et al.

(2021) use changes in the long-run historical temperatures as a measure of overall climate

change intensity, and shows that stocks whose returns are more negatively correlated with

the measure have earned higher returns than stocks with less negative correlation. They

also provide evidence that the premium is substantially due to physical, not transition, risk.
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Similar in spirit to this second strand of papers, our paper too focuses on physical climate

risk. We broaden the focus by studying multiple asset classes and multiple physical risks,

identifying that heat stress stands out in terms of its consistent asset-pricing impact relative

to other physical risks.

Another strand of asset pricing papers related to climate change include Engle et al. (2020)

who propose news-based measures to create climate change hedging portfolios, and several

other papers that have followed building and exploring asset-pricing implications of news-

based climate risk measures; Hong et al. (2020) and Giglio et al. (2021) provide more recent,

comprehensive reviews on the current status of this research agenda. Alekseev et al. (2022),

in particular, focus on local heat shocks (injuries or fatalities, high crop indemnity payments,

and 10-year record of average quarterly temperatures) to construct hedging portfolios for

these news-based climate change measures. Their approach, which is to rely on rotation in

trading quantities of equities by mutual funds exposed to these shocks, is complementary

to ours, which relies on direct measures of municipal and corporate exposures to physical

climate risks including heat stress. Furthermore, we focus directly on the impact of physical

climate risks on the cross-section of asset prices and expected returns in bond and equity

markets.

3 Data

3.1 Heat (and other physical climate) exposure data

To measure physical climate exposure, we use two complementary data sources.

First, Hsiang et al. (2017) develop the Spatial Empirical Adaptive Global-to-Local As-

sessment System (SEAGLAS) to estimate economic damages from climate change in the

United States at county-level for various hazards, such as increase in energy expenditures

and decrease in labor supply (separately for industries with high and low exposure to outdoor

heat).
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We provide below some of the details as to how they obtain these damage estimates.

They first construct probabilistic projections of daily temperature and precipitation changes

under different RCP (“Representative Concentration Pathway”)10 scenarios using 44 existing

climate models and model surrogates from Rasmussen et al. (2016) at a weather station level.

Each county is then assigned station-level projections from the nearest to their geographic

centroid.

In the spirit of Hsiang et al. (2017), we construct our first and simplest heat exposure

measure – ∆ Proj Hot days – as the change in the projected number of hot days per year (days

with maximum temperature +100◦F) between 2080-2099 and the baseline year 2012 under

the “business-as-usual” (RCP 8.5) climate change scenario, using the average projection of

these 44 climate change models. This variable directly measures how heat wave frequency is

expected to increase in different counties if we fix the future path of global carbon emissions

to a relatively pessimistic level.

Figure 2 illustrates how ∆ Proj Hot days is constructed. It plots the projected annual

temperature distributions for selected pairs of cities, both for 2012 baseline and RCP 8.5 sce-

nario between 2080-2099. Note that 2012 distributions are not based on actual temperature

data, but instead model-implied distributions if we fix global greenhouse gas concentrations

to this baseline level. Comparing Orlando and Miami, for example, we see that neither city

is currently experiencing any hot days on average, but the frequency of such days is expected

to increase significantly more for Orlando than for Miami, with Orange and Miami-Dade

counties being in 74th and 26th percentile among all U.S. counties in terms of the projected

increase in the number of hot days, respectively. For all cities, ∆ Proj Hot days is the

difference in the area above +100◦F threshold between RCP 8.5 and Baseline scenarios.

Next, Hsiang et al. (2017) transform these temperature projections into economic impacts

using hazard-specific dose-response functions. For energy impacts, this is done using National

10RCP 8.5 refers to the concentration of carbon that delivers global warming at an average of 8.5 watts
per square meter across the planet. The RCP 8.5 pathway delivers a temperature increase of about 4.3◦C
by 2100, relative to pre-industrial temperatures.
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Energy Modeling System (NEMS), that is developed by the U.S. Energy Information Ad-

ministration and used to model energy supply and demand across different regions of the

U.S. The model is used to project changes in residential and commercial energy expenditures

as a response to changes in daily temperatures (in particular, changes in heating and cool-

ing degree days (HDD, CDD)). Impact of changes in daily maximum temperatures on labor

productivity is derived using a dose-response function from Graff Zivin and Neidell (2014).

Note that these transformations use information about the shift in the whole temperature

distribution instead of just changes in the number of hot days, although we later find that

this right tail explains most of the cross-sectional variation in heat-related damages.

The damages that Hsiang et al. (2017) estimate are generally expressed as percentages

between RCP 8.5 and a counterfactual scenario where further climate change does not occur

after 2012. For example, SEAGLAS estimates suggest that by the late 21st century, energy

expenditures in Orlando will be 13.8% higher due to the climate change compared to a

counterfactual scenario with no climate change, providing a scale-free intensive measure for

climate change damages for this particular hazard. Similarly, for Orlando, the estimates

suggest that labor supply in industries where workers are heavily (minimally) exposed to

outdoor temperatures will decrease by 2.5% (0.5%) as a direct consequence of climate change.

Following methodology similar to theirs, we convert these scale-free measures into dollar

damages using state-level data on labor compensation by industry from Bureau of Economic

Analysis (BEA), and energy expenditures from the U.S. Energy Information Administration

(EIA). More precisely, to get dollar energy damages per capita per year in county s, we mul-

tiply state-level energy expenditures per capita with Hsiang et al. (2017) damage projections

for county c, essentially assuming that energy expenditures per capita are constant across

the state:
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Energy dmg per capitac,s =
2019 Energy expendituress

Populations

× Energy expenditures (% change)c.

(1)

Similarly, we use lost wages as a measure of economic damages related to decrease in labor

productivity. We first calculate at state-level the total dollar compensation that employees in

high-risk industries11 were paid in 2019 and convert it to per-capita measure. Then, assuming

wages and industry composition are constant across the state, high-risk labor damages per

capita per year in county c are:

High-risk labor dmg per capitac,s =
Total wages in high-risk industriess

Populations

× High-risk labor productivity (% change)c. (2)

To get damages associated with labor productivity in low-risk industries, we follow a

similar procedure, using the total dollar compensation in all non-high risk industries as a

state-level measure. Finally, we scale all our measures with 2019 GDP per capita.

One of the main limitations of this measure is that it does not capture all channels through

which extreme heat can cause economic damages. For example, extreme heat causes damages

to infrastructure (such as roads, bridges, and buildings), the cost of which are not captured by

our measure. Similarly, the measure does not capture any heat-related damages to agriculture

or human health. Furthermore, the measure does not account for the compounding effect

of humidity on energy expenditures and labor productivity.12 These limitations likely cause

11High-risk industries are defined as Farm compensation (NAICS:111-112), Forestry, fishing, and related
activities (NAICS:113-115), Mining, quarrying, and oil and gas extraction (NAICS:21), Utilities (NAICS:22),
Construction (NAICS:23), and Manufacturing (NAICS:31-33)

12We note though that the magnitude of these compounding impacts are considered by some researchers
to be relatively minor. For example, Maia-Silva et al. (2020) estimate that accounting for the compounding
effect of humidity increases the projected increase in cooling demand from 6.88% to 7.06% for the average
state. Similarly, Behrer et al. (2021) find that one additional day with >32 °C lowers annual payroll by
0.046% when accounting for humidity, compared to 0.043% dry-bulb estimate. However, for agricultural
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us to underestimate the total damages that heat stress is projected to cause to the U.S.

economy.

On the other hand, there are also limitations that would cause us to overestimate damages.

One potentially important source of such measurement error arises from the fact that the

SEAGLAS estimates are constructed assuming that the composition of U.S. economy is static

over the simulation period, which does not account for within-country migration as a response

to climate change or any other adaptation responses that have not already been observed

historically. For example, if the cost of electricity production or the labor intensity of outdoor

activities would decrease as a result of adaptation investments, the total economic damages

of heat stress would be lower than the estimates suggest (see e.g. Kahn and Zhao (2018) for

theoretical discussion on the impact of adaptation on climate damages).

To the extent that these limitations have a level impact on projected damages, they cause

us to overestimate the per-dollar effect of climate damages on asset prices, but otherwise have

no impact on our inferences. In contrast, any cross-sectional variation in the measurement

error results in the standard errors-in-variables problem, biasing our estimates towards zero.

Our second data source for physical climate damages is Four Twenty Seven, Inc. (427),

an affiliate of Moody’s. 427 provides risk scores for various entities, such as public companies

and U.S. municipalities, by first modeling how exposed different geographical regions are to

various climate change related risks, and then attributing these risks to the entities based

on their geographical location. In the case of public companies, 427 first creates exposure

measures at establishment-level (e.g. production plants and office buildings), and then ag-

gregates these to the company-level to assess the total exposure of a company. The resulting

scores are relative measures between 0 to 100, with higher score indicating higher risk expo-

sure. In total, we have data on risk scores in several risk categories: heat stress, water stress

(drought), flood (corporations only), extreme rainfall (municipalities only), hurricane, and

sea level rise. For most of the paper we will focus on heat score, but employ these other scores

losses, this may be different; Haqiqi et al. (2021) show that wet heat is more damaging than dry heat for
corn.

14



in the final analysis of the paper (Section 4.4.2) when evaluating the asset-pricing impact of

heat stress relative to these other physical climate risks.

In addition to being proprietary, the main limitation of the second measure compared

to the first one is its relative nature: we can observe if one entity is more exposed to heat

stress than another one, but we lack any information on economic magnitudes or natural

reference points for economic severity implied by the scores. The main benefit, on the other

hand, is that because 427 carries out its exposure modeling globally and has establishment-

level information on locations of companies’ physical assets, their measures are available for

companies in addition to municipalities.

One limitation common to both our measures is that they are cross-sectional snapshots

measured at a single point of time. Hsiang et al. (2017) measures use data up to around

2013, and 427 scores are measured as of December 2019 for corporations and Feb 2020 for

municipalities. If the cross-sectional rankings of these exposure measures varied substantially

over time, it would introduce measurement error in our x variable that would presumably

grow larger the further away we move from the time of measurement. That said, there are

several reasons why we are not particularly concerned about this possibility. First, while

it is highly plausible that damage estimates are periodically revised as we accumulate more

knowledge on the impacts of climate change, spatial variation in the level of heat exposure is

likely to dominate any spatial variation in these temporal revisions. In other words, revised

damage estimates are unlikely to substantially change the cross-sectional exposure rankings.

Indeed, the rank correlation of 2018 and 2019 vintages of 427 scores is 0.999. Second, the

two measures we employ yield very similar results for asset prices despite substantial gap in

their time of measurement (among many other methodological differences).

Figure 3 (a) and (b) plot the distributions of both our heat exposure measures in the

municipality sample. We refer to SEAGLAS measure as “Heat damage” and the 427 measure

as “Heat score.” The range for annual heat damage is approximately -0.52% to 1.86% of

GDP. Negative damages for some municipalities reflect the fact that they benefit from the
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decrease in the number of cold days (e.g., fewer winter storms) more than they suffer from

the increase in hot days. Comparing panels (a) and (b), we can see that overall the two

measures (SEAGLAS and 427) agree quite well about the geographical distribution of heat

stress exposure, with rank correlation between the two being 0.59. The two measures mainly

disagree in which geographic regions are the most exposed: the first assigns south central

states as the most exposed, while the second assigns Midwest states as the most exposed.

Figure 3 (c) plots the distribution of our raw measure for projected change in heat wave

frequency across the country (∆ Proj Hot days). It is very highly correlated with SEAGLAS

measure (0.82), which is perhaps unsurprising given that the latter uses the former as an

input. Nonetheless, this high correlation suggests that the main source of variation in SEA-

GLAS measure comes from the geographical variation in the projected increase in heat wave

frequency, instead of any other inputs that SEAGLAS uses to transform these temperature

changes into economic damages.13

Figure 3 panels (f) to (i) plot the exposure scores for other physical climate risks which

we will discuss in Section 4.4.2. A higher score in a particular risk category indicates a higher

exposure. Unsurprisingly, scores associated with coastal risks (hurricanes, sea level rise, and

flood to some extent) are more skewed than the ones associated with other risks like heat

and water stress. This is because exposure to coastal risk is concentrated on relatively small

geographical areas (coasts) while the other risks also affects regions that are land bound.

Finally, Table 1 Panel A shows the summary statistics for all our heat stress measures.

Each year, an average municipality is projected to suffer damages that equal to 0.83% of

GDP, with increase in energy expenditures having the largest contribution to the aggregate

measure (0.58%). Damages related to the decrease in labor productivity in high and low risk

industries both also contribute substantially to the aggregate measure (0.14% and 0.11%,

13Note that for heat damage, state borders are sometimes clearly visible in the graph. This is mainly due
to the fact that we use state-level data on wages and energy consumption to convert Hsiang et al. (2017)
intensive measures to dollar damages. Our results are not sensitive to this transformation, as we obtain
similar results in our asset pricing tests if we use ∆ Proj Hot days as our x-variable that is not subject to
these transformations.
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respectively).14 The raw SEAGLAS measure for the projected change in heat wave frequency

(∆ Proj Hot days) suggests that for the average municipality, the total number of extremely

hot days per year will increase by 38.16 days by the end of the century, ranging from 0.01

days to 108.48 days.

To assess how our measures relate to measures of heat exposure based in historical tem-

perature data, we add two additional variables based on the so-called “wet bulb” temperature

measure of Behrer et al. (2021). The first one – Hot days – is the average number of days

per year between 2011 and 2020 when the maximum wet bulb temperature in the county was

above 100◦F. In recent history, such heat waves were relatively rare and distribution heavily

skewed: the median county experienced only 0.4 hot days per year, with the maximum being

116.8 in Yuma County, AZ. This current level is in a stark contrast to the projected increase

in heat wave frequency, with the frequency increasing from the current level of 0.4 days per

year by 38.16 days per year for the average municipality.

The second historical temperature measure – ∆ Hot days – is the change in the average

number of hot days between 2001-2010 and 2011-2020, which attempts to capture recent tem-

perature trends. Assuming that the differences in these (imprecisely measured) temperature

trends continue in the future, this second component is conceptually more closely related to

our heat stress measures than the first one. Using this historical measure, the number of

hot days for average county increased by 0.67 days per year, ranging from -8.8 days to 27.40

days.15 Table 3 panels (d) and (e) plot the distributions of Hot days and ∆ Hot days across

the U.S.

Table 1 Panel B shows the rank correlations of our risk measures. Both wet-bulb tempera-

ture measures are positively rank-correlated with SEAGLAS and 427 risk measures (0.35 and

14Note that the damages can – and are indeed observed in the distribution to – be negative for some
counties as higher temperatures can reduce energy expenditures and raise labor productivity in extremely
cold geographies.

15Note that the distribution of Hot days shows that more than 25% of the counties did not have any days
during 2011-2020 with maximum wet bulb temperature above 100◦F; similarly, ∆ Hot days shows a reduction
in the Hot days over the past decade for some counties. These distributional features of regional heat stress
outcomes in historical data are not reflected in the distribution of ∆ Proj Hot days given the severe heat
stress scenario projection of SEAGLAS.
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0.68 for Heat damage, and 0.40 and 0.47 for 427 Heat score), suggesting that our measures

are indeed related to cross-sectional variation in temperature levels and trends. That said,

the relatively modest correlations between historical temperature measures and measures

based on future projections also suggest that using historical temperature data to proxy for

future changes would likely introduce significant amount of measurement error. This distinc-

tion is potentially important, since Addoum et al. (2020) find little evidence that historical

temperature shocks have impact on establishment-level sales in the U.S.

Next, we describe the municipality and company level data sets that we merge with our

exposure data.

3.2 Municipal bonds

Our two main data sources for municipal bonds are Mergent Municipal Bond Database

for bond characteristics and ratings, and MSRB’s Municipal Securities Transaction Data

for secondary market prices. We begin by selecting from Mergent data fixed-coupon, tax-

exempt bonds with no insurances (since bonds with insurances do not properly reflect the

issuer-specific credit risk). Next, we match these observations to the physical risk exposure

data. Since our climate exposure variables are available at municipality-level, we need to

determine which geographical area a given issuer is associated with. To do so, we match

issuer names with state, county, and place names in the Census geocode file. The details of

this procedure are provided in the Online Appendix. The algorithm described therein allows

us to find the geographical location for more than 90% of individual bonds in the Mergent

database. The rest are matched by hand. At this point, we exclude any state-issued bonds

because their climate risk exposure cannot be directly mapped to our county-level exposure

measures.

Next, we construct our secondary market yield variable following Green et al. (2010) and

Schwert (2017). In particular, we first exclude any bonds from MSRB data that have fewer

than 10 trade observations to ensure a minimum level of trading liquidity. Furthermore,
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we exclude trades that occurred during weekends or holidays, and filter any observations

with time to maturity of more than 100 years, coupon rate more than 20%, or a price

lower than $50 or greater than $150 (on a $100 notional) as likely data errors. Finally, we

exclude bonds during the first three months after the issuance and during the last year before

maturity, because newly issued bonds and bonds close to maturity may exhibit underwriting

support, a pull-to-par effect, and/or a high level of price dispersion, making these observations

particularly noisy for robust econometric analysis.

Because municipal bonds trade infrequently and intra-day prices can fluctuate quite a lot

depending on the type of the transaction (customer buying, customer selling, inter-dealer

trade, etc.), we measure daily “fundamental prices” as the average of the highest customer

sale price and the lowest customer purchase price. If these two prices are not available, we use

average inter-dealer trade price instead. Following Goldsmith-Pinkham et al. (2021), we use

maturity-matched Municipal Market Advisors’ AAA-rated yield as a tax-exempt benchmark

rate to convert yields to credit spreads. Then, we convert the spreads to monthly frequency by

using the most recent available observation in a given month. Finally, we exclude bonds after

redemptions (e.g., due to advance refundings), and require that each bond-month observation

is associated with at least one outstanding credit rating from S&P, Moody’s, or Fitch.

Table 2 Panel A provides the summary statistics for our final sample. After removing

negative credit spread observations and trimming the right tail at 2.5% level, the average

credit spread in our sample is 69 bps. Time to maturity ranges from 1 year to 50 years,

with the average being approximately 12 years. We convert credit ratings into numerical

values with smaller numbers indicating higher ratings (1=AAA/Aaa, 19=D/C) and take the

average across available ratings issued by these different agencies (rounded to the nearest

integer). The average rating score in our sample is around 4, which corresponds to AA- for

S&P and Fitch, and Aa3 for Moody’s. Finally, while general obligation bonds are the most

common type of bonds issued, in our sample they consist only of 35% of all observations.
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3.3 Corporate bonds

Our corporate bonds sample is constructed using Mergent FISD and WRDS Bond Returns

databases. We use USD denominated, non-144A, nonconvertible, senior unsecured bonds

with more than $100,000 offering amount and more than three months since issuance and

more than one year to maturity. To measure credit spreads, we subtract maturity-matched

Treasury yield from a bond’s end of month yield to maturity.16 We measure bond turnover

as the total par-value volume over the past 12 months divided by the offering amount.

Table 2 Panel B summarizes our sample. After removing negative credit spread obser-

vations and trimming the right tail at 2.5% level, the average credit spread in our sample

is 156.9 bps. Time to maturity ranges from 1 year to 100 years, with the average being

approximately 10 years. The average rating score is around 7, which corresponds to A- for

S&P and Fitch, and A3 for Moody’s. Compared to our municipal bond sample, corporate

bonds on average have higher spreads (157 bps vs 69 bps), lower credit ratings (A- vs AA-),

and substantially higher turnover (63% vs 3%). The average time to maturity is similar in

both samples.

3.4 Equities

As discussed in the introduction, an important objective of the paper is to try to distinguish

the effects of heat stress on expected returns (risk premia) from effects on expected losses.

For this, we turn to the cross-section of equities.17 While the standard methodology in the

empirical asset-pricing literature is to use realized returns as a measure of ex-ante expected

returns, this approach is problematic in our setting since a primary hypothesis under inves-

tigation is that expected returns may have changed during our sample period. Moreover,

16Note that we use different measures for risk-free rate in municipal bond and corporate bond samples due
to differences in asset class-specific conventions. Results go through if we use maturity-matched swap rates
as risk-free rates in both markets instead.

17Effects of heat stress exposure on a firm’s expected cash flows do, of course, affect stock prices. But they
should not affect the firm’s expected return other than through the risk premium channel. Equity expected
returns can also be affected by expected losses via the amplifying effect of leverage, which we will investigate
below.
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Pástor et al. (2022) have argued strongly, based on evidence in Ardia et al. (2020), that

unexpected increases in climate change concerns, rather than risk premia, were responsible

for the out-performance of environmentally sensitive stocks during 2010-2018.18

To overcome this problem, we follow Martin and Wagner (2019) to construct a measure

for conditional expected return at the stock level that uses only forward-looking information.

In particular, we use OptionMetrics IvyDB US to obtain implied volatility surfaces and

stock prices for individual companies and the S&P 500 index. We use maturity-matched

Treasury zero coupon yield as a measure of the risk-free rate. The yield curve is constructed

by interpolating over the rates available in OptionMetrics. We annualize the most recently

paid dividend to measure dividend yield, essentially assuming that the dividend yield stays

constant throughout the life span of an option. After converting implied volatilities to option

prices using the Black-Scholes formula, we calculate the risk-neutral volatility for stock i at

the end of month t as follows:

SV IX2
i,t =

2

Rf,t+1S2
i,t

[∫ Fi,t

0

puti,t(K)dK +

∫ ∞

Fi,t

calli,t(K)dK

]
, (3)

where S is the price of the underlying stock (or index), Rf is the gross risk-free rate, F is the

forward price of the underlying (strike price at which call and put prices are equal to each

other), calli,t(K) and puti,t(K) are put and call prices with strike price K.

Building on the logic of Martin (2017), Martin and Wagner (2019) show that, under some

assumptions (reviewed below) the expected excess return on stock i can be approximated by

a combination of three components: (i) SV IXi; (ii) analog of SV IXi for the value-weighted

market portfolio, SV IXm; and, (iii) the value-weighted average of SV IXi across all the

stocks in the market portfolio, SV IX. Specifically, the dependent variable in our stock

18Since the climate risk measures we employ are restricted to constituents of the S&P 500 in 2019, another
set of concerns about using historical returns to measure expected returns stems from a potential survivorship
bias because the sample firms are likely to have experienced a series of positive shocks that resulted in them
being added to the S&P 500. While our estimation strategy sidesteps this concern, our results remain similar
if we restrict the sample to companies that were constituents of the S&P 500 throughout the whole sample
period.
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market regressions is

Et(R
e
i,t+1) = Rf,t+1(SV IX2

m,t +
1

2
(SV IX2

i,t − SV IX
2

t )). (4)

Martin and Wagner (2019) provide extensive evidence supporting this measurement strategy,

which has also been used by Lee et al. (2021) and Pagano et al. (2021). Note that the compu-

tation of this estimator does not involve any auxiliary free parameters. The key assumptions

of the approximation are: first, that in the sample of stocks being studied, the range of betas

from a projection of returns on that of a hypothetical “growth optimal” portfolio is not too

wide; and, second, that the variance of the residuals for each stock is not persistently different

from the value-weighted average.The applicability of these assumptions is likely to be more

valid in the cross-section of S&P 500 stocks than in broader cross-sections of asset markets.

We check the robustness of our results by further restricting the sample based on the range of

estimated second moments. In our application, it is worth noting that we do not rely on the

stronger assumptions in Martin (2017) that identify the market risk premium with SV IX2
m

because our specifications are purely cross-sectional and include time fixed effects.

Table 2 Panel C provides the summary statistics of this expected return measure for our

sample of U.S. equities. After removing a few observations with negative expected excess

returns and trimming the right tail at the 2.5% level, the average annualized expected excess

return is 452 bps. In some of our specifications, we control for stock characteristics underlying

the Fama-French 5-factor model and momentum; these characteristics are also summarized

in the panel.
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4 Empirical approach and results

4.1 Municipal bonds

4.1.1 Identification strategy

As seen in Figure 3, the cross-sectional variation in our risk measures is driven by geographic

locations of the municipalities. As a consequence, a challenge we face is that local economic

conditions also vary across the country, affecting creditworthiness of bond issuers and hence

the credit spreads of their bonds. As stressed by Goldsmith-Pinkham et al. (2021), controlling

for such local conditions is crucial to identifying a link between credit spreads and damages

related to climate change.

One established identification strategy in a case like this is to rely on spatial discontinuities

in risk exposure. For example, Goldsmith-Pinkham et al. (2021) compare bonds issued by

different school districts in the same county to control for local economic conditions, and

finds that bonds issued by coastal districts that are exposed to sea level rise have higher

credit spreads compared to bonds issued by non-coastal districts. In our case, exploiting

such spatial discontinuities is unfortunately not feasible. Temperature by its very nature

changes only gradually across locations, which is apparent by comparing Panels (b) and (h)

of Figure 3: while the rank correlation in sea level exposure scores among pairs of adjacent

municipalities is only 0.283, it is 0.978 for heat stress. This implies that adjacent counties

are very similarly exposed to heat waves making any discontinuities virtually nonexistent.19

Instead, our empirical strategy builds on the following observation: historically, physical

climate risks have had limited impact on credit ratings. This is stated perhaps most explicitly

in a 2015 white paper by Moody’s that discusses how environmental risks are assessed during

19One potential counterargument to this conclusion is that while the average pair of municipalities is less
likely to differ in terms of heat stress exposure than sea level exposure, the sample size for the former is
larger because comparing sea level risk exposure only makes sense if one of the two counties is coastal. The
conclusion is similar when comparing the sample sizes where the risk exposure between adjacent counties
differ by more than 20 points in the 427 measure: with sea level exposure, the number of such pairs is 587
but only 9 for heat stress.
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a credit rating process:

Based on currently limited visibility into the nature, probability, and severity

of the follow-on risks to a global warming trend (e.g., droughts, floods) – combined

with an extremely long projected time frame – direct climate change hazards are

not at present a material driver for ratings.

“Moody’s Approach to Assessing the Credit Impacts of Environmental Risks”

Moody’s Investors Service (2015)

Notwithstanding this limited visibility, all the major credit rating agencies have recently

updated their rating criteria documents to discuss the role of for climate risks in their rating

frameworks more thoroughly. For example, S&P Global Ratings published a new white

paper in October 2021 that describes the principles through which Environmental, Social

and Governance (ESG) considerations are taken into account when assessing creditworthiness

of various bond issuers (S&P Global Ratings, 2021). Among various ESG factors, “climate

transition risk and physical risk-related factors may be among the most significant ESG credit

factors that affect the creditworthiness of rated entities”, highlighting the potential impact

of physical climate risks on the cash flows of issuers.20

Despite the prominent role of physical climate risks in the revised framework, these risks

have only resulted in a very limited number of credit rating actions to date, generally as a

response to a materialized climate event. This is mainly due to the fact that in addition to

being material, S&P for example requires that it has “sufficient visibility and certainty” on an

ESG factor to include it in the credit rating analysis. Given that the envelope of uncertainty21

around various climate scenarios and their impact on the economy is extremely large, it is

understandable that forward-looking physical risks typically do not meet the criteria for a

credit rating impact.

20See Moody’s Investors Service (2020) and Fitch Ratings (2021) for similar white papers from the other
agencies.

21See Barnett (2021) for formal treatment of the effect of climate model uncertainty on asset prices.
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To assess more systematically how climate risks have been accounted for in municipal bond

markets, we parsed through the vast majority of municipal bond prospectuses since 2010,

and counted how many of them mention “climate change” somewhere in the document, using

such mention as a proxy for climate risks being explicitly accounted for.The resulting time

series, shown in Figure 4, is very much consistent with our previous narrative: until very

recently, only a small number (≈ 3%) of prospectuses contained at least a single mention of

climate change. While this has been changing quite rapidly in recent years, the fraction of

such prospectuses is still only 16% during the first half of 2020.

This observation that credit ratings have not historically reflected physical climate risks

enables us to add flexible credit rating fixed effects to our specification to control for “tradi-

tional” risks affecting creditworthiness that credit rating models are built to capture. Given

the detailed nature of the credit rating process, we believe that this approach allows us to

control for a vastly superior set of issuer-level confounding factors affecting creditworthiness

than any set of controls that is directly available to an econometrician. Given this approach,

the assumption that allows us to identify the impact of heat stress exposure on credit ratings

is that there are no major risks omitted from credit models that are correlated with heat

stress exposure.22

4.1.2 Results

To study the relation between heat stress exposure and credit spreads on municipal bonds,

we run the following regression:

Spreadb,c,t = γc + γt +
2020∑

y=2007

Iy [αyRiskc + θyZb,c,t] + θXb,c,t + εb,c,t (5)

22Note that the assumption that credit ratings have not historically reflected physical climate risks is
testable: if it was false, controlling for credit ratings should absorb variation in credit spreads that is related
to heat stress, displacing our coefficient of interest. This is not the case though: there is little change in our
coefficient estimates when credit rating fixed effects are added to the specification.
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where Spreadb,c,t is the credit spread during month t of bond b whose issuer is located

in county c. Iy are year dummies, so the coefficients of interest αy estimate year-by-year

sensitivity of credit spreads to heat stress exposure, relative to a baseline year of 2006. Control

variables in Z and X include the logarithm of the bond’s time to maturity, issuer’s option

to call a bond before maturity, flag for general obligation bonds, bond turnover, standard

deviation of transaction prices for bond b in month t, state-level energy expenditures per

capita from EIA,23 and – most importantly – credit-rating fixed effects. We also include

county and time fixed effects. Standard errors are double clustered by year-month (t) and

county (c).

Results are shown in Table 3. The first two columns contain results for SEAGLAS Heat

damage measure with and without credit rating fixed effects. The last two columns repeat

the analysis for 427 Heat score measure. The table reveals several interesting patterns. First,

while there is little evidence that exposure to heat stress affects credit spreads during the

first half of our sample, a gap between high and low exposure bonds starts to emerge around

2013. This coincides with a time period when attention towards climate change became

permanently elevated (see, e.g., discussion in Goldsmith-Pinkham et al., 2021). In terms

of economic magnitudes, our point estimates for 2019 suggest that a bond whose issuer is

located in a county that is expected to suffer damages that equal to 1% of GDP as a direct

consequence of heat stress exposure has a 17.10 bps higher credit spread compared to a

case with no climate risk exposure.24 Based on our second (427) measure, one standard

deviation increase in heat stress exposure increases spreads by 7.76 bps. Given that the

standard deviation of our first measure is 0.39, the magnitudes of the estimates appear to be

consistent between the two measures.

Finally, adding credit rating fixed effects to our specification has little impact on our

coefficient estimates, which is what we expect if credit ratings have indeed not reflected

23See Appendix B for more discussion about energy expenditure levels.
24Some caution should be exerted when interpreting the magnitude though: our bottom-up measure for

heat stress exposure does not capture all channels through which extreme heat causes damage to the economy,
resulting in per-unit-of GDP effects being overestimated. This caveat is discussed more in Section 4.1.3.
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physical climate risks historically. Interestingly, during the last year of our sample, credit

ratings seem to have some impact on coefficient estimates, consistent with the pattern in

Figure 4 and the fact that physical climate risks play and increasingly prominent role in

credit rating agencies’ rating framework.25

Table 4 repeats the analysis for various subsamples of bonds. We find that the result

is mainly coming from bonds with long time to maturity (10+ years), bonds with below

average credit rating (AA- or worse), and revenue-only instead of general-obligation bonds.

These results are sensible, as climate risk exposure is likely to more adversely affect munici-

pality/utility cash flows at longer horizons, particularly those from weaker credit municipal-

ities/utilities. Moreover, revenue-only bonds issued by competitive enterprises and utilities

lack the credit-enhancement support provided by tax collections backing general-obligation

bonds.

4.1.3 Mechanism

After establishing our main result that exposure to extreme heat affects municipal bond

spreads, we take a closer look at each individual channel through which extreme heat causes

damages to the economy. As discussed in Section 3.1, our aggregate damage measure con-

sists of three components: damages related to climate change-induced increase in energy

expenditures, decrease in labor productivity in industries where workers are directly exposed

to outside temperatures (“high-risk labor”), and decrease in labor productivity in other in-

dustries (“low-risk labor”). We can use these separate components on the right side of our

regressions.

Results are shown in Table 5. For both energy expenditures and high-risk labor, the

patterns are similar to the ones obtained with the aggregate measures: higher exposure to

both risk measures is associated with higher credit spreads, but only during the second half

25Our findings here are not literally driven by the bond issues whose prospectuses mention climate change.
Dropping them from the sample does not alter the magnitude of the significant coefficients in the latter part
of the sample.
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of the sample.26 Interestingly, the third component of heat damages, viz. low-risk labor, does

not produce results consistent with the earlier patterns. While many coefficients for low-

risk labor seem to be positive and highly significant, this seems to be related to abnormal

(noisy) baseline year of 2006. For example, our coefficient estimates for 2011 and 2019 are

not materially different, suggesting spreads have not become more sensitive to this exposure

over time.

Finally, the table shows that the qualitative nature of our pricing results is robust to using

as measure of heat stress risk the raw measure for projected change in heat wave frequency (∆

Proj Hot days), which is the main climate input variable in SEAGLAS. The point estimate

for 2019, for example, suggests that spreads increase by 0.29 bps for each additional hot day

per year. Overall, the result is consistent with our main estimates, suggesting that the main

source of variation driving our pricing result is indeed related to the variation in expected

temperature increases, instead of variation in some economic variables that SEAGLAS takes

as inputs to transform projected temperature increases into projected damages.

4.2 Corporate bonds

Next, we turn our attention from municipal bonds to corporate bonds. Here, the main

limitation we face is that our risk measure from Hsiang et al. (2017) is not available for

corporations.27 Instead, we proceed with 427 risk scores only. Given that the two measures

were highly correlated and yielded consistent results in the municipal bond sample, we are less

concerned about losing the ability to cross-validate results with the two different measures.

However, by focusing only on risk scores we lose ability to estimate absolute magnitudes of

how climate damages affect bond spreads. Therefore, we must focus on relative comparisons

26Note the large magnitudes of the coefficients compared to the main estimates in Table 3. For example,
our 2019 estimate for high-risk labor suggests that a county that is expected to suffer damages that equal to
1% of GDP as a result of decrease in labor productivity in high risk-industries must pay 1.23% higher spread
for its debt. This reflects the fact that such estimate assumes that excess heat only causes damages through
high-risk labor productivity channel, which significantly underestimates the total damages.

27Mapping the measure of Hsiang et al. (2017) to a company-level is not feasible due to its geographical
focus on the U.S. To be implementable, one would need exposure data (and facility location data) for U.S.
corporations globally.
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only when interpreting the estimated coefficients.

We continue to use credit ratings to control for the impact of unobserved non-climate

factors that affect firms’ creditworthiness. More specifically, we run the following regression:

Spreadb,i,t = γi + γt +
2020∑

y=2007

Iy [αyRiski + θyZb,i,t] + θXb,i,t + εb,i,t (6)

where Spreadb,i,t is the credit spread during month t of bond b issued by firm i. The coeffi-

cients of interest αy estimate year-by-year sensitivity of credit spreads to heat stress exposure,

relative to a baseline year of 2006. Control variables in Z and X include logarithm of the

bond’s time to maturity, issuer’s option to call a bond before maturity, bond turnover, stan-

dard deviation of transaction prices for bond b in month t, and credit-rating fixed effects. We

also include firm and time fixed effects. Standard errors are double clustered by year-month

(t) and firm (i). Results are shown in Panel A of Table 6. In the full sample, we find a pattern

that is qualitatively similar to the one we find for municipal bonds: the difference in spreads

between high and low exposure firms increases around 2013. However, the statistical and

economic significance of these results is weak in the overall sample. The results are, however,

much stronger when focusing on non-investment grade bonds. For these securities, a one

standard deviation in an issuer’s heat stress is associated with an increased credit spread

of 33 bps to 53 bps, going back to 2010. In contrast, the effect of heat stress exposure on

investment grade bond spreads is virtually non-existent.

Next, we present some additional results for corporate bonds as robustness checks. First,

we obtained data on option-adjusted spreads (OAS) from Morgan Stanley Research, ICE for

S&P 500 companies (ICE, 2019). This data set is distinct from our Mergent FISD-TRACE

data set and allows us to observe weighted average OAS at firm-level. We append these data

by adding control variables for liquidity using company-level averages from Mergent FISD-

TRACE. Since OAS explicitly account for optionalities built into specific corporate bonds

issues, these data allow us to confirm that our results are not driven by any confounding

effects related to embedded options such as callability and also controlling for time-varying
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level differences in spreads between bonds with and without such optionality. Indeed, this is

what we find in the last columns of Table 6 Panel A; the effect of heat stress on corporate

bond OAS is found to arise starting in 2013 and only for junk-rated bonds, even though the

statistical significance is less uniform than in the main analysis.

Second, we obtained data on expected default frequency (EDF) from Moody’s KMV. As

EDF reflects a mapping from a Merton-model implied distance-to-default into a physical or

statistical probability of default for the firm, EDF can be considered as capturing the cash

flow risk to the corporate bond.28 Therefore, we replace corporate bond spread by the EDF

as our dependent variable in order to tease out the impact of heat stress on the cash flow

component of credit risk. More specifically, we estimate

EDFi,t = γi + γt +
2020∑

y=2007

Iy [αyRiski + θyγc,t] + θγc,t + εb,i,t, (7)

where γc,t are credit rating dummies. Table 6 Panel B presents the results. We find that

higher heat stress exposure is associated with higher EDF during most years in our sample,

indicating that more exposed bonds are indeed more risky from a cash flow perspective;

this appears to be true for junk-rated bonds with a rising magnitude from 2007 to 2020,

and for investment grade bonds with a lower but also rising magnitude from 2015 to 2020.

Furthermore, we present results for EDF of non-IG bonds at different horizons (1, 2, 5, and

10 years). Results become stronger with longer horizon, consistent with our municipal bond

results in Table 4.

Given the evidence that heat stress is related to a decrease in cash flows through increased

default frequencies, the next natural question to ask is if this exposure is associated with a

separate (climate) risk premium or not. Note that our previous results on credit spreads

do not allow us to disentangle the impact of a decrease in expected cash flows from a risk

28More specifically, the future distribution of market value of assets is first calculated using Merton-model
using current market value and volatility of a firm’s equity and its leverage. Then, firm-specific cumulative
default probability is estimated based on a mapping from the implied “distance to default” to historical
default frequencies. Ten year EDF, for example, then represents the annualized probability of default in the
next 10 years.
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premium (roughly speaking, a credit spread is the expected loss amplified by a risk premium).

This distinction is particularly important because it is not a priori clear whether the climate

risk premium should be positive or negative as different macroeconomic models of climate

change make different predictions on the sign of the premium. It is also possible that the

premium could be zero if climate risk is viewed as purely idiosyncratic and diversifiable.

Since Table 6 Panel B suggests that EDF captures cash flow risk to bonds from climate

as well as non-climate sources, in Table 6 Panel C we regress credit spreads on heat stress

exposure controlling for EDF:

Spreadb,i,t = γi+γt+
2020∑

y=2007

Iy [αyRiski + βyEDFi,t + θyZb,i,t]+βEDFi,t+θXb,i,t+εb,i,t. (8)

Under this specification, coefficients on EDF (βy) should capture the impact of average

source of default risk on spreads both through its impact on expected losses and a (multi-

plicative) risk premium; in particular, expected losses embed the cash flow effects of heat

stress exposure. The coefficients on heat stress (αy), on the other hand, capture whether the

risk premium on (cash flow effects due to) heat stress exposure is higher, lower, or the same,

as the premium on the overall default risk.

While the coefficients on heat stress are on average positive after 2010, they are statis-

tically weak, albeit with some statistical significance between 2012 and 2017 (and also with

economic significance then for high-yield bonds). We interpret this result as the risk premium

in corporate bonds on heat-stress related climate damages being of a similar order of magni-

tude – or possibly higher – as that on the non-climate cash-flow risk. Given that corporate

bonds are associated with a positive risk premium on average (as seen in the coefficients on

EDF), overall these results suggest that the risk premium on heat stress exposure is also

positive. Note, in particular, that the effect of firm-level EDF on spreads is in line with a

reasonable assumption on loss given default of around 30-40% and rises for sub-IG bonds
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especially during years of stress such as 2008-09 (global financial crisis), 2012 (European

sovereign debt crisis), 2016 (Chinese devaluation), and 2020 (COVID).

4.3 Equities

To make further progress in disentangling the price of climate risk from its negative impact

on expected cash flows, we will turn our attention to equities, for which we have a direct

measure for the conditional expected return or risk premium. To study the relation between

expected excess returns and heat stress exposure at firm level, we run a regression similar to

the one in the case of municipal bonds:

Et(Ri,t+1) = γi + γt +
2020∑

y=2007

IyαyRiski + θXi,t + εi,t, (9)

where Et(Ri,t+1) is the annualized one-month expected return on stock i in the end of month

t computed using the Martin and Wagner (2019) methodology as described in the previous

section. The controls include market beta, size, book-to-market, profitability, investment,

and past 12-month returns We also include firm and time fixed effects. Standard errors are

double clustered by year-month and firm.

Results are shown in Table 7. Similar to our earlier results for municipal and corporate

bonds, there is little evidence that heat stress exposure has an impact on expected returns

during the first half of our sample, but an effect becomes detectable after 2012. On average,

the estimates suggest that a one standard deviation increase in heat stress exposure increases

expected returns by around 45 bps, which corresponds to an approximately 10% increase

compared to the unconditional mean. Interestingly, this magnitude is very similar to the one

we estimated for municipal bonds but smaller than that for junk-rated corporate bonds.

The coefficient pattern is seen to be similar across alternative methodologies and samples.

The second specification restricts to firms that have data for the entire period, i.e., whether

or not they are in the S&P 500 index. The third specification imposes the restriction that
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the firms’ risk-neutral beta is between 0.0 and 2.0 as a validity check on a key assumption

of the Martin and Wagner (2019) measures.29 The fourth specification uses longer horizon

options to estimate a year-ahead expected return and uses that as the dependent variable.

Finally, the last specification follows Doshi et al. (2019) in unlevering equity expected

returns to get an estimate of firm expected returns. Since we have shown that heat stress is

associated positively with expected default frequency and hence with market leverage, this

specification addresses the concern that, rather than picking up a heat stress risk premium,

our regressions are picking up an amplification of non-climate related risk premia via leverage.

The results suggest this is not the case; S&P 500 companies are not on average highly

leveraged, so that while the estimate of unlevered risk premium on heat stress is somewhat

smaller than the levered risk premium, it is both statistically and economically significant at

around 30 bps, especially since 2013, supporting our overall interpretation.

4.4 Discussion

Before we consider other physical climate risks, a few observations are in order.

4.4.1 Negative heat stress coefficient prior to 2012

In several of our specifications, we find negative coefficients on the heat stress variable during

some or all of the years 2008 to 2012, e.g., investment-grade (IG) corporate debt and the

equity tests.

Given that we find negative coefficients even in equity tests where the dependent variable

is specifically designed to reflect expected returns, the finding of negative coefficients could

be related to risk premia. As discussed in Giglio et al. (2021), there are indeed theoretical

models that can deliver either sign for a climate (temperature) risk premium. In particular,

the argument in Nordhaus (2014) for a negative risk premium is that investors worry that

avoiding global warming would require engineering a huge recession, with major contractions

29The approximation in Martin and Wagner (2019) is more accurate when β∗ is close to one, see Section I
of Online Appendix to Martin and Wagner, 2019 for more detailed description.
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in output and consumption, so that marginal utility might actually be higher in a cooler

future than in a hotter one.

Hence, one possibility is that these types of beliefs could have been predominant in 2008-

2009 when the global financial crisis was unfolding; the economy was in a deep recession;

the Copenhagen climate change conference of December 2009 raised the possibility that

governments would take climate action in the near-term; and if they did so at an especially

vulnerable time, this could have been bearish for global growth. In such times, stocks that

would benefit from less heat risk could – at the time – have been a good hedge against this

outcome. The change in coefficient signs to being positive since 2012 may thus be a reflection

that the underlying macroeconomic scenario turned substantially benign since then, and risk

premia adhered thereafter to the more intuitive channel that climate (heat) stress directly

reduces aggregate output, as in Bansal et al. (2021).

There are also other possible explanations. Energy prices fell substantially starting in

mid-2008, which could have reduced the energy expenditure bill for counties most exposed

to heat stress, improving their credit quality in a relative sense compared to less exposed

states. While data on energy expenditures are not available at firm level, imputing such

expenditures (using geographic establishment-level data for firms and annual state-level per

capita energy expenditures) does not substantially affect our results for corporate bonds and

equities. On balance, we conclude that it is an interesting finding that risk premia on heat

stress appear to be more uniformly positive only since 2012, but clearly more needs to be

done as longer time-series become available to understand their conditional variation.

4.4.2 Positive heat stress coefficient since 2013

The equity market results suggest that at least a significant component of the increased bond

credit spread effects since 2013 are likely to be the result of an increasing heat stress risk

premium. The increasing risk premium could be due to an increase in the risk itself (as

perceived by investors) or by an increase in required compensation for that risk, or both. On
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the first channel, note that for highly asymmetric loss distributions, an increase in the level

of the expected loss typically also means an increase in uncertainty about it.Thus our results

are consistent with a recent increase in global mean temperature forecasts, which bring with

them an increased likelihood of catastrophic heat scenarios. The second channel could be

operational even without an increase in risk, however. Investors could be requiring increased

compensation because of an increased awareness of the risk or an increased appreciation of

its systematic nature.

The period since 2013, also, of course, coincides with a dramatic increase in environmen-

tally active (ESG) investing and interest in sustainable finance. We do not view that rise as

a compelling explanation for our findings which pertain to physical climate risk. Firms and

municipalities unfortunate enough to be most exposed to heat stress are not “not green” per

se and are thus not (to our knowledge) explicitly avoided by ESG investors.

Finally, a caveat is in order in interpreting our results as showing that something has

changed since 2013-2015. While it is possible that heat stress risks were lower prior to

2013, or that they were not and investors simply ignored them, our evidence – due to data

limitations – is based only on a handful of years. That is, we cannot rule out that heat stress

exposures were priced before 2006. We simply have no evidence on this point; going farther

back in time would ideally require measures of heat stress closer to those dates whereas our

measures are using data as of 2013 (SEAGLAS measure) and 2019-2020 (427 measure).

5 Other climate risks

In addition to heat stress, the two physical exposure datasets provides us with exposure

measures for various other physical climate risks, viz., water/drought risk (which is partly

related to heat stress), flooding risk, hurricane risk, and sea level rise risk. In this section, we

will repeat our analyses for these other exposure measures in order to assess their importance

relative to heat stress. We do this with a major caveat though: because we measure risk
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exposure at county level, any within-county variation in risk exposure introduces noise in

our x variable (physical climate risk exposure) and biases results towards zero. While this

is likely to be a minor problem for our main variable of interest (heat stress), it is likely to

be important for some other risk categories with large exposure gradients. This is especially

true for sea level exposure (see Panel (h) in Figure 3).

More generally, if exposure for heat stress was more precisely measured than exposure to

other climate hazards, any differences in pricing results could simply reflect these differences

in measurement errors. However, we find this unlikely to be the case. Catastrophe risk

models for hurricanes, for example, have received a significant amount of development since

1980s and are significantly more sophisticated than any heat stress models that we are aware

of. Furthermore, the geographical concentration of hurricane risk is higher in the first place.

Indeed, the rank correlation between hurricane measures from Hsiang et al. (2017) and 427

is 0.79 compared to 0.59 for heat stress, suggesting that there is indeed less disagreement

about the measurement of the former than the latter.

With this caveat in mind, Table 8 provides the results for municipal bonds, corporate

bonds, and equities, respectively. For municipal bonds, we fail to detect any impact on haz-

ards other than heat stress, although for drought (water) risk the estimates have qualitatively

somewhat similar pattern. Qualitatively, our result for sea level risk also seems consistent

with Painter (2020) who finds that yields for exposed counties were elevated compared to

other counties in 2007 compared to 2006, but also with Goldsmith-Pinkham et al. (2021)

who find that such effects disappeared afterwards. The fact that our between-county com-

parison fails to detect any impact is also consistent with Goldsmith-Pinkham et al. (2021)

who stress the importance of within-county comparison to uncover the impact of sea level

risk on spreads.

For corporate bonds and equities, the conclusion is by and large similar: we fail to detect

risk premia on physical climate risks other than heat stress. An interesting exception is flood

risk for equities which shows a pattern similar to heat stress, although overall less conclusively
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so. However, this pattern is not present for corporate bonds. Overall, we conclude that a

consistent pricing of physical climate risks between municipal bonds, corporate bonds and

equities appears evident only for heat stress and not so for the other four physical climate

risks in SEAGLAS and 427 measures.

6 Conclusion

Understanding how asset markets price climate risk is important for gauging the private

incentives for issuers to respond to the threat, e.g., by undertaking investment in abatement

technologies. The magnitude of the market’s expected losses and required compensation for

risk can also be important inputs to structural models of the broader economic consequences

of global warming. Our paper examines the impact of physical climate risks – heat, drought,

flooding, hurricanes and sea level rise – on financial asset prices, focusing attention specifically

on the pricing of heat stress risk.

Using two complementary data sets, we document empirical evidence for a significant

effect of heat stress on three distinct asset classes. First, we show that heat stress is priced in

both municipal credit spreads and corporate credit spreads. The price effects in the municipal

markets are mostly driven by relatively lower credit quality municipal bonds. The results

are sharper for longer term municipal bonds and revenue-only bonds. Consistent with the

evidence on municipal bonds, we find that the pricing effects of heat stress on the spreads of

corporate bonds are also largely driven by high yield bond issues; for issuers of these bonds,

we document a direct effect of heat stress on their expected default frequency, consistent

with expected climate damages affecting cash flows on bonds. In equity markets, we study

the conditional expected returns of stocks in the S&P 500 index and find that an increase in

corporate exposure to heat stress is associated with a higher expected return in both levered

and unlevered terms. These effects of heat stress are robustly significant only after 2013–2015

and are quantitatively substantial ranging from 15 bps (municipal bonds) to 45 bps (equity).
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Our consistent finding across all three asset classes of an increasing trend in the cost of

capital associated with heat stress may be attributable to a perceived increase in the risk

itself, or to increasing investor awareness of the risk and of its systematic nature. The paper

also briefly explores the channels through which heat stress affects the pricing of asset classes

studied in the paper and finds that the energy expenditures and decrease in labor productivity

in industries more exposed to heat stress are the primary channels. Finally, we do not find

much evidence that other dimensions of physical climate risk – estimated damages due to

droughts, floods, hurricanes and sea level rise – have systematic asset pricing effects in these

three asset classes. This is consistent with these risks being smaller economically and more

idiosyncratic (i.e., diversifiable and/or insurable) compared to heat stress.
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Table 1: Descriptive statistics for heat stress measures

Panel A presents the summary statistics for heat stress measures in the cross-section of U.S.
municipalities. Energy damage is the projected increase in annual energy expenditures by the
end of the century caused by climate change (RCP 8.5 vs. a counterfactual scenario without
climate change) from Hsiang et al. (2017), transformed to dollar damages using 2019 data
on state-level energy expenditures. High-risk labor is the projected decrease in labor produc-
tivity in high-risk industries from Hsiang et al. (2017), transformed to dollar damages using
2019 data on state-level employee compensation for high-risk industries. High-risk industries
are defined as Farm compensation (NAICS:111-112), Forestry, fishing, and related activi-
ties (NAICS:113-115), Mining, quarrying, and oil and gas extraction (NAICS:21), Utilities
(NAICS:22), Construction (NAICS:23), and Manufacturing (NAICS:31-33). Low-risk labor
is an equivalent measure for all the other industries. All three measures are scaled by 2019
GDP. Heat damage is the sum of these three components. Heat score is municipality-level
heat stress score estimated by Four Twenty Seven, Inc in February 2020. ∆ Proj Hot days
is the change in the projected number of hot days (daily maximum temperature > 100◦F)
per year between 2080-2099 and baseline year 2012 under the RCP8.5 climate scenario, using
the average projection of 44 climate change models from Rasmussen et al. (2016). Hot days
is the actual average number of hot days per year between 2011-2020. ∆ Hot days is the
change in the average number of actual hot days between 2001-2010 and 2011-2020. Panel
B presents the rank correlations for the risk measures and the two historical temperature
measures.

Panel A: Summary statistics

N Mean Std Min 25% Median 75% Max

Heat damage (bps of GDP) 3143 83.23 39.19 -51.98 62.59 86.94 104.64 185.98
Energy damage 3143 58.34 31.60 -60.34 44.37 59.90 77.14 146.58
High-risk labor 3143 14.15 5.15 -4.33 11.22 14.42 17.02 30.51
Low-risk labor 3143 10.74 5.28 -20.57 6.60 10.50 13.75 63.17

Heat score 3142 61.41 13.00 0.00 53.62 61.57 70.54 100.00
∆ Proj Hot days 3109 38.16 19.31 0.01 23.01 36.96 52.50 108.48
∆ Hot days 3107 0.67 2.79 -8.80 -0.20 0.00 0.40 27.40
Hot days 3107 3.12 8.10 0.00 0.00 0.40 1.60 116.80

Panel B: Correlations

Heat
damage

Energy
damage

High-risk
labor

Low-risk
labor

Heat
score

Hot
days

∆ Hot
days

∆ Proj
Hot days

Heat damage 1.00 0.98 0.85 0.68 0.59 0.82 0.35 0.68
Energy damage 0.98 1.00 0.79 0.57 0.60 0.75 0.37 0.64
High-risk labor 0.85 0.79 1.00 0.63 0.50 0.70 0.36 0.58
Low-risk labor 0.68 0.57 0.63 1.00 0.25 0.88 0.12 0.65
Heat score 0.59 0.60 0.50 0.25 1.00 0.41 0.40 0.47
∆ Proj Hot days 0.82 0.75 0.70 0.88 0.41 1.00 0.19 0.73
∆ Hot days 0.35 0.37 0.36 0.12 0.40 0.19 1.00 0.38
Hot days 0.68 0.64 0.58 0.65 0.47 0.73 0.38 1.00
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Table 2: Summary statistics for asset classes

Table presents the summary statistics for monthly secondary market sample for municipal bonds, corporate
bonds, and equities. Spread is the difference between the secondary market yield and maturity-matched
benchmark rate. Time to maturity is expressed in years. Credit rating is the average credit rating available
from S&P, Moody’s, and Fitch, expressed as a numerical value (1=AAA/Aaa, 19=D/C). Turnover is the
total trading volume during the past 12 months scaled by total offering amount. Callable and GO are flags
that equal to 1 for callable and general obligation bonds, respectively. Energy expenditures are in ’$1,000
per capita. High-rating (low rating) subsample includes only bonds with above (below) average credit rating
of AA or better (AA- or worse) for municipal bonds, and investment grade (non-investment grade) bonds
for corporate bonds. Et(R

e
t+1) is annualized 1-month conditional expected return from Martin and Wagner

(2019). Size is market capitalization in billions of dollars. Beta is measured using daily return data over the
past 12 months on individual stocks and CRSP value-weighted index. Book-to-market, operating profitability,
and investment are measured each year in the end of December using most recent annual report available from
the past 12-month period, and are then lagged by 6 months. Rt−11,t is past 12-month return. Company-level
Heat score is estimated by Four Twenty Seven, Inc in December 2019. Sample period is 2006 – 2020.

N Mean Std Min 25% Median 75% Max

Panel A: Municipal bonds

Spread (bps) 99490 68.75 59.50 0.00 32.11 54.91 83.62 555.83
High rating 70464 52.50 39.11 0.00 27.35 47.08 67.88 555.77
Low rating 29026 108.21 78.90 0.04 54.48 88.26 139.81 555.83

Time to maturity 99490 12.19 7.38 1.00 6.34 11.18 16.85 49.66
Credit rating 99490 3.91 2.44 1.00 2.00 3.00 5.00 19.00
Turnover 99490 0.86 1.22 0.00 0.12 0.31 1.02 5.40
Std(Price) 99490 0.89 0.64 0.00 0.36 0.85 1.31 3.95
Callable 99490 0.82 0.39 0.00 1.00 1.00 1.00 1.00
GO 99490 0.43 0.50 0.00 0.00 0.00 1.00 1.00
Energy expenditures 99490 3.87 0.98 2.38 3.29 3.65 4.27 13.05
Heat damage 99490 0.77 0.37 -0.29 0.57 0.72 0.99 1.86

High rating 70464 0.73 0.36 -0.29 0.56 0.69 0.95 1.86
Low rating 29026 0.85 0.36 -0.23 0.63 0.89 1.05 1.84

Panel B: Corporate bonds

Spread (bps) 543004 156.79 140.29 0.00 78.23 122.40 190.69 2411.72
High rating 504398 142.33 119.33 0.00 75.34 116.02 173.82 2395.81
Low rating 38606 345.66 229.01 0.42 221.55 297.03 399.71 2411.72

Time to maturity 543004 10.51 10.20 1.00 3.50 6.74 16.22 99.79
Credit rating 543004 7.56 2.36 1.00 6.00 8.00 9.00 21.00
Turnover 543004 0.67 0.69 0.00 0.21 0.44 0.85 3.71
Std(Price) 543004 1.01 0.96 0.00 0.41 0.75 1.31 9.56
Callable 543004 0.78 0.42 0.00 1.00 1.00 1.00 1.00
Heat score 543004 44.28 7.47 21.72 40.14 42.89 47.58 70.72

High rating 504398 44.20 7.51 21.72 40.08 42.76 47.46 70.72
Low rating 38606 45.29 6.77 21.78 41.90 43.84 48.46 68.19

Panel C: Equities

Et(R
e
t+1) (bps) 77214 451.58 540.32 0.02 146.25 289.62 550.00 5428.83

Beta 76856 1.06 0.37 -0.25 0.82 1.03 1.27 3.55
Size ($B) 77214 31.33 66.51 0.11 6.74 13.18 28.25 2255.97
B/M 76390 0.47 0.70 -60.61 0.21 0.36 0.65 6.80
Profitability 75934 0.65 15.64 -13.33 0.18 0.28 0.41 1417.33
Investment 75412 0.13 0.42 -0.73 0.00 0.06 0.14 12.56
Rt−11,t 76403 0.15 0.36 -0.97 -0.05 0.13 0.31 7.91
Heat score 77214 42.91 7.34 20.09 38.30 42.20 45.63 70.72
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Table 3: Heat stress and muni bond spreads

The table presents estimation results (αy) for panel regressions of the form

Spreadb,c,t = γc + γt +
2020∑

y=2007

Iy [αyRiskc + θyZb,c,t] + θXb,c,t + εb,c,t,

where the dependent variable is maturity-matched credit spread in month t of a bond b issued in
county c. Control variables include logarithm of the bond’s time to maturity, issuer’s option to
call bond before maturity, flag for general obligation bonds, bond turnover, standard deviation
of transaction prices for bond b in month t, energy expenditures per capita, and credit-rating
fixed effects. Heat score is normalized. Standard errors are two-way clustered by county and
month. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Risk Heat damage (% GDP) Heat score

Risk×I2007 -0.35 (8.22) -1.70 (5.41) 1.74 (2.01) 1.20 (1.93)
Risk×I2008 17.60* (9.72) 8.39 (8.23) 0.25 (4.41) 1.90 (2.50)
Risk×I2009 30.61** (14.63) 21.10** (10.42) -2.74 (6.23) 1.83 (3.89)
Risk×I2010 19.65 (12.17) 6.98 (9.43) -2.08 (4.54) -0.29 (3.73)
Risk×I2011 20.76 (13.10) 9.11 (9.34) -2.94 (4.76) -1.31 (4.01)
Risk×I2012 26.43** (10.88) 17.17** (8.12) 2.76 (4.59) 4.17 (3.77)
Risk×I2013 27.86*** (10.28) 17.69** (7.61) 6.84 (4.33) 6.55* (3.37)
Risk×I2014 24.73** (9.87) 16.04** (7.62) 8.71** (4.30) 7.45** (3.27)
Risk×I2015 27.87*** (9.60) 19.65** (7.59) 10.47** (4.33) 8.28** (3.30)
Risk×I2016 30.11*** (9.61) 21.26*** (7.43) 10.97** (4.38) 8.68*** (3.26)
Risk×I2017 29.47*** (9.68) 20.23*** (7.31) 10.58** (4.27) 7.64** (3.15)
Risk×I2018 28.28*** (10.06) 20.58*** (7.58) 11.16** (4.29) 8.35*** (3.17)
Risk×I2019 26.62*** (9.73) 19.01** (7.41) 10.68** (4.31) 8.03** (3.19)
Risk×I2020 26.99*** (9.85) 16.64** (7.56) 8.86** (4.44) 5.80* (3.23)

N 99490 99490 99490 99490
R2 0.47 0.61 0.47 0.61

County & Time FE Y Y Y Y
Controls Y Y Y Y
Rating x Year FE N Y N Y
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Table 5: Heat damage components and muni bond spreads

The table presents estimation results (αy) for panel regressions of the form

Spreadb,c,t = γc + γt +
2020∑

y=2007

Iy [αyRiskc + θyZb,c,t] + θXb,c,t + εb,c,t,

where the dependent variable is maturity-matched credit spread in month t of a bond
b issued in county c. Control variables include logarithm of the bond’s time to maturity,
issuer’s option to call bond before maturity, flag for general obligation bonds, bond turnover,
standard deviation of transaction prices for bond b in month t, energy expenditures per
capita, and credit-rating fixed effects. Standard errors are two-way clustered by county
and month. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.

Risk Energy damage High-risk labor Low-risk labor ∆ Proj Hot days

Risk×I2007 -0.60 (7.32) -21.80 (33.59) 29.64 (25.63) 0.08 (0.08)
Risk×I2008 8.82 (10.80) 53.66 (45.24) 101.57** (41.59) 0.22* (0.12)
Risk×I2009 19.36 (13.32) 125.71* (65.38) 222.69*** (65.24) 0.46*** (0.17)
Risk×I2010 4.78 (11.79) 89.05 (61.71) 109.17* (55.69) 0.15 (0.15)
Risk×I2011 3.30 (12.49) 129.54** (56.05) 163.62*** (49.19) 0.26* (0.16)
Risk×I2012 15.68 (10.64) 154.10*** (51.64) 160.39*** (51.35) 0.40*** (0.14)
Risk×I2013 17.60* (10.15) 165.15*** (46.62) 139.25*** (45.84) 0.35*** (0.13)
Risk×I2014 15.77 (10.06) 150.79*** (46.36) 135.67*** (48.20) 0.27** (0.13)
Risk×I2015 20.91** (10.02) 158.71*** (45.75) 142.08*** (50.01) 0.30** (0.13)
Risk×I2016 24.62** (9.82) 147.94*** (45.09) 130.38** (50.54) 0.32** (0.13)
Risk×I2017 22.62** (9.64) 155.57*** (44.85) 131.64*** (49.59) 0.33** (0.13)
Risk×I2018 23.34** (9.94) 158.31*** (46.19) 125.82** (51.88) 0.31** (0.13)
Risk×I2019 21.44** (9.73) 144.47*** (45.69) 124.50** (51.66) 0.30** (0.13)
Risk×I2020 19.57* (9.98) 87.10* (45.78) 126.57** (53.58) 0.23* (0.13)

N 99490 99490 99490 99319
R2 0.61 0.61 0.61 0.61

County & Time FE Y
Controls Y
Rating x Year FE Y
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Table 8: All risk scores

The table presents estimation results for municipal bonds (from Table 3), non-investment grade
corporate bonds (From Table 6 Panel A), and equities (From Table 7), where all available physical
climate risk measures are included as explanatory variables. Risk scores are normalized.

Panel A: Municipal Bonds

Risk Heat score Water score Rainfall score Hurricane score Sealevel score

Risk×12007 1.89 (2.16) -2.22 (2.84) -3.14 (2.07) 0.76 (1.79) 0.23 (1.09)
Risk×12008 2.15 (3.27) -1.73 (3.64) -3.01 (3.17) 6.87*** (2.46) -1.23 (1.63)
Risk×12009 2.51 (3.71) 9.59** (4.58) 7.25* (4.31) 6.00* (3.38) -1.09 (2.18)
Risk×12010 0.73 (3.75) 6.61 (4.35) -0.48 (4.08) 2.66 (3.00) -3.26 (2.14)
Risk×12011 -0.79 (4.16) 7.99* (4.28) 4.45 (4.93) 1.00 (3.20) -1.68 (2.46)
Risk×12012 5.20 (3.83) 5.62 (3.95) 0.22 (3.96) 1.22 (3.30) -1.40 (2.16)
Risk×12013 6.57* (3.53) 3.11 (3.75) 0.50 (3.80) 1.14 (2.92) -2.19 (1.96)
Risk×12014 7.34** (3.52) 2.69 (3.83) 1.61 (3.75) 0.23 (2.92) -1.38 (2.01)
Risk×12015 8.63** (3.58) 4.00 (3.83) 1.70 (3.69) 0.69 (2.94) -1.12 (2.07)
Risk×12016 9.22*** (3.53) 3.50 (3.73) -0.38 (3.57) 2.05 (2.85) -1.92 (1.98)
Risk×12017 8.11** (3.47) 3.98 (3.71) -0.26 (3.56) 2.32 (2.82) -2.36 (1.94)
Risk×12018 8.62** (3.53) 2.63 (3.74) -0.54 (3.64) 3.42 (2.85) -2.57 (1.96)
Risk×12019 8.08** (3.55) 2.23 (3.72) -0.25 (3.65) 1.02 (2.86) -1.86 (1.99)
Risk×12020 6.92* (3.64) 2.42 (3.80) -1.39 (3.77) 1.49 (2.96) -0.30 (2.03)

N 99344
R2 0.61

County & Time FE Y
Controls Y
Rating x Year FE Y
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Panel B: Corporate Bonds

Risk Heat score Water score Flood score Hurricane score Sealevel score

Risk×I2007 9.85 (6.81) 7.45** (3.47) -8.49** (4.28) -8.23 (6.78) 14.52** (6.59)
Risk×I2008 2.45 (25.42) -12.12 (12.66) -31.11** (15.34) -0.16 (25.60) 26.82 (26.16)
Risk×I2009 -54.25* (29.76) 37.34* (20.58) 8.28 (19.51) 78.28** (36.35) 65.76*** (21.11)
Risk×I2010 23.56 (17.09) 36.87** (15.74) -3.33 (14.12) 0.31 (21.34) 35.87*** (11.45)
Risk×I2011 27.24 (18.40) 32.49* (18.12) -0.45 (15.30) -15.48 (21.72) 30.18** (13.08)
Risk×I2012 20.00 (17.78) 35.43 (22.12) 15.28 (15.43) 0.51 (24.76) 16.53 (13.04)
Risk×I2013 33.80* (17.66) 19.09 (18.53) 3.54 (14.56) -18.88 (25.43) 18.96 (11.75)
Risk×I2014 36.16** (18.11) 21.65 (16.43) 2.62 (14.29) -25.21 (26.23) 16.31 (11.34)
Risk×I2015 41.13** (18.74) 22.03 (16.93) 10.80 (15.46) -36.33 (26.46) 4.39 (13.12)
Risk×I2016 41.79** (18.91) 25.76 (16.03) 12.92 (16.55) -24.47 (25.19) -6.84 (15.10)
Risk×I2017 35.52** (17.70) 18.90 (16.32) 9.60 (16.10) -17.78 (24.30) -2.14 (13.17)
Risk×I2018 31.82* (17.73) 15.90 (16.59) 5.94 (15.54) -19.54 (24.55) 2.41 (13.82)
Risk×I2019 31.06* (17.29) 18.90 (16.41) 8.62 (14.81) -25.52 (24.94) 5.87 (14.38)
Risk×I2020 44.84** (19.42) 0.77 (16.46) 10.82 (15.54) -52.58* (27.22) 15.37 (17.88)

N 38606
R2 0.83

Firm & Time FE Y
Controls Y
Rating x Year FE Y

Panel C: Equities

Risk Heat score Water score Flood score Hurricane score Sealevel score

Risk×I2007 22.52** (11.16) -24.97*** (8.59) -7.98 (5.58) 0.87 (5.97) 18.58** (7.87)
Risk×I2008 14.17 (31.74) 5.60 (28.31) -68.08** (26.52) 11.02 (24.67) 56.83* (28.87)
Risk×I2009 -6.74 (30.49) -9.96 (25.93) -57.90* (29.72) 43.02 (34.07) 20.97 (25.22)
Risk×I2010 2.06 (11.01) -12.34 (9.60) -2.60 (7.88) 2.79 (8.45) 6.19 (9.18)
Risk×I2011 -0.85 (12.65) 5.13 (10.19) -0.54 (8.45) 10.18 (10.11) -3.05 (8.32)
Risk×I2012 25.69** (12.61) -14.28 (10.96) 1.72 (7.69) -2.28 (8.93) 0.54 (9.69)
Risk×I2013 33.73*** (12.49) -17.28 (11.48) -1.05 (7.57) -9.77 (8.67) 7.34 (10.71)
Risk×I2014 30.45** (14.56) 4.41 (11.55) 9.03 (7.45) 8.48 (8.98) -14.33 (11.16)
Risk×I2015 35.99** (14.67) -3.75 (12.50) 14.19* (7.62) 2.71 (10.04) -8.90 (11.61)
Risk×I2016 46.05*** (14.67) -6.35 (12.96) 28.14*** (8.04) -12.24 (10.56) -8.89 (11.16)
Risk×I2017 39.26** (16.28) -25.42* (13.13) 19.96** (8.48) -9.90 (10.96) -13.44 (13.10)
Risk×I2018 39.24*** (14.92) -22.46 (14.12) 15.69* (9.07) -19.66* (10.88) -13.79 (12.96)
Risk×I2019 50.34*** (17.52) -22.92 (15.36) 11.60 (10.53) -5.20 (12.32) -23.81 (14.72)
Risk×I2020 61.85** (29.61) -16.12 (27.80) 15.62 (24.86) -23.25 (21.35) -3.81 (25.62)

N 74899
R2 0.70

Firm & Time FE Y
Controls Y
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Figure 2: Annual temperature distributions under Baseline and RCP 8.5 scenarios.
Counties’ percentile ranks in terms of an increase in the number of +100◦F days are shown
in parentheses.
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(a) Heat damage (% GDP) (b) Heat score

(c) ∆ Proj Hot days (d) ∆ Hot days

(e) Hot days

Figure 3: Physical risk exposure by county. The figure shows geographical distribution
of measures of physical risk exposure.
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(f) Water score (g) Rainfall score

(h) Hurricane score (i) Sealevel score
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Figure 4: Fraction of municipal bond prospectuses mentioning “climate change”.
The figure shows year-by-year the fraction of municipal bond prospectuses that contain the
phrase “climate change” at least once in the document.
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Online appendix to

“Is physical climate risk priced? Evidence from

regional variation in exposure to heat stress”

Matching municipal bonds to counties

Since our climate exposure variables are available at municipality-level (FIPS code), we need

to determine which geographical area a given bond is associated with. Ideally, we would

like to do this for each bond regardless of the identity of the issuer (e.g. municipality, city,

school district, utility). Unfortunately, there is little such information directly available for

the universe of municipal bonds.

To overcome this issue, we proceed as follows. For each municipal bond, we observe the

state of the issuance and the issuer name as reported in the initial CUSIP filing. The name

can be something as straightforward as “ANCHORAGE ALASKA” or something more com-

plicated such as “ABAG FIN AUTH FOR NONPROFIT CORPS CALIF REV” (Association

of Bay Area Governments Finance Authority for Nonprofit Corporations). We download the

list of states, counties and county-equivalents, county subdivisions, incorporated and census

designated places from U.S. Board on Geographic Names website (with their associated FIPS

codes). We refer to these name data as “Census names”. Our goal is to use string matching

to find (preferably one) Census name that is associated with each CUSIP name.

Before matching, we take the following steps to preprocess and clean the names:

1. Clean Census names of various prefixes and suffixes (e.g. “Municipality of Anchorage”

→ “Anchorage”). However, there are six cases in which the same name is associated

with two counties (e.g. Baltimore City and Baltimore County are both counties in

Maryland30). In these cases, we attach ’CNTY’ suffix with the county and manually

30Other such cases are St. Louis (MO), Fairfax (VA), Franklin (VA), Richmond (VA), and Roanoke (VA).
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check that the algorithm is able to assign bonds to the correct entity.

2. Remove special characters (e.g. dots, commas, dashes) and replace Non-English char-

acters with their English counterparts (e.g. “San José” → San Jose) in both CUSIP

and Census names

3. Remove duplicate place names. If subdivision and place have same names, use sub-

division because it is generally larger entity subsuming place and more likely to issue

bond. If incorporated place and Census Designated Place (CDP) have same names,

use incorporated place.

4. Expand the common abbreviations in CUSIP names (e.g. “HBR” → “Harbor”). Ex-

ception: we always abbreviate “Saint” with “ST” in both CUSIP and Census names.

Next, we remove any white spaces from Census names (e.g. “ST LOUIS”→ “STLOUIS”),

and within each state, we find Census names that are substrings of CUSIP names with ar-

bitrary white spaces allowed in the middle (e.g. “ST LOUIS MO REV” matches to “ST-

LOUIS”).

While this approach works well for majority of bonds, it creates some false positives

especially when county or place name is some general word (e.g. county named PARK or

LAKE, or a town called YORK in the state of New York). For such general words31 we

impose some additional requirements for a match:

1. CUSIP name string starts with Census name and the next word is state name or

abbreviation (e.g. LAKE MINN is matched to LAKE (county) but PRIOR LAKE

MINN ECONOMIC DEV is not)

31We identified the following set of general words if Census names: ’POINT’, ’FORT’, ’PARK’, ’VAL-
LEY’, ’RIVER’, ’CENTER’, ’CORNER’, ’HARBOR’, ’ISLAND’, ’UNION’, ’LAKE’, ’GREEN’, ’NORTH’,
’EAST’, ’SOUTH’, ’WEST’, ’NORTHEAST’, ’NORTHWEST’, ’SOUTHEAST’, ’SOUTHWEST’, ’NORTH-
ERN’, ’EASTERN’, ’WESTERN’, ’BAY’, ’CITY’, ’GROVE’, ’FALLS’, ’HILL’, ’HILLS’, ’HALL’, ’ROCK’,
’STONE’, ’UPPER’, ’LOWER’, ’MIDDLE’, ’CANYON’, ’IRON’, ’COVE’, ’TEMPLE’, ’PLAINS’, ’PLAIN’,
’OAK’, ’GATEWAY’, ’GAS’, ’PRIOR’, ’BLUE’, ’HOLIDAY’, ’COMMERCE’, ’JUSTICE’, ’COLLEGE’,
’UNIVERSITY’, ’GAP’, ’PROGRESS’, ’ARP’. Furthermore, we handle York, NY, and Dakota, SD, manually
withing those states to avoid a large number of false positives.

59



2. In CUSIP name, the next word after a county Census name is a county keyword

(’COUNTY, ’CNTY’, ’PARISH’) (e.g. SOUTH LAKE CNTY HOSP DIST FLA gets

matched to LAKE (county))

3. CUSIP name contains plural county keyword when matched to a county Census name

(e.g. LAKE & SANDERS CNTYS MONT HIGH gets matched to LAKE (county))

4. In CUSIP name, the next word after a place Census name is a place keyword (’CITY’,

’TWP’, ’CHARTER TWP’, ’NEW YORK N Y’) (e.g. SPRING LAKE TWP MINN

gets matched to LAKE (place))

This matching process allows us to find at least one matching state, county or place

name for [X] of municipal bonds. However, in many cases we get several matches which

oftentimes is undesirable (e.g. issuer named ANCHORAGE ALASKA gets matched both to

the municipality of Anchorage and to the state of Alaska. Issuer named NEW YORK N Y

gets matched to place (city), county and state of New York). To get rid of these multiple

matches, we proceed as follows.

1. If CUSIP name is matched with multiple counties or places where one Census name

is a substring of other, keep the longer (e.g. NORTHSALTLAKE and SALTLAKE

(places)).

2. If CUSIP name is matched with state name and county or place name, keep the latter

(e.g. Alaska match is deleted for ANCHORAGE ALASKA).

• Exception: in some cases, there is identical state name and county/place name

within the same state.32 In these cases, keep state match unless the CUSIP name

contains county or place keywords.

32ARIZONA, ARKANSAS, DISTRICTOFCOLUMBIA, GUAM, HAWAII, IDAHO, IOWA, NEWYORK,
OHIO, OKLAHOMA, UTAH.
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3. If CUSIP name is matched to both county and places, remove any matches that are

substrings of others (e.g. PALO ALTO CNTY IOWA HOSP REV is matched to both

PALOALTO (county) and PALO (place). Remove latter.)

4. If CUSIP name gets matched to exactly same county and place names, use counties

unless there are place keywords that indicate the opposite (in most cases, this choice

does not matter because the place with the same name as the county is within that

county.)

5. If CUSIP name is still matched to both counties and places, remove places if county-

words are present and placewords are not present in CUSIP name (and vice versa).

6. If CUSIP name is still matched to both counties and places, remove place matches.

This residual rule is needed in less than 1% of matches.

After this step, most of the bonds are associated with only one geographical location, but

some of them are still matched with multiple counties or places (e.g. LAKE & SANDERS

CNTYS MONT HIGH is matched with both Lake and Sanders counties). In the vast ma-

jority of such cases, this is due to the bond being in fact issued jointly by multiple entities.

Furthermore, we get some more multiple matches when we convert place FIPS codes to

county FIPS codes because some places are geographically located in multiple counties (e.g.

New York City gets matched to five counties associated with the five boroughs of the city).

After having converted everything to County FIPS level, we match our risk exposure

data with the bonds and take average score in the cases when bond is matched with multiple

county FIPS codes.

Appendix B: Climate change risk or energy risk

Given that our measures suggest that climate change damages mainly manifest themselves as

an increase in energy expenditures, it is reasonable to ask if our heat stress measures simply
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capture cross-sectional differences in exposure to energy price fluctuations, that could be a

priced source of risk even in the absence of climate change. In this section, we study such

alternative hypothesis.

To measure and control for municipal bond issuers’ exposure to energy price fluctuations,

we obtain per capital energy expenditure data from U.S. Energy Information Administration

(EIA). These data is available at state-year level ending in 2020. Between 2006 and 2020,

average energy expenditures per capita is $4,301, ranging from $2,380 to $13,047. Most

of the variation in energy expenditures is cross-sectional in nature, with state fixed effects

explaining 78% of the variation during the sample period. Per capita energy expenditures

are positively but relatively modestly rank correlated with average heat stress measures, with

these correlations being 0.27 and 0.16 for Heat damage and Heat score measures.

Such modest correlations are perhaps explained by the fact that energy expenditures tend

to be high both in hot and cold climates with a high number of cooling degree days and heating

degree days, respectively. Indeed, the five states with the highest energy expenditures—

Alaska, Wyoming, Louisiana, North Dakota, and Texas—consists of some of the coldest and

hottest states in the country. Out heat stress measures, on the other hand, suggest that

energy expenditures in many cold regions are in fact likely to decrease as a result of climate

change due to decrease in heating degree days, while currently hot regions will experience

even more cooling degree days increasing energy expenditures even further. This observation

likely explains why controlling for current level of energy expenditures have little impact on

our pricing results.

Measuring companies’ energy expenditures is significantly less straightforward than for

states. We first obtain company-level annual energy consumption data (in Gigajoules) from

Refinitiv ESG database. In 2019, we had data available for 335 SP 500 companies, with

availability deteriorating quite fast when going back in time, with 237 companies available

in 2015.

We measure firm energy intensity as annual energy consumption per $1M revenue. Similar
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to municipalities, energy intensity is very stable over time: in firm-year panel from 2015 to

2019, firm fixed effects have and R-squared of 0.95. Given the high degree of stability and

limited data availability and in the time series, we will use 2019 energy intensity measures

as a proxy for historical energy intensity. Given this, our firm-year level energy expenditure

measure is a product of firm’s 2019 energy intensity times year t U.S. average energy price

from EIA. For firms without energy consumption data, we use average energy intensity of

firms in the same Fama-French 17 industry portfolio.

Tables A1 and A2 repeat our main corporate bond and equity analyses while controlling

for firm-year-level energy expenditures. Due to data availability, the sample period ends in

2019. Overall, the results look very similar to our main estimates, suggesting that differential

exposure to energy price fluctuations is unlikely to explain our results.
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