# Climate-Induced Labor Risk and Firm Investments in Automation

# Rachel Jiqiu Xiao

#### Abstract

- I study whether and how firms adapt to climate-induced labor risk through automation.
- I construct a text-based measure of automation investments at the firm-year level.
- I find that firms with a more climate-exposed workforce invest more in automation when
- ✓ Facing adverse long-term climate conditions.
- ✓ Are financially unconstrained.
- After automation adoption, climate-exposed firms
- ✓ Have smaller employment and employee health insurance buffers.
- ✓ Enjoy better operating performance under short-term climate shocks.

### Motivation

- Climate-exposed workers suffer losses in working hours, productivity and safety (e.g., Graff-Zivin and Neidell, 2014; Somanathan et al., 2021).
- Firms employ a "labor adaptation" strategy including having more employees and greater employee insurance costs, but it is ineffective under climate surprises (Xiao, 2022).
- Firms may resort to capital adaptation, especially, automation investments that substitute labor.

## Data

- Sample period: 2000-2018.
- Material news and events from KeyDevelopment.
- Plant information from NETS Establishment.
- Work-related injuries and illness from OSHA.
- Firm-level employee benefits from Form 5500.
- Daily weather data from NOAA.

# Measuring Firm Investments in Automation

- Substance: 2.7 million items of material news and events.
- Methodology: word embedding and keyword discovery algorithms.
- Automation investment intensity
  (Auto\_Inv): the percentage of automation
  keywords in an investment disclosure item averaged
  over all items in a firm-year.

Figure 1: Validating Auto\_Inv using Industry Robots Shipment

|                                               |            | Raw Score         |          |  |
|-----------------------------------------------|------------|-------------------|----------|--|
|                                               | Industrial |                   |          |  |
|                                               | Robot      |                   |          |  |
| Industry                                      | Density    | <i>Capex</i> *100 | Auto_Inv |  |
| Agriculture, forestry, and fishing            | 0.20       | 2.57              | 0.25     |  |
| Auto and other transportation manufacturing   | 29.30      | 4.27              | 0.68     |  |
| Chemical manufacturing                        | 6.00       | 19.31             | 0.42     |  |
| Construction                                  | 0.10       | 3.16              | 0.34     |  |
| Education                                     | 0.10       | 4.03              | 0.00     |  |
| Food and beverage manufacturing               | 3.10       | 5.79              | 0.23     |  |
| Metal and electrical/electronic manufacturing | 4.70       | 3.68              | 0.89     |  |
| Textile manufacturing                         | 0.30       | 23.43             | 0.32     |  |
| Mining and quarrying                          | 0.50       | 4.03              | 0.29     |  |
| Utilities                                     | 0.40       | 3.96              | 0.32     |  |
| Wood and paper manufacturing                  | 1.00       | 7.59              | 0.39     |  |
| Correlation with Industrial Robot Density     |            | -0.07             | 0.54     |  |

## **Empirical Findings**

Table 1: Workforce Climate Exposure and Automation Investments

$$Y_{it} = \alpha_i + \mu_{jt} + \beta X_{\text{it-1}} + \theta \text{Firm\_Climate\_Exp}_{\text{it-1}} + \epsilon_{ijt}(1)$$

• Firm\_Climate\_Exp: the employment-weighted average of occupation-level climate exposure.

| DV                      | Automation Investment Intensity |            |                 |                            | <i>Capex</i> *100 |
|-------------------------|---------------------------------|------------|-----------------|----------------------------|-------------------|
|                         | Main                            | Robustness |                 |                            |                   |
|                         | Auto_Inv                        | _Auto_News | $D_{Auto\_inv}$ | Auto_Inv:<br>Climate-Raled |                   |
|                         | (1)                             | (2)        | (3)             | (4)                        | (5)               |
| Firm_Climate_Exp        | -0.011                          | -0.188     | -0.005          | -0.008                     | 0.091             |
|                         | (-0.43)                         | (-0.52)    | (-0.94)         | (-0.34)                    | (0.61)            |
| N                       | 41,642                          | 41,642     | 41,642          | 41,642                     | 41,534            |
| $R^2$                   | 0.432                           | 0.404      | 0.270           | 0.452                      | 0.720             |
| Adjusted R <sup>2</sup> | 0.329                           | 0.295      | 0.136           | 0.352                      | 0.668             |

✓ More climate-exposed firms do not invest more in capital/automation.

# Interacting with Temperatures

 $Y_{it} = \alpha_i + \mu_{jt} + \beta X_{\text{it-1}} + \theta \text{Firm\_Climate\_Exp}_{\text{it-1}} + \omega \text{Firm\_Climate\_Exp}_{\text{it-1}} * \Sigma D_{\text{Firm\_Lt\_Temp}_{it}} + \epsilon_{ijt} (2)$ 

• Firm\_Lt\_Temp: the 20-year moving average of county-level temperatures weighted by firm employment in a given county.



✓ Climate-exposed firms respond to long-term adverse climate trends through automation investments, suggesting the long-term benefits of investment offset the short-term spending.

## Labor Adaptation After Automation

• **High Group**: lagged automation investments in the top 30%.



Panel B: Employee Insurance Expense



✓ Automation adaptation substitutes labor adaptation.

# Operating Performance After Automation

• Firm\_Ab\_Temp: the average of abnormal temperatures (difference between the county annual and 20-year moving average) weighted by firm employment in a given county.

# Panel A: Workplace Safety Incident A.1. Low Group A.2. High Group Output A.2. High Group Output Output

Panel B: ROA



✓ Automation helps mitigate climate-induced risk effectively.

## Other Findings

- Only financially unconstrained firms expand automation investments in response to increasing climate-induced labor risk.
- Following the passage of the 2005 California Heat Standard that aims to reduce heat stress in the workplace, climate-exposed firms invest more in automation.
- The automation news of climate-exposed firms sees positive stock market responses.
- Results are robust using various alternative textual-based proxies for automation investments.

### Reference

- Graff Zivin, Joshua, and Matthew Neidell, 2014, Temperature and the allocation of time: Implications for climate change, *Journal of Labor Economics* 32, 1-26.
- Somanathan, E., Rohini Somanathan, Anant Sudarshan, and Meenu Tewari, 2021, The impact of temperature on productivity and labor supply: Evidence from Indian manufacturing, Journal of Political Economy 129, 1797-1827.
- Xiao, Rachel J., 2022, Climate risk in the workplace: Labor market consequences and firm performance, Georgia State University.

#### Contact Information

Department of Finance Georgia State University

• Email: jxiao4@gsu.edu

