A Dynamic Model of Governmental Venture Capital

Hyun Joong Kim

Oct.27.2022

Governmental Participation in VC Industries

- VC Industry: The incubator of innovation
 - The way of picking & growing early-stage R&D projects
 - Occasionally non-economic & socially pervasive impacts

- To amplify the effect of success, governments join VC industries
 - Governmental VC (GVC): a public entity as a VC itself
 - Sponsor or collaborate with private VCs (PVC)
 - Or support startups that do not receive capital from PVCs.

- Government as an equity investor is relatively rare in the US:
 - A policy tool that remains relatively understudied;
 - In contrast, China: a growth rate of 25% per annum (Li; 2022)

Previous Questions on GVC efficiency

- Previous questions in the literature
 - Compared to PVCs, are they efficient in generating innovations?
 - 2 Do they crowd in/out private investments in the industry?

- The literature on GVC efficiency & outcomes
 - Empirics: Conflicting observations & Lack of consensus
 - 2 Theories: Yet to provide explanations on empirical discrepancies

Lack of Consensus in Empirical Findings Decision

Introduction

	Underperform	No evidence/Outperform
Sales growth	Grilli & Murtinu(2014a)	Lerner(1999)
		Grilli & Murtinu(2014b)
Inv.size	Cumming & McIntosh(2006)	Brander et al.,(2015)
	Brander et al.,(2010)	Brander et al.,(2013)
Exit rate/val	Brander et al.,(2010)	Brander et al.,(2015)
	Li (2022)	Brander et al.,(2013)
Innovation	Bertoni & Tykova(2015)	Bertoni & Tykova(2015)
	(Under sole GVC)	(Under PVC syndication)

	Crowd Out	Crowd In/Augment
Private inv.	Brander et al.,(2010)	Guerini & Quas(2016) Lerner(1999), Howell(2017)

Research Questions

Introduction

• How to understand the discrepancies & build the mechanism beneath?

② If inefficiencies exist, then under which conditions do they arise?

Roadmap & Takeaways

Introduction

- The black-box model of general VC-financing:
 - VC-financing maximizes the sum of its ongoing/active entities' values;
 - No matter how intertwined & conflicting interests they have.
- ② The individual startups under different private-public partnerships:
 - Under active GVC roles ⇒ Social optimum
 - Under passive GVC roles ⇒ Private optimum (as under PVC)

- The industry-level effects of GVC through the two channels:
 - The lowered entry hurdle
 - The relaxed project **termination** threshold ⇒ Prolonged lifespan

Theories on Inefficiencies

The model of general VC Financing

• Inefficiencies are driven by the misalignment of incentives.

- Admati and Pfleiderer (1994)
 - ullet Entrepreneurs (want to prolong the project lifespan) eq Investors
 - Can be aligned through a fixed ownership allocation contract.
- 2 Inderst and Muller (2004)
 - VCs' bargaining powers ⇒ Imbalanced ownership allocation/contract
 - A fixed contract: No room for renegotiation
 - ullet Determines investment decisions afterwards \Rightarrow Suboptimal outcomes

 $Different \ incentives \rightarrow Conflicting \ investment \ decisions \rightarrow Inefficiency$

Resolving Misalignments: An Example

The model of general VC Financing

- Question: Does a startup operate in such ways?
 - ullet Conflicting interests destroy values \Rightarrow The agents would try to **resolve**
 - E.g., through renegotiations on their ownership allocations

An interview of a startup founder in South Korea

"(...) There were some moments we wanted to **abandon** this project. At those times, the primary **investor** of our business ever since its launching encouraged us to push it further, promising to **yield more shares** (...)"

Dynamic Adjustment of Misalignments Example

The model of general VC Financing

- In a dynamic world:
 - Projects/startups have ups & downs (random states)
 - Conflicts/Misalignments emerge when the project state goes bad.
- - Conceding some rights/equity shares to another

- - Proceeds until both entities' incentives align.
- - I.e., the startup's operation maximizes the sum of its entities' values.

What Does It Have to Do with GVCs?

A new phase with GVCs and PVCs

- When private & public entities are in a startup:
 - Different goals (economic vs social): potentially conflicting
- Misalignments are irrelevant \Rightarrow A startup's operation maximizes either
 - 1 The private (or financial) value
 - The social welfare (financial + non-financial)
- I.e., the 'optimum' a startup reaches may differ according to which participants comprise it.

 Question: Under which conditions do GVC-backed startups serve different optimum?

Different Outcomes under Different GVC Roles

A new phase with GVCs and PVCs

• Whether a GVC joins a startup's **ongoing** investment determines its investment choice and performance.

- If GVC collaborates with PVC in a passive manner:
 - GVC interests ⇒ Firm operation ⇒ Private value maximization
 - ⇒ Economic outcomes **equal** to PVC-funded cases.

- If GVC joins as an active investor:
 - GVC interests \Rightarrow Firm operation \Rightarrow Serves public/nonfinancial goals
 - ⇒ Relative to PVC-funded, **underperforming** financial outcomes.

Consistent Past Literature Intuitions

A new phase with GVCs and PVCs

Brander, Du, & Hellmann (2015)

"GVCs may be helpful in providing certain kinds of support, including financial support, but may become **less useful** when they have actual control over **business decisions**."

A Model of VC-Backed Startups

The model

- Agents
 - 1 Entrepreneur (ENT): idea provider, private entity
 - 2 PVC: capital provider, private entity
 - 3 GVC: capital provider, public entity

- Key assumptions
 - **1** A project produces the **financial** (θ) & **non-financial** (ϕ) exit values.
 - **②** GVC is the only entity considering ϕ into its utility.
 - **3** PVC and GVC are identically efficient in their operation.

Three Cases of VC Financing The model

1 Pure PVC financing (A benchmark) Pure PVC

Pure GVC financing with GVC as an active investor Pure GVC

GVC-PVC Syndication case with GVC as a passive seed investor Mixed

Startups as Incubators of Ideas

The model

• R&D begins with an idea, not knowing when it will mature.

Shaping the idea takes time, continuous effort & monitoring.

• When VC-backed, multiple entities contribute **complementary** efforts.

These entities observe its progress every moment.

Basic Features in Each Case

The model

• The project's status $(X_t \le 0)$ evolves over time:

$$dX_t = \mu dt + \sigma dB_t$$
, $X_0 = x < 0$

and completes when $X_t \ge 0$ for the first time.

- A project is launched at t = 0 only if its $X_0 = x \ge h$:
 - The minimum initial quality to have VCs' NPVs ≥ 0 .

Each Entity's Problems & Decisions (Pure PVC) (Pure GVC) (Mixed) The model

• The PV-maximizing **cutoff** for stop putting effort:

$$\frac{\textit{a}}{\mathsf{The \ Rate \ of \ Cost \ Each \ Instant}} \bigg)$$

- Abandon the project when $X_t < a$ for the first time
- Not the same across entities (Misalignment)
- The renegotiation policy over equity shares:
 - To prevent the pre-matured termination of the project
 - How much equity share it could concede under which conditions

Renegotiation Process in Nash Equilibrium Concessions

Whenever X_t falls to one party's current $a(\cdot)$, the other entity concedes its equity shares to him to incentivize not to abandon the project.

The Ultimate Investment Policy in Nash Equilibrium

The Equilibrium Investment Policy

- The entities abandon only when everyone agrees to do so.
- Thus, the firm's $a(\cdot)$ ($\Rightarrow PV$) is either at private or social optimum
- I.e., the project terminates only when their misalignment is no more

$$a\left(\frac{v_{e}\left(\alpha_{t}\right)}{\gamma}\right) = a\left(\frac{v - v_{e}\left(\alpha_{t}\right)}{1 - \gamma}\right) = a(v)$$

where

The model

$$v \in \left\{ \underbrace{\theta}_{\text{Private Exit Payoff Social Exit Payoff}}, \underbrace{\theta + \phi}_{\text{Social Exit Payoff}} \right\}$$

depending on who are the ongoing/active investors.

Example: The Gradual Adjustment of Misalignment Black Box

Individual Firms' Investment Policies & NPVs

The Results

Termination cutoffs:

$$\underbrace{ \frac{\mathbf{a}^{pvc} = \mathbf{a}^{mix} = \mathbf{a}\left(\theta\right)}_{\text{Private Optimum}} > \mathbf{a}^{gvc} = \max \left\{ \underbrace{\frac{\mathbf{a}\left(\theta + \phi\right)}_{\text{Social Optimum}}}, \mathbf{a}\left(\frac{\theta}{\gamma}\right) \right\}$$

Project lifespans:

$$E\left[S\left[\mathbf{a}^{pvc}\right] \wedge \tau\right] = E^{x}\left[S\left[\mathbf{a}^{mix}\right] \wedge \tau\right] < E^{x}\left[S\left[\mathbf{a}^{gvc}\right] \wedge \tau\right]$$

- Financial NPVs and Innovation Literature:
 - Maximum private/financial value: pure-PVC & mixed funding (Private (Lerner; 1999, GM; 2014b, BDH; 2015, BT; 2015)
 - Lower under pure-GVC funding Social (CM; 2006, GM; 2014a, BEH; 2010, Li; 2022, BT; 2015)

Example: Cutoffs & Lifespans

The Results

Industry-Level Qualities & Performances

The minimum level of initial project quality Funding Hurdle

$$h^{gvc} < h^{mix} < h^{pvc}$$

The average initial quality of VC-backed firms in the market:

$$E(x|h^{gvc}) < E(x|h^{mix}) < E(x|h^{pvc})$$

3 The average failure rates in the market (Brander et al., 2010, 2015):

$$E\left[\pi_{a}\left(x;a\right)|h\right]^{gvc} > E\left[\pi_{a}\left(x;a\right)|h\right]^{mix} > E\left[\pi_{a}\left(x;a\right)|h\right]^{pvc}$$

provided that the density of x is sufficiently right-skewed.

The Results

Industry-Level Qualities & Performances

The Results

• The average return rates conditional on success (Pierrakis & Saridakis; 2017):

$$E\left[RoR_{\tau}\left(x;\mathbf{a}\right)|h\right]^{gvc} < E\left[RoR_{\tau}\left(x;\mathbf{a}\right)|h\right]^{mix} < E\left[RoR_{\tau}\left(x;\mathbf{a}\right)|h\right]^{pvc}$$

due to

- A longer lifespan (⇒ more costs);
- More relaxed entry condition (⇒ lower qualities)

Reverted orders for individual unconditional mean RoR:

$$RoR(x; a^{pvc}) = RoR(x; a^{mix}) < RoR(x; a^{gvc})$$

due to a longer lifespan (\Rightarrow lower individual failure rate).

Equity Allocations

The Results

Under pure PVC and mixed funding, ENT's share over time Equity Path

$$\alpha_t^{pvc}, \ \alpha_t^{mix} \rightarrow \gamma$$

where γ is the fraction of ongoing costs to ENT.

- Passive GVCs' entry do not change the ownership allocations.
 - ⇒ Crowd in PVC activities (Lerner; 1999)

Equity Allocations

The Results

Under pure GVC funding, ENT's share over time Equity Path

$$\alpha_t^{\mathit{gvc}} \rightarrow \min\left\{1, \gamma\left(1 + \frac{\phi}{\theta}\right)\right\} > \gamma$$

- Active GVCs provide more founder-friendly contract terms.
 - ⇒ Crowd out PVC activities (Brander, Egan, & Hellman; 2010)

Example: An Entrepreneur's Share over Time

The Results

The Key Findings

Conclusion

- How a general VC-financing operates:
 - Maximizes the sum of its ongoing investors' values;
 - Hence, the public-private partnership determines the rest outcomes

- For individual startups:
 - $\bullet \ \, \mathsf{Active} \,\, \mathsf{GVC} \,\, \mathsf{roles} \Rightarrow \mathsf{SW}\text{-}\mathsf{maximization}; \, \mathsf{economically} \,\, \mathsf{suboptimal} \,\,$
 - \bullet Passive GVC roles \Rightarrow PV-maximization; Identical to PVC-funding cases
- GVC participation affects the industry through
 - A relaxed entry hurdle;
 - A prolonged project lifespan (only when it is actively involved)

Summary: The Paper's Contribution

- 1 Theoretical ground on the previous literature's insights:
 - Lerner (1999); BDH (2015); Bertoni & Tykova(2015)
- 2 Identifies the key source of the mixed outcomes in empirical studies:
 - The public-private partnership structures within startups
- The dynamic model gives straightforward results:
 - The misaligning incentives are irrelevant to the firm's operation
 - ⇒ Straight access to analyzing its outcomes

Pure PVC Financing Cases Problem

Appendix: The models

Ent:
$$\max_{T^e, D_t} E^x \left[\underbrace{1_{\{\tau < T^e \land T^{pvc}\}} e^{-r\tau} \alpha_t \theta}_{\text{completion payoff}} - \underbrace{\int_0^{T^e \land T^{pvc} \land \tau}_{\text{required costs}} \gamma e^{-rt} dt}_{\text{required costs}} \right]$$

PVC:
$$\max_{T^{pvc}, U_t} E^{x} \begin{bmatrix} 1_{\{\tau < T^{e} \wedge T^{pvc}\}} e^{-r\tau} (1 - \alpha_t) \theta \\ -\int_{0}^{T^{e} \wedge T^{pvc} \wedge \tau} (1 - \gamma) e^{-rt} dt \end{bmatrix} - I$$

subject to

$$\alpha_{t} = \kappa + U_{t} - D_{t}$$

$$T^{j} = S\left[a^{j}\right] := \inf\left\{t \left| X_{t} < a^{j}\right.\right\} \quad (j \in \{e, pvc\})$$

Pure GVC Financing (Active GVC) Cases Problem

Appendix: The models

Ent:
$$\max_{T^e, D_t} E^{\times} \left[\underbrace{1_{\{\tau < T^e \wedge T^{gvc}\}} e^{-r\tau} \alpha_t \theta}_{\text{completion payoff}} - \underbrace{\int_0^{T^e \wedge T^{gvc} \wedge \tau}_{\text{required costs}} \gamma e^{-rt} dt}_{\text{required costs}} \right]$$

GVC:
$$\max_{T \text{gvc}, U_t} E^{x} \begin{bmatrix} 1_{\{\tau < T^{e} \land T \text{gvc}\}} e^{-r\tau} \left[(1 - \alpha_t) \frac{\theta}{\theta} + \phi \right] \\ - \int_{0}^{T^{e} \land T \text{gvc}} \land \tau} (1 - \gamma) e^{-rt} dt \end{bmatrix} - I$$

$$T^{j} = S\left[a^{j}\right] := \inf\left\{t\left|X_{t} < a^{j}\right.\right\} \quad (j \in \{e, gvc\})$$

Mixed Funding (Passive GVC) Cases Problem

Appendix: The models

Ent:
$$\max_{T^e, D_t} E^x \left[\underbrace{1_{\{\tau < T^e \wedge T^{pvc}\}} e^{-r\tau} \alpha_t \theta}_{\text{completion payoff}} - \underbrace{\int_0^{T^e \wedge T^{pvc} \wedge \tau}_{\text{required costs}} \right]$$

$$\text{PVC:} \ \max_{T^{pvc}, U_t} E^x \left[\begin{array}{c} \mathbf{1}_{\{\tau < T^{e} \wedge T^{pvc}\}} e^{-r\tau} \left(1 - \alpha_t\right) \theta \\ - \int_0^{T^e \wedge T^{pvc} \wedge \tau} \left(1 - \gamma\right) e^{-rt} dt \end{array} \right] - kI$$

$$\mathrm{GVC}\colon \mathit{E}^{x}\left[1_{\tau<\textcolor{red}{\mathsf{T^{pvc}}}}e^{-r\tau}\phi\right]-\left(1-k\right)\mathit{I}$$

Strategic Concessions over Time Problem

The model

• Given the equity allocation at t, the misalignment:

$$\underbrace{\frac{a\left(\frac{V_{e}\left(\alpha_{t-}\right)}{\gamma}\right)}{ENT's}} > \underbrace{\frac{a\left(\frac{v-V_{e}\left(\alpha_{t-}\right)}{1-\gamma}\right)}{VC's}}$$

When the project state goes bad, conflict emerge onto the surface:

$$\frac{\mathsf{a}\left(\frac{\mathsf{v}-\mathsf{v}_\mathsf{e}\left(\alpha_{t-}\right)}{1-\gamma}\right) < \mathsf{X}_t < \frac{\mathsf{a}\left(\frac{\mathsf{v}_\mathsf{e}\left(\alpha_{t-}\right)}{\gamma}\right)$$

One party concedes its shares to the other up to

$$\alpha_{t} > \alpha_{t-} \Rightarrow X_{t} = \frac{a}{a} \left(\frac{v_{e} \left(\alpha_{t} \right)}{\gamma} \right)$$

3 A new contract term α_t remains until X_t hits one party's new cutoff.

Appendix: The models

$$X_{T^*} = S\left[a\left(\frac{\left(1 - \alpha_{T^*}\right)\theta}{1 - \gamma}\right)\right] = S\left[a\left(\frac{\alpha_{T^*}\theta}{\gamma}\right)\right] = S\left[a\left(\theta\right)\right] \Longleftrightarrow \alpha_{T^*} = \gamma$$

Financial:
$$E^{x}\left[1_{\tau < S[a(\theta)]}e^{-r\tau}\theta - \int_{0}^{S[a(\theta)]\wedge\tau}e^{-rt}dt\right] = PV(x, 1, \theta)$$

$$\mathrm{Social:}\ E^{x}\left[1_{\tau < S\left[\mathbf{a}(\theta)\right]}e^{-r\tau}\left(\theta + \phi\right) - \int_{0}^{S\left[\mathbf{a}(\theta)\right] \wedge \tau}e^{-rt}dt\right] < PV\left(x, 1, \frac{\theta}{\theta} + \phi\right)$$

Appendix: The models

$$X_{T^*} = S\left[\frac{a}{a}\left(\frac{(1-\alpha_{T^*})\frac{\theta}{\theta} + \phi}{1-\gamma}\right)\right] = S\left[\frac{a}{a}\left(\frac{\alpha_{T^*}\theta}{\gamma}\right)\right] = S\left[\frac{a}{a}\left(\frac{\theta}{\gamma} + \phi\right)\right]$$

$$\iff \alpha_{T^*} = \gamma\left(1 + \frac{\phi}{\theta}\right)$$

$$\text{Financial: } E^{\times} \left[\mathbf{1}_{\tau < S[\mathbf{a}(\theta + \phi)]} e^{-r\tau} \theta - \int_{0}^{S[\mathbf{a}(\theta + \phi)] \wedge \tau} e^{-rt} dt \right] < PV\left(x, 1, \theta\right)$$

Social:
$$E^{x} \left[1_{\tau < S[a(\theta + \phi)]} e^{-r\tau} \left(\theta + \phi \right) - \int_{0}^{S[a(\theta + \phi)] \wedge \tau} e^{-rt} dt \right]$$

= $PV(x, 1, \theta + \phi)$

