A MODEL OF THE DATA ECONOMY

Laura Veldkamp

Maryam Farboodi

IS THE DATA ECONOMY NEW?

- the economy is changing and we need new tools!
 - the largest firms are valued primarily for their data
 - do the economics change? or is data just new capital?
- challenges
 - economic activity generates informative data production/transaction is a form of active experimentation
 - data is a non-rival good whose value declines when it is sold
 - $\rightarrow \text{semi-rival}$
 - value of data: a piece of data is used for multiple periods, how much is it valued?
 - ⇒ dynamic programming with information as a state variable
 - data depreciation rate depends on economic conditions

A MACRO MODEL OF DATA

- A continuum of competitive firms i uses capital $k_{i,t}$ to produce $k_{i,t}^{\alpha}$ units of goods
- Quality of goods depends on chosen production technique $a_{i,t}$ and distance to optimum $(\theta_t + \varepsilon_{a,i,t})$:

$$A_{i,t} = g\left((a_{i,t} - \theta_t - \varepsilon_{a,i,t})^2\right)$$

g'(.) < 0 (accuracy is good)

- The optimal technique $\theta_t + \varepsilon_{a,i,t}$ changes over time.
 - θ_t : AR(1), innovation $\eta_t \sim N(\mu, \sigma_{\theta}^2)$

$$\theta_t = \bar{\theta} + \rho(\theta_{t-1} - \bar{\theta}) + \eta_t$$

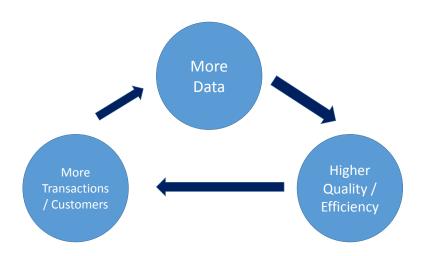
- $\varepsilon_{a.i.t} \sim N(0, \sigma_a^2)$ is unlearnable and i.i.d.
- Demand: Price is decreasing in aggregate output.

MODEL: DATA IS INFORMATION FOR FORECASTING

- at time t, firm obtains $n_{i,t}$ data points about θ_{t+1}
 - ▶ data is a byproduct of production with **data-mining ability** z_i
 - $n_{i,t} = z_i k_{i,t}^{\alpha}$
- each data point $m \in [1 : n_{i,t}]$ reveals

$$s_{i,t,m} = \theta_{t+1} + \xi_{i,t,m}$$
 where $\xi_{i,t,m} \sim N(0,\sigma_{\varepsilon}^2)$

DATA FEEDBACK LOOP



MODEL: MARKET FOR DATA

- $\delta_{i,t}$: amount of data traded by firm *i* at time *t*
 - $\delta_{i,t} > 0$: data purchases (< 0: data sales)
 - firm can buy or sell, not both
- data price π_t clears the data market
- multi-use data: firm can sell it and still use it
 - ι : fraction of sold data that is lost $(\iota > 0)$
 - many data contracts include prohibitions on seller use, or this captures imperfect competition
- data adjustment cost: $\Psi(\cdot)$: avoid 1-period convergence

RESULTS OVERVIEW

- Data is an asset: depreciate and value it
- Long run
 - no long-run growth without innovation
- Short run
 - increasing returns, negative initial losses
 - data barter
- Welfare and business stealing

The contribution is a tool.

Realistic predictions support the idea that the framework is useful.

HOW DOES DATA DEPRECIATE?

- Ex: Data to forecast an AR(1): $\theta_{t+1} = \rho \theta_t + \eta_{t+1}$, $\varepsilon_{t+1} \sim N(0, \sigma_{\theta}^2)$.
- Precision: $V[\theta_t|\mathscr{I}_t]^{-1} := \Omega_t$. Call this a "stock of knowledge."
- Prior variance of tomorrow's state: $V[\theta_{t+1}|\mathcal{I}_t] = \rho^2 \Omega_t^{-1} + \sigma_\theta^2$.
- If data forecasts θ_{t+1} , then a data point is: $s_t = \theta_{t+1} + e_{st}$.
- Bayes law for normals says: t+1 precision Ω_{t+1} is prior precision plus precision of n_s data points $n_s \sigma_s^{-2}$.

$$\Omega_{t+1} = \underbrace{(\rho^2 \Omega_t^{-1} + \sigma_\theta^2)^{-1}}_{\text{depreciated } t \text{ data}} + \underbrace{n_s \sigma_s^{-2}}_{\text{new data inflows}}$$

Similar to
$$k_{t+1} = (1 - \delta)k_t + i_t$$
, where $\delta = 1 - (\rho^2 + \sigma_\theta^2 \Omega_t)^{-1}$.

• Data depreciates faster when it's abundant Ω_t and the environment has volatile innovations σ_{θ}^2 .

VALUING DATA: A RECURSIVE SOLUTION

- $a_{i,t}^* = \mathbb{E}[\theta_t + \varepsilon_{i,t} | \mathscr{I}_{i,t}] o \mathsf{Quality} \ A_{i,t} \approx \mathsf{a} \ \mathsf{fn} \ \mathsf{of} \ \mathsf{squared} \ \mathsf{forecast} \ \mathsf{error}$
- state variable: stock of knowledge

$$\Omega_{i,t} \equiv \mathbb{E} \big[\big(\mathbb{E}[\theta_t | \mathscr{I}_{i,t}] - \theta_t \big)^2 | \mathscr{I}_{i,t} \big]^{-1}$$
 (posterior precision)

LEMMA

optimal sequence of capital / data choices $\{k_{i,t}, \delta_{i,t}\}$ solves:

$$V(\Omega_{i,t}) = \max_{k_{i,t}, \delta_{i,t}} P_t \mathbb{E}_i \left[A_{i,t}(\Omega_{i,t}) \right] k_{i,t}^{\alpha} - \Psi(\Delta \Omega_{i,t+1}) - \pi_t \delta_{i,t} - r k_{i,t} + \frac{V(\Omega_{i,t+1})}{1+r}$$

where (depreciated data + data inflows)

$$\Omega_{i,t+1} = \left\lceil \rho^2 (\Omega_{i,t} + \tilde{\sigma}_a^{-2})^{-1} + \sigma_\theta^2 \right\rceil^{-1} + \left(z_i k_{i,t}^{\alpha} + \delta_{i,t} (\mathbf{1}_{\delta_{i,t} > 0} + \iota \mathbf{1}_{\delta_{i,t} < 0}) \right) \sigma_\varepsilon^{-2}$$

SEMI-RIVALRY AND DATA MARKET

- benefit to buying one unit of data: $V'(\Omega_t) \pi_t$
- cost of selling one unit of data: $-\iota V'(\Omega_t) + \pi_t$
- negative bid-ask spread
- effective price of data

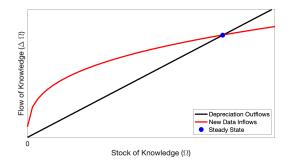
$$\pi_{i,t} = rac{\pi_t}{\mathbf{1}_{\delta_{i,t}>0} + \iota \mathbf{1}_{\delta_{i,t}<0}}$$

data market active even in steady state with identical firms

UNDERSTANDING GROWTH. DATA INFLOWS AND OUTFLOWS

• **inflow**: $z_i k_{it}^{\alpha} \sigma_{\varepsilon}^{-2}$ (# of data points × precision)

• outflow: data depreciation



ullet steady state: inflows = outflows \to growth stops

How General is Diminishing Returns?

PROPOSITION

For sustained growth $g_t > g > 0$, both most hold:

- **Infinite output from one-period-ahead forecasts** There exists a level of forecast error \underline{v} where the quality function approaches infinity, $\lim_{v \to \underline{v}} g(v) = \infty$
- **No fundamental randomness**The state $\theta_{t+1} + \varepsilon_{t+1}$ has no time-t fundamental randomness the future must be a deterministic function of time-t observables.

ENDOGENOUS GROWTH

alternative quality formulation: data for idea creation

$$A_{i,t} = A_{i,t-1} + \max\{0, \hat{\Delta}A_{i,t}\}$$
$$\hat{\Delta}A_{i,t} = \bar{A} - (a_{i,t} - \theta_t - \varepsilon_{a,i,t})^2$$

- data increases step size in a quality ladder → growth
- data reduces the variance: R&D that focuses on risk-reduction

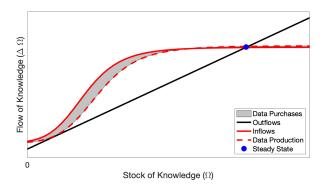
Data used for R&D needs to be measured separately Long run: data looks similar to capital.

SHORT RUN: INCREASING RETURNS

single firm enters a steady state

PROPOSITION (CONVEX DATA FLOW)

there exist parameters such that when knowledge is scarce $\Omega_{it} < \hat{\Omega}$, net data flow $d\Omega_{it}$ increases over time.



DATA BARTER. WHY PRODUCE AT A LOSS?

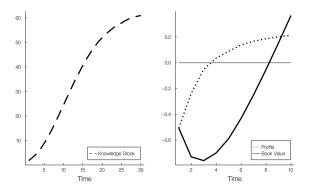
- barter: data is "exchanged" for the good
 - ▶ at good price P_t = 0
- result: data barter arises early in a firm's life
 - firms produce goods at a loss to generate data

$$\partial V_t/\partial \Omega_{i,t} > 0$$

- reality: lots of data is bartered for services (phone apps)
 Lots of partial data barter from firms that want more data.
- GDP is missing lots of digital economic activity because price does not reflect the value of the transaction.

INITIAL LOSSES AND LOW BOOK-TO-MARKET

Our data firms look like tech firms:



- Early profit losses are an investment in data (Amazon, Uber, ...).
- Book value: only includes purchased data
- But market value is high because data stock is valuable!

WELFARE: DECENTRALIZED PROBLEM

Household problem

$$\max_{c_t,m_t} \sum_{t=0}^{+\infty} \frac{u(c_t) + m_t}{(1+r)^t}$$
s.t. $P_t c_t + m_t = \Phi_t = \text{aggregate profits of all firms}$ $\forall t$

Two types of firms: efficient and inefficient data-miners

$$\max_{\{k_{i,t},\delta_{i,t}\}_{t=0}^{\infty}} V(0) = \sum_{t=0}^{+\infty} \frac{1}{(1+r)^{t}} \left(P_{t} \mathbb{E}[A_{i,t}|\mathscr{I}_{i,t}] k_{i,t}^{\alpha} - \Psi(\Delta\Omega_{i,t+1}) - \pi_{t} \delta_{i,t} - r k_{i,t} \right)$$

$$\Omega_{i,t+1} = \left[\rho^{2} (\Omega_{i,t} + \sigma_{a}^{-2})^{-1} + \sigma_{\theta}^{2} \right]^{-1} + \left(z_{i} k_{it}^{\alpha} + \delta_{it} (\mathbf{1}_{\delta_{it} > 0} + \iota \mathbf{1}_{\delta_{it} < 0}) \right) \sigma_{\varepsilon}^{-2}$$

Market clearing

$$\begin{split} c_t &= \lambda A_{L,t} k_{L,t}^\alpha + (1-\lambda) A_{H,t} k_{H,t}^\alpha & \text{(retail good)} \\ m_t + r \left(\lambda k_{L,t} + (1-\lambda) k_{H,t} \right) + \Sigma_i \lambda_i \Psi(\Delta \Omega_{i,t+1}) = 0 & \text{(numeraire good)} \\ \lambda \, \delta_{L,t} + (1-\lambda) \delta_{H,t} &= 0 & \text{(data)} \end{split}$$

Solution conincides with social planner solution. Efficiency!

Data as a Business Stealing Technology

- Of course, there are inefficiencies lots of data used for advertising.
- Suppose data processing helps the firm that uses it, but has no social value (keeing up with Joneses externality). Morris-Shin (2002)

$$A_{i,t} = \bar{A} - \left(a_{i,t} - \theta_t - \varepsilon_{a,i,t}\right)^2 + \int_{j=0}^1 \left(a_{j,t} - \theta_{j,t} - \varepsilon_{a,j,t}\right)^2 dj$$

- equilibrium unchanged, welfare changed
 - inefficient capital choice: over-investment in capital
 - inefficient data choice: over-supply of data → too much trade

CONCLUSIONS

- macroeconomics of big data
- knowledge economies have quirky features:
 economic transactions generate data, semi-rivalry, data
 accumulation and depreciation, increasing and decreasing returns
- flexible tool that captures many features of the data economy: endog growth, data platforms, data barter, business stealing, welfare
- lots of new directions to explore:
 measurement, data pricing and valuation theory, firms dynamics
 with entry/exit, imperfect competition, optimal policy...

STEADY STATE DATA MARKET: SINGLE TYPE OF FIRM

non-exclusivity of data: no data trade is not an equilibrium

 $V'(\Omega^{ss})=$ marginal value of one unit of data in a no trade/symmetric eq marginal cost of selling one unit $=\iota \times$ marginal benefit of buying one unit

 \Rightarrow **no symmetric equilibrium:** λ^* fraction of firms buy, $1 - \lambda^*$ sell λ^* determined endogenously

$$egin{align} \Omega_s^{ss} < \Omega_b^{ss}, & rac{dV'(\Omega)}{d\Omega} < 0 \ & \pi = rac{\imath}{1+r} V'(\Omega_s^{ss}) = rac{1}{1+r} V'(\Omega_b^{ss}) \end{aligned}$$

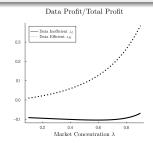
SS DATA MARKET: TWO TYPES OF FIRMS SPECIALIZATION & CONCENTRATION

• data mining ability: $z_L < z_H$, $\lambda =$ measure of z_L firms

PROPOSITION (DATA EFFICIENT FIRMS ACCUMULATE LESS KNOWLEDGE & SPECIALIZE IN DATA SALES)

For sufficiently low ι , $\Omega_H < \Omega_L$.

- few efficient data producers
 - ≡ high concentration
 - ⇒ more specialization



distributional consequences of data economy is different from capital economy

