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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

WHY DOES MACHINE LEARNING WORK FOR RETURN PREDICTABILITY?

... and what does it mean for financial markets?

Outline
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MOTIVATION: BETTER PREDICTIONS UNDER COMPLEXITY.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MACHINE LEARNING WORKS FOR RETURN PREDICTABILITY

Empirical literature (Gagliardini and Ma, 2019; Gu, Kelly, and Xiu, 2020, 2021; Ma, 2021)

Table 1: Predicting individual stocks in Gu et al. (2020).

Curated OLS benchmark Principal component reg. Neural net

Predictors 3 900+ 900+
Monthly OOS R2 0.16% 0.26% 0.40%

−→ better return predictions under complexity (i.e. partially unknown and high
dimensional environment).
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MACHINE LEARNING WORKS FOR RETURN PREDICTABILITY

In markets

Figure 1: ”The stockmarket
is now run by computers,
algorithms and passive
managers”, Economist,
2019.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

GAP IN THEORETICAL LITERATURE FOCUSED ON BIG DATA RATHER THAN ML

Learning in financial markets (Lewellen and Shanken, 2002)

• Parameter uncertainty.

• Return predictability: conditional vs unconditional moments.

Big data in financial markets

• Supply and demand for data (Dessaint, Foucault, and Frésard, 2020; Dugast and
Foucault, 2020; Farboodi, Matray, Veldkamp, and Venkateswaran, 2020; Farboodi and
Veldkamp, 2020).

• Parameter uncertainty high dimensionality (Martin and Nagel, 2021).
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

GAP IN THEORETICAL LITERATURE FOCUSED ON BIG DATA RATHER THAN ML

Missing features

(i) “Let the data speak”: true model unknown→ function approximation.

(ii) Over-fitting vs under-fitting: bias-variance trade-off→ optimal bias.

(iii) Technology as cure for curse of dimensionality: Cost of complexity.

Related work by Kelly, Malamud, and Zhou (2022) focuses on the virtue of complex
models.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

WHAT I DO IN THIS PAPER

1) Formalize function approximation as a prediction friction:

(ii) Non-zero optimal bias.
(iii) Endogenous cost of complexity.

2) Embed in models of trading, impact on measures of market efficiency in equilibrium.

3) Find limits to interpretability of OOS return predictability, additional variation required.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MECHANISM: FUNCTION APPROXIMATION AS PREDICTION

FRICTION.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MIRROR STRUCTURE IN EMPERICAL APPLICATIONS OF ML

Figure 2: Figure 2 from Gu et al. (2021) with my highlights. Estimation of factors and factors
loadings are separated in to two sub-problems connected by the interaction in the dot product.

5



Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

DECOMPOSE COMPLEXITY INTO UNKNOWN MODEL AND HIGH-DIMENSIONALITY

Pay-off y, factors q, factor loadings β, and cond. expectation given signals ζ

y = β>q, q ∼ N (µq,Σq), ζ = E[q|s] ∼ N (µq,Σζ), and Ωζ = E[ζζ>].

Investors must estimate β̂ from noisy data.

Choose controls c: bias εβ = fε(c) and vol σβ = fσ(c) to min mse of predictor ŷ = β̂
>
ζ

min
c

E[{y− β̂(c)>ζ}2] = min
c
ε>β Ωζεβ︸ ︷︷ ︸

Bias squared

++ Var[y|β, s]︸ ︷︷ ︸
Irreducible noise

s.t. f ′ε(ci)f ′σ(ci) < 0, fσ(ci) > 0 ∀ci ∈ c.

Linear-affine functions fε(ci) = kεci, fσ(ci) = kσ0 + kσci

−→ unique solution exists under the feasibility constraint Ωζ1 > 0.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

EXPLICIT SOLUTIONS FOR NON-ZERO OPTIMAL BIAS AND COST OF COMPLEXITY

Minimized mse as cost of complexity χ vs conditional variance under true model

min
c
ε>β Ωζεβ︸ ︷︷ ︸

Bias squared

+σ>β DΩζ
σβ︸ ︷︷ ︸

Variance

+ Var[y|β, s]︸ ︷︷ ︸
Irreducible noise

:= χ(c∗)︸ ︷︷ ︸
cost of complexity

+ Var[y|β, s]︸ ︷︷ ︸
cond var true model

,

χ = k2
σ0︸︷︷︸

est.
difficulty

1>X−11, where X = k2
c︸︷︷︸

est. tech
quality

Ω−1
ζ + D−1

Ωζ
and kc = kσ/kε

Optimal bias εβ |c=c∗ = −k−1
c kσ0

{
I −D−1

Ωζ
X−1

}
1 ≥ 0, only approx zero as kc → 0.

Cost of complexity increases in the number of signals/data sources ns

χns ≥ χns−1, and Var[y|β, sns ] ≤ Var[y|β, sns−1].
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

VALUE OF MORE DATA DEPENDS ON RELATIVE INCREASE IN COST OF COMPLEXITY

New data sources parametrized by kS in Ωζ = Ωζ0 + kSS.

(a) Easier estimation (baseline) kσ0 = 0.3 (b) Harder estimation (baseline) kσ0 = 0.6

Figure 3: Mean squared error of predictor decreasing or increasing in addition of new data sources.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MAIN RESULT: OOS RETURN PREDICTABILITY.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

TWO SOURCES OF PREDICTABILITY DISTINGUISHED THROUGH HETEROGENEITY

Figure 4: Time-line for predictions of returns generated by adapted Grossman and Stiglitz (1980).
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

TWO SOURCES OF PREDICTABILITY DISTINGUISHED THROUGH HETEROGENEITY

Returns in adapted Grossman and Stiglitz (1980)

r = y− p = (1− λp)(y− E[ŷI]︸ ︷︷ ︸
uninformed

) + λp(y− ŷI︸ ︷︷ ︸
informed

) + λp ψ
−1
I z︸ ︷︷ ︸

stoch.
supply

,

λp ≤ 1 : price responsiveness, ψI : informed investors’ aggressiveness

Assume |kI
c| < |ke

c| such that sI ⊆ se, only used by econometrician is s̃e.

Econometricians’ expected projection

E
[

Ẽ[r|ke
c, se]

∣∣∣ se

]
= (εβ − εβe)

>µq +
{
λpεβ − εβe + (1− λp)β

}>
ΛI(sI − E[sI])

+ (β − εβe)
>Λẽ(sẽ − E[sẽ]) where Λ` = ∂E[q|s`]/∂s`.

Differences in non-zero optimal bias, lower cost of complexity. Variation in λp.

9



Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

TWO SOURCES OF PREDICTABILITY DISTINGUISHED THROUGH HETEROGENEITY

Returns in adapted Grossman and Stiglitz (1980), returns in representative agent model

r = y− p = (1− λp)(y− E[ŷI]︸ ︷︷ ︸
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informed

) + λp ψ
−1
I z︸ ︷︷ ︸

stoch.
supply

,

λp ≤ 1 : price responsiveness, ψI : informed investors’ aggressiveness

Assume |kI
c| < |ke

c| such that sI ⊆ se, only used by econometrician is s̃e.

Econometricians’ expected projection

E
[
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

IMPROVING EST. TECH. LOWERS COST OF COMPLEXITY → SIGNAL INCLUSION

Set-up: 2 factors, 4 signals: 2 used by investors (sI1, sI2), 2 ignored (s̃e1, s̃e2).

(a) Lower price responsiveness, λp ≈ 0.75 (b) Higher price responsiveness, λp ≈ 0.90

Figure 4: Expected coefficients of econometricians’ projection.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

UNCONDITIONAL EXP. RETURNS INCREASING IN DIFFERENCE IN OPTIMAL BIAS

(a) Econometricians’ bias (b) Projection constant

Figure 5: Bias and unconditional expected returns over econometricians’ estimation technology.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

MORE: PATTERNS IN EQUITY RISK PREMIUM PREDICTABILITY.
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Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

PREDICTIVE OUT-PERFORMANCE FOLLOWED BY UNDER-PERFORMANCE

Match pattern by calibrating change in |kI
c| between the two periods.

Result: |kI
c2|/|kI

c1| − 1 ≈ 233% and εβi,2/εβi,1 − 1 ≈ 82% ∀i, increasing bias.

(a) Rolling regressions (b) Calibrated coefficients, 2 periods

Figure 6: Ten predictors from Welch and Goyal (2008), updated data. 12



Motivation: Better predictions under complexity. Mechanism: Function approximation as prediction friction. Main result: OOS return predictability. More: Patterns in equity risk premium predictability.

CONCLUSION

Complexity is missing in standard framework of learning in financial markets.

Function approximation as a prediction friction generates missing features:

• Optimal bias.

• Cost of complexity.

OOS return predictability is not sufficient to draw conclusions about asset pricing models.

13



OTHER MEASURES OF MARKET EFFICIENCY



PREDICTION FRICTION COVERS MISSING FEATURES

(i) Pay-off as dot-product with unknown factor loadings on well-behaved factors

ŷ︸︷︷︸
prediction

= β̂
>︸︷︷︸

estimate

ζ where ζ = E[q|s] ∼ N (µq,Σζ),

minimize mean squared error min
c

E
[
{y− β̂(c)>ζ}2

]

, = χ︸︷︷︸
cost of

complexity

+ Var[y|β, s]

for bias εβ(c) = E
[
β − β̂(c)

]
6= 0 and variance Var[β̂(c)] = σβ(c)>Rβσβ(c).

(ii) Non-zero optimal bias.

(iii) Endogenous cost of complexity decreasing in weakness of trade-off (technology).
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PRICE VOLATILITY

Excess price variance

Representative agent

Var[p]− Var[y] = Var[ŷI]− Var[y] = χ︸︷︷︸
cost of complexity

−Var [y|β, sI]− 2β>Σζεβ ,

Heterogeneous agents

Var[p] = λ2
pVar[sU] = λ2

p
{

Var[ŷI] + ψ−2
I σ2

z
}
,

where ψ−2
I = α2

I {χ+ Var[y|β, sI]}2



PRICE INFORMATIVENESS I

Planner’s maximization of price informativeness heterogeneous agents

min
c

E
[
(y− E[y|p,β])2

]−1
= min

c

β>Σqβ −

{
β>Σζµβ(c)

}2

Var[ŷI(c)] + {ψI(c)}−2σ2
z


−1

,

where

Var[ŷI]− Var [E[y|β, sI]] = χ− 2β>Σζεβ , Cov[y, ŷI]
2 = (Var [E[y|β, sI]]− β>Σζεβ)

2,

ψ−2
I = α2

I {χ+ Var[y|β, sI]}2
.



PRICE INFORMATIVENESS II

Convergence with better technology k2
c not stronger new signal (data-source) kS under

hard estimation scenario.

(a) Econometricians’ bias (b) Projection constant

Figure 7: Comparative statics for price informativeness optimized by investors (Private) or Planner.



ESTIMATION PARAMETERS

Minimized mse as cost of complexity χ vs cost of simplicity

min
c
ε>β Ωζεβ︸ ︷︷ ︸

Bias squared

+σ>β DΩζ
σβ︸ ︷︷ ︸

Variance

+ Var[y|β, s]︸ ︷︷ ︸
Irreducible noise

:= χ︸︷︷︸
cost of complexity

+ Var[y|β, s]︸ ︷︷ ︸
cost of simplicity

,

χ = k2
σ01>X−11, where X = k2

cΩ
−1
ζ + D−1

Ωζ
and kc = kσ/kε

Interpretation of parameters

kσ0: baseline estimation difficulty
E[(y− ŷ)2]c=0 = k2

σ01>DΩζ
1 + Var[y|β, s]

k2
c : estimation technology quality (‘machine learning parameter’)

∂χ/∂k2
c < 0, lim

k2
c→∞

χ = 0



ROBUST LINEAR DEMAND

Demand is linear in the difference between prediction and price and derived from
maximizing the expectation of the scaled profit function π̃i(y) := αi(y− p) applied to the
prediction ŷi with an uncertainty adjustment for the fact that investors optimize estimated
rather than true profits.

δi = argmax π̃i(ŷi)−
1
2

E
[
(π̃i(y)− π̃i(ŷ))

2
]
= ψi (ŷi − p) ,

where ψi =
{
αiE

[
(y− ŷ)2

]}−1
.

For simplicity, assume that investors know the true mean squared error.



ASSET PRICING WITH COMPLEXITY

Return predictability OOS: Improving technology→ different optimal bias and lower cost
of complexity→ (potentially) larger information set.

Price volatility: Noise in estimation drives excess, bias is ambiguous with high
dimensionality.

Price informativeness: wedge between socially and privately optimal estimator.

Heterogeneous agents (Grossman and Stiglitz, 1980)

Value of information: Informed predictions are not always better.

Price reversals (price pressure): Estimation errors similar to liquidity demand but differ in
relation to price volatility (not trading volume).

Fund performance: Under-performance of informed investors ‘predicted’ ex-post by
over-optimism.



MACHINE LEARNING IN ASSET PRICING WITH COMPLEXITY

Optimal bias: Best prediction vs unbiasedness→ contrasting views under the model:

Investors’ inference is well-modelled as an unbiased (potentially inefficient) estimator,
econometricians’ machine learning ‘predicts’ its own bias.
Investors’ inference is optimally biased and any technology faces the challenge of
‘predicting’ differences in bias.

Cost of complexity: Technological developments leads to discovery of ignored
information.

Empirical implication: OOS predictability might be necessary but is not sufficient to draw
conclusions about asset pricing models. Time-series and cross-sectional analysis of
predictability. Prediction of non-market data.

Example: Extension to heterogeneous agents, distinguish ignored information from bias
through variation in market digestion (in model: liquidity demand/noise trading).



WHAT I DO

1) Close the gap with new mechanism

2) Derive implications for measures of market efficiency:
• return predictability (IS and OOS),
• price volatility,
• price informativeness,

and market health
• value of data,
• price reversal (price pressure),
• fund performance.

3) Calibrate the
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