## ASSA 2023 Session "Firm Productivity, Environment and Industrial Policies"

# Endogenous Economic Structure, Climate Change, and the Optimal Abatement Path

Authors: Hua Liao, Huiying Ye (presenter)

Center for Energy & Environmental Policy Research (CEEP),

Beijing Institute of Technology

Jan 7, 2023



## ASSA 2023 Session "Firm Productivity, Environment and Industrial Policies"

## **Outline**

- ■Background
- **■**Methodology
- **■**Results and Discussion

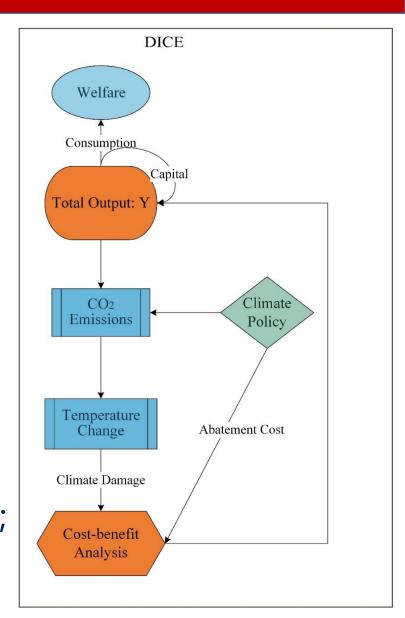


## **Background: Climate Change**

- Climate change poses great threats for both human society and ecological environment: sea level rise, temperature-related mortality, drought, biological diversity.
- According to the 6th assessment report of the Intergovernmental Panel on Climate Change (*IPCC*,2021), the global surface temperature was 1.09 °C higher in 2011-2020 than pre-industrial levels, and global warming of between 1.5 °C and 2 °C will be exceeded during the 21st century unless deep reductions in CO2 occur.
- Analytical tools are needed to find an optimal abatement path, so as to coordinate emission reduction and development, in both the short and long term.



## Background: IAM


- Address climate change is a very complicated matter of longlasting impacts and global scope. It involves multiple subjects: natural science, engineering technology, social economics et al.
- Integrated Assessment Models (IAM) through interdisciplinary modeling, couple climate and economic systems into one analytical framework, allowing for coherent analysis of social and physical processes.
- IAMs have gained a prominent role in the climate science policy interface (*Beek et al.*, 2020)



#### Background: IAM

- CGE, Scenario simulation models (Detail-Based), Intertemporal optimization models (Maro-level) (Yang, 2008).
- Compared with common economic system modeling, current IAM has more challenges:

Uncertainty and tipping point; Complex feedback between climate and economy; Long term economic structure; Game theory Mechanism; Complex Algorithm



## Background

## Economic Structure is tightly related to Carbon emissions

- Index like per capita emission (or carbon intensity) is hard to comprehensively explain the correlation between carbon emission and economic development.
- The evolution of per capita emissions or carbon intensity varies greatly between countries with similar level of economic development (per capita GDP). Economic structure plays an important role. (*Liao*, 2013)
- Endogenous economic structure has been widely studied in economic growth literature (*Herrendorf et al*,2014).



## Dynamic Interaction between Economic Structure and Climate Change

- Carbon intensity varies between sectors (Ciarli and Savona, 2019; Ramaswami et al, 2017; Fankhauser and Tol 2005)
- Climate Change causes different level of damage across sectors (Martinich and Crimmins 2019; Dell et al, 2012; Roson and Sartori, 2016)
- ◆ Macro-level Optimization IAM unable to capture such dynamic endogenous mutual feedback. DICE (Dynamic Integrated model of Climate and the Economy) built by *Nordhaus* (1992, 2017) aggregates economy into one sector. But it does not explicitly represent the role of economic structure, which may lead to different results.



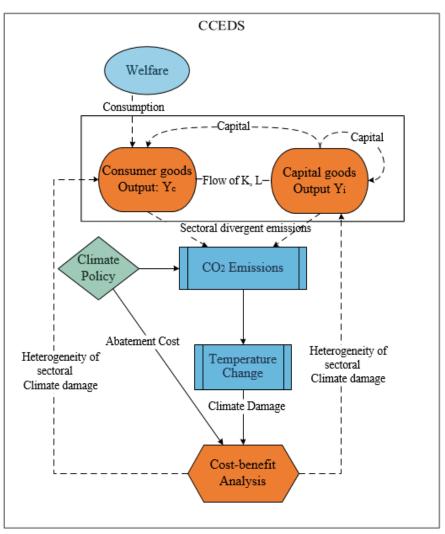
## Our Research: Incorporating two sectors in DICE one producing consumer goods, another producing capital goods

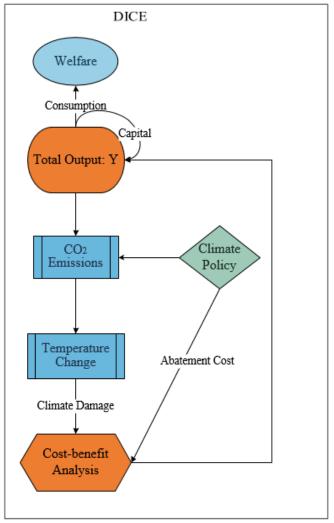
- Trade-of between simplicity and complexity: illustrate economic structure but keep the highly aggregated, transparent and macroeconomic features of the model.
- Capital and consumer goods are two basic macroeconomic sector, also is an initial extension that incorporates structural transformation (*Uzawa*, 1961; *Herrendorf et al*, 2020).
- More detailed sectoral division will be associated with greater uncertainty: dynamic mechanism, basic data, computational algorithm.
- Previous research indicates that, we can **get quite accurate** estimations for macro variables (long term economic growth, Inflation rate), but **not for more specific** variables (steel production, oil price). Thus, for long term scale research, detailed sector division faces great challenge (Smil, 2000; Liao et al., 2016).

## Capital Goods VS Consumer Goods

• Play different role in long term economic growth, and divergent carbon intensity (*Peng and Liao*, 2021).




VS




- Diverse technological progress rate: Capital goods sector is faster (Herrendorf et al, 2020).
- Expose to varies level of climate damage (Martinich and Crimmins, 2019; Casey et al, 2021).
- Different capital or labor income share (Valentinyi and Herrendorf, 2008).

#### Methodology

## Schematic of CCEDS (Coupled Climate and Economic Dynamics model with Endogenous Structure)





### Methodology

## **Key modified equations**

#### **DICE**

## Total output

#### $Y_t = \Omega_t (1 - \Lambda_t) A_t K_t^{\alpha} L_t^{1-\alpha}$

$$E_{ind,t} = (1 - \mu_t) A_{i,t} K_{i,t}^{\alpha} L_{i,t}^{1-\alpha}$$

#### $Y_t = \Omega_t (1 - \Lambda_t) A_t K_t^{\alpha} L_t^{1-\alpha}$

## division

#### Heterogeneous

#### carbon intensity

$$\Omega_i$$

$$\Omega_{i,t} = \frac{1}{1 + a_{1i}T_t + a_{2i}T_t^{a_3}}$$

$$\Omega_{i,t} = \frac{1}{1 + a_{1i}T_t + a_{2i}T_t^{a3}} \qquad \Omega_{c,t}$$

Flow of production factor

$$Y_t = p_{c,t}Y_{c,t} + Y_{i,t}$$

$$Y_{i,t} = \Omega_{i,t} (1 - \Lambda_{i,t}) A_{i,t} K_{i,t}^{\beta 1} L_{i,t}^{1-\beta 1}$$

$$Y_{c,t} = \Omega_{c,t} (1 - \Lambda_{c,t}) A_{c,t} K_{c,t}^{\beta} L_{c,t}^{1-\beta}$$

$$E_{ind,t} = (1 - \mu_t) \left( \sigma_{c,t} p_{c,0} A_{c,t} K_{c,t}^{\beta} L_{c,t}^{1-\beta} + \sigma_{i,t} A_{i,t} K_{i,t}^{\beta 1} L_{i,t}^{1-\beta 1} \right)$$

$$\Omega_{i,t} = \frac{1}{1 + a_{1i}T_t + a_{2i}T_t^{a3}}$$
 $\Omega_{c,t} = \frac{1}{1 + a_{1c}T_t + a_{2c}T_t^{a3}}$ 

$$(1 - \Lambda_{i,t})\Omega_{i,t}\alpha A_{i,t}K_{i,t}^{\beta 1 - 1}L_{i,t}^{1 - \beta 1} = p_{c,t}\beta A_{c,t}K_{c,t}^{\beta - 1}L_{c,t}^{1 - \beta}\Omega_{c,t}(1 - \Lambda_{c,t})$$

$$(1 - \Lambda_{i,t})\Omega_{i,t}(1 - \alpha)A_{i,t}K_{i,t}^{\beta 1}L_{i,t}^{-\beta 1} = p_{c,t}(1 - \beta)A_{c,t}K_{c,t}^{\beta}L_{c,t}^{-\beta}\Omega_{c,t}(1 - \Lambda_{c,t})$$



### Methodology: Calibration

Preserve most of the parameter values from DICE-2016R, except those reflecting the heterogeneity between the two sectors

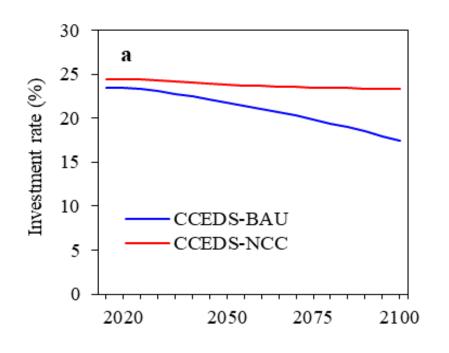
- Capital Income Share: 0.4(capital goods sector), 0.25(consumer goods sector)
- TFP Progress: Capital goods sector is 1.5 times that of consumer goods sector. The aggregate growth rate in base year is consistent with DICE-2016R
- Heterogeneous Carbon Intensity: Capital goods sector is 2 times that of consumer goods sector. The aggregate intensity in base year is consistent with DICE-2016R
- Heterogeneous Climate Damage: Capital goods sector is 1.3 times that of consumer goods sector. , The aggregate damage in base year is consistent with DICE-2016R (Roson and Sartori, 2016; Timmer et al, 2015)
- Sectoral Output in base year: investment rate, total output is consistent with DICE-2016R
- Other Trends on Parameters is consistent with DICE

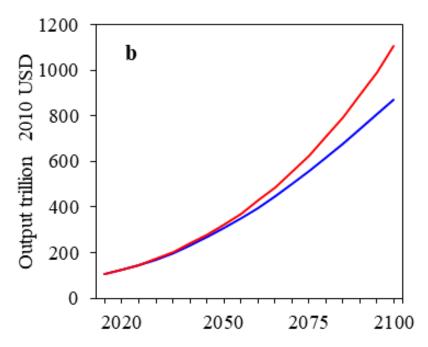


#### **Methodology: Scenarios**

#### **Model Cases:**

- DICE: The standard one-sector DICE-2016R model
- CCEDS: Coupled Climate and Economic Dynamics with Endogenous Structure
- CCEDS-NCC: The whole climate part in CCEDS is deleted. Ideal two-sector economic growth model


#### Policy Scenarios:

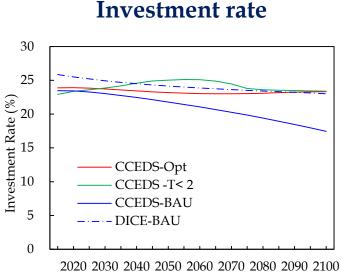

- BAU: No emission reduction policy is adopted to address climate change ( $\mu$ =0)
- Opt: Optimal climate policies, which are chosen to maximize the welfare within the model from 2015 forward.
- T<2: 2°C temperature constraint scenario



#### **Results and Discussion:**

#### The impact of climate change on two-sector economic structure






- Decreases the output ratio of capital goods to consumer goods (investment rate).
- Drives down the total output of the economy (two channel)

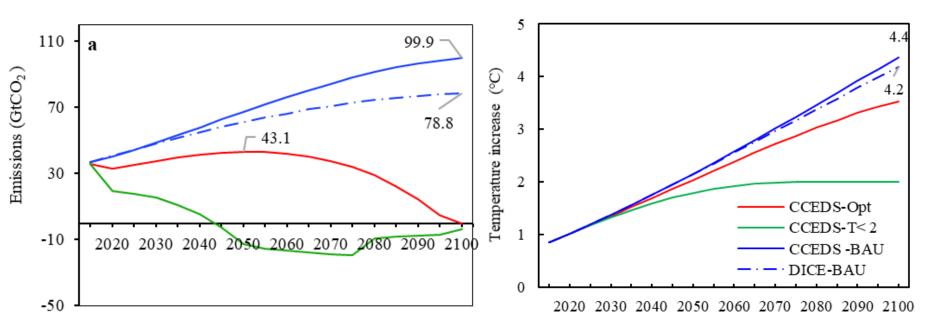
short-term consumption effect, long-term investment effect, heterogeneous carbon intensity effect and heterogeneous climate damage effect.

## The impact of economic structure on climate change and climate policy

#### **Results in Economic System**



#### **Total output & consumption**


|             |              | DICE      |       |       |       |       | CCEDS     |       |       |       |        |
|-------------|--------------|-----------|-------|-------|-------|-------|-----------|-------|-------|-------|--------|
| Variable    | Scena<br>rio | 2015      | 2020  | 2030  | 2050  | 2100  | 2015      | 2020  | 2030  | 2050  | 2100   |
| GDP         | BAU          | 105.0     | 125.0 | 171.5 | 291.5 | 746.6 | 105.0     | 123.4 | 170.5 | 307.1 | 872.6  |
|             | Opt          | 105.0     | 125.0 | 171.7 | 292.6 | 764.5 | 105.0     | 123.6 | 171.6 | 313.4 | 1022.0 |
| Consumption | T<2          | 105.0     | 123.3 | 167.2 | 276.2 | 773.7 | 105.0     | 121.6 | 166.3 | 296.1 | 1052.0 |
|             | BAU          | 77.9      | 93.1  | 128.7 | 221.1 | 574.8 | 80.4      | 93.4  | 126.1 | 217.7 | 584.4  |
|             | Opt          | 77.6      | 92.9  | 128.4 | 220.5 | 578.0 | 79.9      | 92.9  | 125.6 | 216.6 | 589.7  |
|             | T<2          | 77.7      | 91.8  | 124.3 | 206.4 | 585.0 | 80.9      | 92.3  | 122.2 | 201.4 | 603.4  |
|             |              | 2015-2510 |       |       |       |       | 2015-2510 |       |       |       |        |
| Welfare     | Opt          | 1.2%      |       |       |       |       | 3.1%      |       |       |       |        |
| Change      | T<2          | -0.9%     |       |       |       |       |           | 1.2%  |       |       |        |

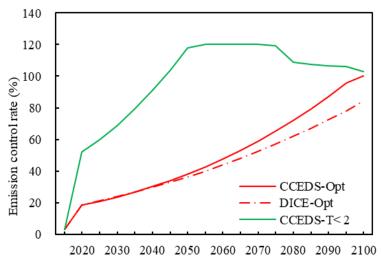
Unit: PPP, trillion 2010 USD

- ◆ Investment rate is quite sensitive to climate policies.
- ◆ Mitigation efforts are much more effective in alleviating economic loss.
- Mitigation efforts affect economic growth both directly, by reducing carbon emissions, and indirectly, by promoting investment

#### **Results and Discussion**

#### **Emissions and Temperature Trajectory**




- More severe climate situation
- To limit global warming to below 2°C, net-zero emission is required by 2045, and need to rely heavily on negative emissions technologies.



#### Results and Discussion

#### **Abatement Efforts & Cost**

#### **Emission Control Rate**



#### Abatement cost: DICE & CCEDS

|                                 |          | DICE |      |      |      | CCEDS |       |       |       |       |       |
|---------------------------------|----------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| Variables                       | Scenario | 2015 | 2020 | 2030 | 2050 | 2100  | 2015  | 2020  | 2030  | 2050  | 2100  |
| Abatement cost (Absolute value) | Opt      | 0.0  | 0.1  | 0.2  | 0.8  | 7.1   | 0.0   | 0.1   | 0.2   | 1.0   | 17.2  |
|                                 | T<2      | 0.0  | 1.8  | 4.1  | 17.5 | 12.4  | 0.0   | 1.5   | 3.7   | 19.5  | 18.8  |
| Abatement cost (Relative value) | Opt      | 0.0% | 0.1% | 0.1% | 0.3% | 0.9%  | 0.0%  | 0.1%  | 0.1%  | 0.3%  | 1.7%  |
|                                 | T<2      | 0.0% | 1.4% | 2.5% | 6.3% | 1.6%  | 0.0%  | 1.3%  | 2.2%  | 6.6%  | 1.8%  |
| Abatement cost consumer goods   | Opt      | -    | -    | -    | -    | -     | 61.4% | 60.2% | 57.7% | 52.7% | 40.1% |
| sector                          | T<2      | -    | -    | -    | -    | -     | 62.7% | 61.0% | 57.7% | 50.3% | 39.9% |

Unit: Absolute value: PPP, trillion 2010 USD Relative value: proportion of GDP

To achieve 2°C warming target, deeper efforts are called for:

- Our results ask for much deeper emission reductions compared with some existing research or aspirations.
- This demands investing an average of 3.5% of GDP per year from 2015-2100.

#### **Results and Discussion**

## **Sensitivity Analysis**

| Parameter                                                         |      | Investment rate (BAU, 2100) | Output<br>(BAU, 2100) | Emissions (BAU, 2100) | Reduction Rate<br>(Opt, 2050) |
|-------------------------------------------------------------------|------|-----------------------------|-----------------------|-----------------------|-------------------------------|
| $\lambda_1 = \sigma_{i,0} / \sigma_{c,0}$                         | -20% | 17.8%                       | 881.9                 | 98.6                  | 37.7%                         |
| Heterogeneity of carbon intensity                                 | 20%  | 17.2%                       | 865.6                 | 101.0                 | 38.3%                         |
| $\lambda_2 = g_{i,0}^A / g_{c,0}^A$ Heterogeneity of TFP progress | -20% | 20.2%                       | 780.5                 | 86.3                  | 37.0%                         |
|                                                                   | 20%  | 16.7%                       | 879.6                 | 104.3                 | 38.7%                         |
| $\lambda_3 = a_{2i}/a_{2c}$                                       | -20% | 17.4%                       | 874.1                 | 99.9                  | 38.1%                         |
| Heterogeneity of climate damage                                   | 20%  | 17.5%                       | 871.1                 | 99.9                  | 38.1%                         |
| $\lambda_4 = \alpha$                                              | -20% | 18.2%                       | 790.3                 | 89.6                  | 37.0%                         |
| Heterogeneity of capital income share                             | 20%  | 15.4%                       | 966.6                 | 111.1                 | 40.0%                         |
| CCEDS: $\lambda_{1,\lambda_2,\lambda_3,\lambda_4}$                | 0%   | 17.5%                       | 872.6                 | 99.9                  | 38.1%                         |
| DICE                                                              |      | 23.0%                       | 746.6                 | 78.8                  | 36.3%                         |

Main comparative results between DICE and CCEDS are not affected by changes in these parameters



#### Summary

- Economic structure evolution affects the choice of policies for managing climate change
- Our Coupled Climate and Economic Dynamics model with Endogenous Structure indicates:
  - ◆Investment rate is sensitive to climate policy, which will be determined not only by the normal intertemporal trade-off between present-day and future consumption, but also by another trade-off between high- and low carbon-intensity goods.
  - ◆Mitigation efforts can become more effective for the economy both by reducing carbon emissions and by changing future investment incentives.
  - ◆We are likely to face a more severe climate situation; therefore, deeper mitigation efforts are called for, negative emissions technologies are highly demand.
- Future work: incorporating uncertainty into CCEDS



#### Main Reference

- Boppart, Timo. (2014) Structural change and the Kaldor facts in a growth model with relative price effects and non- Gorman preferences. *Econometrica* 82, 2167-2196
- Chenery, H. B., Taylor, L. (1968) Development patterns: among countries and over time. *Review of Economics and Statistics*, 391-416.
- Herrendorf, B., Rogerson, R., Valentinyi, Á. (2020) Structural change in investment and consumption A unified analysis. *Review of Economic Studies* 88, 1311-1346.
- Herrendorf, B., Rogerson, R., Valentinyi, K. (2014) Growth and structural transformation. *Handbook of Economic Growth* 2, 855-941.
- Martinich, J., Crimmins, A. (2019) Climate damages and adaptation potential across diverse sectors of the United States. *Nature Climate Change* 9, 397-404.
- Nordhaus, W.D. (2017) Revisiting the social cost of carbon. Proceedings of the National Academy of *Sciences* 114, 1518-1523
- Stern, N., Stiglitz, J.(2022) The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change. *Journal of Economic Methodology*, 1-36.

# Thanks for your attention! Comments welcome!

