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Motivation

Randomized Controlled Trials (RCTs) increasingly used in
economics.

Many such RCTs are cluster randomized.



Cluster Randomization

Consider RCT to evaluate educational intervention:

§ Yi,gp0q: student test score in absence of tutoring program

§ Yi,gp1q: student test score in presence of tutoring program

§ Ag P t0, 1u: tutoring program applied at school level

§ Yi,g :“ Yi,gp1qAg ` Yi,gp0qp1´Agq



Cluster Randomization

Questions to consider:

§ What are potential parameters of interest?
§ Schools vary in size. Size may relate to outcomes.

§ Might only sample subset of students in each school. Any
consequences for estimation/inference?

§ Applicability of “standard” approaches to estimation and
inference?



Contribution

This paper

§ Proposes “super-population” framework where cluster sizes
modeled as random and can relate to outcomes

§ Distinguishes between two distinct ATE parameters

§ Studies estimation and inference under additional
complication of two-stage sampling

§ Discusses connection to existing finite population results for
cluster RCTs



Contribution Part II (Bonus!)

Preview of follow-up paper! (Bai, Liu, Shaikh, Tabord-Meehan)

§ Leverages Bugni et al. (2022) framework to study cluster
matched-pair designs.

§ Formalizes gain in efficiency from matching on cluster size

§ Provides asymptotically exact method of inference

§ Studies asymptotically-valid and finite-sample robust
permutation test



(Some) Related Literature

§ Super-population analyses of unit-level RCTs:
Armstrong (2022), Bai Romano Shaikh (2021), Bai (2022), Bugni
Canay Shaikh (2018, 2019), Bugni and Gao (2021), Cytrynbaum
(2022), Ma et al. (2020), Negi and Wooldridge (2020),
Tabord-Meehan (2021), Zhang and Zheng (2020)

§ Finite-population analyses of cluster RCTs:
Middleton and Aronow (2015), Athey and Imbens (2017), de
Chaisemartin and Ramirez-Cuellar (2020), Schochet et al. (2021),
Su and Ding (2021)
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Setup of the Problem
Additional Notation

§ Zg observed baseline covariates for cluster g

§ Ng size of cluster g

§ Sg Ď t1, 2, . . . , Ngu sampled observations in cluster g

§ Ȳgpaq :“ 1
|Sg |

ř

iPSg
Yi,gpaq



Setup of the Problem

Sampling Framework

§ tpȲgp1q, Ȳgp0q, |Sg|, Zg, Ngq : 1 ď g ď Gu i.i.d

§ ErN2
g s ă 8

§ ErYi,gpaq
2|Ng, Zgs ď C

§ Sg KK pYi,gp1q, Yi,gp0q : 1 ď i ď Ngq|Zg, Ng

§ ErȲgpaq|Ngs “ E
”

1
Ng

ř

1ďiďNg
Yi,gpaq|Ng

ı

Experimental Design

§ tAg : 1 ď g ď Gu i.i.d with P pAg “ 1q “ π



Parameters of Interest

Two parameters of interest:

E

»

–ωg

¨

˝

1
Ng

ÿ

1ďiďNg

Yi,gp1q ´ Yi,gp0q

˛

‚

fi

fl

with distinct weights Erωgs “ 1.



Parameters of Interest
Equally-weighted ATE

Two parameters of interest:

E

»

–ωg

¨

˝

1
Ng

ÿ

1ďiďNg

Yi,gp1q ´ Yi,gp0q

˛

‚

fi

fl

Setting ωg “ 1 obtains

θ1 “ E

»

–

1
Ng

ÿ

1ďiďNg

Yi,gp1q ´ Yi,gp0q

fi

fl



Parameters of Interest
Size-weighted ATE

Two parameters of interest:

E

»

–ωg

¨

˝

1
Ng

ÿ

1ďiďNg

Yi,gp1q ´ Yi,gp0q

˛

‚

fi

fl

Setting ωg “ Ng

ErNgs
obtains

θ2 “
E
”

ř

1ďiďNg
Yi,gp1q ´ Yi,gp0q

ı

ErNgs



Parameters of Interest

Typically, we expect θ1 and θ2 to be distinct parameters.

In some cases they are the same, for example:

§ If Ng “ k for all g

§ If Yi,gp1q ´ Yi,gp0q “ τ for all i, g



Results: Difference-in-Means

Consider

θ̂alt
G :“

ř

1ďgďG
ř

iPSg
Yi,gAg

ř

1ďgďG |Sg|Ag
´

ř

1ďgďG
ř

iPSg
Yi,gp1´Agq

ř

1ďgďG |Sg|p1´Agq
.

Probability Limit: θ̂alt
G

θ̂alt
G

P
Ñ E

»

–

1
Er|Sg|s

ÿ

iPSg

Yi,gp1q ´ Yi,gp0q

fi

fl “: ϑ



Results: Difference-in-Means

ϑ “ E
”

1
Er|Sg |s

ř

iPSg
Yi,gp1q ´ Yi,gp0q

ı

is a sample-weighted ATE:

§ Typically distinct from θ1 and θ2

§ If |Sg| “ k, then ϑ “ θ1

§ If |Sg| “ tγNgu for γ P p0, 1s, then ϑ « θ2



Results: Inference on Equally-weighted ATE

Let

θ̂1,G :“
ř

1ďgďG ȲgAg
ř

1ďgďGAg
´

ř

1ďgďG Ȳgp1´Agq
ř

1ďgďGp1´Agq
.

Limiting Distribution: θ̂1,G

?
Gpθ̂1,G ´ θ1q

d
Ñ Np0, σ2

1q

where
σ2

1 :“ 1
π

VarrȲgp1qs `
1

1´ πVarrȲgp0qs



Results: Inference on Equally-weighted ATE

§ Equivalent to individual-level analysis on cluster averages

§ Estimator σ̂2
1 can be obtained as robust variance estimator

from regression of Ȳg on a constant and Ag.



Results: Inference on Size-weighted ATE
Let

θ̂2,G :“
ř

1ďgďG ȲgNgAg
ř

1ďgďGNgAg
´

ř

1ďgďG ȲgNgp1´Agq
ř

1ďgďGNgp1´Agq
.

Limiting Distribution: θ̂2,G

?
Gpθ̂2,G ´ θ2q

d
Ñ Np0, σ2

2q

where

σ2
2 :“

1
ErNgs2

¨

˚

˚

˝

E

„

´

Ng

|Sg |

¯2 ´
ř

iPSg
εi,gp1q

¯2


π
`

E

„

´

Ng

|Sg |

¯2 ´
ř

iPSg
εi,gp0q

¯2


1´ π

˛

‹

‹

‚

with
εi,gpaq “ Yi,gpaq ´

ErNgȲgpaqs

ErNgs
.



Results: Inference on Size-weighted ATE

§ θ̂2 can be obtained from WLS regression of Yi,g on a constant
and Ag, with weights

a

Ng{|Sg|.

§ Estimator σ̂2
2 is then obtained as cluster-robust variance

estimator.



Finite Population Variance
(Su and Ding 2021)

Finite population version of σ2
2 when Sg “ t1, 2, . . . , Ngu:

σ2
2,G,finpop :“

ˆ

G

N

˙2
¨

˚

˝

1
G

ÿ

1ďgďG

»

—

–

´

ř

1ďiďNg
ε̃i,gp1q

¯2

π
`

´

ř

1ďiďNg
ε̃i,gp0q

¯2

1´ π

fi

ffi

fl

´
1
G

ÿ

1ďgďG

»

–

ÿ

1ďiďNg

pε̃i,gp1q ´ ε̃i,gp0qq

fi

fl

2˛

‚ ,

where

N :“
ÿ

1ďgďG

Ng

ε̃i,gpaq :“ Yi,gpaq ´
1
N

ÿ

1ďgďG

ÿ

1ďiďNg

Yi,gpaq .



Finite vs Super Population Variance

σ2
2,G,finpop :“

ˆ

G

N

˙2
¨

˚

˝

1
G

ÿ

1ďgďG

»

—

–

´

ř

1ďiďNg
ε̃i,gp1q

¯2

π
`

´

ř

1ďiďNg
ε̃i,gp0q

¯2

1´ π

fi

ffi

fl

´
1
G

ÿ

1ďgďG

»

–

ÿ

1ďiďNg

pε̃i,gp1q ´ ε̃i,gp0qq

fi

fl

2˛

‚

σ2
2 :“

1
ErNgs2

¨

˚

˚

˝

E

„

´

ř

1ďiďNg
εi,gp1q

¯2


π
`

E

„

´

ř

1ďiďNg
εi,gp0q

¯2


1´ π

˛

‹

‹

‚



Finite vs Super Population Variance

σ2
2,G,finpop :“

ˆ

G

N

˙2
¨

˚

˝

1
G

ÿ

1ďgďG

»

—

–

´

ř

1ďiďNg
ε̃i,gp1q

¯2

π
`

´

ř

1ďiďNg
ε̃i,gp0q

¯2

1´ π

fi

ffi

fl

´
1
G

ÿ

1ďgďG

»

–

ÿ

1ďiďNg

pε̃i,gp1q ´ ε̃i,gp0qq

fi

fl

2˛

‚

σ2
2 :“

1
ErNgs2

¨

˚

˚

˝

E

„

´

ř

1ďiďNg
εi,gp1q

¯2


π
`

E

„

´

ř

1ďiďNg
εi,gp0q

¯2


1´ π

˛

‹

‹

‚



Simulations
DGP

§ Yi,gpaq “ ηgpaqZg ` Ui,gpaq

§ Zg “ Zg,bigItNg ě ErNgsu ` Zg,smallItNg ă ErNgsu

§ Ng “ 10pB ` 1q where B „ BBpa, b, nsuppq or
Ng “ 10ζ where ζ „ zetap1.5q

§ |Sg| “ Ng



Simulations
Cluster Distributions



Simulations
Results

Design 2 G “ 100 G “ 1000 G “ 5000

|Sg | Ng CS1,G CS2,G CS1,G CS2,G CS1,G CS2,G

Ng BBp1, 1q 0.9492 0.9384 0.9574 0.9532 0.9488 0.9530
BBp0.4, 0.4q 0.9486 0.9418 0.9516 0.9482 0.9492 0.9482
BBp10, 90q 0.9320 0.9312 0.9018 0.9072 0.9496 0.9492
zeta(1.5) 0.9258 0.8510 0.8348 0.8918 0.7564 0.8722



Recap

§ Proposed framework for cluster RCTs where cluster sizes
modeled as random and can affect outcomes.

§ Distinguished between two distinct ATE parameters.

§ Studied estimation and inference under additional
complication of two-stage sampling



Beyond Bernoulli Designs

What about “realistic” experimental designs?

Bai, Liu, Shaikh, Tabord-Meehan (2022) study cluster
matched-pair designs.
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Beyond Bernoulli Designs
What about “realistic” experimental designs?

Bai, Liu, Shaikh, Tabord-Meehan (2022) study cluster
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Additional Assumptions
Throughout suppose we have 2G clusters.

Matched Pairs
§ G pairs represented by tπp2g ´ 1q, πp2gqu, g “ 1, . . . , G,
π “ πGpZ

pGqq a permutation of t1, 2, . . . , 2Gu

§ Conditional on ZpGq, pAπp2g´1q, Aπp2gqq, g “ 1, . . . , G are i.i.d
uniformtp0, 1q, p1, 0qu

§ Pairing satisfies

1
G

G
ÿ

g“1
||Zπp2gq ´ Zπp2g´1q||

r P
ÝÑ 0 ,

for r P t1, 2u



Additional Assumptions

Sampling Framework

§ ErȲ r
g paqN

`
g |Zg “ zs, are Lipschitz for r, ` P t0, 1, 2u

§ ErNg|Zgs ď C



Results: Limiting Distribution of θ̂2,G for MP

Under this design we obtain:

Limiting Distribution: θ̂2,G for matched-pairs

?
Gpθ̂2,G ´ θ2q

d
Ñ Np0, ω2q

as GÑ8, where

ω2 “ ErỸ 2
g p1qs ` ErỸ 2

g p0qs ´
1
2ErpErỸgp1q ` Ỹgp0q|Zgsq

2s ,

with
Ỹgpaq “

Ng

ErNgs

ˆ

Ȳgpaq ´
ErȲgpaqNgs

ErNgs

˙

.



Results: Limiting Distribution of θ̂2,G for MP

§ Note that 2ω2 “ σ2
2 ´ ErpErỸgp1q ` Ỹgp0q|Zgsq2s

§ Gain in precision from matched pairs

§ We also show that, if matching on cluster size, variance is

2ν2 “ σ2
2 ´ ErpErỸgp1q ` Ỹgp0q|Zg, Ngsq

2s

§ By Jensen’s, gain in precision from matching on cluster size



Results: Variance Estimation for ω2

Note that ω2 is exactly the asymptotic variance derived in Bai,
Romano, Shaikh (2021), with cluster-transformed outcomes Ỹgpaq.

We use this to construct consistent estimator of ω2 and ν2.



Results: Randomization Test

Paper also studies asymptotic validity of pair-permutation test for
testing H0 : θ2 “ 0.

§ Displays better size control for small G in simulations

§ Crucial to studentize test-statistic using v̂2
G

Test is also finite-sample valid when “sharp”-null holds!



Thank you!



Cluster Size Consequences

Two consequences of our framework:

ř

1ďgďGN
2
g

ř

1ďgďGNg
“ OP p1q

max1ďgďGN
2
g

ř

1ďgďGNg

P
ÝÑ 0

return



Numerical Example

Two types of classrooms: “Big” (Ng “ 40) and “small” (Ng “ 10)

P pNg “ 40q “ P pNg “ 10q “ 0.5

Suppose
Yi,gp1q ´ Yi,gp0q “ 1 if in “big” class

Yi,gp1q ´ Yi,gp0q “ ´2 if in “small” class

Then
θ1 “ ´

1
2

θ2 “
2
5 .

return
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