Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes

Federico Bugni

Northwestern

Azeem Shaikh Chicago Ivan Canay Northwestern

Max Tabord-Meehan

Chicago

December 2022

Motivation

Randomized Controlled Trials (RCTs) increasingly used in economics.

Many such RCTs are cluster randomized.

Cluster Randomization

Consider RCT to evaluate educational intervention:

- $Y_{i,g}(0)$: student test score in absence of tutoring program
- $ightharpoonup Y_{i,g}(1)$: student test score in presence of tutoring program
- $A_g \in \{0,1\}$: tutoring program applied at school level
- $Y_{i,g} := Y_{i,g}(1)A_g + Y_{i,g}(0)(1 A_g)$

Cluster Randomization

Questions to consider:

- What are potential parameters of interest?
 - Schools vary in size. Size may relate to outcomes.
- Might only sample subset of students in each school. Any consequences for estimation/inference?
- Applicability of "standard" approaches to estimation and inference?

Contribution

This paper

- Proposes "super-population" framework where cluster sizes modeled as random and can relate to outcomes
- Distinguishes between two distinct ATE parameters
- Studies estimation and inference under additional complication of two-stage sampling
- Discusses connection to existing finite population results for cluster RCTs

Contribution Part II (Bonus!)

Preview of follow-up paper! (Bai, Liu, Shaikh, Tabord-Meehan)

- Leverages Bugni et al. (2022) framework to study cluster matched-pair designs.
- Formalizes gain in efficiency from matching on cluster size
- Provides asymptotically exact method of inference
- Studies asymptotically-valid and finite-sample robust permutation test

(Some) Related Literature

- Super-population analyses of unit-level RCTs:
 Armstrong (2022), Bai Romano Shaikh (2021), Bai (2022), Bugni Canay Shaikh (2018, 2019), Bugni and Gao (2021), Cytrynbaum (2022), Ma et al. (2020), Negi and Wooldridge (2020), Tabord-Meehan (2021), Zhang and Zheng (2020)
- ▶ Finite-population analyses of cluster RCTs: Middleton and Aronow (2015), Athey and Imbens (2017), de Chaisemartin and Ramirez-Cuellar (2020), Schochet et al. (2021), Su and Ding (2021)

Outline

- Problem Setup
- Parameters of Interest
- Formal Results
- Simulation Study

Outline

- ▶ Problem Setup
- Parameters of Interest
- Formal Results
- Simulation Study
- ► Bonus Content

Setup of the Problem

Additional Notation

- $lacktriangleright Z_g$ observed baseline covariates for cluster g
- N_g size of cluster g
- $S_g \subseteq \{1, 2, \dots, N_g\}$ sampled observations in cluster g
- $\bar{Y}_g(a) := \frac{1}{|S_g|} \sum_{i \in S_g} Y_{i,g}(a)$

Setup of the Problem

Sampling Framework

- $\{(\bar{Y}_g(1), \bar{Y}_g(0), |S_g|, Z_g, N_g) : 1 \leqslant g \leqslant G\}$ i.i.d
- $E[N_a^2] < \infty$
- $E[Y_{i,a}(a)^2|N_a,Z_a] \leq C$
- $ightharpoonup S_g \perp \!\!\! \perp (Y_{i,g}(1), Y_{i,g}(0) : 1 \leqslant i \leqslant N_g) | Z_g, N_g$
- $E[\bar{Y}_g(a)|N_g] = E\left[\frac{1}{N_g} \sum_{1 \le i \le N_g} Y_{i,g}(a)|N_g\right]$

Experimental Design

• $\{A_q: 1 \leq g \leq G\}$ i.i.d with $P(A_q = 1) = \pi$

Two parameters of interest:

$$E\left[\omega_g\left(\frac{1}{N_g}\sum_{1\leqslant i\leqslant N_g}Y_{i,g}(1)-Y_{i,g}(0)\right)\right]$$

with distinct weights $E[\omega_g] = 1$.

Equally-weighted ATE

Two parameters of interest:

$$E\left[\frac{\omega_g}{N_g}\left(\frac{1}{N_g}\sum_{1\leqslant i\leqslant N_g}Y_{i,g}(1)-Y_{i,g}(0)\right)\right]$$

Setting $\omega_q = 1$ obtains

$$\theta_1 = E \left[\frac{1}{N_g} \sum_{1 \le i \le N_g} Y_{i,g}(1) - Y_{i,g}(0) \right]$$

Size-weighted ATE

Two parameters of interest:

$$E\left[\omega_g\left(\frac{1}{N_g}\sum_{1\leqslant i\leqslant N_g}Y_{i,g}(1)-Y_{i,g}(0)\right)\right]$$

Setting
$$\omega_g = \frac{N_g}{E[N_g]}$$
 obtains

$$\theta_2 = \frac{E\left[\sum_{1 \leqslant i \leqslant N_g} Y_{i,g}(1) - Y_{i,g}(0)\right]}{E[N_g]}$$

Typically, we expect θ_1 and θ_2 to be distinct parameters.

In some cases they are the same, for example:

- If $N_g = k$ for all g
- $\qquad \qquad \mathbf{If} \ Y_{i,g}(1) Y_{i,g}(0) = \tau \ \text{for all} \ i,g$

Results: Difference-in-Means

Consider

$$\hat{\theta}_{G}^{\text{alt}} := \frac{\sum_{1 \leq g \leq G} \sum_{i \in S_g} Y_{i,g} A_g}{\sum_{1 \leq g \leq G} |S_g| A_g} - \frac{\sum_{1 \leq g \leq G} \sum_{i \in S_g} Y_{i,g} (1 - A_g)}{\sum_{1 \leq g \leq G} |S_g| (1 - A_g)} .$$

Probability Limit: $\hat{ heta}_G^{ m alt}$

$$\hat{\theta}_G^{\text{alt}} \stackrel{P}{\to} E \left[\frac{1}{E[|S_g|]} \sum_{i \in S_g} Y_{i,g}(1) - Y_{i,g}(0) \right] =: \vartheta$$

Results: Difference-in-Means

$$\vartheta=E\left[rac{1}{E[|S_g|]}\sum_{i\in S_g}Y_{i,g}(1)-Y_{i,g}(0)
ight]$$
 is a sample-weighted ATE:

- Typically distinct from θ_1 and θ_2
- If $|S_q|=k$, then $\vartheta=\theta_1$
- ▶ If $|S_g| = [\gamma N_g]$ for $\gamma \in (0,1]$, then $\vartheta \approx \theta_2$

Results: Inference on Equally-weighted ATE

Let

$$\hat{\theta}_{1,G} := \frac{\sum_{1 \leq g \leq G} \bar{Y}_g A_g}{\sum_{1 \leq g \leq G} A_g} - \frac{\sum_{1 \leq g \leq G} \bar{Y}_g (1 - A_g)}{\sum_{1 \leq g \leq G} (1 - A_g)} .$$

Limiting Distribution: $\hat{\theta}_{1,G}$

$$\sqrt{G}(\hat{\theta}_{1,G} - \theta_1) \xrightarrow{d} N(0, \sigma_1^2)$$

where

$$\sigma_1^2 := \frac{1}{\pi} \mathsf{Var}[\bar{Y}_g(1)] + \frac{1}{1-\pi} \mathsf{Var}[\bar{Y}_g(0)]$$

Results: Inference on Equally-weighted ATE

- Equivalent to individual-level analysis on cluster averages
- Estimator $\hat{\sigma}_1^2$ can be obtained as robust variance estimator from regression of \bar{Y}_g on a constant and A_g .

Results: Inference on Size-weighted ATE

Let

$$\hat{\theta}_{2,G} := \frac{\sum_{1 \leqslant g \leqslant G} \bar{Y}_g N_g A_g}{\sum_{1 \leqslant g \leqslant G} N_g A_g} - \frac{\sum_{1 \leqslant g \leqslant G} \bar{Y}_g N_g (1 - A_g)}{\sum_{1 \leqslant g \leqslant G} N_g (1 - A_g)} \ .$$

Limiting Distribution: $\hat{\theta}_{2,G}$

$$\sqrt{G}(\hat{\theta}_{2,G} - \theta_2) \xrightarrow{d} N(0, \sigma_2^2)$$

where

$$\sigma_2^2 := \frac{1}{E[N_g]^2} \left(\frac{E\left[\left(\frac{N_g}{|S_g|} \right)^2 \left(\sum_{i \in S_g} \epsilon_{i,g}(1) \right)^2 \right]}{\pi} + \frac{E\left[\left(\frac{N_g}{|S_g|} \right)^2 \left(\sum_{i \in S_g} \epsilon_{i,g}(0) \right)^2 \right]}{1 - \pi} \right)$$

with

$$\epsilon_{i,g}(a) = Y_{i,g}(a) - \frac{E[N_g \bar{Y}_g(a)]}{E[N_g]}.$$

Results: Inference on Size-weighted ATE

- $\hat{\theta}_2$ can be obtained from WLS regression of $Y_{i,g}$ on a constant and A_g , with weights $\sqrt{N_g/|S_g|}$.
- Estimator $\hat{\sigma}_2^2$ is then obtained as cluster-robust variance estimator.

Finite Population Variance

(Su and Ding 2021)

Finite population version of σ_2^2 when $S_g = \{1, 2, \dots, N_g\}$:

$$\sigma_{2,G,\text{finpop}}^{2} := \left(\frac{G}{N}\right)^{2} \left(\frac{1}{G} \sum_{1 \leqslant g \leqslant G} \left[\frac{\left(\sum_{1 \leqslant i \leqslant N_{g}} \tilde{\epsilon}_{i,g}(1)\right)^{2}}{\pi} + \frac{\left(\sum_{1 \leqslant i \leqslant N_{g}} \tilde{\epsilon}_{i,g}(0)\right)^{2}}{1 - \pi}\right] - \frac{1}{G} \sum_{1 \leqslant g \leqslant G} \left[\sum_{1 \leqslant i \leqslant N_{g}} \left(\tilde{\epsilon}_{i,g}(1) - \tilde{\epsilon}_{i,g}(0)\right)\right]^{2}\right),$$

where

$$N := \sum_{1 \leqslant g \leqslant G} N_g$$

$$\tilde{\epsilon}_{i,g}(a) := Y_{i,g}(a) - \frac{1}{N} \sum_{1 \leqslant g \leqslant G} \sum_{1 \leqslant i \leqslant N_g} Y_{i,g}(a) .$$

Finite vs Super Population Variance

$$\sigma_{2,G,\text{finpop}}^{2} := \left(\frac{G}{N}\right)^{2} \left(\frac{1}{G} \sum_{1 \leq g \leq G} \left[\frac{\left(\sum_{1 \leq i \leq N_{g}} \tilde{\epsilon}_{i,g}(1)\right)^{2}}{\pi} + \frac{\left(\sum_{1 \leq i \leq N_{g}} \tilde{\epsilon}_{i,g}(0)\right)^{2}}{1 - \pi} \right] - \frac{1}{G} \sum_{1 \leq g \leq G} \left[\sum_{1 \leq i \leq N_{g}} \left(\tilde{\epsilon}_{i,g}(1) - \tilde{\epsilon}_{i,g}(0)\right) \right]^{2} \right)$$

$$\sigma_2^2 := \frac{1}{E[N_g]^2} \left(\frac{E\left[\left(\sum_{1 \leqslant i \leqslant N_g} \epsilon_{i,g}(1)\right)^2\right]}{\pi} + \frac{E\left[\left(\sum_{1 \leqslant i \leqslant N_g} \epsilon_{i,g}(0)\right)^2\right]}{1 - \pi} \right)$$

Finite vs Super Population Variance

$$\sigma_{2,G,\text{finpop}}^{2} := \left(\frac{G}{N}\right)^{2} \left(\frac{1}{G} \sum_{1 \leq g \leq G} \left[\frac{\left(\sum_{1 \leq i \leq N_{g}} \tilde{\epsilon}_{i,g}(1)\right)^{2}}{\pi} + \frac{\left(\sum_{1 \leq i \leq N_{g}} \tilde{\epsilon}_{i,g}(0)\right)^{2}}{1 - \pi} \right] - \frac{1}{G} \sum_{1 \leq g \leq G} \left[\sum_{1 \leq i \leq N_{g}} \left(\tilde{\epsilon}_{i,g}(1) - \tilde{\epsilon}_{i,g}(0)\right) \right]^{2} \right)$$

$$\sigma_2^2 := \frac{1}{E[N_g]^2} \left(\frac{E\left[\left(\sum_{1 \leqslant i \leqslant N_g} \epsilon_{i,g}(1)\right)^2\right]}{\pi} + \frac{E\left[\left(\sum_{1 \leqslant i \leqslant N_g} \epsilon_{i,g}(0)\right)^2\right]}{1 - \pi} \right)$$

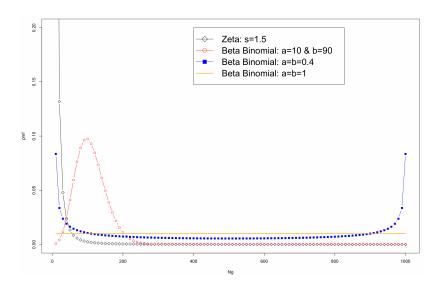
Simulations DGP

$$Y_{i,g}(a) = \eta_g(a)Z_g + U_{i,g}(a)$$

- $N_g=10(B+1)$ where $B\sim BB(a,b,n_{supp})$ or $N_g=10\zeta$ where $\zeta\sim {\rm zeta}(1.5)$
- $|S_g| = N_g$

Simulations

Cluster Distributions



Simulations

Results

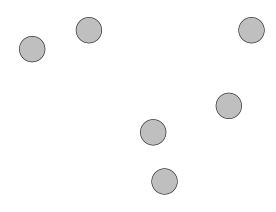
Design 2		G = 100		G = 1000		G = 5000	
$ S_g $	N_g	$CS_{1,G}$	$CS_{2,G}$	$CS_{1,G}$	$CS_{2,G}$	$CS_{1,G}$	$CS_{2,G}$
\overline{Ng}	BB(1,1)	0.9492	0.9384	0.9574	0.9532	0.9488	0.9530
	BB(0.4, 0.4)	0.9486	0.9418	0.9516	0.9482	0.9492	0.9482
	BB(10, 90)	0.9320	0.9312	0.9018	0.9072	0.9496	0.9492
	zeta(1.5)	0.9258	0.8510	0.8348	0.8918	0.7564	0.8722

Recap

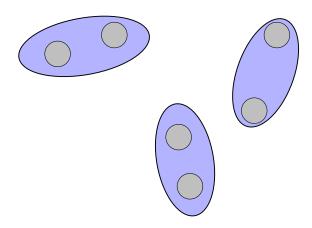
- Proposed framework for cluster RCTs where cluster sizes modeled as random and can affect outcomes.
- Distinguished between two distinct ATE parameters.
- Studied estimation and inference under additional complication of two-stage sampling

What about "realistic" experimental designs?

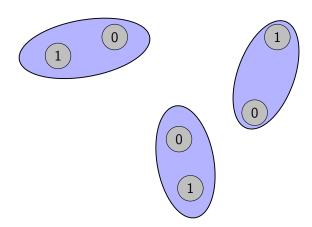
What about "realistic" experimental designs?



What about "realistic" experimental designs?



What about "realistic" experimental designs?



Additional Assumptions

Throughout suppose we have 2G clusters.

Matched Pairs

- ▶ G pairs represented by $\{\pi(2g-1), \pi(2g)\}$, $g=1,\ldots,G$, $\pi=\pi_G(Z^{(G)})$ a permutation of $\{1,2,\ldots,2G\}$
- ▶ Conditional on $Z^{(G)}$, $(A_{\pi(2g-1)}, A_{\pi(2g)})$, g = 1, ..., G are i.i.d uniform $\{(0,1), (1,0)\}$
- Pairing satisfies

$$\frac{1}{G} \sum_{g=1}^{G} ||Z_{\pi(2g)} - Z_{\pi(2g-1)}||^r \xrightarrow{P} 0 ,$$

for $r \in \{1, 2\}$

Additional Assumptions

Sampling Framework

- $E[\bar{Y}^r_g(a)N^\ell_g|Z_g=z]$, are Lipschitz for $r,\ell\in\{0,1,2\}$
- $E[N_g|Z_g] \leqslant C$

Results: Limiting Distribution of $\hat{\theta}_{2,G}$ for MP

Under this design we obtain:

Limiting Distribution: $\hat{\theta}_{2,G}$ for matched-pairs

$$\sqrt{G}(\hat{\theta}_{2,G} - \theta_2) \stackrel{d}{\to} N(0,\omega^2)$$

as $G \to \infty$, where

$$\omega^2 = E[\tilde{Y}_g^2(1)] + E[\tilde{Y}_g^2(0)] - \frac{1}{2}E[(E[\tilde{Y}_g(1) + \tilde{Y}_g(0)|Z_g])^2],$$

with

$$\tilde{Y}_g(a) = \frac{N_g}{E[N_g]} \left(\bar{Y}_g(a) - \frac{E[Y_g(a)N_g]}{E[N_g]} \right) .$$

Results: Limiting Distribution of $\hat{\theta}_{2,G}$ for MP

- Note that $2\omega^2=\sigma_2^2-E[(E[\tilde{Y}_g(1)+\tilde{Y}_g(0)|Z_g])^2]$
 - Gain in precision from matched pairs
- We also show that, if matching on cluster size, variance is

$$2\nu^2 = \sigma_2^2 - E[(E[\tilde{Y}_g(1) + \tilde{Y}_g(0)|Z_g, N_g])^2]$$

▶ By Jensen's, gain in precision from matching on cluster size

Results: Variance Estimation for ω^2

Note that ω^2 is exactly the asymptotic variance derived in Bai, Romano, Shaikh (2021), with cluster-transformed outcomes $\tilde{Y}_g(a)$.

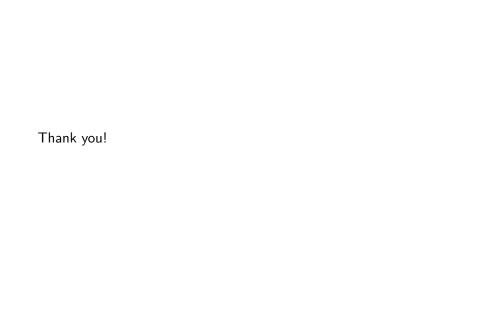
We use this to construct consistent estimator of ω^2 and ν^2 .

Results: Randomization Test

Paper also studies asymptotic validity of pair-permutation test for testing $H_0:\theta_2=0.$

- Displays better size control for small G in simulations
- lacktriangle Crucial to studentize test-statistic using \hat{v}_G^2

Test is also finite-sample valid when "sharp"-null holds!



Cluster Size Consequences

Two consequences of our framework:

$$\frac{\sum_{1 \leqslant g \leqslant G} N_g^2}{\sum_{1 \leqslant g \leqslant G} N_g} = O_P(1)$$

$$\frac{\max_{1 \leqslant g \leqslant G} N_g^2}{\sum_{1 \leqslant g \leqslant G} N_g} \xrightarrow{P} 0$$

return

Numerical Example

Two types of classrooms: "Big" ($N_g=40$) and "small" ($N_g=10$)

$$P(N_g = 40) = P(N_g = 10) = 0.5$$

Suppose

$$Y_{i,g}(1)-Y_{i,g}(0)=1 \mbox{ if in "big" class}$$

$$Y_{i,g}(1)-Y_{i,g}(0)=-2 \mbox{ if in "small" class}$$

Then

$$\theta_1 = -\frac{1}{2}$$

$$\theta_2 = \frac{2}{5} .$$

return