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Motivation

Randomized Controlled Trials (RCTs) increasingly used in
economics.

Many such RCTs are cluster randomized.



Cluster Randomization

Consider RCT to evaluate educational intervention:
> Y; 4(0): student test score in absence of tutoring program
» Y 4(1): student test score in presence of tutoring program
» A4 € {0,1}: tutoring program applied at school level

> Yig = Yé,g(UAg + K,g(o)(l - Ag)



Cluster Randomization

Questions to consider:

» What are potential parameters of interest?
> Schools vary in size. Size may relate to outcomes.

» Might only sample subset of students in each school. Any
consequences for estimation /inference?

» Applicability of “standard” approaches to estimation and
inference?



Contribution

This paper

» Proposes “super-population” framework where cluster sizes
modeled as random and can relate to outcomes

» Distinguishes between two distinct ATE parameters

» Studies estimation and inference under additional
complication of two-stage sampling

» Discusses connection to existing finite population results for
cluster RCTs



Contribution Part Il (Bonus!)

Preview of follow-up paper! (Bai, Liu, Shaikh, Tabord-Meehan)

» Leverages Bugni et al. (2022) framework to study cluster
matched-pair designs.

» Formalizes gain in efficiency from matching on cluster size
» Provides asymptotically exact method of inference

» Studies asymptotically-valid and finite-sample robust
permutation test



(Some) Related Literature

» Super-population analyses of unit-level RCTs:
Armstrong (2022), Bai Romano Shaikh (2021), Bai (2022), Bugni
Canay Shaikh (2018, 2019), Bugni and Gao (2021), Cytrynbaum
(2022), Ma et al. (2020), Negi and Wooldridge (2020),
Tabord-Meehan (2021), Zhang and Zheng (2020)

» Finite-population analyses of cluster RCTs:
Middleton and Aronow (2015), Athey and Imbens (2017), de
Chaisemartin and Ramirez-Cuellar (2020), Schochet et al. (2021),
Su and Ding (2021)
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Setup of the Problem

Additional Notation

v

Z4 observed baseline covariates for cluster g

v

N, size of cluster g

v

Sg = {1,2,..., Ny} sampled observations in cluster g

> Vy(0) = o Yies, Yigla)



Setup of the Problem

Sampling Framework

> {(Va(1), ¥5(0), Sy, Zg, Ng) : 1 < g < G} iid

> E[N2] < 0

v

E[Yi,g(a)aNng] <C

g Sg aln (Yi,gﬂ)aYi,g(O) l<i< Ng)|ZgaNg

> E[%(@)INg] = B | icien, Yag(@)INg

Experimental Design

> {Ay:1<g<G}iidwith P(4,=1) =7




Parameters of Interest

Two parameters of interest:

1
Elwg | 2 Yig(l) = Yig(0)

9 1<i<N,

with distinct weights Ew,| = 1.



Parameters of Interest
Equally-weighted ATE

Two parameters of interest:

1
Ewy N, 2 Yig(1) — Yig(0)

9 1<i<N,

Setting w, = 1 obtains

1
O=FE |+ 2, Yigll)=Yig(0)

9 1<i<N,



Parameters of Interest
Size-weighted ATE

Two parameters of interest:

— D Yig(1) = Yi(0)

Ny 1<i<Nyg

Setting wy = %}\?g] obtains

) _ B [Zice, YiaD) - iy 0)]
-

E[N,]



Parameters of Interest

Typically, we expect 61 and 5 to be distinct parameters.

In some cases they are the same, for example:
» If Ny =k forall g

» IfY; (1) = Y;4(0) =7 for all i, g



Results: Difference-in-Means

Consider

21<g<G 1Syl Ay ZlggsG [Sg|(1 = Ay)

Probability Limit: §2

A 1
0 EE | ——— N Y, (1) = Y (0) | =0
G E[|Sg|] i;g ,9( ) 79( )



Results: Difference-in-Means

9V=F [m Dlies, Yig(l) — Yi,g(O)] is a sample-weighted ATE:

v

Typically distinct from 61 and 65

v

If | S,| = k, then ¥ = 6;

v

If |Sg| = |vINg| for v € (0,1], then ¥ ~ 6



Results: Inference on Equally-weighted ATE

Let

A leggc YAy B Zl<g<G Yy(1—Ay)
Di<g<c Ay 2icg<al —4g)

where




Results: Inference on Equally-weighted ATE

» Equivalent to individual-level analysis on cluster averages

» Estimator 67 can be obtained as robust variance estimator
from regression of Y, on a constant and A,.



Results: Inference on Size-weighted ATE
Let
éQ o= ZlggsG YgNgAg _ Zl<g<G YgNg(l - Ag)
' ZlgggG NgAg ZlégSG Ng(1—Ayg)

Limiting Distribution: éz(;

VG(Byq — 6) > N(0,03)

where

, (BB e ws)] 2[(E) (Ses, 000)]
Ty 1= +

> E[N,]? ™ l—

with

E[Ng Yg (a)]

e,-,g(a) = Yi,g (a’) - E[Ng]



Results: Inference on Size-weighted ATE

> ég can be obtained from WLS regression of Y; ;, on a constant

and Ay, with weights 4/Ny/|S,|.

» Estimator &3 is then obtained as cluster-robust variance
estimator.



Finite Population Variance
(Su and Ding 2021)

Finite population version of 03 when S, = {1,2,..., N }:
~ 2 ~ 2
o2 _ g 2 1 Z (leiSNg Gi,g(l)) N (leigNg 62'79(0))
2,G,finpop . N G - —
1<g<G

where

€igla) = Yigla)—



Finite vs Super Population Variance

~ 2 5 2
2 . G 2 1 Z (ZlgiéNy ei,g(1)> N (leisNg 6i,g(0)>
ThG e N G 1<g<@G 0 1—7

+
™ 1—m

, 1 (E {(leiszvg ei,g(1)>2] E [(leisNg e,-,g(o))Q} )



Finite vs Super Population Variance

™ 1—m

03.Gofinpop = (G)2 (é Z \\(ZlSiSNggi,g(l)) . (leigNgéi’g(O))]

+
™ 1—m

, 1 (E [(leisNg 6i,g(1)>2] E [(leisNg ei,g(O))Q} )



Simulations
DGP

> Yigla) =ng(a)Zy + Ui g(a)

v

Zy = Zgpigl{Ng = E[Ngl} + Zg sman I{ Ny < E[N,]}

v

Ny =10(B + 1) where B ~ BB(a, b, ngypp) or
Ny = 10¢ where ¢ ~ zeta(1.5)

v

|Sg| = Ng



Simulations
Cluster Distributions
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Simulations

Results
Design 2 G =100 G = 1000 G = 5000
1Sg| N, CS1.¢ CSsg CSia CSoa CS o CSig
Ng BB(1,1) 0.9492 0.9384 0.9574 0.9532 0.9488 0.9530
BB(0.4,0.4) 0.9486 0.9418 0.9516 0.9482 0.9492 0.9482
BB(10,90) 0.9320 0.9312 0.9018 0.9072 0.9496 0.9492
zeta(1.5) 0.9258 0.8510 0.8348 0.8918 0.7564 0.8722




Recap

» Proposed framework for cluster RCTs where cluster sizes
modeled as random and can affect outcomes.

» Distinguished between two distinct ATE parameters.

» Studied estimation and inference under additional
complication of two-stage sampling



Beyond Bernoulli Designs

What about “realistic” experimental designs?

Bai, Liu, Shaikh, Tabord-Meehan (2022) study cluster
matched-pair designs.
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Beyond Bernoulli Designs

What about “realistic” experimental designs?

Bai, Liu, Shaikh, Tabord-Meehan (2022) study cluster
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Additional Assumptions

Throughout suppose we have 2G clusters.

Matched Pairs

» G pairs represented by {mw(2g — 1),7(2¢9)}, g =1,...,G,
7 = 1¢(Z(9) a permutation of {1,2,...,2G}

» Conditional on Z(&), (Ar@g—1), An(2g))r 9 =1,...,G are i.i.d
uniform{(0, 1), (1,0)}

» Pairing satisfies
1 & P
a 2 HZﬂ'(Qg) - er(2g—1)|‘r — 0,
g=1

for r € {1,2}



Additional Assumptions

Sampling Framework

> E[Ygr(a)NgﬂZg = z], are Lipschitz for r, ¢ € {0, 1, 2}

> E[Ng|Z,] < C



Results: Limiting Distribution of ézg for MP

Under this design we obtain:

Limiting Distribution: égg for matched-pairs




Results: Limiting Distribution of éQ’G for MP

> Note that 2w? = 03 — E[(E[Y,(1) + Y,(0)|Z,])?]
> Gain in precision from matched pairs

» We also show that, if matching on cluster size, variance is

22 = G% — E[(E[i/g(l) + 179(0)|Zg, Ng])2]

> By Jensen's, gain in precision from matching on cluster size



Results: Variance Estimation for w?

Note that w? is exactly the asymptotic variance derived in Bai,
Romano, Shaikh (2021), with cluster-transformed outcomes Y (a).

We use this to construct consistent estimator of w? and /2.



Results: Randomization Test

Paper also studies asymptotic validity of pair-permutation test for
testing Hy : 65 = 0.

» Displays better size control for small G in simulations
» Crucial to studentize test-statistic using 0%

Test is also finite-sample valid when “sharp”-null holds!



Thank you!



Cluster Size Consequences

Two consequences of our framework:

2
21<9<G Ng

= Op(1)
Di<g<c Ny

maX1<g<G Ng2 P
SosesE g Py
ZlégSG Ng



Numerical Example

Two types of classrooms: “Big” (N, = 40) and “small” (N, = 10)

P(N, = 40) = P(N, = 10) = 0.5

Suppose
Yig(1) —Yi4(0) = 1if in “big” class
Yig(1) = Y; 4(0) = —2 if in “small” class
Then .
0 =5
oy =2 .

5
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