

Crypto-CAPM: The Role of Speculative and Fundamental Demand in Cryptocurrency Pricing

Mohammadhossein Lashkaripour

Motahhareh Moravvej-Hamedani

December 2022

Overview:

- What drives the price of cryptocurrencies?
- The answer is not straightforward:
 - There is no tangible fundamental supporting cryptocurrencies
 - Traditional asset pricing models (such as FF 5- and 3-factor models) fail to explain the price dynamics of cryptocurrencies (Liu and Tsyvinsky (2021)).
- Two strands of literature try to address the above question.
- One strand determines heterogenous belief and speculation as the driver of cryptocurrency prices (Sockin and Xiong (2020))
- Another strand identifies transactional benefits (convenience yield) as a determinant of cryptocurrency prices (Biais, Bisiere, Bouvard, Casamatta, and Menkveld (2020))

Literature Gap:

- In this paper, we offer a general equilibrium model which brings these two strands under the same roof.
- Why we need a new approach?
 - Previous studies focus on either belief heterogeneity or transactional benefit separately
 - Their approaches overlook an important channel as described below:
 - Optimism (positive sentiment) toward a crypto asset induces investment.
 - As more investors join the platform, it's easier to find a transaction counterparty (network effect).
 - Transactional benefits pin down the impact of belief heterogeneity through affecting demand.
 - Thus, there is a bilateral relationship between optimism and transactional benefits.
- In recent studies, transactional benefits (and users' type) are exogenous.

Contribution-1:

- We endogenize transactional benefits
- We identify three priced components in each crypto asset:
 - i) Systematic exposure to the crypto market portfolio.
 - ii) Belief heterogeneity.
 - iii) Transactional benefits.
- Our framework provides several interesting insights:
 - We derive an "optimism coefficient", that quantifies the magnitude of belief heterogeneity in each crypto asset.
 - We find a bilateral relationship between belief dispersion and transactional benefits.
 - We demonstrate that in boom episodes, over-optimism destabilizes crypto market and might lead to crash.
 - We show that cryptocurrency market specific factors such as "momentum" and "attention" can be explained through the lens of belief dispersion.

Contribution-2:

- We show that optimism has two effects:
 - **Direct effect**: it leads to price inflation and consequently *lowers the expected return*.
 - **Indirect effect**: price inflation makes the realization of transactional benefit more expensive. Thus, investors seek *higher expected return* to join a crypto-platform.
 - The net effect of optimism depends on multiple factors such as:
 - Level of belief dispersion
 - Productivity of the crypto asset
 - Investors' motive to utilize blockchain technology and transactional benefit
- Our theory explains the mechanism behind high volatility and repetitive crashes in crypto market.
- Motive for utilizing a crypto asset for transactional purposes depends on:
 - 1. Volatility-adjusted productivity normalized by platform user base
 - 2. Co-movement of productivity with transaction fee
 - 3. Co-movement of productivity with the expected return

Empirical Perspective:

- We provide empirical support for our theory
 - We use PCA to capture transactional benefits
 - The CAPM-like pricing relation generates zero intercept in almost all leading cryptocurrencies.
 - We also generate more than 40% R-Square in our one-year sample
 - We show that the proposed optimism coefficient explains the observed trends in crypto market.
- To avoid selection bias, we consider Elon Musk's tweet on May 12th of 2021 as an unanticipated shock which results in a crash in crypto market
 - His tweet was associated with little changes in fundamentals of crypto market (i.e. productivity)
 - It's reasonable to believe that his tweet has altered the belief of investors.
 - We show that our proposed optimism coefficient captures the dramatic change in belief which results in a crash

Model-1:

- We model an infinite horizon economy with discrete time.
- There is an infinitely lived representative miner as well as overlapping generations of investors (users) with dispersed belief
- Miners obtain reward by collecting newly generated tokens and transaction fees.
- Investors face a two-stage decision problem
 - In stage one: an investor decides whether to invest a specific amount of wealth in cryptocurrencies or take an alternative investment opportunity.
 - If so, in stage two, she decides on the creation of an optimal portfolio of crypto assets to maximize her utility
- Investors' utility is driven by capital gain and convenience yield (transactional benefit) in crypto market
- Overlapping generations of cryptocurrency investors lives for two dates: t, t+1.
 - At date t: they are called young
 - At date t+1: they are called old

Model-2:

- There are N crypto assets in the economy
- New coins are generated based on a pre-determined rate in the form of block reward
- The number of tokens (coins) at each date is given by:

$$\Gamma_{t+1} = D_{1+\tau}\Gamma_t$$

• Platform service providers (e.g. miners) collect this fee. We assume the following process for fee:

$$f_t = \mu + \varepsilon_t$$
 , $\varepsilon_t \sim N(\mathbf{0}, \Sigma_f)$

• We assume the following process for productivity:

$$y_t = \lambda + e_t$$
 , $e_t \sim N(\mathbf{0}, \Sigma_y)$

• We define b_i as the investors' **endogenous motive** to utilize i^{th} crypto asset for transactional purposes.

Model-3:

- Investors have different opinion about future state of crypto market.
- There are two states in each crypto asset:
 - "Up" state: upward trend in prices and the return is positive.
 - "Down" state: downward price trend and the return is negative.
- We assume that there are two types of investors,
 - Rational (type 1) which is indexed by k=R
 - Over-confident (type 2) which is indexed by k=C
- The utility of joining crypto market:

$$E[U(Crypto\ Market)] = E[-e^{-A(Terminal\ Wealth) - (Convenience\ Yield)}]$$

• Considering the alternative investment, each type optimizes:

$$Max\{I(W_{tk}), Max E_t^k[-e^{-AW_{(t+1)k}-(W_{tk}X_t'^k(D_{\mathbf{b}}y_t))}]\}$$

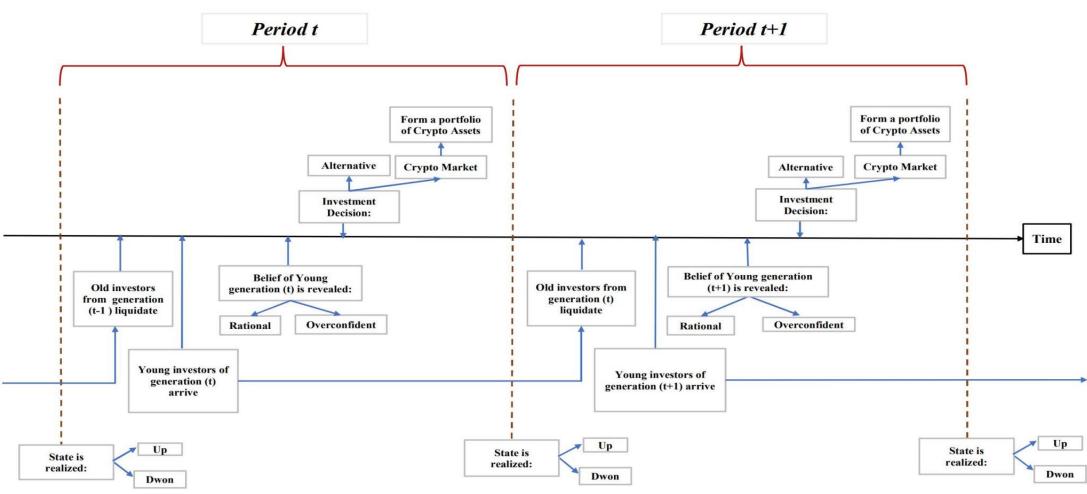
Model-4:

• Let's express the return in Up and Down state as below:

$$\begin{cases} r_t^U : \text{Vector of returns in up state at date t} \\ r_t^D : \text{Vector of returns in down state at date t} \end{cases}$$

• Let's express the belief of rational investors as below:

$$\begin{cases} \theta_i^R: The \ probability \ of \ Up \ state \ for \ crypto \ asset \ i \ given \ rationals' \ belief \\ 1-\theta_i^R: The \ probability \ of \ Down \ state \ for \ crypto \ asset \ i \ given \ rationals' \ belief \end{cases}$$


• Let's express the belief of over-confident investors as below:

$$\begin{cases} \theta_i^C: The \ probability \ of \ Up \ state \ for \ crypto \ asset \ i \ given \ Overconfidents' \ belief \\ 1-\theta_i^C: The \ probability \ of \ Down \ state \ for \ crypto \ asset \ i \ given \ Overconfidents' \ belief \end{cases}$$

• for each crypto asset, the following holds:

$$\begin{cases} \theta_i^C = \xi_{1i}\theta_i^R \\ 1 - \theta_i^C = \xi_{2i}(1 - \theta_i^R) \end{cases}$$

Events' Timeline:

Market Equilibrium:

• Optimal transactional motive:

$$D_b = \underbrace{N^{-1}\Sigma_y^{-1}\lambda}_{Term\ 1} + \underbrace{A\Sigma_y^{-1}\Sigma_{fy}}_{Term\ 2} - \underbrace{A\Sigma_y^{-1}\Sigma_{ry}}_{Term\ 3}$$

• Rational investors' optimal portfolio:

$$X_t^{R*} = \frac{1}{a_R} (\Sigma_T^R)^{-1} [E^R(r) - \mu + \frac{1}{A} \lambda' N^{-1} \Sigma_y^{-1} \lambda + \delta_f \lambda - \delta_r \lambda)]$$
Where $\Sigma_y^{-1} \Sigma_{fy} = \delta_f$ and $\Sigma_y^{-1} \Sigma_{ry} = \delta_r$

• Overconfident investors' optimal portfolio:

$$X_t^{C*} = \frac{1}{a_C} (\Sigma_T^C)^{-1} [E^C(r) - \mu + \frac{1}{A} \lambda' N^{-1} \Sigma_y^{-1} \lambda + \delta_f \lambda - \delta_r \lambda)]$$

• Miners' budget constraint:

$$\mathbf{W}_{t}^{Miner} = \underbrace{D_{f_{t}} \left(W_{t}^{R} X_{t}^{R} + W_{t}^{C} X_{t}^{C} \right)}_{Transaction \ fee} + \underbrace{D_{P_{t}} \left(\Gamma_{t} - \Gamma_{t-1} \right)}_{Block \ generation \ reward}$$

Crypto-CAPM Relation-1:

• Market Clearing Condition:

$$W_t X_t^M = W_{tC} X_t^C + W_{tR} X_t^R + \mathbf{W_t^{Miner}}$$

• Equilibrium expected return:

$$E_{t}[r_{t+1}] = \frac{1}{\gamma + \xi_{1}} \cdot \frac{1}{1+f} \cdot \frac{1}{1+\tau} a\Sigma X_{t}^{M} + \frac{\xi_{1} - 1}{\gamma + \xi_{1}} r_{t+1}^{D} + \frac{\gamma + 1}{\gamma + \xi_{1}} (\mu - \frac{b}{A}\lambda)$$

$$Where \quad \Sigma = \Sigma_{r} + \Sigma_{f} + \frac{D_{b}D_{b}'}{A^{2}} \Sigma_{y} - 2\Sigma_{rf} - 2\frac{D_{b}}{A} \Sigma_{fy} + 2\frac{D_{b}}{A} \Sigma_{ry}$$

$$and \quad \Sigma_{r} = \theta (1 - \theta) (r_{t+1}^{U} - r_{t+1}^{D})^{2}$$

$$and \quad \frac{b}{A}\lambda = \frac{\lambda^{2}}{AN\sigma_{y}^{2}} + \delta_{f}\lambda - \delta_{r}\lambda$$

Crypto-CAPM Relation-2:

• Return in UP and DOWN states:

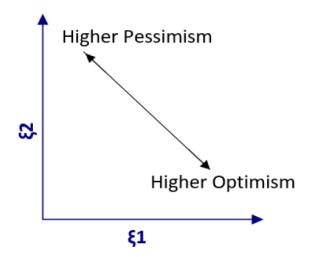
$$r_{t+1}^{U} = \frac{1}{1+f} \cdot \frac{1}{1+\tau} \cdot \frac{\xi_1 - \xi_2}{(\gamma + \xi_1)(1-\xi_2)} a\Sigma X_t^M + \frac{(\gamma + 1)(\xi_1 - \xi_2)}{(\gamma + \xi_1)(1-\xi_2)} (\mu - \frac{b}{A}\lambda) - \frac{\xi_1 - 1}{1-\xi_2} r_{t+1}^D$$

$$r_{t+1}^{D} = \frac{1}{1+f} \cdot \frac{1}{1+\tau} \cdot \frac{\xi_1 - \xi_2}{(\gamma - \xi_2)(\xi_1 - 1)} a\Sigma X_t^M + \frac{(\gamma + 1)(\xi_1 - \xi_2)}{(\gamma - \xi_2)(\xi_1 - 1)} (\mu - \frac{b}{A}\lambda) - \frac{\gamma + \xi_1}{\gamma - \xi_2} \cdot \frac{1 - \xi_2}{\xi_1 - 1} r_{t+1}^U$$

• Equilibrium expected return:

$$E_t(r_{t+1}) = \underbrace{\beta E_t(r_{M(t+1)})}_{Term \ 1} + \underbrace{\frac{\xi_1 - 1}{\gamma + \xi_1} r_{t+1}^D}_{Term \ 2} + \underbrace{\frac{\gamma + 1}{\gamma + \xi_1} (\mu - \frac{b}{A} \lambda)}_{Term \ 3}$$

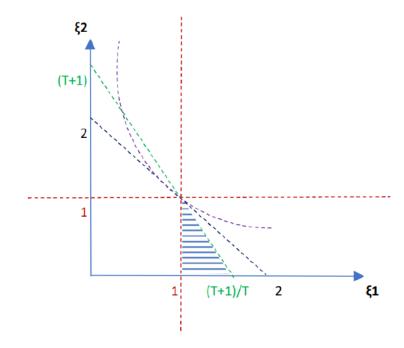
Where
$$\beta = \frac{\sum X^M}{X'^M \sum X^M} = \frac{\sum X^M}{\sigma_M^2}$$

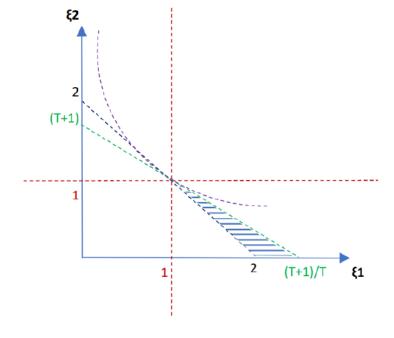

Market Stability-1:

• Rational investors will participate if and only if, the following condition holds:

$$\frac{1-\xi_2}{\xi_1-1} \ge T$$

$$T = \frac{1}{\sigma^2} \left[\left(2(\sigma_T^2 (-\ln(-I(W_{tR}) - a_R))^{0.5} + (\mu - \frac{b}{A}\lambda) - r^D \right)^2 \right]$$

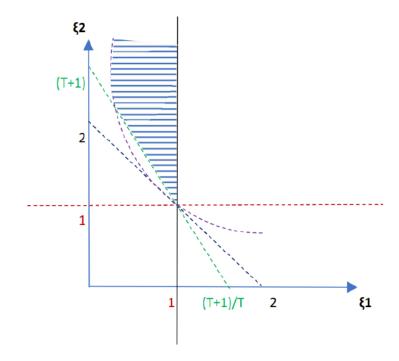

• Consider the following belief structure:

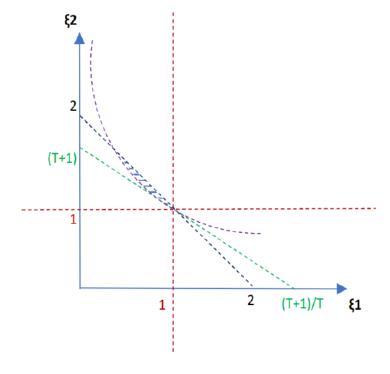


Market Stability-2:

• Case 1: Over-confident investors are optimistic, and the crypto market is in boom

• Case 2: Over-confident investors are optimistic, and the crypto market is in downturn





Market Stability-3:

• Case 3: Over-confident investors are pessimistic, and the crypto market is in boom

• Case 4: Over-confident investors are pessimistic, and the crypto market is in downturn

Cryptocurrency Market-specific Factors:

- Over-confident view can be interpreted as the outcome overreaction (under-reaction) to new information or surprises (Barberis, Shleifer, and Vishny (1998))
- Assume that Z is a vector of observable characteristics that investors can deduce information from them by observing the previous generation
- We can define belief dispersion as:

$$\xi_1 = e^{\omega'(Z - E[Z])}$$

Where the vector ω represents the appropriate weight to captures the mis-reaction to new information

• The market model return residuals follows

$$\ln(E[r] - \beta E[r_m]) = \ln(\gamma(\gamma + 1)) + \ln(\mu - \frac{b}{A}\lambda) + B(Z - E[Z])$$

Where
$$B = \frac{\omega r^D}{(\gamma + 1)(\mu - \frac{b}{A}\lambda)} + \frac{\omega}{1 + \gamma}$$

Empirical Analysis-1:

- We gather daily trading data on top 14 cryptocurrencies and 2 stablecoins from "marketcap.com" and "coinmetrics.io"
- We also gather data on platform characteristics from "coinmetrics.io"
- Our study period covers 2021
- The empirical implication of the crypto-CAPM can be summarized by the following cross-sectional regression:

$$r_{it} = \beta_i r_{Mt} + \gamma_i r_{it}^D + \kappa_i Benefit_{it} + \varepsilon_{it}$$

 $\begin{cases} r_{it}: The \ observed \ return \ of \ crypto-asset \ i \\ r_{Mt}: The \ observed \ return \ of \ crypto-market \ portfolio \\ r_{it}^{D}: The \ calculated \ Down-state \ return \ of \ crypto-asset \ i \\ Benefit_{it}: Net \ of \ transactional \ benefit \end{cases}$

 ε_{it} are i.i.d random noise in crypto – asset i

Empirical Analysis-2:

• Return in Up and Down states are calculated as below:

$$r_{i,t}^{D} = \frac{low_{i,t} - Avg(closing_{i,t}, closing_{i,t+1})}{Avg(closing_{i,t}, closing_{i,t+1})}$$

$$r_{i,t}^{U} = \frac{high_{i,t} - Avg(closing_{i,t}, closing_{i,t+1})}{Avg(closing_{i,t}, closing_{i,t+1})}$$

- To calculate transactional benefits, we use PCA technique.
- We construct proxies for transactional benefits based on 22 observable characteristics in crypto market.
- We run the following regression:

$$r_{it} = \beta_i r_{mt} + \gamma_{it} r_{it}^D + \sum_j \kappa_i^j Comp_{it}^j + \varepsilon_{it}$$

Empirical Analysis-3:

	(1)	(2)	(3)
	BTC return	BTC return	BTC return
Market return	1.019***	1.021***	1.060***
Market return			
	(72.62)	(73.38)	(45.93)
DTC Down sotum	0.0695***	0.0021***	0.0000**
BTC Down return	-0.0685***	-0.0821***	(-0.0998**)
	(-3.22)	(-3.81)	(-2.60)
0 1 11		0.000150***	0.00110*
Control variable		-0.000159***	-0.00110*
		(-2.87)	(-1.97)
1.4. 4 1 C4 1			0.00100**
btc tx benefit 1			(0.00190**)
			(2.06)
btc tx benefit 2			0.00224*
bic ix benefit 2			0.00234*
			(1.73)
btc tx benefit 3			0.000061
bic ix benefit 3			0.000961
			(1.41)
btc tx benefit 4			0.0005652
ote tx benefit 4			
			(-0.22)
Constant	0.00400***	0.00200***	0.0128
Constant	-0.00400***	-0.00290***	$\begin{pmatrix} 0.0138 \\ (1.20) \end{pmatrix}$
	(-4.33)	(-2.92)	(1.39)
Observations	365	365	365
R^2	0.938	0.939	0.960

t statistics in parentheses

	(1)	(2)	(3)
	ETH return	ETH return	ETH return
Market return	1.088***	1.090***	1.085***
	(33.77)	(33.68)	(33.24)
ETH Down return	-0.103***	-0.0973**	-0.0954**
	(-2.70)	(-2.52)	(-2.17)
Control variable		0.253	-1.025
		(0.73)	(-1.35)
eth tx benefit 1			-0.0005826***
		· ·	(-3.52)
eth tx benefit 2			-0.0016697
			(-0.82)
eth tx benefit 3			0.00203
			(0.60)
eth tx benefit 4			0.00102
ctif ex deficite 1			(0.76)
Constant	-0.00269	-0.00433	0.00519
Constant	(-1.26)	(-1.39)	(0.91)
Observations	365	365	365
R^2	0.764	0.764	0.771

t statistics in parentheses

	(1)	(2)	(3)
	LTC return	LTC return	LTC return
Market return	1.247***	1.227***	1.228***
	(28.80)	(28.60)	(28.47)
LTC Down return	0.135***	0.185***	0.197***
	(2.99)	(3.99)	(3.90)
Control variable		0.474***	0.882***
		(3.71)	(2.94)
LTC tx benefit 1			0.00172
			(0.50)
LTC tx benefit 2			-0.00121
			(-0.52)
LTC tx benefit 3			-0.000205
Ere in conem s			(-0.19)
LTC tx benefit 4			-0.000196***
Li C tx beliefit 4			(-3.35)
~	0.00445	0.00=15:	
Constant	0.00412	-0.00742*	-0.0189
	(1.49)	(-1.80)	(-0.86)
Observations	365	365	365
R^2	0.727	0.737	0.741

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

May 2021 Crash Event Study:

- On May 12th, Elon Musk tweeted about the uncertain future of cryptocurrencies due to high Carbon emission of crypto mining.
- After his tweet, price dropped by 30%
- We show that the optimism coefficient represents the belief system correctly.

	(1)	(2)
	Crypto Return (Before)	Crypto Return (After)
Market Return	0.9765**	0.9842***
	(2.21)	(3.84)
Down-State Return	-0.4838****	0.3587****
	(-6.84)	(9.59)
TX Benefit	-1.02e-6***	0.0173***
	(-2.67)	(3.80)
Constant	-0.0072	0.0151****
	(-1.12)	(6.79)
Observations	117	286
R^2	0.092	0.096

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Empirical Derivation of UP and DOWN Return:

- We run a SEM regression based on our theory
- Endogenous variables: UP and DOWN states return

$$\begin{cases} r^{U} = \alpha_{0} + \alpha_{1}r_{M} + \alpha_{2}Benefit + \alpha_{3}Fee + \alpha_{4}r^{D} \\ r^{D} = \beta_{0} + \beta_{1}r_{M} + \beta_{2}Benefit + \beta_{3}Fee + \beta_{4}r^{U} \end{cases}$$

	BTC		ETH	
Structural UP Return	Coefficient	Z	Coefficient	Z
Down Return	-0.1559	-6.01	-0.1658	-5.09
Market Return	0.153	0.47	-0.0581	-1.36
TX Benefit	0.0007	2.04	-0.0029	-6.81
Avg Fee	10.2653	1.78	0.1459	0.46
Constant	0.2192	14.56	0.0289	10.43
Structural Down Return	Coefficient	Z	Coefficient	Z
Up Return	-0.3178	-3.45	-0.3083	-3.88
Market Return	0.1421	2.36	0.162	2.42
TX Benefit	0.00005	0.1	0.0041	7.46
Avg Fee	-36.098	-3.63	-1.0588	-1.83
Constant	-0.1788	-6.13	-0.0258	-4.68

Conclusion:

- We offer a CAPM-like equilibrium pricing for cryptocurrencies.
- We consider dual roles of cryptocurrencies:
 - (1) Their role as investment assets
 - (2) Their role in providing distinctive transactional benefits.
- We provide several interesting insights:
 - We find a bilateral relationship between transactional benefit and belief dispersion in crypto market
 - We show that over-optimism de-stabilizes crypto market and might lead to a crash
 - We show that cryptocurrency market specific factors such as momentum and attention can be explained by belief dispersion in this market.
- We evaluate the validity of our pricing relation with empirical data
 - We utilize PCA to quantify transactional benefit
 - We show that the observed trend in market cap and Sharpe ratio can be explained by our pricing relation
- Also, we show that our model can explain the observed trend in May 2021 crash

Thank you

Email: mohammadhossein.lask@ ucalgary.ca