

Global Portfolio Network and Currency Risk Premia

Jantke de Boer

TU Dresden, Germany jantke.de_boer@tu-dresden.de, www.jantkedeboer.com

Motivation

Idea:

- Large literature documents violations of uncovered interest rate parity (UIP)
- \Rightarrow high interest rate currencies depreciate not enough \rightarrow profitable carry trade strategy
- Persistent differences in macroeconomic fundamentals across countries translate into persistent interest rate differentials that are reversed by predictable exchange rate movements
- Composition of external wealth as potential source of heterogeneous exposure to global risk

Question:

Does the position in a network of international asset allocations explain the cross-sectional variation in currency risk premia?

Network structure

Construction:

- Annual cross-country equity and debt holdings (IMF/CPIS) from 2020 2021
- Measure on network centrality borrowed from Richmond (2019) but with financial assets

$$v^{i} = \sum_{j=1}^{N} \left(\frac{A^{ij} + A^{ji}}{G^{i} + G^{j}} \right) \times s^{j}$$

- A^{ij} and A^{ji} : bilateral asset holdings between country i and country j
- G^i and G^j : GDP of country i and country j
- s^j : share of foreign assets issued by country j relative to total foreign assets $\frac{\sum_{i=1}^N A^{ij}}{\sum_{i=1}^N \sum_{j=1}^N A^{ij}}$

Interpretation:

- Countries are central if they have large portfolio holdings of countries that are important for global capital allocation → rankings in centrality are persistent over time
- Financially developed countries take on larger proportion of global risk because financial intermediaries are better able to deal with funding problems after negative shocks

Figure 1: Global portfolio network in 2020

Cross section

Panel analysis:

• Run regressions with monthly variables *y*

Table 1: Regressions for currency excess returns and forward discounts with month fixed effects

Results:

- Currencies of central countries have lower currency excess returns and interest rate differentials
- Centrality in a global portfolio network captures information different from country size, financial openness, and trade network centrality

Asset pricing tests

Currency portfolios:

- Sort currencies on lagged network centrality into four equal-weighted currency portfolios
- Long-short strategy: peripheral (PF1) minus central (PF4) = *CEN*
- Average excess returns decrease from first portfolio (3.03% p.a.) to last portfolio (0.58% p.a.)

		PF1	PF2	PF3	PF4	CEN
=	Previous centrality					
	mean	0.12	0.36	1.40	4.80	-4.68
	Currency excess returns					
	mean	3.03	3.44	1.40	0.58	2.45
	std	7.10	8.83	7.34	7.34	4.50
	Forward discount					
	mean	3.41	3.86	0.47	-0.43	3.84
	Sharpe ratio					
	mean	0.43	0.39	0.19	80.0	0.54

Table 2: Network centrality currency portfolios

Three-factor model:

- Stochastic discount factor (SDF) model estimated via GMM for the factors DOL, HML, and CEN
- Positive and significant estimate of λ^{CEN} : returns with positive comovement with centrality factor CEN pay higher risk premia

Time-varying risk aversion

Interaction effects:

• Run regressions with monthly spot exchange rate returns

$$\Delta s_t^i = \alpha^i + \delta_t + \beta_1 v_{t-12}^i + \beta_2 \Delta V I X_t + \beta_3 \Delta V I X_t \times v_{t-12}^i + \epsilon_t^i$$

	Δ s	Δ s
Investment centrality	-1.61	-5.25**
	(3.66)	(2.53)
Δ VIX	-0.22***	
	(0.04)	
Investment centrality $\times \Delta VIX$	1.48*	
	(0.75)	
Δ VIX dummy		-2.61***
		(0.67)
Investment centrality $\times \Delta VIX$ dummy		16.95*
		(9.29)
Num. obs.	5,728	5,728
Adj. R^2	0.14	0.09

Table 3: Regressions for spot returns with year and country fixed effects

Results:

- Currencies of central countries appreciate in bad times
- Marginal effects: rate of exchange rate depreciation decreases with increasing network centrality

Consumption-based model

Framework:

- Consumption capital asset pricing model (CCAPM) with complete financial markets
- N countries, representative agents with CRRA utility, one consumption good, two periods [0, 1] \Rightarrow in t: allocation of wealth across assets; in t+1: consumption of portfolio returns

Assets:

Heterogeneous exposure to global shocks measured by country-specific payoff innovations

$$X^{j} = 1 + \epsilon^{j} + \theta^{j} \epsilon^{g}, \qquad \epsilon^{j}, \epsilon^{g} \sim N(0, \sigma^{2})$$

- $\theta^{j} \in (0,1)$: share of country j in world market capitalization
 - ⇒ countries with greater ability to supply financial assets, take on larger proportion of global risk

Exchange rates:

- SDF: $M_{t+1}^i = \beta \left(\frac{C_{t+1}^i}{C_t^i}\right)^{-\gamma}$
- Change in exchange rate equals differences in consumption growth

$$\frac{Q_{t+1}^{ij}}{Q_t^{ij}} = \frac{M_{t+1}^i}{M_{t+1}^j} \Rightarrow \Delta q_{t+1}^{ij} = m_{t+1}^i - m_{t+1}^j$$

Question:

How does a country's network centrality affect the exposure to global consumption growth?

Results:

- $v_t^i > v_t^j$: $\epsilon_{t+1}^g < 0 \to m_{t+1}^i > m_{t+1}^j \to \Delta q_{t+1}^{ij} > 0 \to \text{currency of country } i \text{ appreciates}$
- Lower consumption growth in central countries when global risk aversion is high
- Countries with relative low prices receive transfer to take advantage of cheap consumption

Summary of results

- 1. Currency excess returns and interest rates decrease in countries' network centrality
- 2. Differences in network centrality risk factor explains cross-section of currency excess returns in standard asset pricing model
- 3. In bad times, currencies of peripheral countries depreciate more than of central countries: risk premia compensate for time-varying risk exposure
- 4. Variation of exchange rates in a global portfolio network is driven by heterogeneity in consumption growth risk