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Our 2 Stata Programs
ssc Install pzms

https://econpapers.repec.org/software/bocbocode/s459073.htm

-pzms- implements our approach. Very easy to use. Only required
option is the maximum bandwidth

pzms sim uses simulations based on the data from any application, to
examine likely performance of our approach, compared to alternative

approaches https://sites.google.com/site/nrkettlewell/research


https://econpapers.repec.org/software/bocbocode/s459073.htm
https://drive.google.com/file/d/1rtNn2McXKbrY_lQybpDhHujWN8bk7X_S/view?usp=sharing
https://sites.google.com/site/nrkettlewell/research

Outline

» Key Issues and our Contribution

* Motivating application — 2 policy changes affecting Learner
drivers in NSW

* Theory — show our approach is asymptotically optimal, under

restrictive conditions

» Simulations — our approach performs favourably compared to

other procedures using stylised and realistic DGPs



RDD Model Selection

 RDD regarded as a leading quasi-experimental research design

* However, It Involves numerous researcher choices e.g. bandwidth,

polynomial, kernel, controls etc.

* How to select among the multitudes of potential estimators?

* Imbens and Kalyanaraman (IK) (2012) and Calonico et al. (CCT) (2014) propose

algorithms for BW selection that minimise AMSE of the boundary estimator

» Pei et al (2021) make a similar suggestion for polynomial order.



Issues with Model Selection Algorithms

* EXisting approaches deal with one choice and hold others constant.
» CCT focussed on inference, not on estimation
» |[K/CCT can do poorly in simulations with realistic DGPs (Card et al, 2017).

* While IK/CCT are popular for BW selection, there is no consensus and
researchers tend to rely on robustness testing. This may be overly punitive

to particular DGPs.



lllustration of our proposal

Which Model Should we Use to Estimate the Discontinuity?

QO




Which Model Should we Use to Estimate the Discontinuity?

P

P

Assume there are only two candidate models

Long Bandwidth Candidate Model in Blue
Short Bandwidth Candidate Model in Red




We can test Candidate Models Iin the Placebo Zone
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I F1rrrnnrd I F1rrrrend F1rrrrnrnend I _4

How well does each model estimate '‘placebo’ discontinuities?
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Placebo Threshold 1

-

Pjacebo Disoonfinuity Estimates
Long Bandwidth Caﬁdidate Model .045
Short| Bandwidth Céndidate Model .085

Estimation errors

N

-—

RMSE

RMSE
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Shc

Placebo Threshold 2

>

Placebo Disoonfinuity Estimates

Long Bandwidth Cahdidate Model .002

rt Bandwidth Céndidate Model -.08

Estimation errors

N

-—

RMSE

50
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Placebo Threshold 3

¢ Placebo Disooniinuity Estimates
Long Bandwidth Caﬁdidate Model -.006
Short Bandwidth Céndidate Model -.07

Estimation errors

N

-—

RMSE
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Placebo Threshold 4

-

' Placebo Disooniinuity Estimates
Liong Bandwidth Cahdidate Model .023
Jhort Bandwidth Céndidate Model .014

Estimation errors

N_
X
X x
x
e
RMSE
x
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®
RMSE
b4
X
x
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Placebo Threshold 5

' Placebo Disoon’iinuity Estimates
Long Bandwidth Cahdidate Model .049
Short Bandwidth Céndidate Model .017

Estimation errors

N

-—
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Placebo Threshold 6

Placebo Disconiinuity Estimates
Long Bandwidth Cahdidate Model .038
Short Bandwidth Céndidate Model .027

Estimation errors

N

-—
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Placebo Threshold 7

Placebo Disconiinuity Estimates
Long Bandwidth Ciandidate Model O
Short Bandwidth Céndidate Model -.02

Estimation errors

N

-—

XX

x
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Placebo Threshold 8

Placebo Disconiinuity Estimates
Long Bandwidth Cahdidate Model .055
Short Bandwidth Ce{ndidate Model .064

Estimation errors

N

-—

XX

x
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Placebo Threshold 9

Placebo Disconiinuity Estimates
Long Bandwidth Cahdidate Model .081
Short Bandwidth C&fndidate Model .109

Estimation errors

N

-—

XX

RMSE

x
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Placebo Threshold 10

Placebo Disconfinuity Estimates
Long Bandwidth Caﬁdidate Model -.022
Short Bandwidth Cahdidate Model -.038

Estimation errors

N

-—

XX
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Placebo Threshold 11

Placebo Disconfinuity Estimates
Long Bandwidth Cahdidate Model .001
Short Bandwidth Ceindidate Model .011

Estimation errors

N

-—

p 4

X XXX
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Placebo Threshold 12

Placebo Disconfinuity Estimates
Long Bandwidth Caﬁdidate Model -.042
Short Bandwidth Cahdidate Model -.024

Estimation errors

N

-—

=
m).xx X

XAHAXXKX XX
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Placebo Threshold 13

Placebo Disconfinuity Estimates
Long Bandwidth Caﬁdidate Model -.064
Short Bandwidth Cahdidate Model -.041

Estimation errors

N

-—

RMSE

X

XAHAXXKX XX
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Placebo Threshold 14

Placebo Disoonfinuity Estimates
Long Bandwidth Caﬁdidate Model -.035
Short Bandwidth Cafndidate Model .026

Estimation errors

N

-—

RMSE

X

AKX XX
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Placebo Threshold 15

Placebo Disoonfinuity Estimates
Long Bandwidth Caﬁdidate Model -.015
Short Bandwidth Cafndidate Model .007

Estimation errors

N

-—

XXX X XK
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Placebo Threshold 16

Placebo Disooniinuity Estimates
Long Bandwidth Cahdidate Model .016
Short Bandwidth Cafndidate Model .056

Estimation errors

N

-—

X

gﬁxx X

XXX X XK
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Placebo Threshold 17

Placebo Disconfinuity Estimates
Long Bandwidth Céndidate Model .03
Short Bandwidth Céndidate Model -.02

Estimation errors

N

-—

X

x 5||xx X

X

RMSE

X

XA XX XK
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Placebo Threshold 18

Placebo Disconﬁinuity Estimates
Long Bandwidth Caﬁdidate Model .041
Short Bandwidth Cahdidate Model -.029

Estimation errors

N

-—

x 51}m:¢x X

X

RMSE

X

XX XA XXX
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Placebo Threshold 19

Placebo Disconfinuity Estimates
Long Bandwidth Cahdidate Model .064
Short Bandwidth Cahdidate Model -.035

Estimation errors

N

-—

RMSE

XXX

XX XA XXX
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Placebo Threshold 20

Placebo Disconfinuity Estimates
Long Bandwidth Cahdidate Model .048
Short Bandwidth Cahdidate Model -.026

Estimation errors

N

-—

x x%lkxn< X

X

RMSE

XXX

XXX A XX
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Placebo Threshold 21

/

Placebo Disconfinuity Estimates
Long Bandwidth Cahdidate Model .102
Short Bandwidth Céndidate Model .105

Estimation errors

N

-—

XXX

XXX A XX
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Placebo Threshold 22

Placebo Disconfinuity Estimates
Long Bandwidth Caﬁdidate Model -.006
Short Bandwidth Cahdidate Model -.035

Estimation errors

N

-—

XXX A XX
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Placebo Threshold 23

Placebo Disoonfinuity Estimates
Long Bandwidth Cahdidate Model .002
Short Bandwidth Céndidate Model -.02

Estimation errors

N

-—

RMSE

XX

XX AXA XXX
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Placebo Threshold 24

Placebo Disoonﬁnuity Estimates
Long Bandwidth Caﬁdidate Model -.008
Short Bandwidth Céndidate Model -.02

Estimation errors

N

-—

xX

RMSE

XX

XX XA XXX
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Placebo Threshold 25

Placebo Disconiinuity Estimates
Long Bandwidth Caﬁdidate Model -.039
Short Bandwidth Cahdidate Model -.078

Estimation errors

N

-—

®x x >c§1.xm: X

xX

b4

RMSE

XX

XX XA XXX
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Placebo Threshold 26

Placebo Disoon’iinuity Estimates
Long Bandwidth Caédidate Model -.018
Short Bandwidth Céndidate Model .004

Estimation errors

N

-—

X

x xﬁ%’x)m

b 4

xX

b4

RMSE

XX

XX XX XA XWX
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Placebo Threshold 28

Placebo Disooniinuity Estimates
Long Bandwidth Caﬁdidate Model -.013
Short Bandwidth Cahdidate Model -.034

Estimation errors

N

-—

®x xx%.cxm X

MW AKX MK

b4

X

x

X

XK XX AKX XWX XX %.
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Placebo Threshold 29

Placebo Disconiinuity Estimates
Long Bandwidth Cahdidate Model .056
Short Bandwidth Ca{ndidate Model .069

Estimation errors

N

-—

x xgﬁxm X

X

MW AKX MK

b4

*X

x

XK XX AKX XWX XX %. X
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Placebo Threshold 30

Placebo Disconiinuity Estimates
Long Bandwidth Ceindidate Model .05
Short Bandwidth Céndidate Model .034

Estimation errors

N

-—

x xgﬁxmc X

X

MW AKX MK

b4

*X

x

XK XX AKX XWX MW XX %. X
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Placebo Threshold 31

-

Placebo Disconiinuity Estimates
Long Bandwidth Cahdidate Model .084
Short Bandwidth C&indidate Model .048

Estimation errors
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Results after 31 Placebo Repetitions

P

\

The Long Bandwidth Model is Preferred

because it has the lower placebo-estimate RMSE

Estimation errors

N

-—

X

MW AKX MK

X

b4
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Distribution of Placebo estimates from Preferred Model
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The discontinuity point-estimate alongside the placebos

43



A Randomisation Inference 95% Confidence Interval

I I I I I
-.2 -1 0 N 2 3

We assume the placebos are drawn from a normal distribution and adjust for serial correlation

—
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Outline

» Key Issues and our Contribution

* Motivating application — 2 policy changes affecting
Learner drivers in NSW

* Theory — show our approach is asymptotically optimal, under

restrictive conditions

» Simulations — our approach performs favourably compared to

other procedures using stylised and realistic DGPs



Motivating Example — 2 Policy Changes
affecting Learner Drivers in NSW

46



These policy changes were intended to reduce
(subsequent) crashes
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Motivating Example (cont.) These policy changes
increased the number of Mandatory Supervised Driving
Hours, from zero to 50, and then to 120 hours
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Motivating Example (cont.)

Mandatory Supervised Driving Hours (MSDH) for Learner Drivers in NSW
On 1 July 2000, MSDH increased from 0 to 50 hours.

Because of the age requirement for a learner's permit (16 years), people born just
before 1 July 1984 could avoid the policy. Those born after 1 July 1984 could not.

A similar increase occurred on 1 July 2007 from 50 to 120 hours.

This created discontinuities(?) in the probability of treatment by date of birth (DOB).

Did these policy changes affect crash rates??



First-stage relationship between DOB (centred around 1
July 1984 and "Treatment’ (i.e. 50+ hours versus 0+)

P(Mandated 50 hours |Ps prior to age 30) - 1 month bins |l P(Mandated 50 hours |Ps prior to age 30) - 2 day bins

Regression function fit Regression function fit

-400 -200 0 200 400 -465 -ElIJEJ 0 Elé!D 465

Sample average within bin ~olynomial fit of order 2 Sample average within bin Pelynomial fit of order 2
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First-stage relationship between DOB (centred around 1
July 1991 and "Treatment’ (i.e. 120+ hours versus 50+)

P(Mandated 120 hours |Ps prior to age 23) - monthly binsjP(Mandated 120 hours |Ps prior to age 23) - monthly bins

Regression function fit Regression function fit
- -— I
o0 o0
o o
) / EI. | \—/
(o
o~ .
I I I I I I I |
-400 -200 0 200 400 -400 -200 0 200 400
Sample average within bin Polynomial fit of order 2 Sample average within bin ~olynomial fit of order 2
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Outline

» Key Issues and our Contribution

* Motivating Application — estimating effects of 2 policy changes

affecting Learner Drivers in NSW
* Theory — show our approach is asymptotically
optimal, under restrictive conditions

» Simulations — our approach performs favourably compared to

other procedures using stylised and realistic DGPs



Proof of Asymptotic Optimality (Overview)

* Our approach is ‘asymptotically optimal’ if the best treatment effect estimator also

has the lowest mean squared placebo estimates, when the placebo zone is large.

* This is the case if the MSE at each placebo threshold equals the MSE at the

treatment threshold.

* We show this, assuming the global DGP’s CEF has a zero fourth-derivative, under

homoskedasticity, and uniformly distributed x.

* \We focus on sharp RDD, with local linear estimators. The results also translate to

higher-order polynomials.



Proof of Asymptotic Optimality (Outline)

We show that bias of linear RDD estimators is proportional to the 3™ derivative of the DGP’s CEF.

This bias is constant across the support of the running variable, assuming the 4 derivative is zero.
Therefore the bias of placebo estimators equals the bias of the treatment effect estimator

The variance of placebo estimators also equals the variance of the treatment effect estimator,
assuming homoskedasticity and a uniform distribution

For each estimator, the observed mean of squared estimates across the placebo zone approaches
the (unobservable) MSE of the treatment effect estimator as the placebo zone becomes large

Therefore the approach is ‘asymptotically optimal’



Outline

» Key Issues and our Contribution

» Motivating Application — 2 policy changes affecting Learner Drivers in
NSW

* Theory — show our approach is asymptotically optimal, under
restrictive conditions

* Simulations — our approach performs favourably

compared to other procedures using stylised and realistic
DGPs



Monte Carlo Simulations

Great in theory, but does our approach work well with:

* Finite placebo zones?
 DGPs with non-zero fourth derivatives?
+ DGPs with non-constant density

» Realistic DGPs, such as those in prominent well-known RDD studies?

Our simulation approach closely follows related simulation work

Use 1000 reps. In each rep, we

) trial many candidate estimators (linear and quadratic models with a wide range of BWs) through the
placebo zone and pick the best performer on RMSE

i)  Apply that model to estimate the actual treatment effect

Compare RMSE (across reps) of our approach to those chosen by the CCT and IK algorithms



Stylised DGPs (first draw of 1000 reps)

A: Linear, Large Variance
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Stylised DGPs (first draw of 1000 reps)

E: Sine, Large Variance
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Monte Carlo Simulations (cont.)

 Realistic DGPs

Mimic well-known applications: Head Start (Ludwig & Miller, 2007), political
incumbency (Lee, 2008), and Minimum Legal Drinking Age (MLDA)

Fit f(x), 5t order polynomial to original data, allowing a discontinuity and kink
Fit Beta-distribution to summarise distribution of running variable.

In each iteration, sample size is set equal to the original sample.

Randomly draw values of the running variable from the beta distribution.

Sety = f(x) + e, where e is normally distributed with zero mean and variance

equal to the variance of the residuals from the regression in 15t step.
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Realistic DGPs (first draw of 1000 reps)

A: Head Start Simulation
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Monte Carlo Results (4)

Mortality

Wins

Ever Drinks

Proportion

Drinks

Drinks Regularly

of Days

b S (OT [
mean — order mean RKMSE mean
BW (%) BW BW
F: Hehd Start|DGP
0.6794113.86 0.999 7.93 0.9853 14.87
G: Political incumblency DGP
21.59 0.988 | 0.0125 122.76  0.0119 30.35
H: MLDA DGP
0.027113.81 0.981 .96 0.0347 2.50
0.034013.96 0.983 .96 0.0425  2.89
0.015413.96 0.983 .96 0.0189 3.15
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Monte Carlo Results (4)

b S CCT [k
RMSE | mean Jorder RMSH mean | RMSE mean
BW (%) BW BW
F: Head Stary DGP
Mortality 0.6794] 13.86 [0.999 1.4265 0.9853 14.87
.| Political incumpency D{zP
Wins 0.0111] 21.59 [0.988 0.0125 0.0119 30.35
H: MLDA
Ever Drinks 0.0271] 3.81 0.981 0.0591 0.0347  2.50
Drinks Regularly 0.0340] 3.96 [0.983 0.0750 0.0425 2.89
Proportion of Days 0.0154] 3.96 [0.983 0.0339 0.0189 3.15

Drinks



Monte Carlo Results Summary

* Our approach always beats CCT and IK using DGPs based on real

data

» Our approach beats CCT in most of the stylized simulations as well,
including those with highly unstable DGPs (Sine and Cosine)

* Performance against IK more mixed (we usually win with simpler DGPs (linear,
quadratic), particularly with more error variance, but usually lose with

sine/cosine. However, RMSEs and selected BWs similar.



Outline

» Key Issues and our Contribution

* Motivating application — 2 policy changes affecting
Learner drivers in NSW

* Theory — show our approach is asymptotically optimal, under

restrictive conditions

» Simulations — our approach performs favourably compared to

other procedures using stylised and realistic DGPs
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Candidate models for our application

Conventional (fully-interacted) linear RDD.

RDD with a linear fit on the right side of the threshold, and a quadratic on the left.
Conventional (fully-interacted) quadratic RDD.

Conventional (fully-interacted) linear RPJKD.

Quadratic RPJKD, in which quadratic term is not interacted with the threshold indicator.
RPJKD model with a linear fit on the right side of the threshold, and a quadratic on the left.
Fully-interacted quadratic RPJKD.

Conventional (fully-interacted) linear RKD.

Quadratic RKD, in which the quadratic term is not interacted with the threshold indicator.
RKD with a linear fit on the right side of the threshold, and a quadratic on the left.
Fully-interacted quadratic RKD.

Month-of-birth cohort |V, with linear DOB control

Month-of-birth cohort IV, with quadratic DOB control

Month-of-birth cohort 1V, with cubic DOB control




Summary of Model Performance in
Placebo Zone

Model Description RMSE  Optimal Coverage Bias
BW

1 RDD - linear 0.0083 365 0.962 -0.0004
2 RDD - mixed polynomial 0.0199 365 0.921 0.0014
3 RDD - quadratic 0.0230 365 0.927 0.0015
4 RPJKD - linear 0.0060 365 0.936 0.0010
5 RPJKD - quadratic 0.0073 365 0.980 -0.0005
b RPJKD - mixed polynomial 0.0052 365 0.992 0.0000
I RPJKD - interacted quadratic 0.0132 365 0.938 0.0005
8 RKD - linear 0.0096 355 0.910 0.0028
9 RKD — quadratic 0.0179 365 0.953 0.0019
10 RKD - mixed polynomial 0.0057 365 0.984 0.0002
11 RKD - interacted quadratic 0.0177 365 0.950 0.0019
12 birth cohort-1V - linear 0.0051 365 0.946 0.0006
13 birth cohort-IV - quadratic 0.0070 365 0.987 -0.0007
14 birth cohort-1V - cubic 0.0124 365 0.937 0.0001
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Key Estimates

Table 6: Estimated effects of minimmm supervised driving hours

Best esti- Best sym. DBest sym. Best sym. DBest sym.

mator cohort-1V RPJKD RKD RDD
1) 2) 3) @) 5)
A: 2000 Retorm (0 — 50 hours)
MVA -0.01447**  -0.0132%**  -0.0147***F  -0.0144** -0.0168%**
l-vear
SE 0.0041 0.0049 0.0050 0.0058 0.0058
p-value 0.0005 0.0073 0.0032 0.0129 0.0038
alt. SE 0.0039 0.0047 0.0049 0.0054 0.0080
alt. p-value 0.0096 0.0203 0.0157 0.0381 0.0552
Model 6 12 G 10 1
BW 365 / 550 365 365 365 365
B: 2007 Retorm (50 — 120 hours)

MVA 0.0021 0.0003 0.0006 -0.0024 -0.0007
l-vear
SE 0.0030 0.0033 0.0033 0.0046 0.0035
p-value 0.4790 0.9259 0.8477 0.6069 (.8422
alt. SE 0.0042 0.0047 0.0049 0.0054 0.0080
alt. p-value 0.6310 0.9496 0.9003 0.6774 (.9328
Model 12 12 6 10 1
BW 560 / 365 365 365 365 365




Conclusions

* We propose a new approach for model selection in RDD and related designs using
placebo zone data

» Can compare across and within model types, on any number of dimensions. Also
offers a new approach for inference

* We recommend its use whenever the DGP is "stable' across the range of the running
variable, and the placebo zone is not small

Policy conclusions

* Going from 0 - 50 MSDH reduced MVAs. Relatively large effect sizes (21%
reduction in 1st year). No effect after 1-2 years (evidence against habit formation).

 No effect from further increase to 120 MSDH.



Our 2 Stata Programs
ssc Install pzms

https://econpapers.repec.org/software/bocbocode/s459073.htm

-pzms- implements our approach. Very easy to use. Only required
option is the maximum bandwidth

pzms sim uses simulations based on the data from any application, to
examine likely performance of our approach, compared to alternative

approaches https://sites.google.com/site/nrkettlewell/research
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https://sites.google.com/site/nrkettlewell/research




-4

Extra Slides



Data

» Administrative records on licence history of drivers in NSW linked with
records on crashes between 1996 and 2016. Only crashes where at
least one car is towed away and/or someone was injured are

recorded.

» Because of important discontinuous policy changes we only consider

BW:s of up to 365 days for our baseline analysis.

* In main analysis N = 154,524 drivers born within 1 year of 1 July 1984
(2000 reform), N = 160,301 within 1 year of 1 July 1991 (2007 reform).



What are Researchers Doing?

Table: Discontinuity studies published in leading journals in 2019

Sharp RDD  Fuzzy RDD  Cohort-1V
Papers using this model 15 10 2
Method for bandwidth choice
No stated method 6 4 2
IK/CCT 8 6 0
Method for polynomial choice
No stated method 10 9 2
Local linear polynomial as baseline 11 8 -
Robustness tests
Varied bandwidth 15 9 1
Varied polynomial 13 5 1
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Our Approach

Estimate many placebo treatment effects for each candidate estimator by moving

the placebo threshold across the placebo zone where we know the treatment effect
= 0.

Choose the estimator with lowest root mean squared error (RMSE) of treatment

effect estimates across all candidate models. Can also assess bias and coverage.
Can compare models on any dimension and of different model types.
Extendable to nonlinear models (e.g. logit)

Combine with randomization inference similar to Ganong & Jager (2018)



Figure: Reduced-Form Relationships between DOB and MVA 1-year

A. 2000 reform B. 2007 reform
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Decisions to make

* Which empirical technique should we use (for estimation)?
* Which order of polynomial should we use?

 What bandwidth should we use?

» Should we use a different approach on each side of the
threshold”?



Monte Carlo Simulations (cont.)

» Stylised DGPs

« Sample size = 500 observations (following IK, CCT and others)
X is uniformly distributed across the range (-100, 400)
* Qutcome variable y = 0:3(x>0) + f(x) + €,

» where 0.3 is the discontinuity at x = 0, and ¢ = 0.1 (representing “large'

error variance), or 0.3 ("small' error variance)

* f(x) Is either: Linear, Quadratic, Sine, or Cosine



Proof of Asymptotic Optimality (1)

Let T be the true treatment effect. The MSE of any estimator is
MSE (%) = E(t — 1)*= Var(f) + Bias(t)* (1)

Consider local linear RD estimators with bandwidth b. Assume n;, observations within this
bandwidth, on each side of the threshold.

T, = dyp — A1, Where &,; and &, are estimated using independent linear regressions on
each side of the threshold (x = 0)

y=aq+ [ix + &, —-b<x<0 (2a)
Yy =a,+ fx + &, O0<x<b (2b)

MSE(t,) = E(@,), — Gqp — 7)% = Var(@,p) + Var(@,,) + Bias(f,)? (3)



Proof of Asymptotic Optimality (2)

Consider a true DGP that is cubic: y = a + 7I(x > 0) + 0,x + 0,x% + 0;x3 + ¢, (4)

6,x* and 0,x3 are omitted variables from (2a) and (2b), a;= a and a,= a + 7. Using conventional OVB

formulas:
E(@p) = a + 614 + 01 ()
Where §; ,is the estimated constant in the regression of 6,x% on x: 0,x* =8, + myx + €, =b < x < 0 (6A)

And §;, is the estimated constant in the regression of 68;x3 on x, 6:x3 =6, +m,x+¢€,, b <x <0 (6B)

Similarly for E(&,;) using data on the RHS:

E(@z) = (@ 4+ 7) + Ogy + Og> (9B)



Proof of Asymptotic Optimality (3)

The expected value of the RD estimate is hence:

E(p) = E(@2p) — E(@1p) = (@ +T) + 8gy + Oy — (@ + 611 + 612) (7)
However, 65, = §;, and 8, = —4;,, and so:

E(f) =T+ ZSLZ

(to see this, replace x with —x in (6A) and (6B), noting the assumed uniform distribution of x. (6A) becomes

0,x* = §; — myx + €. This regression yields exactly the same estimate of 6. (6B) becomes —8;x> = §, —

m,x + €,. This regression yields an estimated constant exactly equal to —§;,.)

(6B) implies that §,, is proportional to 85, and unrelated to any other parameters of the cubic DGP. The bias

of 7, Is hence proportional to the third derivative of the DGP CEF.



Proof of Asymptotic Optimality (4)

The discontinuity estimates at any placebo threshold at x = k, have the same bias, assuming the

same global DGP, forany |k| > b

The linear RD estimate with bandwidth b at a placebo discontinuity at x = k IS Ty = @rop — Ax1p

where @, and a;,; are the estimates from these regressions:
y=a,+pi(x—k)+e (k—b)<x<k andy=a, +B,(x—k)+¢e, k<x<(k+Db)

Substituting x;, = x — k, these regressions are equivalent to
Y=g +P1xx +& —b<x,<0 (9a), and
Y = Ay T ﬁzxk T &, 0 < X < b (9b)

The DGP can be expressed as y = a + 0, (x;, + k) + 0, (x) + k)*+03(x;, + k)>+&(10)
if k > b, and similarly if k < —b



Proof of Asymptotic Optimality (5)

Equivalently, y = mq + mixy + mox% + 03x5°, (11)

Where g = & + kHl + kZHZ + k363, 1 = 91 + Zkgz + 3]{203, Ty, = 92 + 3]{83
(9a), (9b) and (11) are equivalent to equations (2a), (2b) and (4), respectively,
with T = 0 and the threshold at x;, = 0. As shown, the bias of the RDD
estimate is proportional only to the third derivative of the true DGP’s CEF. The

third derivative (603) is the same in (11) as in (4), and so Bias(Ty,) =
Bias(t;), for |k| > b.

It is trivial to show that Var(t,,) = Var(t,). Therefore MSE(T,;,,) = MSE(T;).



Proof of Asymptotic Optimality (6)

For any given estimator, as the placebo zone gets large, the mean of the squared
placebo estimates approaches the MSE of the treatment effect estimator:

. 1 5 A
Since 1, = 0, lim =Y2™ £,,% = MSE (%))
m—ooom

If the DGP has a non-zero fourth derivative, our approach is no longer asymptotically
optimal. To see this, assume a fourth-order polynomial DGP and follow the same steps.
The equivalent of equation (11) would have a different coefficient of x;> for each k.

Therefore the bias of placebo estimates would be different at each placebo threshold.



Monte Carlo Results (1)

Baseline DGP

Small
Smal

Small

| error varialce
| placebo zone

placebo zone

and error variance

Baseline DGP

Small
Smal

Small

| error variance
| placebo zone

placebo zone

and error variance

KS CCT Ik

RMSE mean lmnear RMSE mean RMSE mean

BW (%0) BW BW

A: Linear DGP
0.0241 250.19 1.000 0.0413 66.42 0.0295 149.85
0.0072 250.19 1.000 0.0092 8&83.01 ).0079 201.92
0.0292 151.53 0.974 0.0601 34.70 0.0319 120.94
0.0088 151.53 0.974  0.0180 34.69 0.0087 149.19
B: Quadratic DGP

0.0285 114.30 0.999 0.0413 66.37 0.0331 137.67
0.0088 98.63 0.995 0.0124 65.87 0.0166 149.54
0.0318 118.92 0.969 0.0601 34.70 0.0332 115.63
0.0096 98.54 0.953 0.0180 34.70 0.0116 117.95

34



Monte Carlo Results (2)

kS CCT [
RMSE mean order RMSE mean RKRMSE mean
BW (%) BW BW
C: Cubic DGP
Baseline DGP 0.0301 93.59 1.000 0.0414 066.38 0.0325 114.81
Small error variance 0.0104 79.49 1.000 0.0125 65.94 0).0109 &9.25
Small placebo zone 0.0321 100.39 0.953 0.0601 34.69 0.0340 106.87

Small placebo zone 0.0110 82.66 0.919 0.0180 34.66 0.0111 83.62
and error variance

D: Sine DGP

Baseline DGP 0.0481 59.0 0.857 0.0605 34.1 0.0443 60.8
Small error variance 0.0172 41.6 0.886 0.0187 30.8 0.0174 56.5
Small placebo zone 0.0633 79.9 0.729  0.0605 34.1 0.0443 60.8
Small placebo zone 0.0207 58.6 0.673 0.0187 30.8 0.0174 56.5

and error variance




Monte Carlo Results (3)

S CCT K
RMSE mean order RMSE mean RMSE mean
BW (%) BW BW
E: Cosine DGP
Baseline DGP ).0446 &83.9 0.640 0.0601 34.7 0.0377 75.1
Small error variance 0.0147 42.1 0.876  0.0180 34.7 0.0114 71.0
Small placebo zone 0.0437 82.5 0.579  0.0601 34.7 0.0377 75.1
Small placebo zone 0.0153 41.8 0.778  0.0180 34.7 0.0114 71.0

and error variance



Our procedure

 There are total of 14 x 331 = 4,634 candidate models —i.e. 14 models with BW
ranging from 35 to 365 days.

* We estimate the placebo treatment effect (which we know to be zero and constant
across entities) using each candidate model. We repeat this for all 1826 placebo

treatment thresholds, and assess the performance of each candidate model.

» Key stat is the Root Mean Squared Error (RMSE) of the estimated treatment

effect = square root of the sum of the 1826 estimates

» Other stats are Coverage Rate (% of estimated Cls which include the true effect)



Extensions

 Allow asymmetric bandwidths (to the left and right of the

threshold) — these actually do better!

* Impose treatment effect heterogeneity into the placebo zone

 Random perturbation of the real data for ‘treated’ observations

* Marginal Treatment Effect which is linear in ‘resistance’



Outcome data in our placebo zone
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Placebo treatments

Within this zone, we create
placebo treatments in a way
which mimics the true
treatment selection process.
For example, in the first

.8

hrs_placebo

placebo, persons are deemed = .~,_.~'
treated if they obtained their =] ... ’
license on or after 1 July wle

2001. The first stage o

relationship is shown. 50 )

ageweek

I
50



Timing of Treatment Effect

Best esti- Best sym. Best sym. Best sym. Best sym.
mator cohort-1V RPJKD RKD RDD
B: Timing of Treatment Effect

MVA 6 -0.0004***  _.0.0074** -0.0078** -0.0072 -0.0093**
months
SE 0.0031 0.0035 0.0036 0.0044 0.0044
MVA 6-12 -0.0048% -0.0050% -0.0070** -0.0069% -0.0077*
months
SE 0.0028 0.0034 0.0034 0.0040 0.0040
MVA 1-2 0.0035 0.0026 0.0027 0.0019 0.0033
years
SE 0.0036 0.0045 0.0046 0.0053 0.0053

91



Seriousness and Heterogeneity

Best esti- Best sym. Best sym. Best sym. Best sym.
mator cohort-1V RPJKD RKD RDD
. Serious MVAs
Injury -0.0084***  -0.0093***  -0.0100***  -0.0102*** -0.0110***
SE 0.0026 0.0032 0.0032 0.0038 0.0036
Fatality -0.0002 -0.0001 -0.0002 -0.0002 -0.0002
SE 0.0003 0.0004 0.0004 0.0005 0.0005
D: Heterogeneity by Sex

MVA 1-year -0.0132*% -0.0146** -0.0139% -0.0114 -0.0163*
males
SE 0.0059 0.0072 0.0073 0.0086 0.0085
MVA 1-year -0.0164*** -0.0111% -0.0159** -0.0181** -0.0177**
females
SE 0.0056 0.0066 0.0068 0.0080 0.0083

92



Other Applications

* \We use our method to re-evaluate evidence on Head Start
(Ludwig & Miller, 2007) and minimum legal drinking age (Lindo et
al, 2010).

* In both cases, our method selects much larger BWs than the

original studies.

* However, the conclusions of those studies are unchanged.
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