ASSA, January 8, 2023 # Our 2 Stata Programs ssc install pzms https://econpapers.repec.org/software/bocbocode/s459073.htm -pzms- implements our approach. Very easy to use. Only required option is the maximum bandwidth <u>pzms sim</u> uses simulations based on the data from any application, to examine likely performance of our approach, compared to alternative approaches https://sites.google.com/site/nrkettlewell/research ## Outline - Key Issues and our Contribution - Motivating application 2 policy changes affecting Learner drivers in NSW - Theory show our approach is asymptotically optimal, under restrictive conditions - Simulations our approach performs favourably compared to other procedures using stylised and realistic DGPs ### RDD Model Selection - RDD regarded as a leading quasi-experimental research design - However, it involves numerous researcher choices e.g. bandwidth, polynomial, kernel, controls etc. - How to select among the multitudes of potential estimators? - Imbens and Kalyanaraman (IK) (2012) and Calonico et al. (CCT) (2014) propose algorithms for BW selection that minimise AMSE of the boundary estimator - Pei et al (2021) make a similar suggestion for polynomial order. ## Issues with Model Selection Algorithms - Existing approaches deal with one choice and hold others constant. - CCT focussed on inference, not on estimation - IK/CCT can do poorly in simulations with realistic DGPs (Card et al, 2017). - While IK/CCT are popular for BW selection, there is no consensus and researchers tend to rely on robustness testing. This may be overly punitive to particular DGPs. # Illustration of our proposal Which Model Should we Use to Estimate the Discontinuity? ### Which Model Should we Use to Estimate the Discontinuity? #### We can test Candidate Models in the Placebo Zone #### Distribution of Placebo estimates from Preferred Model #### The discontinuity point-estimate alongside the placebos #### A Randomisation Inference 95% Confidence Interval We assume the placebos are drawn from a normal distribution and adjust for serial correlation #### Outline - Key Issues and our Contribution - Motivating application 2 policy changes affecting Learner drivers in NSW - Theory show our approach is asymptotically optimal, under restrictive conditions - Simulations our approach performs favourably compared to other procedures using stylised and realistic DGPs # Motivating Example – 2 Policy Changes affecting **Learner Drivers** in NSW # These policy changes were intended to reduce (subsequent) crashes Motivating Example (cont.) These policy changes increased the number of **Mandatory Supervised Driving Hours**, from zero to 50, and then to 120 hours ## Motivating Example (cont.) - Mandatory Supervised Driving Hours (MSDH) for Learner Drivers in NSW - On 1 July 2000, MSDH increased from 0 to 50 hours. - Because of the age requirement for a learner's permit (16 years), people born just before 1 July 1984 could avoid the policy. Those born after 1 July 1984 could not. - A similar increase occurred on 1 July 2007 from 50 to 120 hours. - This created discontinuities(?) in the probability of treatment by date of birth (DOB). - Did these policy changes affect crash rates?? # First-stage relationship between DOB (centred around 1 July **1984** and 'Treatment' (i.e. **50+** hours versus 0+) P(Mandated 50 hours |Ps prior to age 30) - 1 month bins P(Mandated 50 hours |Ps prior to age 30) - 2 day bins # First-stage relationship between DOB (centred around 1 July **1991** and 'Treatment' (i.e. **120+** hours versus 50+) P(Mandated 120 hours |Ps prior to age 23) - monthly bins P(Mandated 120 hours |Ps prior to age 23) - monthly bins #### Outline - Key Issues and our Contribution - Motivating Application estimating effects of 2 policy changes affecting Learner Drivers in NSW - Theory show our approach is asymptotically optimal, under restrictive conditions - Simulations our approach performs favourably compared to other procedures using stylised and realistic DGPs #### Proof of Asymptotic Optimality (Overview) - Our approach is 'asymptotically optimal' if the best treatment effect estimator also has the lowest mean squared placebo estimates, when the placebo zone is large. - This is the case if the MSE at each placebo threshold equals the MSE at the treatment threshold. - We show this, assuming the global DGP's CEF has a zero fourth-derivative, under homoskedasticity, and uniformly distributed x. - We focus on sharp RDD, with local linear estimators. The results also translate to higher-order polynomials. ### Proof of Asymptotic Optimality (Outline) - 1. We show that bias of linear RDD estimators is proportional to the 3rd derivative of the DGP's CEF. - This bias is constant across the support of the running variable, assuming the 4th derivative is zero. Therefore the bias of placebo estimators equals the bias of the treatment effect estimator - 3. The variance of placebo estimators also equals the variance of the treatment effect estimator, assuming homoskedasticity and a uniform distribution - 4. For each estimator, the observed mean of squared estimates across the placebo zone approaches the (unobservable) MSE of the treatment effect estimator as the placebo zone becomes large - 5. Therefore the approach is 'asymptotically optimal' #### Outline - Key Issues and our Contribution - Motivating Application 2 policy changes affecting Learner Drivers in NSW - Theory show our approach is asymptotically optimal, under restrictive conditions - Simulations our approach performs favourably compared to other procedures using stylised and realistic DGPs #### Monte Carlo Simulations - Great in theory, but does our approach work well with: - Finite placebo zones? - DGPs with non-zero fourth derivatives? - DGPs with non-constant density - Realistic DGPs, such as those in prominent well-known RDD studies? - Our simulation approach closely follows related simulation work - Use 1000 reps. In each rep, we - i) trial many candidate estimators (linear and quadratic models with a wide range of BWs) through the placebo zone and pick the best performer on RMSE - ii) Apply that model to estimate the actual treatment effect - Compare RMSE (across reps) of our approach to those chosen by the CCT and IK algorithms ### Stylised DGPs (first draw of 1000 reps) ## Stylised DGPs (first draw of 1000 reps) ## Monte Carlo Simulations (cont.) #### Realistic DGPs - Mimic well-known applications: Head Start (Ludwig & Miller, 2007), political incumbency (Lee, 2008), and Minimum Legal Drinking Age (MLDA) - Fit f(x), 5th order polynomial to original data, allowing a discontinuity and kink - Fit Beta-distribution to summarise distribution of running variable. - In each iteration, sample size is set equal to the original sample. - Randomly draw values of the running variable from the beta distribution. - Set y = f(x) + e, where e is normally distributed with zero mean and variance equal to the variance of the residuals from the regression in 1st step. ### Realistic DGPs (first draw of 1000 reps) ## Monte Carlo Results (4) | | KS | | CCT | | IK | | | |--------------------|--------|-----------------------------|-------|--------|------------------|--------|------------------| | | RMSE | mean | order | RMSE | mean | RMSE | mean | | | | $_{\mathrm{BW}}$ | (%) | | $_{\mathrm{BW}}$ | | $_{\mathrm{BW}}$ | | | | F: Head Start DGP | | | | | | | Mortality | 0.6794 | 13.86 | 0.999 | 1.4265 | 7.93 | 0.9853 | 14.87 | | | | ~ | T. 1 | , , | ъ. | ~ — | | | | | G: Political incumbency DGP | | | | | | | Wins | 0.0111 | 21.59 | 0.988 | 0.0125 | 22.76 | 0.0119 | 30.35 | | | | | | | | | | | | | H: MLDA DGP | | | | | | | Ever Drinks | 0.0271 | 3.81 | 0.981 | 0.0591 | 0.96 | 0.0347 | 2.50 | | Drinks Regularly | 0.0340 | 3.96 | 0.983 | 0.0750 | 0.96 | 0.0425 | 2.89 | | Proportion of Days | 0.0154 | 3.96 | 0.983 | 0.0339 | 0.96 | 0.0189 | 3.15 | | Drinks | | | | | | | | ## Monte Carlo Results (4) | | | KS | | CCT | | IK | | |------------------------------|--------|------------|--------------------------|----------------------|------------|--------|------------| | | RMSE | mean
BW | order
(%) | RMSE | mean
BW | RMSE | mean
BW | | | | | F: He | ad Star | DGP | | | | Mortality | 0.6794 | 13.86 | 0.999 | 1.4265 | 7.93 | 0.9853 | 14.87 | | | | G: | Political incumbency DGP | | | | | | Wins | 0.0111 | 21.59 | 0.988 | 0.0125 | 22.76 | 0.0119 | 30.35 | | | | | H: MLDA DGP | | | | | | Ever Drinks | 0.0271 | 3.81 | 0.981 | 0.0591 | 0.96 | 0.0347 | 2.50 | | Drinks Regularly | 0.0340 | | 0.983 | 0.0750 | | 0.0425 | 2.89 | | Proportion of Days
Drinks | 0.0154 | 3.96 | 0.983 | 0.0339 | 0.96 | 0.0189 | 3.15 | ## Monte Carlo Results Summary - Our approach always beats CCT and IK using DGPs based on real data - Our approach beats CCT in most of the stylized simulations as well, including those with highly unstable DGPs (Sine and Cosine) - Performance against IK more mixed (we usually win with simpler DGPs (linear, quadratic), particularly with more error variance, but usually lose with sine/cosine. However, RMSEs and selected BWs similar. #### Outline - Key Issues and our Contribution - Motivating application 2 policy changes affecting Learner drivers in NSW - Theory show our approach is asymptotically optimal, under restrictive conditions - Simulations our approach performs favourably compared to other procedures using stylised and realistic DGPs ### Candidate models for our application - 1. Conventional (fully-interacted) linear RDD. - 2. RDD with a linear fit on the right side of the threshold, and a quadratic on the left. - 3. Conventional (fully-interacted) quadratic RDD. - 4. Conventional (fully-interacted) linear RPJKD. - 5. Quadratic RPJKD, in which quadratic term is not interacted with the threshold indicator. - 6. RPJKD model with a linear fit on the right side of the threshold, and a quadratic on the left. - 7. Fully-interacted quadratic RPJKD. - 8. Conventional (fully-interacted) linear RKD. - 9. Quadratic RKD, in which the quadratic term is not interacted with the threshold indicator. - 10. RKD with a linear fit on the right side of the threshold, and a quadratic on the left. - 11. Fully-interacted quadratic RKD. - 12. Month-of-birth cohort IV, with linear DOB control - 13. Month-of-birth cohort IV, with quadratic DOB control - 14. Month-of-birth cohort IV, with cubic DOB control ## Summary of Model Performance in Placebo Zone | Model | Description | RMSE | Optimal
BW | Coverage | Bias | |-------|------------------------------|--------|---------------|----------|---------| | 1 | RDD - linear | 0.0083 | 365 | 0.962 | -0.0004 | | 2 | RDD - mixed polynomial | 0.0199 | 365 | 0.921 | 0.0014 | | 3 | RDD - quadratic | 0.0230 | 365 | 0.927 | 0.0015 | | 4 | RPJKD - linear | 0.0060 | 365 | 0.936 | 0.0010 | | 5 | RPJKD - quadratic | 0.0073 | 365 | 0.980 | -0.0005 | | 6 | RPJKD - mixed polynomial | 0.0052 | 365 | 0.992 | 0.0000 | | 7 | RPJKD - interacted quadratic | 0.0132 | 365 | 0.938 | 0.0005 | | 8 | RKD - linear | 0.0096 | 355 | 0.910 | 0.0028 | | 9 | RKD – quadratic | 0.0179 | 365 | 0.953 | 0.0019 | | 10 | RKD - mixed polynomial | 0.0057 | 365 | 0.984 | 0.0002 | | 11 | RKD - interacted quadratic | 0.0177 | 365 | 0.950 | 0.0019 | | 12 | birth cohort-IV - linear | 0.0051 | 365 | 0.946 | 0.0006 | | 13 | birth cohort-IV - quadratic | 0.0070 | 365 | 0.987 | -0.0007 | | 14 | birth cohort-IV - cubic | 0.0124 | 365 | 0.937 | 0.0001 | ## Key Estimates Table 6: Estimated effects of minimum supervised driving hours | | Best esti-
mator | Best sym. | Best sym.
RPJKD | Best sym. RKD | Best sym. RDD | | |--------------|---|------------|--------------------|---------------|---------------|--| | | (1) | (2) | (3) | (4) | (5) | | | | A: 2000 Reform $(0 \rightarrow 50 \text{ hours})$ | | | | | | | MVA | -0.0144*** | -0.0132*** | -0.0147*** | -0.0144** | -0.0168*** | | | 1-year | | | | | | | | SE | 0.0041 | 0.0049 | 0.0050 | 0.0058 | 0.0058 | | | p-value | 0.0005 | 0.0073 | 0.0032 | 0.0129 | 0.0038 | | | alt. SE | 0.0039 | 0.0047 | 0.0049 | 0.0054 | 0.0080 | | | alt. p-value | 0.0096 | 0.0203 | 0.0157 | 0.0381 | 0.0552 | | | Model | 6 | 12 | 6 | 10 | 1 | | | $_{ m BW}$ | 365 / 550 | 365 | 365 | 365 | 365 | | | | B: 2007 Reform (50 \rightarrow 120 hours) | | | | | | | MVA | 0.0021 | 0.0003 | 0.0006 | -0.0024 | -0.0007 | | | 1-year | | | | | | | | $_{ m SE}$ | 0.0030 | 0.0033 | 0.0033 | 0.0046 | 0.0035 | | | p-value | 0.4790 | 0.9259 | 0.8477 | 0.6069 | 0.8422 | | | alt. SE | 0.0042 | 0.0047 | 0.0049 | 0.0054 | 0.0080 | | | alt. p-value | 0.6310 | 0.9496 | 0.9003 | 0.6774 | 0.9328 | | | Model | 12 | 12 | 6 | 10 | 1 | | | $_{ m BW}$ | 560 / 365 | 365 | 365 | 365 | 365 | | #### Conclusions - We propose a new approach for model selection in RDD and related designs using placebo zone data - Can compare across and within model types, on any number of dimensions. Also offers a new approach for inference - We recommend its use whenever the DGP is `stable' across the range of the running variable, and the placebo zone is not small #### Policy conclusions - Going from 0 → 50 MSDH reduced MVAs. Relatively large effect sizes (21% reduction in 1st year). No effect after 1-2 years (evidence against habit formation). - No effect from further increase to 120 MSDH. ### Our 2 Stata Programs ssc install pzms https://econpapers.repec.org/software/bocbocode/s459073.htm -pzms- implements our approach. Very easy to use. Only required option is the maximum bandwidth <u>pzms sim</u> uses simulations based on the data from any application, to examine likely performance of our approach, compared to alternative approaches https://sites.google.com/site/nrkettlewell/research #### Data - Administrative records on licence history of drivers in NSW linked with records on crashes between 1996 and 2016. Only crashes where at least one car is towed away and/or someone was injured are recorded. - Because of important discontinuous policy changes we only consider BWs of up to 365 days for our baseline analysis. - In main analysis N = 154,524 drivers born within 1 year of 1 July 1984 (2000 reform), N = 160,301 within 1 year of 1 July 1991 (2007 reform). ### What are Researchers Doing? Table: Discontinuity studies published in leading journals in 2019 | | Sharp RDD | Fuzzy RDD | Cohort-IV | |--|-----------|-----------|-----------| | Papers using this model Method for bandwidth choice | 15 | 10 | 2 | | No stated method | 6 | 4 | 2 | | IK/CCT | 8 | 6 | 0 | | Method for polynomial choice | | | | | No stated method | 10 | 9 | 2 | | Local linear polynomial as baseline | 11 | 8 | - | | Robustness tests | | | | | Varied bandwidth | 15 | 9 | 1 | | Varied polynomial | 13 | 5 | 1 | #### Our Approach - Estimate many placebo treatment effects for each candidate estimator by moving the placebo threshold across the placebo zone where we know the treatment effect = 0. - Choose the estimator with lowest root mean squared error (RMSE) of treatment effect estimates across all candidate models. Can also assess bias and coverage. - Can compare models on any dimension and of different model types. - Extendable to nonlinear models (e.g. logit) - Combine with randomization inference similar to Ganong & Jager (2018) Figure: Reduced-Form Relationships between DOB and MVA 1-year Notes: Scatter plots use 14-day bin size. #### Decisions to make - Which empirical technique should we use (for estimation)? - Which order of polynomial should we use? - What bandwidth should we use? - Should we use a different approach on each side of the threshold? ### Monte Carlo Simulations (cont.) #### Stylised DGPs - Sample size = 500 observations (following IK, CCT and others) - x is uniformly distributed across the range (-100, 400) - Outcome variable y = 0.3(x>0) + f(x) + e, - where 0.3 is the discontinuity at x = 0, and σ^2 = 0.1² (representing `large' error variance), or 0.3² (`small' error variance) - f(x) is either: Linear, Quadratic, Sine, or Cosine ## Proof of Asymptotic Optimality (1) Let τ be the true treatment effect. The MSE of any estimator is $$MSE(\hat{\tau}) = E(\hat{\tau} - \tau)^2 = Var(\hat{\tau}) + Bias(\hat{\tau})^2$$ (1) Consider local linear RD estimators with bandwidth b. Assume n_b observations within this bandwidth, on each side of the threshold. $\hat{\tau}_b = \hat{\alpha}_{2b} - \hat{\alpha}_{1b}$, where $\hat{\alpha}_{2b}$ and $\hat{\alpha}_{1b}$ are estimated using independent linear regressions on each side of the threshold (x = 0) $$y = \alpha_1 + \beta_1 x + \varepsilon, \qquad -b < x < 0 \tag{2a}$$ $$y = \alpha_2 + \beta_2 x + \varepsilon, \qquad 0 < x < b \tag{2b}$$ $$MSE(\hat{\tau}_b) = E(\hat{\alpha}_{2b} - \hat{\alpha}_{1b} - \tau)^2 = Var(\hat{\alpha}_{1b}) + Var(\hat{\alpha}_{2b}) + Bias(\hat{\tau}_b)^2$$ (3) ## Proof of Asymptotic Optimality (2) Consider a true DGP that is cubic: $y = \alpha + \tau I(x > 0) + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \varepsilon$, (4) $\theta_2 x^2$ and $\theta_3 x^3$ are omitted variables from (2a) and (2b), $\alpha_1 = \alpha$ and $\alpha_2 = \alpha + \tau$. Using conventional OVB formulas: $$E(\hat{\alpha}_{1b}) = \alpha + \hat{\delta}_{L1} + \hat{\delta}_{L2} \tag{5}$$ Where $\hat{\delta}_{L1}$ is the estimated constant in the regression of $\theta_2 x^2$ on x: $\theta_2 x^2 = \delta_1 + \pi_1 x + \epsilon_1$, -b < x < 0 (6A) And $\hat{\delta}_{L2}$ is the estimated constant in the regression of $\theta_3 x^3$ on x, $\theta_3 x^3 = \delta_2 + \pi_2 x + \epsilon_2$, -b < x < 0 (6B) Similarly for $E(\hat{\alpha}_{2b})$ using data on the RHS: $$E(\hat{\alpha}_{2b}) = (\alpha + \tau) + \hat{\delta}_{R1} + \hat{\delta}_{R2} \tag{5B}$$ ## Proof of Asymptotic Optimality (3) The expected value of the RD estimate is hence: $$E(\hat{\tau}_b) = E(\hat{\alpha}_{2b}) - E(\hat{\alpha}_{1b}) = (\alpha + \tau) + \hat{\delta}_{R1} + \hat{\delta}_{R2} - (\alpha + \hat{\delta}_{L1} + \hat{\delta}_{L2})$$ (7) However, $\hat{\delta}_{R1} = \hat{\delta}_{L1}$ and $\hat{\delta}_{R2} = -\hat{\delta}_{L2}$, and so: $$E(\hat{\tau}) = \tau + 2\hat{\delta}_{L2}$$ (to see this, replace x with -x in (6A) and (6B), noting the assumed uniform distribution of x. (6A) becomes $\theta_2 x^2 = \delta_1 - \pi_1 x + \epsilon_1$. This regression yields exactly the same estimate of δ_1 . (6B) becomes $-\theta_3 x^3 = \delta_2 - \pi_2 x + \epsilon_2$. This regression yields an estimated constant exactly equal to $-\hat{\delta}_{L2}$.) (6B) implies that $\hat{\delta}_{L2}$ is proportional to θ_3 , and unrelated to any other parameters of the cubic DGP. The bias of $\hat{\tau}_b$ is hence proportional to the third derivative of the DGP CEF. ## Proof of Asymptotic Optimality (4) The discontinuity estimates at any placebo threshold at x = k, have the same bias, assuming the same global DGP, for any |k| > b The linear RD estimate with bandwidth b at a placebo discontinuity at x = k is $\hat{\tau}_{kb} = \hat{\alpha}_{k2b} - \hat{\alpha}_{k1b}$, where $\hat{\alpha}_{k1b}$ and $\hat{\alpha}_{k2b}$ are the estimates from these regressions: $$y = \alpha_{k1} + \beta_1(x - k) + \varepsilon$$, $(k - b) < x < k$ and $y = \alpha_{k2} + \beta_2(x - k) + \varepsilon$, $k < x < (k + b)$ Substituting $x_k = x - k$, these regressions are equivalent to $$y = \alpha_{k1} + \beta_1 x_k + \varepsilon$$, $-b < x_k < 0$ (9a), and $y = \alpha_{k2} + \beta_2 x_k + \varepsilon$, $0 < x_k < b$ (9b) The DGP can be expressed as $y = \alpha + \theta_1(x_k + k) + \theta_2(x_k + k)^2 + \theta_3(x_k + k)^3 + \varepsilon(10)$ if k > b, and similarly if k < -b ## Proof of Asymptotic Optimality (5) Equivalently, $y = \pi_0 + \pi_1 x_k + \pi_2 x_k^2 + \theta_3 x_k^3$, (11)Where $\pi_0 = \alpha + k\theta_1 + k^2\theta_2 + k^3\theta_3$, $\pi_1 = \theta_1 + 2k\theta_2 + 3k^2\theta_3$, $\pi_2 = \theta_2 + 3k\theta_3$ (9a), (9b) and (11) are equivalent to equations (2a), (2b) and (4), respectively, with $\tau = 0$ and the threshold at $x_k = 0$. As shown, the bias of the RDD estimate is proportional only to the third derivative of the true DGP's CEF. The third derivative ($6\theta_3$) is the same in (11) as in (4), and so $Bias(\hat{\tau}_{kh}) =$ $Bias(\hat{\tau}_h)$, for |k| > b. It is trivial to show that $Var(\hat{\tau}_{kb}) = Var(\hat{\tau}_b)$. Therefore $MSE(\hat{\tau}_{kb}) = MSE(\hat{\tau}_b)$. ## Proof of Asymptotic Optimality (6) For any given estimator, as the placebo zone gets large, the mean of the squared placebo estimates approaches the MSE of the treatment effect estimator: Since $$\tau_{kb} = 0$$, $\lim_{m \to \infty} \frac{1}{m} \sum_{k=b+1}^{b+m} \hat{\tau}_{kb}^2 = MSE(\hat{\tau}_b)$ If the DGP has a non-zero fourth derivative, our approach is no longer asymptotically optimal. To see this, assume a fourth-order polynomial DGP and follow the same steps. The equivalent of equation (11) would have a different coefficient of x_k^3 for each k. Therefore the bias of placebo estimates would be different at each placebo threshold. # Monte Carlo Results (1) | | | KS | | CC | CT | II | ζ | |----------------------|--------|------------|------------|----------|------------|--------|------------| | | RMSE | mean
BW | linear (%) | RMSE | mean
BW | RMSE | mean
BW | | | | | A: | Linear D | GP | | | | Baseline DGP | 0.0241 | 250.19 | 1.000 | 0.0413 | 66.42 | 0.0295 | 149.85 | | Small error variance | 0.0072 | 250.19 | 1.000 | 0.0092 | 83.01 | 0.0079 | 201.92 | | Small placebo zone | 0.0292 | 151.53 | 0.974 | 0.0601 | 34.70 | 0.0319 | 120.94 | | Small placebo zone | 0.0088 | 151.53 | 0.974 | 0.0180 | 34.69 | 0.0087 | 149.19 | | and error variance | | | | | | | | | | | | B: Q | uadratic | DGP | | | | Baseline DGP | 0.0285 | 114.30 | 0.999 | 0.0413 | 66.37 | 0.0331 | 137.67 | | Small error variance | 0.0088 | 98.63 | 0.995 | 0.0124 | 65.87 | 0.0166 | 149.54 | | Small placebo zone | 0.0318 | 118.92 | 0.969 | 0.0601 | 34.70 | 0.0332 | 115.63 | | Small placebo zone | 0.0096 | 98.54 | 0.953 | 0.0180 | 34.70 | 0.0116 | 117.95 | | and error variance | | | | | | | | # Monte Carlo Results (2) | | | KS | | CC | Т | Ik | (| |--|-----------------------------------|------------|--------------------------------|--------------------------|------------|----------------------------|---------------------------| | | RMSE | mean
BW | order
(%) | RMSE | mean
BW | RMSE | mean
BW | | | | | C: | Cubic Do | GP | | | | Baseline DGP Small error variance Small placebo zone | 0.0104 | 79.49 | 1.000 | 0.0414 0.0125 0.0601 | 65.94 | 0.0325 0.0109 0.0340 | 114.81
89.25
106.87 | | Small placebo zone
and error variance | 0.0110 | 82.66 | | 0.0180
Sine DC | | 0.0111 | 83.62 | | Dagalina DCD | 0.0491 | 50.0 | | | | 0.0449 | 60.8 | | Baseline DGP Small error variance Small placebo zone | 0.0481
0.0172
0.0633 | 41.6 | 0.857
0.886
0.729 | 0.0605 0.0187 0.0605 | 30.8 | 0.0443
0.0174
0.0443 | 56.5 | | Small placebo zone
and error variance | | | | 0.0187 | | 0.0174 | | # Monte Carlo Results (3) | | | KS | | CC | Γ | IK | |--|--------|------------|--------------|----------|------------|-----------------| | | RMSE | mean
BW | order
(%) | | mean
BW | RMSE mean
BW | | | | | E: | Cosine D | GP | | | Baseline DGP | 0.0446 | 83.9 | 0.640 | 0.0601 | 34.7 | 0.0377 75.1 | | Small error variance | 0.0147 | 42.1 | 0.876 | 0.0180 | 34.7 | 0.0114 71.0 | | Small placebo zone | 0.0437 | 82.5 | 0.579 | 0.0601 | 34.7 | 0.0377 75.1 | | Small placebo zone
and error variance | 0.0153 | 41.8 | 0.778 | 0.0180 | 34.7 | 0.0114 71.0 | #### Our procedure - There are total of 14 x 331 = 4,634 candidate models i.e. 14 models with BW ranging from 35 to 365 days. - We estimate the placebo treatment effect (which we know to be zero and constant across entities) using each candidate model. We repeat this for all **1826** placebo treatment thresholds, and assess the performance of each candidate model. - Key stat is the **Root Mean Squared Error** (RMSE) of the estimated treatment effect = square root of the sum of the 1826 estimates - Other stats are Coverage Rate (% of estimated Cls which include the true effect) #### Extensions - Allow asymmetric bandwidths (to the left and right of the threshold) – these actually do better! - Impose treatment effect heterogeneity into the placebo zone - Random perturbation of the real data for 'treated' observations - Marginal Treatment Effect which is linear in 'resistance' ## Outcome data in our placebo zone #### Placebo treatments Within this zone, we create placebo treatments in a way which mimics the true treatment selection process. For example, in the first placebo, persons are deemed treated if they obtained their license on or after 1 July 2001. The first stage relationship is shown. # Timing of Treatment Effect | | Best esti-
mator | Best sym.
cohort-IV | Best sym.
RPJKD | Best sym.
RKD | Best sym.
RDD | | | | |--------------------------|---------------------|-------------------------------|---------------------|--------------------|--------------------|--|--|--| | | | B: Timing of Treatment Effect | | | | | | | | MVA 6
months | -0.0094*** | -0.0074** | -0.0078** | -0.0072 | -0.0093** | | | | | SE
MVA 6-12
months | 0.0031
-0.0048* | 0.0035
-0.0059* | 0.0036
-0.0070** | 0.0044
-0.0069* | 0.0044
-0.0077* | | | | | SE
MVA 1-2
years | 0.0028
0.0035 | 0.0034 | 0.0034
0.0027 | 0.0040
0.0019 | 0.0040
0.0033 | | | | | SE | 0.0036 | 0.0045 | 0.0046 | 0.0053 | 0.0053 | | | | # Seriousness and Heterogeneity | | Best esti-
mator | Best sym.
cohort-IV | Best sym.
RPJKD | Best sym.
RKD | Best sym.
RDD | | | |--------------------------------|---|---|---|---|---|--|--| | | C: Serious MVAs | | | | | | | | Injury
SE
Fatality
SE | -0.0084***
0.0026
-0.0002
0.0003 | -0.0093***
0.0032
-0.0001
0.0004 | -0.0100***
0.0032
-0.0002
0.0004 | -0.0102***
0.0038
-0.0002
0.0005 | -0.0110***
0.0036
-0.0002
0.0005 | | | | | D: Heterogeneity by Sex | | | | | | | | MVA 1-year
males | -0.0132** | -0.0146** | -0.0139* | -0.0114 | -0.0163* | | | | SE | 0.0059 | 0.0072 | 0.0073 | 0.0086 | 0.0085 | | | | MVA 1-year females | -0.0164*** | -0.0111* | -0.0159** | -0.0181** | -0.0177** | | | | SE | 0.0056 | 0.0066 | 0.0068 | 0.0080 | 0.0083 | | | #### Other Applications - We use our method to re-evaluate evidence on Head Start (Ludwig & Miller, 2007) and minimum legal drinking age (Lindo et al, 2016). - In both cases, our method selects much larger BWs than the original studies. - However, the conclusions of those studies are unchanged.